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We introduce a Kantorovich-Stancu type modification of a generalization of Szasz operators defined by means of the Brenke type
polynomials and obtain approximation properties of these operators. Also, we give a Voronovskaya type theorem for Kantorovich-
Stancu type operators including Gould-Hopper polynomials.

1. Introduction

For each positive nand f € Cy([0, 00)) or C([0, 00)) N E, the
Szasz-Mirakyan operators defined by

S, (f:x) = —nxz(”x) ( > a)

have an important role in the approximation theory [1].
Their Korovkin type approximation properties and rates of
convergence have been investigated by many researchers.
Recently, there is a growing interest in defining linear positive
operators via special functions (see [2-13]). In particular,
many authors have studied various generalizations of Szasz
operators via special functions. In [14], Jakimovski and
Leviatan constructed a generalization of Szasz operators by
means of the Appell polynomials. Then, Ismail [15] presented
another generalization of Szasz operators by means of Sheffer
polynomials, which involves the operators (1) defined by Jaki-
movski and Leviatan in [14]. In [11],Varma et al. considered
the following generalization of Szasz operators by means of
the Brenke type polynomials, which are motivated by the
operators defined by Jakimovski and Leviatanand Ismail, for
x>0andneN:

LU= s s () @

under the following assumptions:

(i) A(1) £0, ﬁ(’lb)* >0, 0<r<kk=012...,
(i) B : [0.00) — (0,00), )
(iii) (4) and (5) converge for [t{{ <R (R>1),
where
A(t) = ia,t’, ay#0,
- (4)
B(t) = ib,t’, b,#0 (r>0)
=0

are analytic functions and the Brenke type polynomials [16]
have generating functions of the form

AWM Bxt) =Y pe ()15, (5)
k=0
where

k
pe(®) =Y a bx', k=01,2,.... (6)
r=0
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The Kantorovich type of Szasz-Mirakyan operators is
defined by [17]

(k+1)/n
(fix): —n’”"Z("x) L/ Fwd. ()

The approximation properties of the Szasz-Mirakyan-
Kantorovich operators and their various iterates were studied
by many authors in [12, 18-23].

Recently, in [8], the Kantorovich type of the operators
given by (2) under the assumptions (3) has been defined as

(k+1)/n
K, (fix):= Zpk (nx) I fwadt, (8)

A(I)B(

where n € N, x > 0and f € C[0,00), and some of its
properties have been investigated.

The purpose of this study is to introduce a Kantorovich-
Stancu type modification of the operators given by (8) and
to examine the approximation properties of these operators.
We also present a Kantorovich-Stancu type of the operators
including Gould-Hopper polynomials and then we prove a
Voronovskaya type theorem for these operators including
Gould-Hopper polynomials.

2. Construction of the Operators

For each positive integer n, x > 0 and f € Cg([0,00)), or
C([0, 00)) N E, let us consider the following operators:

n+ﬁ

(k+a+1)/(n+p)
A(1) B (nx) £ ZP" J

K9P (fix) = f(®)dt,

)

where « and f3 parameters satisfy the condition 0 < « < .
For the approximation properties of Stancu type operators,
we refer to [24-27].

It is clear that fora = 8 = 0, K,(q“’ﬁ )( f; x) reduces to the
operators defined by (8).

In the case of B(¢) = ¢’ and A(¢) = 1, with the help of (5) it
follows that p;(x) = x*/k!. So the operator K,(f"‘{3 )(f; x) gives
the Kantorovich-Stancu type of Szasz-Mirakyan operators as
follows:

K (fix) = (n+ ) fnxz(nx) J’

(k+a)/(n+P)

(k+a)/(n+p)

(k+a+1)/(n+p)

f®adt,
(10)

where o and f3 parameters satisfy the condition 0 < « < .

In the case of @ = 5 = 0, the operator (10) turns out to be
the Szasz-Mirakyan-Kantorovich operators given by (7).

For B(t) = ¢, Kfl“’ﬁ)( f; x) gives the Kantorovich-Stancu
type of the operators P,( f; x) proposed by Jakimovski and
Leviatan in [14].

Now, for the operators Kfl“’[; ) given by (9), we give some
results which are necessary to prove the main theorem.

Lemma 1. Kantorovich-Stancu type operators, defined by (9),
are linear and positive.
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Lemma 2. For each x € [0, 00), the Kantorovich-Stancu type
operators (9) have the following properties:

K*P (1;%) = 1, (1)

@B, . n B(nx) A1) 20+ 1
K, (S’x)_n+ﬁB(nx) +(n+ﬁ)A(1) 205 f)’
(12)

K@) (sz'x) :< n >23n (nx) 2
" ’ n+p) B(nx)

nB' (nx) [2A" (1) + (2o + 2)A(1)]
+
(n+p)*A(1) B (nx)

1

— A" +a+2)A (1
+(n+[3)2A(1){ (1) + Qo +2) A (1)

+<<x2+oc+§>A(l)}.

(13)

Proof. From the generating function of the Brenke type
polynomials given by (5), a few calculations reveal that

Y i (nx) = A1) B(nx),

k=0

OZO:kpk (nx) = A’ (1) B (nx) + nxA (1) B' (nx),
k=0
oo (14)
Zkzpk (nx) = n*x*A (1) B" (nx)
k=0
+nxB' (nx) 24" (1) + A1)}
+B(nx) {A" (1) + A" (D}

By using these equalities, we obtain the assertions of the
lemma by simple calculation. O

Lemma 3. For each x € [0,00), one has

Kﬁl‘x’ﬁ) ((s - x)% x)
B < n >ZB" (nx) 2nB' (nx) b2
" \n+B) Bmx) (n+p)B(nx) *
. {nB’ (nx) [24" (1) + A(1)] , o+ )nB (nx)
(n+ ,B)ZA (1) B (nx) (n+ ﬁ)zB (nx)
24 () _2¢x+1} A" () + A (1)
(n+B)A(1) n+p (n+B) A1)
(2(x+l)A (1 )+a2+a+(1/3)
VA | (e PP
(15)
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Theorem 4. Let

E = {f x € [0,00), 1f+();)2 is convergent as x — oo]» ,
L BO) i B0 _
y=e B(y) Y= B(y)
(16)
If f € C[0,00) N E, then
nangOK(“ (fix) = f(x), (17)

and the operators Kfl""ﬁ) converge uniformly in each compact
subset of [0, 00).

Proof. According to Lemma 2, by considering the equality
(16), we get

lim K“P) (s x) X, i=0,1,2. (18)

n—ooo "

This convergence is satisfied uniformly in each compact
subset of [0, 00). Then, the proof follows from the universal
Korovkin-type property (vi) of Theorem 4.1.4 in [28]. O

3. Rates of Convergence

In this section, we compute the rates of convergence of the
operators Kfl“’ﬁ )(f) to f by means of a classical approach, the
second modulus of continuity, and Peetre’s K-functional.

Let f € C[0,0). Then for 8 > 0, the modulus of
continuity of f denoted by w( f; 0) is defined to be

w(f;8):= sup |f(x)-f)|

x,y€[0,00) (19)
|x—y|£8

where C[0,00) denotes the space of uniformly continuous
functions on [0, 00). Then, forany § > 0 and each x € [0, c0),
it is well known that one can write

rw-rolswiEa) (E2e). e

The next result gives the rate of convergence of the

sequence Kff"ﬁ)( f) to f by means of the modulus of conti-
nuity.

Theorem 5. For f € C[0,00) N E, one has

|Kfl“’ﬁ) (fix)-f (x)| <2w (f, VA, (x)>, (21)

3
where
A=A, (x)
= Kfl“’ﬁ) ((s - x)% x)
B {( n >ZB" (nx) 2nB' (nx) . 1} 2
~|\n+pB) Bmx) (n+p)B(nx)
. {nB’ () 24" + AD)] o+ 1) B ()
(n+ ﬁ)ZA (1) B (nx) (n+ [3) B (nx)
28y 2(x+1}x+ A"+ A ()
(n+B)A(1) n+p (n+B)*A(1)
, Qo+ 1A' (1) . o +a+(1/3)
e pPAM) | ()
(22)

Proof. Using linearity of the operators K,(l“’ﬁ ), (11) and (20), we
get

[K&P (fix) - f (%)

n+f
= A1) B (nx )z By (nx)

(k+a+1)/(n+p)
XJ( |f(s)—f(x)|ds

k+a)/(n+p)

n+ﬁ

*AWB ZPk (nx)

(23)

(k+a+1)/(n+p) |S _ xl
xj <—+1>w(f;8)ds
(k+)/ (n+B) é

S{l A
A(1)B(nx

(k+a+1)/(n+p)
<]
(

ZPk (nx)

|s—x|ds}w(f:6)-

k+a)/(n+f)

According to the Cauchy-Schwarz inequality for integration,
we obtain that

(k+a+1)/(n+p)
J |s — x| ds
(k+a)/(n+B)
(24)
1 (k+a+1)/(n+f) ) 1/2
< (J [s — x| ds)
Vi + B\ Jra)/(nep)
from which, it follows that
00 (k+a+1)/(n+p)
ZPk (nx) J |s — x| ds
pr (k+a)/(n+)
(25)

(k+a+1)/(n+B) 1/2
(J |s — xlzds) .
(k+e0)/(n+B)




By using the Cauchy-Schwarz inequality for summation on
the right hand side of (25), we may write

Y Py (nx) J
k=0

(k+a)/(n+P)

(k+a+1)/(n+p)
|s — x| ds

1/2
_ VA B(m) ( AMBOD) s x)z;x)>

B\ omep
B A(l)B(nx) (@B) N2 1/2
=— 3 (Kn ((s x) ,x))

A(l)B(nx)(/\ (x ))1/2
(26)

where A, (x) is given by (22). Considering this inequality in
(23), we find that

|K£L“’ﬁ) (fix) —f(x)' < {1 + —\M (x) }w(f;S). (27)
If we set § = /A,,(x), the proof is completed. O

Now, we will study the rates of convergence of the ope-

rators Kfl‘x‘ﬁ) to f by means of the second modulus of con-
tinuity and Peetre’s K-functional.

Recall that the second modulus of continuity of f €
Cgl0, 00) is defined by

w, (f39) = SuP||f( +20=2f C+)+ f Ol (28)

0<t<d

where Cg[0, 00) is the class of real valued functions defined
on [0, co) which are bounded and uniformly continuous with

the norm || fllc, = SUp e jo,00) f (%)1-
Peetre’s K-functional of the function f € Cg[0,00) is
defined by

K(f; 6) = inf

g€C3[0,00)

{1 -gle, +dlal > (20
where
C2[0,00) := {g € C5[0,00) : g, g" € C5[0,00)}  (30)

and the norm lgllcs = Iglc, +19'l, + 19" I, (see [29]). 1t
is clear that the following inequality:

K(f;6) SM{wz (f; \/§)+min(l,5) "f"cB} (D)

holds for all § > 0. The constant M is independent of f and
d.

Theorem 6. Let f € C3[0, 00). IfK,(,""ﬁ) is defined by (9), then
one has

|K£l""ﬁ) (fix)-f (x)| < C”f"cg’ (32)
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where
(=0, (x)
_ {( n )ZB” (nx) nB' (nx) l}xz
n+p) 2B(nx) (n+B)B(nx) 2
. { nB' (nx) [2A" (1) + 2o +2) A(1)]
2(n+ B)°A(1) B (nx)

~ 2A (1) + Qe +1)A(1)
2(n+B)A(1)

A"(1)+A (1)

n B (nx) _q
n+ f B(nx) x

a+1)A (1)

2(n+,8) A1) 2(n+B)PAQ)
+(x2+(x+(1/3) 2" 1)+ 2a+1)A(1)
2(n+ p) 2(n+p)A)

(33)

Proof. We can write from the Taylor expansion of f, the
linearity of the operators Kﬁl""ﬁ ), and (11)

K (fix) - f (%)
= f'(x) K,(;x’ﬁ) (s — x;%) (34)
+ %f” (n) Kf,a’ﬁ) ((5 - x)z;x) , He(xs).

From Lemma 2, it is obvious that

Kr(l“’ﬁ) (s — x5 %)
_ n B (nx) _q
Cn+ B B(nx)

for s > x. Thus, by considering Lemmas 2 and 3 in (34), one
can write

. A (1)
(n+/3)A(1)

200+ 1

>0
2(n+p)
(35)

|K&P (fix) - f ()]
n B (nx)
= {{n+[5 B (nx) —l}x

A1) 20+ 1 }
+ +
(n+[3)A(1) 2n+ﬁ

+1H<nzﬁ>2il<§$)

2nB' (nx) 2
T+ P B 1}
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{nB' (nx) [24" (1) + A(1)]
+
(n+B)’A(1) B (nx)

(2(x+l)nB (nx)
(n+ﬁ) B (nx)
24 21|
(n+B)AQQ) n+p
A"(1)+A 1) .
(n+B) A1)

a+1)A (1)
(n+B) A1)

o +o+(1/3) "
] [N

n \'B" (nx) nB' (nx) 1]
: [ {<n+ﬁ> 2B(nx) (n+ B)B(nx) " E} *
{nB' (nx) [24" (1) + Qo +2) A(1)]
+
2(n+ B)°A(1) B (nx)

24T () + Qe+ 1) A1)
2(n+p)A)

n B (nx) 1
n+/SB(nx) .

a+1)A (1)
2(n+ B)*A(1)

A"(1)+A (1)

(n+ﬁ) A1)

o +a+(1/3)

5
2(n+p)

24" (1) + Qe+ 1) A(1)
2(n+p)A(1)

1Fle;
(36)

which completes the proof. O

Theorem 7. If f € Cg[0, 00), then one has

[K&P (fix) - f (%)

<2M {wz (f; \/5) +min (1,9) ”f"cg}’

(37)

where
8:=8,() = 534, (38)

and M > 0 is a constant which is independent of the function
fand 8. Also, {,(x) is the same as in Theorem 6.

Proof. Suppose that g € C%[O, 00). From Theorem 6, we have
K (fix) = f ()]
< |KP(f - g x)| + [KEP (g3%) - 9 ()
+lg () - f ()]

<2 f = gle, +¢lalez =2 [If - gl, + Sllgles |-

Since the left-hand side of inequality (39) does not depend on
the function g € C5[0, 00), we get

|K’(1(X’ﬁ) (f) x) _ f (x)' < 2K (f, 6) 5 (40)

where K(f;8) is Peetre’s K-functional defined by (29). By
using the relation (31) in (39), the inequality

(39)

|K£l“,ﬁ) (f; x) - f(x)' <2M {w2 (f; \/3) +min (1,96) “f”cs}
(41)
holds. =

Remark 8. In Theorems 5-7, A,,,(,,8, — Owhenn — oo
under the assumption (16).

4. Special Cases of the Operators K'*? and
Further Properties

Gould-Hopper polynomials g,‘f“(x, h) are defined through
the identity

g Gl k! k—(d+1)
h . m — m 42
Cohy = mZ:O ml (k- (d + 1) m)! (42

and satisty the generating function

s exp (xt) = d“ (x, h) (43)
k= o
where, as usual, [-] denotes the integer part [30].

The Gould-Hopper polynomials are Brenke-type polyno-
mials for the special case of A(t) = eht’h1 and B(t) = ¢
in (5). From (2), the operators including the Gould-Hopper
polynomials are as follows:

d+1
_ —nxhzgk (nXh) (S)) (44)

where x € [0,00) and & > 0 (see [11]).
d+1
Similarly, the special case A(t) = " and B(t) = ¢
of (9) gives the following Kantorovich-Stancu type operators
K “P( £, x) including the Gould-Hopper polynomials:

L, (fix)

,h
KO (fix) = (n+ ™ hzgk el
(45)
(k+a+1)/(n+p)
xj £ () dt
(k+a)/(n+p)

under the assumption h > 0.



Remark 9. For h = 0, we have g,‘f“ (nx,0) = (nx)k and
the operators given by (45) reduce to the Kantorovich-Stancu
type of Szasz-Mirakyan operators given by (10).

Remark 10. For « = f3 = 0, the operators (45) give the Kan-
torovich type operators including the Gould-Hopper poly-
nomials given by

d+1 (nx’ h)

clhy e\ Ik (krDin
K, (fix) =ne™"y 0 f(t)dt (46)
k=0 : kin

in [8].

Remark 11. For h = 0 in Remark 10, we get g,‘f“(nx, 0) =

(nx)k and then the operators given by (46) reduce to the
Szasz-Mirakyan-Kantorovich operators given by (7).

Now, in order to prove a Voronovskaya type theorem for
the operators given by (45), let us prove the following lemmas.

Lemma 12. For the operators K*™P), one has

K@P (1;x) = 1,

nx h(d+1) 200+ 1

K@ (s;x) = + + ,
o (5%) n+p n+pf 2(n+p)

K:(“’ﬁ) (sz; x)

n’x? nx
= 2t 2
(n+B)” (n+p)
x{2h(d+1) + Qa+2)} + ! 5
n+ )

« [h(h+1)(d+1)2 +Qa+1)h(d+1)

(0 5)]
+la +a+ =],
3

Kn*(“’ﬁ) (53; x)

n’x’ 3nx?
= +
(n+B)  2(n+p)
><{20c+3+2(d+1)h}+L3
2(n+ B)

x {6h*(d +1)* +6h(d+1)

><(3+d+2(x)+12¢x+6(x2+7}

b1+ 1)+ 6Rd 4 1)

4(n+P)
X 20+ 2d + 3) + 4o’ + 60

+40+1+2h(d+1)
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X [Zd2 +dQua+7)
+ 120 + 60° +7]},
K:(“’ﬁ) (54;x)
3.3

ntxt 4n° x
_ hd+1 2
) mepy I

2.2
3n"x

(n+p)

+

{2r*@d+1)* +2h(d +1)

4

X a+d+4) +2(x2+6oc+5}

2nx

e p) f2r’@d+1° + 6k’ (d +1)* (a+d +2)
n+

+

1
+h(d+1)

X (2d2+ 10d +6(3+4d) oc+6oc2+15)
_
5(n+,8)4

+(1+@) B+2aQ2+a) |+
x {5h(d +1)* [1+ h (7 + h(6 + h))]
+10h(d + 1 [1+h (B +h)] (1 +2a)

+10h(h+ 1) (d+1)* (1 +3a(l +a))
+5h(d+1)(1+2a[2+a(3+2x)])

+ 50 + 100’ + 10a” + 5a + 1}.

(47)

Proof. The proof follows from the generating function (43)
for the Gould-Hopper polynomials. O

Lemma 13. For each x € [0, 00), one has
K:(“"B) ((s - x)z;x)

_ Bzxz
(n+B)’

+x[ L Rh(d+1)+Qa+2))
(n+p)

_2h(d+1)+20c+1]Jr 1
n+p (n+ﬁ)2

x|h(h+1)(d+1)*

+(2(x+l)h(d+1)+<oc2+oc+§>],
(@,p) 4 Ea
K*oc, _ ; —
) (n+B)’

_x3{2/32(—3n+(2h(d+1)+2a+1)ﬁ)}
(n+B)"



Journal of Function Spaces and Applications

+x° {( 1,8)4 [3n" = 2nB (6h (d + 1) + 6at + 5)
n+
23K’ (d+1)* +3h(d +1)

><(2(x+d+2)+3cx(1+oc)+1}/32]}

2n 3 3 2 2
+x<| {2h(d+1) +6h°(d+1)
(n+p)’

X(a+d+2)+h(d+1)
><(2d2+10d+6(3+d)oc
+6(x2+15)+(1+(x)

X (3+20¢(2+¢x))}

( s {an’@d+ 1)’ + 6k’ (d + 1)
n+

X (2o +2d + 3) + 4’ + 6a”

+40+1+2h(d+1)

X [Zd2 +dQa+7)+ 60

+12a+7]}}

m [Sh(d +1)* [1+ h (7 + h (6 + )]
+10h(d+ 1)’ [1+h(3+h)] Qa+1)
+10(d + 1)’h(1 + h) (1 +3a (1 + a))
+5h(d+1)(1+2a[2+a(3+2x)])

+50* + 10a° + 100” + 5a + 1}.

(48)
Proof. From Lemma 12, the proof is obvious. O
Theorem 14. Let f € C?[0, a]. Then one has
Tim (14 B) K2 (fix) - £ ()]
= f’ (x) {ﬁx+h(d+ 1)+ 20+ 1 } + xf’z"(x). )
Proof. By Taylor’s theorem for f, we have
fE=f@+ - f ()
(50)

2
+Eﬁﬂfwm+@—@%@@’

where #(s; x) € C[0,a] and lim, _, ,#(s; x) = 0. By applying
the operator K, @A) to the both sides of (50), we have

K P (fix) = f () + 1 () K P (s - x3.x)

) fII (x)

3 *(“ ((s x)% x) (51)

+ K:(“"B) ((s - x)*1 (s; ) ;x) .

According to Lemmas 12 and 13, the equality (51) can be
written as follows:

(n+ B) [K; P (fix)
B B hd+1)
_(n+ﬁ){n+,8 " n+f
+(n+p) {x«%)

n
+x|——
[m+m2

_2h(d+1)+20¢+1
n+p

- f ()]

200+ 1

"2+ p)

}f’ (x)

{2h(d+1) +(2a +2)}

; [nr+ 1)@+ +Qa )

xh(d+1)+<o¢2+cx+§>]}

f/’( n (H + /3) *(aﬁ) (

(n+p

-’ (5%)5x),
(52)
where
Ky P (s = )" (s:%)5x)
dil (nx h)

(I’l+ﬁ —nx— hz Ik (53)

(k+a+1)/(n+p3)
X J (s— x)211 (s;x)ds.
(k+a)/(n+)

By applying Cauchy-Schwarz inequality, we can write
(n+ B) K, P ((s = %) (5:%) 5 x)

< (Yl+ﬁ) efnx hz gk (nx h)

(k+a+1)/(n+ ) \ 12
X (J (s —x) ds)
(k+at)/(n+)

(k+a+1)/(n+p) 1/2
X (j 112 (s;x) ds) .
(

k+a)/(n+f)

(54)



If we consider Cauchy-Schwarz inequality again on the right-
hand side of inequality above, then we arrive at

(n+B) K, P ((s = %)’ (5:%) 5 x)

d+1 (Vl.x, h)

< <(n+ﬁ)3e—nx—hz Ik o
k=0 :

(k+a+1)/(n+B) 1/2
X J (s— x)4ds)
(k+a)/(n+p)

oo _d+1
—-nx—h Yk (nx, h)
X ((n +p)e k;—k!

(k+a+1)/(n+p)
<]
(

1/2
r)z (s;x) ds)
k+a)/(n+p)

= \/(n + [o’)ZK;(“"B) ((s - x) x) \/K:(“’ﬁ) (7% (s %) 5 x).

(55)
From Lemma 13, we have
. 2 w(a,

lim (n+ B) K @P) ((s - x4 x) = 3x%. (56)

On the other hand, since #(s; x) € C[0,a] and lim,_, .#(s;
x) = 0, then it follows from Theorem 4 that

nangoK:(“’ﬁ) (112 (s;x) ;x) =" (x;x) = 0. (57)
Therefore, we conclude from (55), (56), and (57) that
Jim (n+p) K:(“’ﬂ) ((s - %)’ (s3%); x) =0 (58)

and then, by taking limit as n — oo in (52) and using (58),
we find

dim [K3P (fix) - f ()]
(59)

200+ 1} .\ xf" (x)
2 2!
which completes the proof. O

=f'(x){,3x+h(d+1)+

Remark 15. For « = [ = 0, Theorem 14 represents the
Voronovskaya type theorem for the operators given by (46)
(see [8]).

Remark 16. For h = 0, it yields a Voronovskaya type theorem
for the Kantorovich-Stancu type of Szasz-Mirakyan operators
given by (10).

Remark 17. Getting « = f = h = 0 in Theorem 14
gives the Voronovskaya type result for the Szasz-Mirakyan-
Kantorovich operators given by (7).
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