
Research Article
The Hahn-Banach Extension Theorem for Fuzzy
Normed Spaces Revisited

Carmen Alegre and Salvador Romaguera
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This paper deals with fuzzy normed spaces in the sense of Cheng andMordeson.We characterize fuzzy norms in terms of ascending
and separating families of seminorms and prove an extension theorem for continuous linear functionals on a fuzzy normed space.
Our result generalizes the classical Hahn-Banach extension theorem for normed spaces.

1. Introduction

TheHahn-Banach extension theorem is without doubt one of
the most important theorems in the whole theory of normed
spaces. A classical formulation of such theorem is as follows.

Theorem 1. Let (𝑋, ‖ ⋅ ‖) be a normed space and let 𝑓
0
be

a continuous linear functional on a subspace 𝑋
0
of 𝑋. There

exists a continuous linear functional𝑓 on𝑋 such that𝑓
|𝑋0

= 𝑓
0

and ‖𝑓
0
‖
∗
= ‖𝑓‖

∗.

Thefact that the class of normed spaces is strictly included
in the class of fuzzy normed spaces motivates the following
natural question: is it possible to give a theorem of Hahn-
Banach type in the frame of fuzzy normed spaces which
generalizes the classical one for normed spaces? In this paper,
we will give an affirmative answer to this question by proving
the following (the notation and terminology can be found
along the paper).

Theorem 2. Let (𝑋,𝑁, ∧) be a fuzzy normed space such that
the 𝛼-seminorms corresponding to the fuzzy norm (𝑁, ∧) are
norms, and let 𝑓

0
be a continuous linear functional on a

subspace 𝑋
0
of 𝑋. Then, there exists 𝛿

𝑓0
∈ (0, 1) for which the

following two conditions are satisfied:

(1) for all 𝛼 ∈ (0, 𝛿
𝑓0
), there is a continuous linear

functional 𝑓
𝛼
on 𝑋 such that 𝑓

𝛼|𝑋0
= 𝑓
0
and ‖𝑓

𝛼
‖
∗

𝛼
=

‖𝑓
0
‖
∗

𝛼,𝑋0
;

(2) 𝑁∗
𝑋0
(𝑓
0
, 𝑡) = sup{𝑁∗(𝑓

𝛼
, 𝑡) : 𝛼 ∈ (0, 𝛿

𝑓0
)} for all 𝑡 > 0.

The antecedents of our study are in the paper by Bag and
Samanta [1], where the authors obtain a theorem of Hahn-
Banach type for a special class of fuzzy normed spaces, using
in its proof the classical Hahn-Banach theorem for normed
spaces. The scope of our result is a more general class of
fuzzy normed spaces which allows us to deduce the classical
theorem for normed spaces as a consequence.

It is well known that the fuzzy normed spaces are topo-
logical vector spaces, and hence the existence of continuous
linear extension for each continuous linear functional defined
on a linear subspace is guaranteed. Nevertheless, we do not
use this fact in the proof of our result, but we give an
explicit proof of the existence of a continuous linear extension
because in this way we can also establish how to compute the
fuzzy norm of the extension as stated in part (2) ofTheorem 2
above. Some illustrative examples are also presented.

The first definition of fuzzy norm on a linear space was
given by Katsaras [2] in 1984. Following this work, Felbin [3]
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offered in 1992 an alternative definition of a fuzzy norm on a
linear spacewith an associatedmetric of Kaleva and Seikkala’s
type [4]. In 1994, Cheng and Mordeson [5] gave another
definition of fuzzy norm that corresponds with the notion
of a fuzzy metric as defined by Kramosil and Michálek in
[6]. Bag and Samanta considered in [7] a fuzzy norm slightly
different from this one and they proved a series of results that
have been used in many subsequent works in this context.
Although this definition is less restrictive than the one given
by Cheng and Mordeson, the more interesting results given
in the mentioned paper require the use of two very restrictive
additional conditions which leave out of the scope of these
results important examples of fuzzy normed spaces.

In this paper, we consider fuzzy normed spaces in the
sense of Cheng andMordeson.The organization of the paper
is as follows. Section 2 comprises the basic notions on fuzzy
normed spaces and some preliminary results. In Section 3,
we study the relation between seminorms and fuzzy normed
spaces. Theorems 8 and 12 of this section generalize the
corresponding results given by Bag and Samanta in [7]. In
this section, we also deduce from our approach the well-
known relationship between fuzzy normed spaces and locally
convex spaces (see Theorem 14). Finally, in Section 4, we
proveTheorem 2 above and deduceTheorem 1 from it.

2. Terminology and Basic Notions

According to [8], a binary operation ∗ : [0, 1] × [0, 1] →

[0, 1] is a continuous 𝑡-norm if ∗ satisfies the following
conditions: (i) ∗ is associative and commutative; (ii) ∗ is
continuous; (iii) 𝑎∗1 = 𝑎 for every 𝑎 ∈ [0, 1]; (iv) 𝑎∗𝑏 ≤ 𝑐∗𝑑

whenever 𝑎 ≤ 𝑐 and 𝑏 ≤ 𝑑, with 𝑎, 𝑏, 𝑐, 𝑑 ∈ [0, 1].
Three paradigmatic examples of continuous 𝑡-norms are

∧, ⋅, and ∗
𝐿
(the Lukasiewicz 𝑡-norm), which are defined by

𝑎 ∧ 𝑏 = min{𝑎, 𝑏}, 𝑎 ⋅ 𝑏 = 𝑎𝑏, and 𝑎∗
𝐿
𝑏 = max{𝑎 + 𝑏 − 1, 0},

respectively. Recall that ∗
𝐿
≤ ⋅ ≤ ∧. In fact, ∗ ≤ ∧ for every

continuous 𝑡-norm ∗.

Definition 3. If𝑋 is a real vector space, a fuzzy norm on𝑋 is
a pair (𝑁, ∗) such that ∗ is a continuous 𝑡-norm and 𝑁 is a
fuzzy set in𝑋×[0,∞) satisfying the following conditions for
every 𝑥, 𝑦 ∈ 𝑋, and 𝑡, 𝑠 ≥ 0:

(FN1) 𝑁(𝑥, 0) = 0;
(FN2) 𝑁(𝑥, 𝑡) = 1 for all 𝑡 > 0 ⇔ 𝑥 = 0;
(FN3) 𝑁(𝑐𝑥, 𝑡) = 𝑁(𝑥, 𝑡/|𝑐|) for every 𝑐 ∈ R \ {0};
(FN4) 𝑁(𝑥 + 𝑦, 𝑡 + 𝑠) ≥ 𝑁(𝑥, 𝑡) ∗ 𝑁(𝑦, 𝑠);
(FN5) lim

𝑡→∞
𝑁(𝑥, 𝑡) = 1;

(FN6) 𝑁(𝑥, ⋅) : [0,∞) → [0, 1] is left continuous.

The triple (𝑋,𝑁, ∗) is called a fuzzy normed space.
If condition (FN5) is omitted we say that (𝑁, ∗) is a weak

fuzzy normon𝑋, and the triple (𝑋,𝑁, ∗)will be called aweak
fuzzy normed space. These spaces will play a crucial role in
the paper.

Recall that if in Definition 3 we put ∗ = ∧, then one has
the notion of a fuzzy norm as given by Cheng andMorderson
[5].

The class of fuzzy normed spaces is equivalent to a suitable
subclass of Serstnev spaces in the case of continuous 𝑡-norms
(see Remark 1 of [9]).

The following well-known example shows that every
normed space can be considered as a fuzzy normed space.

Example 4. Let (𝑋, ‖ ⋅ ‖) be a normed space. Then,

(a) let𝑁 : 𝑋 × [0,∞) → [0, 1] given by𝑁(𝑥, 0) = 0 for
all 𝑥 ∈ 𝑋 and let

𝑁(𝑥, 𝑡) =
𝑡

𝑡 + ‖𝑥‖
, (1)

for all 𝑥 ∈ 𝑋 and 𝑡 > 0. Then, (𝑁, ∗) is a fuzzy norm
on 𝑋, where ∗ is any continuous 𝑡-norm. This fuzzy
norm is called the standard fuzzy norm induced by
‖ ⋅ ‖.

(b) Let𝑁 : 𝑋×[0,∞) → [0, 1] given by𝑁(𝑥, 𝑡) = 0 if 𝑡 ≤
‖𝑥‖ and𝑁(𝑥, 𝑡) = 1 if 𝑡 > ‖𝑥‖. Then, (𝑁, ∗) is a fuzzy
norm on 𝑋, where ∗ is any continuous 𝑡-norm. This
fuzzy norm will be called the 01-fuzzy norm induced
by ‖ ⋅ ‖.

If (𝑋,𝑁, ∗) is a weak fuzzy normed space, the open ball
𝐵
𝑁
(𝑥, 𝑟, 𝑡) with center 𝑥, radius 𝑟, 0 < 𝑟 < 1, and 𝑡 > 0 is

defined as follows:

𝐵
𝑁
(𝑥, 𝑟, 𝑡) = {𝑦 ∈ 𝑋 : 𝑁 (𝑦 − 𝑥, 𝑡) > 1 − 𝑟} . (2)

We note that 𝐵
𝑁
(𝑥, 𝑟, 𝑡) = 𝑥 + 𝐵

𝑁
(0, 𝑟, 𝑡), for all 𝑥 ∈ 𝑋

and 0 < 𝑟 < 1, 𝑡 > 0. The closed ball 𝐵
𝑁
(𝑥, 𝑟, 𝑡) with center

𝑥, radius 𝑟, 0 < 𝑟 < 1, and 𝑡 > 0 is defined as follows:

𝐵
𝑁 (𝑥, 𝑟, 𝑡) = {𝑦 ∈ 𝑋 : 𝑁 (𝑦 − 𝑥, 𝑡) ≥ 1 − 𝑟} . (3)

It is clear that if (𝑋,𝑁, ∗) is a weak fuzzy normed space,
the fuzzy set 𝑀

𝑁
in 𝑋 × 𝑋 × [0,∞) given by 𝑀

𝑁
(𝑥, 𝑦, 𝑡) =

𝑁(𝑦−𝑥, 𝑡) is a fuzzymetric on𝑋 in the sense of Kramosil and
Michálek [6]. This fuzzy metric induces a topology 𝜏

𝑁
on 𝑋,

which has as a base the collection {𝐵
𝑁
(𝑥, 𝑟, 𝑡) : 𝑥 ∈ 𝑋, 0 <

𝑟 < 1, 𝑡 > 0}. Moreover, 𝜏
𝑁
is metrizable and the countable

collection of balls {𝐵
𝑁
(𝑥, 1/𝑛, 1/𝑛) : 𝑛 = 2, 3, . . .} forms a

fundamental system of neighborhoods of 𝑥, for all 𝑥 ∈ 𝑋.
It is well known, and easy to see, that if (𝑋, ‖⋅‖) is a normed

space, then the topology 𝜏
𝑁
agrees with the topology induced

by the norm ‖ ⋅ ‖, when (𝑁, ∗) is the standard fuzzy norm or
the 01-fuzzy norm on𝑋.

It is interesting to note that if (𝑋,𝑁, ∧) is a fuzzy normed
space, the open (closed) balls are absorbent, balanced, and
convex sets (Propositions 1 and 3 of [9]). However, if (𝑁, ∧) is
a weak fuzzy norm, it can happen that the open (closed) balls
are not absorbent sets.

By omitting the condition of left continuity of the real
function 𝑁(𝑥, ⋅) in the definition of fuzzy norm given by
Cheng and Morderson [5], Bag and Samanta gave in [7] the
following notion.

Definition 5 (see [7]). A BS-fuzzy norm on a real vector space
𝑋 is the pair (𝑁, ∧) such that 𝑁 is a fuzzy set in 𝑋 × R

satisfying the following conditions for every 𝑥, 𝑦 ∈ 𝑋 and
𝑡, 𝑠 ∈ R :
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(N1) 𝑁(𝑥, 𝑡) = 0, for all 𝑡 ≤ 0;
(N2) 𝑁(𝑥, 𝑡) = 1 for all 𝑡 > 0 ⇔ 𝑥 = 0;
(N3) 𝑁(𝑐𝑥, 𝑡) = 𝑁(𝑥, 𝑡/|𝑐|) for every 𝑐 ∈ R \ {0};
(N4) 𝑁(𝑥 + 𝑦, 𝑡 + 𝑠) ≥ 𝑁(𝑥, 𝑡) ∧ 𝑁(𝑦, 𝑠);
(N5) 𝑁(𝑥, ⋅) is nondecreasing and lim

𝑡→∞
𝑁(𝑥, 𝑡) = 1.

We point out that since (N2) and (N4) imply that𝑁(𝑥, ⋅)

is nondecreasing, this condition may be dropped from (N5).
A BS-fuzzy normed space satisfies the condition (N6)

(page 691 of [7]) if𝑁(𝑥, 𝑡) > 0, for all 𝑡 > 0, implies 𝑥 = 0.
A BS-fuzzy normed space satisfies the condition (N7)

(page 693 of [7]) if, for 𝑥 ̸= 0, 𝑁(𝑥, ⋅) is a continuous function
of R which is strictly increasing on the subset {𝑡 : 0 <

𝑁(𝑥, 𝑡) < 1}.
The standard fuzzy norm and the 01-fuzzy norm induced

by a norm are BS-fuzzy norms. The standard fuzzy norm
satisfies (N7) but not (N6) while the 01-fuzzy norm satisfies
(N6) but not (N7).

3. Seminorms and Fuzzy Normed Spaces

Bag and Samanta proved inTheorem2.1 of [7] that if (𝑋,𝑁, ∧)

is a BS-fuzzy normed space which satisfies condition (N6),
then {‖ ⋅ ‖

𝛼
: 𝛼 ∈ (0, 1)} is an ascending family of norms on

𝑋, where

‖𝑥‖𝛼 = inf {𝑡 > 0 : 𝑁 (𝑥, 𝑡) ≥ 𝛼} . (4)

From the proof of this result, it follows that if the condition
(N6) is not required, then each ‖ ⋅ ‖

𝛼
is a seminorm on𝑋.

In the next proposition, we give a shorter alternative proof
of this result.

Proposition 6. Let (𝑋,𝑁, ∧) be a fuzzy normed space and let
𝛼 ∈ (0, 1). Then, the following hold.

(a) The function ‖ ⋅ ‖
𝛼
: 𝑋 → [0,∞) given by

‖𝑥‖𝛼 = inf {𝑡 > 0 : 𝑁 (𝑥, 𝑡) ≥ 𝛼} (5)

is a seminorm on 𝑋. In fact, it is the Minkowski
functional of the ball 𝐵(0, 1 − 𝛼, 1).

(b) The family {‖ ⋅ ‖
𝛼
: 𝛼 ∈ (0, 1)} is separating.

Proof. (a) Let 𝑝 be the Minkowski functional of the closed
ball𝐵

𝑁
(0, 1−𝛼, 1). Clearly,𝑝 is a seminorm because𝐵

𝑁
(0, 1−

𝛼, 1) is an absolutely convex absorbent set. Then,

𝑝 (𝑥) = inf {𝜆 > 0 : 𝑥 ∈ 𝜆𝐵
𝑁 (0, 1 − 𝛼, 1)}

= inf {𝜆 > 0 : 𝑁(
𝑥

𝜆
, 1) ≥ 𝛼}

= inf {𝜆 > 0 : 𝑁 (𝑥, 𝜆) ≥ 𝛼} = ‖𝑥‖𝛼.

(6)

(b) If ‖𝑥‖
𝛼
= 0 for every 𝛼 ∈ (0, 1), then𝑁(𝑥, 𝑡) ≥ 1−1/𝑛,

for every 𝑛 ∈ N and 𝑡 > 0. Therefore,𝑁(𝑥, 𝑡) = 1 for all 𝑡 > 0

and so 𝑥 = 0.

Example 7. (a) Let (𝑋, ‖ ⋅ ‖) be a normed space and let (𝑁, ∧)

be the standard fuzzy norm induced by ‖ ⋅ ‖. Then, ‖𝑥‖
𝛼
=

(𝛼/(1 − 𝛼))‖𝑥‖. Note that (𝑁, ∧) does not satisfy condition
(N6) but ‖ ⋅ ‖

𝛼
is a norm for all 𝛼 ∈ (0, 1).

(b) Let (X, ‖⋅‖) be a normed space and let (𝑁, ∧) be the 01-
fuzzy norm induced by ‖⋅‖.Then, ‖𝑥‖

𝛼
= ‖𝑥‖, for all𝛼 ∈ (0, 1).

If (𝑋,𝑁, ∧) is a fuzzy normed space, the family {‖ ⋅ ‖
𝛼
:

𝛼 ∈ (0, 1)} will be called the 𝛼-seminorms corresponding to
the fuzzy norm (𝑁, ∧).

Bag and Samanta stated in Theorem 2.2 of [7] that given
an ascending family {‖ ⋅ ‖

𝛼
: 𝛼 ∈]0, 1[} of norms on a real

linear space𝑋, then the pair (𝑋, ∧) is a BS-fuzzy norm on𝑋,
where𝑁 : 𝑋×[0,∞) → [0, 1] is defined by𝑁(0, 0) = 0, and
𝑁(𝑥, 𝑡) = sup{𝛼 ∈ (0, 1) : ‖𝑥‖

𝛼
≤ 𝑡}, otherwise.

Next, we generalize this result for the case that {‖ ⋅ ‖
𝛼

:

𝛼 ∈ (0, 1)} is a family of extended separating seminorms
on 𝑋. In fact, our extension requires an explicit proof
because Bag-Samanta’s construction of 𝑁 presents some
slight disarrangement. Indeed, if (𝑋, ‖ ⋅ ‖) is a nontrivial
normed space and put ‖ ⋅ ‖

𝛼
= ‖ ⋅ ‖ for all 𝛼 ∈ (0, 1), then for

each 𝑥 ∈ 𝑋\{0} it follows that𝑁(𝑥, 𝑡) is not definedwhenever
‖𝑥‖ > 𝑡.

Theorem 8. Let {‖ ⋅ ‖
𝛼
: 𝛼 ∈ (0, 1)} be an ascending family

of separating seminorms on a real linear space𝑋, and let ‖ ⋅ ‖
0

be given by ‖𝑥‖
0
= 0, for all 𝑥 ∈ 𝑋. Then, the pair (𝑁, ∧) is a

fuzzy norm on 𝑋, where𝑁 : 𝑋 × [0,∞) → [0, 1] is given by
𝑁(𝑥, 0) = 0, for all 𝑥 ∈ 𝑋, and

𝑁(𝑥, 𝑡) = sup {𝛼 ∈ [0, 1) : ‖𝑥‖𝛼 < 𝑡} (7)

for all 𝑥 ∈ 𝑋 and 𝑡 > 0. (𝑁, ∧) will be called the fuzzy norm
induced by the seminorms {‖ ⋅ ‖

𝛼
: 𝛼 ∈ (0, 1)}.

Proof. (FN1) Consider that𝑁(𝑥, 0) = 0, by definition of𝑁.
(FN2) If 𝑁(𝑥, 𝑡) = 1 for all 𝑡 > 0, then ‖𝑥‖

𝛼
< 𝑡 for all

𝛼 ∈ [0, 1).Therefore, ‖𝑥‖
𝛼
= 0 for all𝛼 ∈ [0, 1). Consequently,

𝑥 = 0, since the family of seminorms is separating.
(FN3) Let 𝑐 ∈ R \ {0}, 𝑥 ∈ 𝑋, and 𝑡 > 0. Then,

𝑁(𝑐𝑥, 𝑡) = sup {𝛼 ∈ [0, 1) : ‖𝑐𝑥‖𝛼 < 𝑡}

= sup{𝛼 ∈ [0, 1) : ‖𝑥‖𝛼 <
𝑡

|𝑐|
}

= 𝑁(𝑥,
𝑡

|𝑐|
) .

(8)

(FN4) Let 𝑥, 𝑦 ∈ 𝑋 and let 𝑠, 𝑡 ≥ 0. Suppose that𝑁(𝑥, 𝑡) ≤

𝑁(𝑦, 𝑠). Then, ‖𝑦‖
𝛼
< 𝑠 whenever ‖𝑥‖

𝛼
< 𝑡. Since ‖𝑥 + 𝑦‖

𝛼
≤

‖𝑥‖
𝛼
+‖𝑦‖
𝛼
, it follows that ‖𝑥 + 𝑦‖

𝛼
< 𝑡+𝑠whenever ‖𝑥‖

𝛼
< 𝑡

for all 𝛼 ∈ [0, 1[. Consequently, 𝑁(𝑥 + 𝑦, 𝑡 + 𝑠) ≥ 𝑁(𝑥, 𝑡) =

𝑁(𝑥, 𝑡) ∧ 𝑁(𝑦, 𝑠).
(FN5) Let 𝑥 ∈ 𝑋 and let 𝜀 > 0. There exits 𝛼

0
∈ (0, 1)

such that 1 − 𝛼
0
< 𝜀. Let 𝑡 be such that 𝑡 > ‖𝑥‖

𝛼0
. Then,

𝑁(𝑥, 𝑡) ≥ 𝛼
0
> 1 − 𝜀. Hence, lim

𝑡→∞
𝑁(𝑥, 𝑡) = 1.

(FN6) Let 𝑥 ∈ 𝑋 and let 𝑡
0
> 0.

If𝑁(𝑥, 𝑡
0
) = 0, then𝑁(𝑥, 𝑡) = 𝑁(𝑥, 𝑡

0
) = 0, for all 𝑡 < 𝑡

0
.
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Suppose 0 < 𝑁(𝑥, 𝑡
0
) ≤ 1. Then, given 𝜀 > 0, there is

𝛼
0
∈ (0, 1) such that ‖𝑥‖

𝛼0
< 𝑡
0
and𝑁(𝑥, 𝑡

0
) − 𝛼
0
< 𝜀. Let 𝑡 be

such that ‖𝑥‖
𝛼0

< 𝑡 < 𝑡
0
. Then,𝑁(𝑥, 𝑡) ≥ 𝛼

0
and so

𝑁(𝑥, 𝑡
0
) − 𝑁 (𝑥, 𝑡) ≤ 𝑁 (𝑥, 𝑡

0
) − 𝛼
0
< 𝜀. (9)

Therefore,𝑁(𝑥, ⋅) is left continuous.

Remark 9. If in the above theorem we define 𝑁(𝑥, 𝑡) =

sup{𝛼 ∈ [0, 1) : ‖𝑥‖
𝛼
≤ 𝑡} instead of𝑁(𝑥, 𝑡) = sup{𝛼 ∈ [0, 1[:

‖𝑥‖
𝛼

< 𝑡}, the left continuity of 𝑁(𝑥, ⋅) is not guaranteed.
Indeed, if (𝑋, ‖ ⋅ ‖) is a nontrivial normed space and put
‖ ⋅ ‖
𝛼
= ‖ ⋅ ‖ for all 𝛼 ∈ (0, 1), then𝑁(𝑥, 𝑡) = 0 if 𝑡 < ‖𝑥‖ and

𝑁(𝑥, 𝑡) = 1 if 𝑡 ≥ ‖𝑥‖, and this function is not left continuous
at 𝑡 = ‖𝑥‖ for every 𝑥 ̸= 0.

Let 𝑋 be a linear space and let 𝑝 : 𝑋 → R+ ∪ {∞}. If
𝑝 satisfies the conditions of a seminorm, we say that 𝑝 is an
extended seminorm.

If {𝑝
𝑖
: 𝑖 ∈ 𝐼} is a family of extended seminorms on𝑋, we

say that the family is separating if for all 𝑥 ∈ 𝑋, 𝑥 ̸= 0, there
are 𝑗, 𝑘 ∈ 𝐼 such that 𝑝

𝑗
(𝑥) ̸= 0 and 𝑝

𝑘
(𝑥) ̸=∞.

If we consider an ascending family of separating extended
seminorms on 𝑋, mimicking the proof of Theorem 8, we
obtain the following result.

Theorem 10. Let {‖ ⋅ ‖
𝛼
: 𝛼 ∈ (0, 1)} be an ascending family of

separating extended seminorms on a real linear space𝑋, and let
‖ ⋅ ‖
0
be given by ‖𝑥‖

0
= 0, for all 𝑥 ∈ 𝑋. Then, the pair (𝑁, ∧)

is a weak fuzzy norm on𝑋, where𝑁 : 𝑋 × [0,∞) → [0, 1] is
given by𝑁(𝑥, 0) = 0, for all 𝑥 ∈ 𝑋, and

𝑁(𝑥, 𝑡) = sup {𝛼 ∈ [0, 1) : ‖𝑥‖𝛼 < 𝑡} (10)

for all 𝑥 ∈ 𝑋 and 𝑡 > 0. (𝑁, ∧) will be called the weak fuzzy
norm induced by the seminorms {‖ ⋅ ‖

𝛼
: 𝛼 ∈ (0, 1)}.

Bag and Samanta stated in Theorem 2.3 of [7] that if
(𝑋,𝑁, ∧) is a BS-fuzzy normed space which satisfies (N6) and
(N7), then 𝑁 coincides with the BS-fuzzy norm induced by
the 𝛼-norms corresponding to the fuzzy norm (𝑁, ∧). Next,
we generalize this theorem to the case that (𝑋,𝑁, ∧) is a
fuzzy normed space. To prove this result, first we prove the
following lemma.

Lemma 11. Let (𝑋,𝑁, ∧) be a fuzzy normed space. Let {‖ ⋅ ‖
𝛼
:

𝛼 ∈ (0, 1)} be the 𝛼-seminorms corresponding to the fuzzy
norm (𝑁, ∧).

(a) If ‖𝑥‖
𝛼
< 𝑡, then𝑁(𝑥, 𝑡) ≥ 𝛼.

(b) If𝑁(𝑥, 𝑡) > 𝛼, then ‖𝑥‖
𝛼
< 𝑡.

Proof. (a) Suppose that 𝑁(𝑥, 𝑡) < 𝛼. Since 𝑁(𝑥, ⋅) is
nondecreasing, it follows that 𝑡 ≤ 𝑠 for every 𝑠 > 0 such that
𝑁(𝑥, 𝑠) ≥ 𝛼. Therefore,

𝑡 ≤ inf {𝑠 > 0 : 𝑁 (𝑥, 𝑠) ≥ 𝛼} = ‖𝑥‖𝛼 (11)

which provides a contradiction because ‖𝑥‖
𝛼
< 𝑡.

(b) If 𝑁(𝑥, 𝑡) > 𝛼, then ‖𝑥‖
𝛼
≤ 𝑡, by definition of ‖ ⋅ ‖

𝛼
.

Suppose that ‖𝑥‖
𝛼
= 𝑡. Since 𝑁(𝑥, ⋅) is left continuous and

𝑁(𝑥, 𝑡) > 𝛼, there exists 𝑡
󸀠 < 𝑡 such that 𝑁(𝑥, 𝑡󸀠) ≥ 𝛼.

Now, if 𝑁(𝑥, 𝑡󸀠) ≥ 𝛼, then 𝑡󸀠 ≥ ‖𝑥‖
𝛼
= 𝑡 which provides a

contradiction.

Theorem 12. Let (𝑋,𝑁, ∧) be a fuzzy normed space. Let
{‖ ⋅ ‖
𝛼
: 𝛼 ∈ (0, 1)} be the 𝛼-seminorms corresponding to the

fuzzy norm (𝑁, ∧). If (𝑁󸀠, ∧) is the fuzzy norm induced by the
seminorms {‖ ⋅ ‖

𝛼
: 𝛼 ∈ (0, 1)}, then𝑁 = 𝑁󸀠.

Proof. Let 𝑥 ∈ 𝑋 and let 𝑡 > 0. Let 𝛼 ∈ [0, 1) such that ‖𝑥‖
𝛼
<

𝑡. Then, by Lemma 11 (a),𝑁(𝑥, 𝑡) ≥ 𝛼. Now, if𝑁(𝑥, 𝑡) ≥ 𝛼 for
every 𝛼 ∈ [0, 1) such that ‖𝑥‖

𝛼
< 𝑡, then

𝑁(𝑥, 𝑡) ≥ sup {𝛼 ∈ [0, 1) : ‖𝑥‖𝛼 < 𝑡} = 𝑁
󸀠
(𝑥, 𝑡) . (12)

Suppose that there exist 𝑥 ∈ 𝑋 and 𝑡 > 0 such that𝑁(𝑥, 𝑡) >

𝑁󸀠(𝑥, 𝑡). Let 𝛽 ∈ (0, 1) such that 𝑁(𝑥, 𝑡) > 𝛽 > 𝑁󸀠(𝑥, 𝑡). By
Lemma 11 (b), ‖𝑥‖

𝛽
< 𝑡, so 𝑁󸀠(𝑥, 𝑡) ≥ 𝛽, which provides a

contradiction.
By using known properties of locally convex vector

spaces, the family of𝛼-seminorms corresponding to the fuzzy
norm (𝑁, ∧) induces a topology 𝜏 on 𝑋 such that (𝑋, 𝜏)

is a Hausdorff locally convex space. Since the family of 𝛼-
seminorms is ascending, a base of neighborhoods of the
origin in this topology consists of the sets of the form

𝑈 (𝛼, 𝜀) = {𝑥 ∈ 𝑋 : ‖𝑥‖𝛼 < 𝜀} , 𝜀 > 0, 𝛼 ∈ (0, 1) . (13)

Proposition 13. Let (𝑋,𝑁, ∧) be a fuzzy normed space. Let 𝜏
𝑁

be the topology induced on𝑋 by the fuzzy norm (𝑁, ∧) and let
𝜏 be the topology induced on 𝑋 by the family of 𝛼-seminorms
corresponding to the fuzzy norm (𝑁, ∧). Then, 𝜏

𝑁
= 𝜏.

Proof. Take the open ball 𝐵
𝑁
(0, 𝑟, 𝑡) and let it be with 0 <

𝑟 < 1 and 𝑡 > 0. Then, 𝑈(1 − 𝑟/2, 𝑡) ⊆ 𝐵
𝑁
(0, 𝑟, 𝑡) because if

‖𝑥‖
1−𝑟/2

< 𝑡, then, by Lemma 11 (a),𝑁(𝑥, 𝑡) ≥ 1 − 𝑟/2 > 1 − 𝑟.
Consequently, 𝜏

𝑁
is coarser than 𝜏.

Now, given 𝑈(𝛼, 𝜀) with 𝜀 > 0 and 𝛼 ∈ (0, 1) then, by
Lemma 11 (b),𝐵

𝑁
(0, 1−𝛼, 𝜀) ⊆ 𝑈(𝛼, 𝜀).Therefore, 𝜏 is coarser

than 𝜏
𝑁
.

As a consequence of the above results, it is possible to
obtain the relationship between fuzzy normed spaces and
locally convex spaces.This result was obtained byRadu [10] in
the realm of randomnormed spaces of Serstnev [11]. A timely
update of this fact was presented in [9].

Theorem 14 (see [9, 10]). (a) Let (𝑋,𝑁, ∧) be a fuzzy normed
space. Then, (𝑋, 𝜏

𝑁
) is a metrizable locally convex space.

(b) Let (𝑋, 𝜏) be a metrizable locally convex space. Then,
there is a fuzzy norm (𝑁, ∧) on𝑋 such that 𝜏

𝑁
= 𝜏.

Proof. (a) It is immediate by Proposition 13.
(b) If (𝑋, 𝜏) is a metrizable locally convex space, 𝜏 is

determined by a separating family of seminorms {𝑝
𝑖
: 𝑖 ∈ N}

on 𝑋. Let {𝑞
𝑖
: 𝑖 ∈ N} be the ascending family of seminorms

such that 𝑞
𝑖
= max{𝑝

1
, . . . , 𝑝

𝑖
}, and then 𝜏 is also determined

by this family, and the sets
𝑉 (𝑞
𝑖
, 𝜀) = {𝑥 ∈ 𝑋 : 𝑞

𝑖
(𝑥) < 𝜀} , 𝜀 > 0, 𝑖 ∈ N, (14)

form a base of neighborhoods of the origin in (𝑋, 𝜏).
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Let {‖ ⋅ ‖
𝛼

: 𝛼 ∈ (0, 1)} be the ascending family of
separating seminorms such that ‖𝑥‖

𝛼
= 𝑞
𝑛
(𝑥) if 𝛼 ∈ ((𝑛 −

1)/𝑛, 𝑛/(𝑛 + 1)], for all 𝑛 ∈ N. By Theorem 8, this family
induces a fuzzy norm (𝑁, ∧) on𝑋. Next, we show that 𝜏

𝑁
= 𝜏.

To this end, take the open ball 𝐵
𝑁
(0, 1/𝑛, 1/𝑛)with 𝑛 ≥ 2. We

claim that 𝑉(𝑞
𝑛
, 1/𝑛) ⊆ 𝐵

𝑁
(0, 1/𝑛, 1/𝑛). Indeed, if 𝑞

𝑛
(𝑥) <

1/𝑛, then ‖𝑥‖
𝛼
< 1/𝑛 for all 𝛼 ∈ (0, 𝑛/(𝑛 + 1)]. Therefore,

𝑁(𝑥,
1

𝑛
) = sup {𝛼 ∈ [0, 1) : ‖𝑥‖𝛼 <

1

𝑛
} ≥

𝑛

𝑛 + 1

= 1 −
1

𝑛 + 1
> 1 −

1

𝑛
.

(15)

On the other hand, if we take 𝑉(𝑞
𝑛
, 𝜀), 𝑛 ≥ 1, 𝜀 > 0, then

𝐵
𝑁
(0, 1/(𝑛+1), 𝜀) ⊆ 𝑉(𝑞

𝑛
, 𝜀). Indeed, if𝑁(𝑥, 𝜀) > 1−1/(𝑛+1),

then ‖𝑥‖
𝑛/(𝑛+1)

< 𝜀, and hence, 𝑞
𝑛
(𝑥) < 𝜀.

Remark 15. If (𝑋,𝑁, ∧) is a weak fuzzy normed space, then
(𝑋, 𝜏
𝑁
) is a metrizable topological space, but it is not a

topological vector space since the open (closed) balls are not
absorbent sets, in general.

The following example shows that the family of 𝛼-
seminorms corresponding to a fuzzy norm (𝑁, ∧) compatible
with a nonnormable metrizable locally convex space can be a
family of norms.

Example 16. Let 𝐴 = (𝑎
𝑛,𝑘
)
𝑛,𝑘∈N be a matrix of nonnegative

real numbers such that 0 < 𝑎
𝑛,𝑘

≤ 𝑎
𝑛,𝑘+1

for all 𝑛, 𝑘 ∈ N. Let
𝑝 ∈ [1,∞) and let 𝜆

𝑝
(𝐴) be the Köthe echelon space of order

𝑝,

𝜆
𝑝
(𝐴) =

{

{

{

𝑥 ∈ R
N
: 𝑞
𝑛
(𝑥) = (

∞

∑
𝑘=1

𝑎
𝑛,𝑘

󵄨󵄨󵄨󵄨𝑥𝑘
󵄨󵄨󵄨󵄨
𝑝
)

1/𝑝

< ∞

for all 𝑛 ∈ N
}

}

}

.

(16)

It is well known (Lemma27.1 of [12]) that𝜆
𝑝
(𝐴) is a locally

convex space for the topology 𝜏 generated by the seminorms
{𝑞
𝑛
: 𝑛 ∈ N} and that 𝜏 has a compatible complete metric.

Since 𝑎
𝑛,𝑘

> 0 for all 𝑛, 𝑘 ∈ N, then 𝑞
𝑛
is a norm for all 𝑛 ∈ N.

ByTheorem 14 (b), there is a fuzzy norm (𝑁, ∧) on 𝜆
𝑝
(𝐴)

such that 𝜏
𝑁

= 𝜏. Moreover, the proof of Theorem 14 (b)
shows that 𝑁 is induced by the ascending family of norms
{‖ ⋅ ‖
𝛼

: 𝛼 ∈ (0, 1)} given by ‖𝑥‖
𝛼

= 𝑞
𝑛
(𝑥), where

𝛼 ∈ ((𝑛 − 1)/𝑛, 𝑛/(𝑛 + 1)], 𝑛 ∈ N. Finally, if we consider
the fuzzy normed space (𝜆

𝑝
(𝐴),𝑁, ∧), the 𝛼-seminorms

corresponding to the fuzzy norm (𝑁, ∧) are the norms {‖ ⋅ ‖
𝛼
:

𝛼 ∈ (0, 1)}, by Theorem 12.

4. Continuous Linear Functionals and
the Hahn-Banach Theorem

Let (𝑋,𝑁, ∧) be a fuzzy normed space and let (𝑁
𝑠
, ∧) be the

standard fuzzy norm onR, that is;𝑁
𝑠
(𝑥, 0) = 0 for 𝑥 ∈ R and

𝑁
𝑠
(𝑥, 𝑡) = 𝑡/(𝑡 + |𝑥|) for all 𝑥 ∈ R and 𝑡 > 0 (see Example 4

(a)).
Denote by 𝑋

∗ the set of all continuous linear mappings
from (𝑋, 𝜏

𝑁
) to (R, 𝜏

𝑁𝑠
). (Note that 𝜏

𝑁𝑠
is the usual topology

of R.)

Proposition 17. Let (𝑋,𝑁, ∧) be a fuzzy normed space and
let {‖ ⋅ ‖

𝛼
: 𝛼 ∈ (0, 1)} be the 𝛼-seminorms corresponding to

the fuzzy norm (𝑁, ∧). Then, 𝑓 ∈ 𝑋
∗ if and only if there exist

𝛼 ∈ (0, 1) and 𝑀 > 0 such that |𝑓(𝑥)| ≤ 𝑀‖𝑥‖
𝛼
for every

𝑥 ∈ 𝑋.

Proof. Let𝑓 ∈ 𝑋∗. By Proposition 13, there are 𝛼 ∈ (0, 1) and
𝜀 > 0 such that𝑓(𝑈(𝛼, 𝜀)) ⊆ [−1, 1], where𝑈(𝛼, 𝜀) = {𝑥 ∈ 𝑋 :

‖𝑥‖
𝛼
< 𝜀}. If 𝑥 ∈ 𝑋 and ‖𝑥‖

𝛼
̸= 0, then 𝜀𝑥/‖𝑥‖

𝛼
∈ 𝑈(𝛼, 𝜀) and

so

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨 ≤

1

𝜀
‖𝑥‖𝛼. (17)

If ‖𝑥‖
𝛼

= 0, then 𝑛𝑥 ∈ 𝑈(𝛼, 𝜀) for all 𝑛 ∈ N. Therefore,
|𝑓(𝑥)| ≤ 1/𝑛 for each 𝑛 ∈ N and then |𝑓(𝑥)| = 0.
Consequently,

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨 =

1

𝜀
‖𝑥‖𝛼 = 0. (18)

Conversely, suppose there exist 𝛼 ∈ (0, 1) and 𝑀 > 0

such that |𝑓(𝑥)| ≤ 𝑀‖𝑥‖
𝛼
for every 𝑥 ∈ 𝑋. Then, given 𝜀 > 0,

we have that 𝑓(𝑈(𝛼, 𝜀/𝑀)) ⊆ [−𝜀, 𝜀]. Since 𝑈(𝛼, 𝜀/𝑀) is a
neighborhood of the origin in the topology 𝜏

𝑁
, we have that

𝑓 is continuous at the origin and, by linearity,𝑓 is continuous
at each point of𝑋.

For each 𝑓 ∈ 𝑋
∗ define ‖𝑓‖∗

0
= 0 and

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
∗

𝛼
= sup {󵄨󵄨󵄨󵄨𝑓 (𝑥)

󵄨󵄨󵄨󵄨 : ‖𝑥‖1−𝛼 ≤ 1} , (19)

whenever 𝛼 ∈ (0, 1).

Proposition 18. Let (𝑋,𝑁, ∧) be a fuzzy normed space. Then,
{‖ ⋅ ‖
∗

𝛼
: 𝛼 ∈ (0, 1)} is an ascending family of extended norms

on 𝑋
∗.

Proof. It is easy to show that ‖ ⋅ ‖∗
𝛼
is an extended seminorm

on 𝑋∗ for each 𝛼 ∈ (0, 1). Now, if ‖𝑓‖∗
𝛼
= 0 for all 𝛼 ∈ (0, 1),

then |𝑓(𝑥)| = 0 for all 𝑥 ∈ 𝑈(1 − 𝛼, 1), where 𝑈(1 − 𝛼, 1) =

{𝑥 ∈ 𝑋 : ‖𝑥‖
1−𝛼

≤ 1}. Since 𝑈(1 − 𝛼, 1) is absorbent, given
𝑥 ∈ 𝑋, there exists 𝑘 > 0 such that 𝑘𝑥 ∈ 𝑈(1 − 𝛼, 1). Then,
𝑓(𝑘𝑥) = 𝑘𝑓(𝑥) = 0 and so 𝑓(𝑥) = 0.

If 𝛼 ≤ 𝛽, then 1 − 𝛽 ≤ 1 − 𝛼 and then ‖𝑓‖
∗

𝛼
≤ ‖𝑓‖

∗

𝛽
. On

the other hand, by Proposition 17, for every 𝑓 ∈ 𝑋∗, there is
𝛼 ∈ (0, 1) such that ‖𝑓‖∗

𝛼
< ∞. Therefore, {‖ ⋅ ‖∗

𝛼
: 𝛼 ∈ (0, 1)}

is an ascending family of extended norms on𝑋∗.

The following example shows that ‖𝑓‖∗
𝛼
can be infinity.

Example 19. Let 𝑋 be the linear space of all sequences 𝑥 :=

(𝑥
𝑛
)
𝑛
of real scalars. 𝑋 is a metrizable locally convex vector

space for the topology 𝜏 generated by the seminorms 𝑝
𝑛
(𝑥) =

|𝑥
𝑛
|, 𝑛 ∈ N.
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ByTheorem 14 (b), there is a fuzzy norm (𝑁, ∧) on𝑋 such
that 𝜏
𝑁

= 𝜏. Moreover, if 𝑞
𝑖
= max{𝑝

1
, . . . , 𝑝

𝑖
}, following the

proof of this result, 𝑁 is induced by the ascending family of
separating seminorms {‖ ⋅ ‖

𝛼
: 𝛼 ∈ (0, 1)} given by ‖𝑥‖

𝛼
=

𝑞
𝑛
(𝑥) if 𝛼 ∈ ((𝑛 − 1)/𝑛, 𝑛/(𝑛 + 1)], for all 𝑛 ∈ N.
By Theorem 12, this family of seminorms is the 𝛼-

seminorms corresponding to the fuzzy norm (𝑁, ∧).
Let 𝑓 : 𝑋 → R be the linear function given by 𝑓(𝑥) =

𝑥
1
+ 𝑥
2
+ 𝑥
3
. Since |𝑓(𝑥)| ≤ 3𝑞

3
(𝑥) = 3‖𝑥‖

3/4
, we have that 𝑓

is continuous and ‖𝑓‖
∗

1/4
≤ 3.

For each 𝑘 ∈ N, let 𝑥𝑘 be the sequence given by 𝑥𝑘
𝑖
= 0 if

𝑖 ̸= 3 and 𝑥𝑘
3
= 𝑘. Since ‖𝑥𝑘‖

1/2
= 𝑞
2
(𝑥𝑘) = 0 and |𝑓(𝑥𝑘)| = 𝑘,

for all 𝑘 ∈ N, we have
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩
∗

1/2
= sup {󵄨󵄨󵄨󵄨𝑓 (𝑥)

󵄨󵄨󵄨󵄨 : ‖𝑥‖1−1/2 ≤ 1} ≥ 𝑘, (20)

for all 𝑘 ∈ N. Therefore, ‖𝑓‖∗
1/2

= ∞ and 1/4 ≤ 𝛿
𝑓
≤ 1/2,

where 𝛿
𝑓
= sup{𝛼 ∈ (0, 1) : ‖𝑓‖

∗

𝛼
< ∞}.

By Theorem 10 and Proposition 18, the pair (𝑁∗, ∧) is a
weak fuzzy norm on 𝑋∗, where𝑁∗(𝑓, 0) = 0 for all 𝑓 ∈ 𝑋∗,
and

𝑁
∗
(𝑓, 𝑡) = sup {𝛼 ∈ [0, 1) :

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
∗

𝛼
< 𝑡} , (21)

for all 𝑓 ∈ 𝑋∗.

Lemma 20. Let (𝑋,𝑁, ∧) be a fuzzy normed space. If 𝑓 ∈ 𝑋∗

and 𝑡 > 0, then

𝑁
∗
(𝑓, 𝑡) = sup {𝛼 ∈ [0, 𝛿

𝑓
) :

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
∗

𝛼
< 𝑡} , (22)

where 𝛿
𝑓
= sup{𝛼 ∈ (0, 1) : ‖𝑓‖

∗

𝛼
< ∞}.

Proof. If ‖𝑓‖∗
𝛿𝑓

< 𝑡, since ‖𝑓‖∗
𝛼
= ∞, for all 𝛼 > 𝛿

𝑓
, we have

sup {𝛼 ∈ [0, 1) :
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩
∗

𝛼
< 𝑡}

= sup {𝛼 ∈ [0, 𝛿
𝑓
) :

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
∗

𝛼
< 𝑡} = 𝛿

𝑓
.

(23)

If ‖𝑓‖∗
𝛿𝑓

≥ 𝑡, then ‖𝑓‖
∗

𝛼
≥ 𝑡, for all 𝛼 ≥ 𝛿

𝑓
. Hence,

sup {𝛼 ∈ [0, 1) :
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩
∗

𝛼
< 𝑡} = sup {𝛼 ∈ [0, 𝛿

𝑓
) :

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
∗

𝛼
< 𝑡} .

(24)

In order to prove Theorem 2, we will also use the follow-
ing terminology.

If 𝑋
0
is a linear subspace of a fuzzy normed space

(𝑋,𝑁, ∧), we denote by 𝑋∗
0
the set of all continuous linear

mappings from (𝑋
0
, 𝜏
𝑁|𝑋0

) to (R, 𝜏
𝑁𝑠
). If 𝑓 ∈ 𝑋∗

0
and 𝛼 ∈

(0, 1), we denote by ‖ ⋅ ‖∗
𝛼,𝑋0

the extended norm on 𝑋
0
given

by
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩
∗

𝛼,𝑋0
= sup {󵄨󵄨󵄨󵄨𝑓 (𝑥)

󵄨󵄨󵄨󵄨 : 𝑥 ∈ 𝑋
0
, ‖𝑥‖1−𝛼 ≤ 1} . (25)

By (𝑁∗
𝑋0
, ∧), we will denote the weak fuzzy norm on 𝑋∗

0

given by𝑁∗
𝑋0
(𝑓, 0) = 0 and

𝑁
∗

𝑋0
(𝑓, 𝑡) = sup {𝛼 ∈ [0, 1) :

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
∗

𝛼,𝑋0
< 𝑡} , (26)

for all 𝑓 ∈ 𝑋∗
0
and 𝑡 > 0.

Lemma 21 (Theorem 5, p. 132 of [13]). Let 𝑝 be a convex
functional on a real linear space 𝑋 and let 𝑓

0
be a linear

functional on a subspace 𝑋
0
of 𝑋 such that 𝑓

0
(𝑥) ≤ 𝑝(𝑥) for

all 𝑥 ∈ 𝑋
0
. Then, there is a linear functional 𝑓 on 𝑋 such that

𝑓
|𝑋0

= 𝑓
0
and 𝑓(𝑥) ≤ 𝑝(𝑥) for all 𝑥 ∈ 𝑋.

Proof of Theorem 2. Since 𝑓
0
∈ 𝑋∗
0
, by Proposition 17, there

exists 𝛼 ∈ (0, 1) such that ‖𝑓
0
‖
∗

𝛼,𝑋0
< +∞. Let 𝛿

𝑓0
= sup{𝛼 ∈

(0, 1) : ‖𝑓
0
‖
∗

𝛼,𝑋0
< ∞}. If 𝛼 ∈ (0, 𝛿

𝑓0
), we define 𝑝

𝛼
: 𝑋 →

[0,∞) by 𝑝
𝛼
(𝑥) = ‖𝑓

0
‖
∗

𝛼,𝑋0
‖𝑥‖
1−𝛼

for all 𝑥 ∈ 𝑋. Clearly, 𝑝
𝛼
is

a convex functional on𝑋
0
.

Let 𝑥 ∈ 𝑋
0
\ {0}. Since 𝑓

0
(𝑥/‖𝑥‖

1−𝛼
) ≤ ‖𝑓

0
‖
∗

𝛼,𝑋0
, it follows

that 𝑓
0
(𝑥) ≤ 𝑝

𝛼
(𝑥) for all 𝑥 ∈ 𝑋

0
and 𝛼 ∈ (0, 𝛿

𝑓0
). Therefore,

by Lemma 21, for each 𝛼 ∈ (0, 𝛿
𝑓0
), there is a linear functional

𝑓
𝛼
on𝑋 such that 𝑓

𝛼|𝑋0
= 𝑓
0
and

𝑓
𝛼
(𝑥) ≤ 𝑝

𝛼
(𝑥) =

󵄩󵄩󵄩󵄩𝑓0
󵄩󵄩󵄩󵄩
∗

𝛼,𝑋0
‖𝑥‖1−𝛼, (27)

for all 𝑥 ∈ 𝑋. By Proposition 17, 𝑓
𝛼
is continuous on 𝑋 for

all 𝛼 ∈ (0, 𝛿
𝑓0
). Moreover, since |𝑓

𝛼
(𝑥)| ≤ ‖𝑓

0
‖
∗

𝛼,𝑋0
for every

𝑥 ∈ 𝑋 such that ‖𝑥‖
1−𝛼

≤ 1, we obtain that ‖𝑓
𝛼
‖
∗

𝛼
= ‖𝑓
0
‖
∗

𝛼,𝑋0
.

Next, we show that 𝑁∗
𝑋0
(𝑓
0
, 𝑡) = sup{𝑁∗(𝑓

𝛼
, 𝑡) : 𝛼 ∈

(0, 𝛿
𝑓0
)} for all 𝑡 > 0.

By definition of 𝑁∗
𝑋0
, it immediately follows that

𝑁∗
𝑋0
(𝑓
0
, 𝑡) ≥ 𝑁∗(𝑓

𝛼
, 𝑡), for all 𝛼 ∈ (0, 𝛿

𝑓0
). Hence,

𝑁
∗

𝑋0
(𝑓
0
, 𝑡) ≥ sup {𝑁∗ (𝑓

𝛼
, 𝑡) : 𝛼 ∈ (0, 𝛿

𝑓0
)} . (28)

On the other hand, if 𝛼 ∈ (0, 𝛿
𝑓0
) and ‖𝑓

0
‖
∗

𝛼,𝑋0
< 𝑡, we have

that ‖𝑓
𝛼
‖
∗

𝛼
< 𝑡 and then𝑁∗(𝑓

𝛼
, 𝑡) ≥ 𝛼. Therefore,

sup {𝑁∗ (𝑓
𝛼
, 𝑡) : 𝛼 ∈ (0, 𝛿

𝑓0
)}

≥ sup {𝛼 ∈ [0, 𝛿
𝑓
) :

󵄩󵄩󵄩󵄩𝑓0
󵄩󵄩󵄩󵄩
∗

𝛼,𝑋0
< 𝑡}

= 𝑁
∗

𝑋0
(𝑓
0
, 𝑡) .

(29)

As we indicated in Section 1, the classical Hahn-Banach
theorem for normed spaces (Theorem 1) can be obtained
fromTheorem 2.

Indeed, let (𝑋, ‖ ⋅ ‖) be a normed space and let 𝑓
0
be

a continuous linear functional on a subspace 𝑋
0
of 𝑋. Let

(𝑁, ∧) be the 01-fuzzy norm on 𝑋 induced by (𝑋, ‖ ⋅ ‖). The
𝛼-seminorms corresponding to (𝑁, ∧) are ‖ ⋅ ‖

𝛼
= ‖ ⋅ ‖ for

every 𝛼 ∈ (0, 1). Moreover, ‖ ⋅ ‖∗
𝛼
= ‖ ⋅ ‖

∗ for every 𝛼 ∈ (0, 1)

and 𝛿
𝑔
= 1 for all 𝑔 ∈ 𝑋∗. Therefore, by applyingTheorem 2,

we have that for each 𝛼 ∈ (0, 1) there is 𝑓
𝛼
∈ 𝑋
∗ such that

𝑓
𝛼|𝑋0

= 𝑓
0
and ‖𝑓

𝛼
‖
∗
= ‖𝑓
0
‖
∗.
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