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This paper presents an algorithm for the automatic detection of circular shapes from complicated and noisy images with no
consideration of the conventional Hough transform principles.The proposed algorithm is based on a newly developed evolutionary
algorithm called the Adaptive Population with Reduced Evaluations (APRE). Our proposed algorithm reduces the number of
function evaluations through the use of twomechanisms: (1) adapting dynamically the size of the population and (2) incorporating
a fitness calculation strategy, which decides whether the calculation or estimation of the new generated individuals is feasible. As a
result, the approach can substantially reduce the number of function evaluations, yet preserving the good search capabilities of an
evolutionary approach. Experimental results over several synthetic and natural images, with a varying range of complexity, validate
the efficiency of the proposed technique with regard to accuracy, speed, and robustness.

1. Introduction

The problem of detecting circular features holds paramount
importance in several engineering applications such as auto-
matic inspection ofmanufactured products and components,
aided vectorization of drawings, and target detection [1,
2]. Circle detection in digital images has been commonly
solved through the Circular Hough Transform (CHT) [3].
Unfortunately, this approach requires a large storage space
that augments the computational complexity and yields a
low processing speed. In order to overcome this problem,
several approaches which modify the original CHT have
been proposed. One well-known example is the Randomized
Hough Transform (RHT) [4].

As an alternative to Hough Transform-based techniques,
the problem of shape recognition has also been handled
through evolutionarymethods. In general, they have demon-
strated to deliver better results than those based on the HT
considering accuracy and robustness [5]. Evolutionarymeth-
ods approach the detection task as an optimization prob-
lem whose solution involves the computational expensive

evaluation of objective functions. Such fact strongly restricts
their use in several image processing applications; despite
this, EA methods have produced several robust circle de-
tectors which use different evolutionary algorithms like Ge-
netic algorithms (GA) [5], Harmony Search (HSA) [6], Elec-
tromagnetism-Like (EMO) [7], Differential Evolution (DE)
[8], and Bacterial Foraging Optimization (BFOA) [9].

However, one particular difficulty in applying any EA to
real-world problems, such as image processing, is its demand
for a large number of fitness evaluations before reaching a
satisfactory result. Fitness evaluations are not always straight-
forward as either an explicit fitness function does not exist or
the fitness evaluation is computationally expensive.

The problem of excessively long fitness function calcu-
lations has already been faced in the field of evolutionary
algorithms (EA) and is better known as evolution control or
as fitness estimation [10]. For such an approach, the idea is
to replace the costly objective function evaluation for some
individuals by alternative models which are based on an
approximate model of the fitness landscape. The individuals
to be evaluated and those to be estimated are determined
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following some fixed criteria which depend on the spe-
cific properties of the approximate model [11]. The models
involved at the estimation can be dynamically built during the
actual EA execution, since EA repeatedly sample the search
space at different points [12]. There are several alternative
models which have been used in combination with popular
EAs. Some examples include polynomial functions [13],
kriging schemas [14], multilayer perceptrons [15], and radial
basis-function networks [16]. In the practice, the construc-
tion of successful models which can globally deal with the
high dimensionality, ill distribution, and limited number
of training samples is very difficult. Experimental studies
[17] have demonstrated that if an alternative model is used
for fitness evaluation, it is very likely that the evolutionary
algorithm will converge to a false optimum. A false optimum
is an optimum of the alternative model, which does not
coincide with the optimum of the original fitness function.
Under such conditions, the use of the alternative fitness
models degrade the search effectiveness of the original EAs,
producing frequently inaccurate solutions [18].

In an EA, the population size has a direct influence on the
solution quality and its computational cost [19]. Traditionally,
population size is set in advance to a prespecified value and
remains fixed through the entire execution of the algorithm.
If the population size is too small, then the EA may converge
too quickly affecting severely the solution quality [20]. On
the other hand, if it is too large, then the EA may present a
prohibitive computational cost [19].Therefore, an appropriate
population size allows maintaining a trade-off between com-
putational cost and effectiveness of the algorithm. In order to
solve such a problem, several approaches have been proposed
for dynamically adapting the population size.These methods
are grouped into three categories [21]: (i) methods that
increment or decrement the number of individuals according
to a fixed function; (ii) methods in which the number of
individuals is modified according to the performance of
the average fitness value, and (iii) algorithms based on the
population diversity.

Since most of the EAs have been primarily designed to
completely evaluate all involved individuals, techniques for
reducing the evaluation number are usually incorporated
into the original EAs in order to estimate fitness values or
to reduce the number of individuals being evaluated [22].
However, the use of alternative fitness models degrades the
search effectiveness of the original EAs, producing frequently
inaccurate solutions [23].

This paper presents an algorithm for the automatic detec-
tion of circular shapes from complicated and noisy images
without considering the conventionalHough transformprin-
ciples. The proposed algorithm is based on a newly devel-
oped evolutionary algorithm called the Adaptive Population
with Reduced Evaluations (APRE). The proposed algorithm
reduces the number of function evaluations through the use
of two mechanisms: (1) adapting dynamically the size of
the population and (2) incorporating a fitness calculation
strategy which decides when it is feasible to calculate or only
to estimate new generated individuals.

The APRE method begins with an initial population
which is to be considered as a memory during the evolution

process. To eachmemory element, a normalized fitness value,
called quality factor is assigned to indicate the solution
capacity that is provided by the element. Only a variable
subset of memory elements is considered to be evolved. Like
all EA-based methods, the proposed algorithm generates
new individuals considering two operators: exploration and
exploitation. Both operations are applied to improve the
quality of the solutions by: (1) searching through the unex-
plored solution space to identify promising areas that contain
better solutions than those found so far and (2) successive
refinement of the best found solutions. Once the new indi-
viduals are generated, the memory is accordingly updated. At
such stage, the new individuals compete against the memory
elements to build the final memory configuration. In order to
save computational time, the approach incorporates a fitness
estimation strategy that decides which individuals can be
estimated or actually evaluated. The proposed fitness calcu-
lation strategy estimates the fitness value of new individuals
using memory elements located in neighboring positions
which have been visited during the evolution process. In the
strategy, new individuals, that are located near the memory
element whose quality factor is high, have a great probability
to be evaluated by using the true objective function. Similarly,
evaluated those new particles lying in regions of the search
space with no previous evaluations are also evaluated. The
remaining search positions are only estimated by assigning
the same fitness value that is the nearest location element
on the memory. The use of such a fitness estimation method
contributes to saving computational time, since the fitness
value of only very few individuals is actually evaluated
whereas the rest is just estimated.

Different to other approaches that use an already existent
EA as framework, the APRE method has been completely
designed to substantially reduce the computational cost, yet
preserving good search effectiveness.

In order to detect circular shapes, the detector is imple-
mented by encoding three pixels as candidate circles over the
edge image. An objective function evaluates if such candidate
circles are actually present in the edge image. Guided by
the values of this objective function, the set of encoded
candidate circles are evolved using the operators defined by
APRE so that they can fit into the actual circles on the edge
map of the image. Comparisons to several state-of-the-art
evolutionary-based methods and the Randomized Hough
Transform (RHT) approach on multiple images demonstrate
a better performance of the proposed method in terms of
accuracy, speed, and robustness.

The paper is organized as follows. In Section 2, the
APRE algorithm and its characteristics are both described.
Section 3 formulates the implementation of the circle detec-
tor. Section 4 shows the experimental results of applying
our method to the recognition of circles in different image
conditions. Finally, Section 5 discusses several conclusions.

2. The Adaptive Population with
Reduced Evaluations (APRE) Algorithm

In the proposed algorithm, a population of candidate solu-
tions to an optimization problem is evolved toward better
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solutions. The algorithm begins with an initial population
which will be used as amemory during the evolution process.
To each memory element, it is assigned a normalized fitness
value called quality factor that indicates the solution capacity
provided by the element.

As a search strategy, the proposed algorithm implements
two operations: “exploration” and “exploitation.” Both neces-
sary in all EAs [24]. Exploration is the operation of visiting
entirely new points of a search space, whilst exploitation is
the process of refining those points of a search space within
the neighborhood of previously visited locations in order
to improve their solution quality. Pure exploration degrades
the precision of the evolutionary process but increases its
capacity to find new potential solutions [25]. On the other
hand, pure exploitation allows refining existent solutions but
adversely drives the process to fall in local optimal solutions
[26]. Therefore, the ability of an EA to find a global optimal
solution depends on its capacity to find a good trade-off
between the exploitation of so far found elements and the
exploration of the search space.

The APRE algorithm is an iterative process in which
several actions are executed. First, the number of mem-
ory elements to be evolved is computed. Such number is
automatically modified at each iteration. Then, a set of new
individuals is generated as a consequence of the execution of
the exploration operation. For each new individual, its fitness
value is estimated or evaluated according to a decision taken
by a fitness estimation strategy. Afterwards, the memory is
updated. In this stage, the new individuals produced by the
exploration operation compete against the memory elements
to build the final memory configuration. Finally, a sample
of the best elements contained in the final memory config-
uration is undergone to the exploitation operation. Thus, the
complete process can be divided in six phases: initialization,
selecting the population to be evolved, exploration, fitness
estimation strategy, memory updating, and exploitation.

2.1. Initialization. Like in EA, the APRE algorithm is an
iterative method whose first step is to randomly initialize the
populationM(𝑘) which will be used as a memory during the
evolution process. The algorithm begins by initializing (𝑘 =

0) a set of 𝑁𝑝 elements (M(𝑘) = {m1,m2, . . . ,m𝑁𝑝}). Each
elementm𝑖 is an 𝑛-dimensional vector containing the param-
eter values to be optimized. Such values are randomly and
uniformly distributed between the prespecified lower initial
parameter bound 𝑝

low
𝑗

and the upper initial parameter bound
𝑝
high
𝑗

, just as it described by the following expression:

𝑚𝑖,𝑗 = 𝑝
low
𝑗

+ rand (0, 1) ⋅ (𝑝
high
𝑗

− 𝑝
low
𝑗

) ,

for 𝑗 = 1, 2, . . . , 𝑛, 𝑖 = 1, 2, . . . , 𝑁𝑝,

(1)

where 𝑗 and 𝑖 are the parameter and element indexes, respec-
tively. Hence,𝑚𝑖,𝑗 is the 𝑗th parameter of the 𝑖th element.

Each element m𝑖 has two associated characteristics: a
fitness value 𝐽(m𝑖) and a quality factor 𝑄(m𝑖). The fitness
value 𝐽(m𝑖) assigned to each elementm𝑖 can be calculated by
using the true objective function 𝑓(m𝑖) or only estimated by

using the proposed fitness strategy 𝐹(m𝑖). In addition to the
fitness value, it is also assigned to m𝑖, a normalized fitness
value called quality factor 𝑄(m𝑖) (𝑄(⋅) ∈ [0, 1]), which is
computed as follows:

𝑄 (m𝑖) =
𝐽 (m𝑖) − worstM
bestM − worstM

, (2)

where 𝐽(m𝑖) is the fitness value obtained by evaluation 𝑓(⋅)

or by estimation 𝐹(⋅) of the memory element m𝑖. The values
worstM and bestM are defined as follows (considering a
maximization problem):

bestM = max
𝑘∈{1,2,...,𝑁𝑝}

(𝐽 (m𝑘)) ,

worstM = min
𝑘∈{1,2,...,𝑁𝑝}

(𝐽 (m𝑘)) .
(3)

Since the mechanism by which an EA accumulates informa-
tion regarding the objective function is an exact evaluation of
the quality of each potential solution, initially, all the elements
ofM(𝑘) are evaluated without considering the fitness estima-
tion strategy proposed in this paper. This fact is only allowed
at this initial stage.

2.2. Selecting the Population to Be Evolved. At each 𝑘 iteration,
it must be selected which and howmany elements fromM(𝑘)
will be considered to build the population P𝑘 in order to be
evolved. Such selected elements will be undergone by the
exploration and exploitation operators in order to generate a
set of new individuals. Therefore, two things need to be
defined: the number of elements 𝑁

𝑘

𝑒
to be selected and the

strategy of selection.

2.2.1. The Number of Elements 𝑁𝑘
𝑒
to Be Selected. One of the

mechanisms used by the APRE algorithm for reducing the
number of function evaluations is to modify dynamically the
size of the population to be evolved. The idea is to operate
with the minimal number of individuals that guarantee the
correct efficiency of the algorithm. Hence, the method aims
to vary the population size in an adaptive way during the
execution of each iteration. At the beginning of the process, a
predetermined number 𝑁

0

𝑒
of elements are considered to

build the first population; then, it will be incremented or
decremented depending on the algorithm’s performance.
The adaptation mechanism is based on the lifetime of the
individuals and on their solution quality.

In order to compute the lifetime of each individual, it is
assigned a counter 𝑐𝑖 (𝑖 ∈ (1, 2, 3, . . . , 𝑁𝑝)) to each element
m𝑖 of M(𝑘). When the initial population M(𝑘) is created,
all the counters are set to zero. Since the memory M(𝑘) is
updated at each generation, some elements prevail and others
will be substituted by new individuals.Therefore, the counter
of the surviving elements is incremented by one whereas the
counter of new added elements is set to zero.

Another important requirement to calculate the number
of elements to be evolved is the solution quality provided by
each individual.The idea is to identify two classes of elements,
those that provide good solutions and those that can be
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Figure 1: Necessary postprocessing implemented by the selection strategy.

(1) Input: Current populationM(𝑘), counters 𝑐1, . . . , 𝑐𝑁𝑝 ,
the past number of individuals𝑁𝑘−1

𝑒
and the constant factor 𝑠.

(2) 𝐽𝐴 ← (1/𝑁𝑝) ∑
𝑁𝑝

𝑖=1
𝐽 (m𝑖)

(3) G ← FindIndividualsOverJA(M(𝑘), 𝐽𝐴)

(4) B ← FindIndividualsUnderJA(M(𝑘), 𝐽𝐴)

(5) 𝑐𝑙 ← FindCountersOfG(G) (Where 𝑙 ∈ G)
(6) 𝑐𝑞 ← FindCountersOfB(B) (Where 𝑞 ∈ B)
(7) 𝐴 ← floor ((|G| ⋅ ∑𝑙∈G 𝑐𝑙 − |B| ⋅ ∑𝑞∈B 𝑐𝑞) /𝑠)

(8) 𝑁
𝑘

𝑒
← 𝑁
𝑘−1

𝑒
+ 𝐴

(9) Output:The number𝑁𝑘
𝑒

Algorithm 1: Selection of the number of individuals𝑁𝑘
𝑒
to be evolved.

considered as bad solutions. In order to classify each element,
the average fitness value 𝐽𝐴 produced by all the elements of
M(𝑘) is calculated as

𝐽𝐴 =
1

𝑁𝑝

𝑁𝑝

∑

𝑖=1

𝐽 (m𝑖) , (4)

where 𝐽(⋅) represents the fitness value corresponding to m𝑖.
These values are evaluated either by the true objective func-
tion 𝑓(m𝑖) or by the fitness estimation strategy 𝐹(m𝑖). Con-
sidering the average fitness value, two groups are built: the
setG constituted by the elements ofM(𝑘)whose fitness values
are greater than 𝐽𝐴 and the set B which groups the elements
ofM(𝑘) whose fitness values are equal or lower than 𝐽𝐴.

Therefore, the number of individuals of the current
population that will be incremented or decremented at each
generation is calculated by the following model:

𝐴 = floor(
|G| ⋅ ∑𝑙∈G 𝑐𝑙 − |B| ⋅ ∑𝑞∈B 𝑐𝑞

𝑠
) , (5)

where the floor (⋅) function maps a real number to the previ-
ous integer. |G| and |B| represent the number of elements of
G andB, respectively, whereas∑𝑙∈G 𝑐𝑙 and∑𝑞∈B 𝑐𝑞 indicate the
sum of the counters that correspond to the elements of G and
B, respectively. The factor 𝑠 is a term used for fine tuning.
A small value of 𝑠 implies a better algorithm’s performance
at the price of an increment in the computational cost. On
the other hand, a big value of 𝑠 involves a low computational
cost at the price of a decrement in the performance algorithm.

Therefore, the 𝑠 valuemust reflex a compromise between per-
formance and computational cost. In our experiments such
compromise has been found with 𝑠 = 10.

Therefore, the number the elements that define the pop-
ulation to be evolved is computed according to the following
model:

𝑁
𝑘

𝑒
= 𝑁
𝑘−1

𝑒
+ 𝐴. (6)

Since the value of 𝐴 can be positive or negative, the size of
the population P𝑘 may be higher or lesser than P𝑘−1. The
computational procedure that implements this method is
presented in Algorithm 1, in form of pseudocode.

2.2.2. Selection Strategy for Building P𝑘. Once the number of
individuals has been defined, the next step is the selection of
𝑁
𝑘

𝑒
elements from M(𝑘) for building P𝑘. A new population

MOwhich contains the same elements thatM(𝑘) is generated
but sorted according to their fitness values. Thus, MO
presents in its first positions the elements whose fitness values
are better than those located in the last positions.Then,MO is
divided in two parts: X and Y. The section X corresponds to
the first𝑁𝑘

𝑒
elements ofMO whereas the rest of the elements

constitute the part Y. Figure 1 shows this process.
In order to promote diversity, in the selection strategy, the

80% of the 𝑁
𝑘

𝑒
individuals of P𝑘 are taken from the first

elements of X and named as Fe as shown in Figure 2, where
Fe = floor (0.8 ∗ 𝑁

𝑘

𝑒
). The remaining 20% of the individuals

are randomly selected from sectionY. Hence, the last set of Se
elements (where Se = 𝑁

𝑘

𝑒
− Fe) is chosen considering that



Mathematical Problems in Engineering 5

1 · · · · · ·Fe N𝑘
𝑒 N𝑘

𝑒 +1 · · · N𝑝

k
1

1

· · ·

· · ·

Fe

Fe

d

Fe+1

· · ·

· · ·

g

N𝑘
𝑒

Fe Se

MO mo mo mo

X

mo

Y
mo

P
mo

p

mo

p

mo

p

mo

p

Figure 2: Employed selection strategy to build the population P𝑘, where 𝑑, 𝑔 ∈ Y.

(1) Input: Current populationM(𝑘) and the number of individuals𝑁𝑘
𝑒
.

(2) MO ← SortElementsFitness(M(𝑘))

(3) [X,Y] ← DivideMO(MO, 𝑁
𝑘

𝑒
)

(4) Fe ← floor(0.8 ∗ 𝑁
𝑘

𝑒
)

(5) Se ← 𝑁
𝑘

𝑒
− Fe

(6) (p𝑘
1
, . . . , p𝑘Fe) ← SelectElementsOfX(X, Fe)

(7) (p𝑘Fe+1, . . . , p
𝑘

Fe+Se) ← SelectRandomElementsOfY(Y, Se)
(8) Output: Population P𝑘 to be evolve

Algorithm 2: Selection strategy for building P𝑘.

all elements of Y have the same possibility of being selected.
Figure 2 shows a description of the selection strategy. The
computational procedure that implements this method is
presented in Algorithm 2, in form of pseudocode.

2.3. Exploration Operation. The first main operation applied
to the population P𝑘 is the exploration operation. Con-
sidering P𝑘 as the input population, APRE mutates P𝑘 to
produce a temporal population T𝑘 of 𝑁

𝑘

𝑒
vectors. In the

exploration operation two different mutation models are
used: the mutation employed by the Differential Evolution
algorithm (DE) [27] and the trigonometricmutation operator
[28].

2.3.1. DE Mutation Operator. In this mutation, three distinct
individuals 𝑟1, 𝑟2, and 𝑟3 are randomly selected from the
current population P𝑘. Then, a new value ℎ𝑖,𝑗 considering the
following model is created:

ℎ𝑖,𝑗 = 𝑝𝑟1,𝑗 + 𝐹 (𝑝𝑟2,𝑗 − 𝑝𝑟3,𝑗) , (7)

where 𝑟1, 𝑟2, and 𝑟3 are randomly selected individuals such
that they satisfy 𝑟1 ̸= 𝑟2 ̸= 𝑟3 ̸= 𝑖, 𝑖 = 1 to𝑁

𝑘

𝑒
(population size),

and 𝑗 = 1 to 𝑛 (number of decision variable). Hence, 𝑝𝑖,𝑗 is
the 𝑗th parameter of the 𝑖th individual of P𝑘. The scale factor,
𝐹(0,1+), is a positive real number that controls the rate at
which the population evolves.

2.3.2. Trigonometric Mutation Operator. The trigonometric
mutation operation is performed according to the following
formulation:

ℎ𝑖,𝑗 = 𝑝Av (𝑗) + 𝐹1 (𝑝𝑟1,𝑗 − 𝑝𝑟2,𝑗)

+ 𝐹2 (𝑝𝑟2,𝑗 − 𝑝𝑟3,𝑗) + 𝐹3 (𝑝𝑟3,𝑗 − 𝑝𝑟1,𝑗) ,

𝑝Av (𝑗) =

𝑝𝑟1,𝑗 + 𝑝𝑟2,𝑗 + 𝑝𝑟3,𝑗

3
,

𝐹1 = (𝑑𝑟2 − 𝑑𝑟1) , 𝐹2 = (𝑑𝑟3 − 𝑑𝑟2) ,

𝐹3 = (𝑑𝑟1 − 𝑑𝑟3) ,

𝑑𝑟1 =

󵄨󵄨󵄨󵄨𝐽 (p𝑟1)
󵄨󵄨󵄨󵄨

𝑑𝑇

, 𝑑𝑟2 =

󵄨󵄨󵄨󵄨𝐽 (p𝑟2)
󵄨󵄨󵄨󵄨

𝑑𝑇

, 𝑑𝑟3 =

󵄨󵄨󵄨󵄨𝐽 (p𝑟3)
󵄨󵄨󵄨󵄨

𝑑𝑇

,

𝑑𝑇 =
󵄨󵄨󵄨󵄨𝐽 (p𝑟1)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝐽 (p𝑟2)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝐽 (p𝑟3)

󵄨󵄨󵄨󵄨 ,

(8)

where p𝑟1, p𝑟2, and p𝑟3 represent the individuals 𝑟1, 𝑟2, and
𝑟3 randomly selected from the current populationP𝑘whereas
𝐽(⋅) represents the fitness value (calculated or estimated)
corresponding to p𝑖. Under this formulation, the individual
𝑝Av(𝑗) to be perturbed is the average value of three randomly
selected vectors (𝑟1, 𝑟2, and 𝑟3). The perturbation to be
imposed over such individual is implemented by the sum
of three weighted vector differentials. 𝐹1, 𝐹2, and 𝐹3 are the
weights applied to these vector differentials. Notice that the
trigonometricmutation is a greedy operator since it biases the
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(1) Input: Current population P𝑘
(2) for 𝑖 = 1 to𝑁

𝑘

𝑒
do

(3) (p𝑟1, p𝑟2, p𝑟3) ← SelectElements() % Considering that 𝑟1 ̸= 𝑟2 ̸= 𝑟3 ̸= 𝑖

(4) for 𝑗 = 1 to 𝑛 do
(5) if (rand (0, 1) <= MR) then
(6) ℎ𝑖,𝑗 ← DEMutation(p𝑟1, p𝑟2, p𝑟3) % (7)
(7) else
(8) ℎ𝑖,𝑗 ← TrigonometricMutation(p𝑟1, p𝑟2, p𝑟3)% (8)
(9) end if
(10) if (rand(0, 1) <= CH) then
(11) 𝑡𝑖,𝑗 ← ℎ𝑖,𝑗

(12) else
(13) 𝑡𝑖,𝑗 ← 𝑝𝑖,𝑗

(14) end if
(15) end for
(16) end for
(17) Output: Population T𝑘

Algorithm 3: Exploration operation of APRE algorithm.

𝑝Av(𝑗) strongly in the direction where the best one of three
individuals is lying.

Computational Procedure. Considering P𝑘 as the input pop-
ulation, all its 𝑁

𝑘

𝑒
individuals are sequentially processed in

cycles beginning by the first individual p1. Therefore, in
the cycle 𝑖 (where it is processed the individual 𝑖), three
distinct individuals 𝑟1, 𝑟2, and 𝑟3 are randomly selected from
the current population considering that they satisfy the fol-
lowing conditions 𝑟1 ̸= 𝑟2 ̸= 𝑟3 ̸= 𝑖. Then, it is processed each
dimension of p𝑖 beginning by the first parameter 1 until the
last dimension 𝑛 has been reached. At each processing cycle,
the parameter 𝑝𝑖,𝑗 considered as a parent, creates an offspring
𝑡𝑖,𝑗 in two steps. In the first step, from the selected individuals
𝑟1, 𝑟2, and 𝑟3, a donor vector ℎ𝑖,𝑗 is created by means of two
different mutation models. In order to select which mutation
model is applied, a uniform random number is generated
within the range [0, 1]. If such number is less than a threshold
MR, the donor vector ℎ𝑖,𝑗 is generated by the DE mutation
operator; otherwise, it is produced by the trigonometric
mutation operator. Such process can be modeled as follows:

ℎ𝑖,𝑗 = {
By using (7) with probability MR
By using (8) with probability (1 −MR) .

(9)

In the second step, the final value of the offspring 𝑡𝑖,𝑗 is deter-
mined. Such decision is stochastic; hence, a second uniform
random number is generated within the range [0, 1]. If this
random number is less than CH, 𝑡𝑖,𝑗 = ℎ𝑖,𝑗; otherwise, 𝑡𝑖,𝑗 =
𝑝𝑖,𝑗. This operation can be formulated as follows:

𝑡𝑖,𝑗 = {
ℎ𝑖,𝑗 with probability CH
𝑝𝑖,𝑗 with probability (1 − CH) .

(10)

The complete computational procedure is presented in
Algorithm 3, in form of pseudocode.

2.4. Fitness Estimation Strategy. Once the population T𝑘 has
been generated by the exploration operation, it is necessary
to calculate the fitness value provided by each individual. In
order to reduce the number of function evaluations, a fitness
estimation strategy that decides which individuals can be
estimated or actually evaluated is introduced.The idea of such
a strategy is to find the global optimum of a given function
considering only very few number of function evaluations.

In this paper, we explore a local approximation scheme
that estimates the fitness values based on previously evaluated
neighboring individuals, stored in the memory M(𝑘) during
the evolution process. The strategy decides if an individual t𝑖
is calculated or estimated based on two criteria. The first one
considers the distance between t𝑖 and the nearest elementmne

contained inM(𝑘) (wherem𝑛 ∈ (m1,m2, . . . ,m𝑁𝑝)) whereas
the second one examines the quality factor provided by the
nearest elementmne(𝑄(mne

)).
In the model, individuals of T𝑘 that are near the elements

ofM(𝑘)holding the best quality values have a high probability
to be evaluated. Such individuals are important, since they
will have a stronger influence on the evolution process than
other individuals. In contrast, individuals of T𝑘 that are also
near the elements of M(𝑘) but with a bad quality value
maintain a very low probability to be evaluated.Thus, most of
such individuals will only be estimated, assigning it the same
fitness value that the nearest element of M(𝑘). On the other
hand, those individuals in regions of the search spacewith few
previous evaluations (individuals of T𝑘 located farther than
a distance 𝐷) are also evaluated. The fitness values of these
individuals are uncertain since there is no close reference
(close points contained inM(𝑘)).

Therefore, the fitness estimation strategy follows two rules
in order to evaluate or estimate the fitness values.

(1) If the new individual t𝑖 is located closer than a dis-
tance𝐷with respect to the nearest elementmne stored
in M, then a uniform random number is generated
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Figure 3: The fitness estimation strategy. (a) According to the rule 1, the individual t𝑖 has a high probability to be evaluated 𝑓(t1), since it is
located closer than a distance𝐷 with respect to the nearest elementmne

= m1 whose quality factor 𝑄(m1) corresponds to the best value. (b)
According to the rule 1, the individual t𝑖 has a high probability to be estimated𝐹(t1) (assigning it the same fitness value asmne (𝐹(t𝑖) = 𝐽(m3))),
since it is located closer than a distance𝐷with respect to the nearest elementmne

= m3 whose quality factor𝑄(m3) corresponds to the worst
value. (c) According to the rule 2, the individual t𝑖 is evaluated, as there is no close reference in its neighborhood.

within the range [0, 1]. If such number is less than
𝑄(mne

), t𝑖 is evaluated by the true objective func-
tion (𝑓(t𝑖)). Otherwise, its fitness value is estimated
assigning it the same fitness value that mne (𝐹(t𝑖) =

𝐽(mne
)). Figures 3(a) and 3(b) draw the rule proce-

dure.
(2) If the new individual t𝑖 is located longer than a

distance 𝐷 with respect to the nearest individual
locationmne stored inM, then the fitness value of t𝑖 is
evaluated using the true objective function (𝑓(t𝑖)).
Figure 3(c) outlines the rule procedure.

From the rules, the distance 𝐷 controls the trade off
between the evaluation and estimation of new individuals.
Unsuitable values of 𝐷 result in a lower convergence rate,
longer computation time, larger function evaluation number,
convergence to a localmaximum, or unreliability of solutions.
Therefore, the𝐷 value is computed considering the following
equation:

𝐷 =

∑
𝑛

𝑗=1
(𝑝

high
𝑗

− 𝑝
low
𝑗

)

50 ⋅ 𝑛
,

(11)

where 𝑝
low
𝑗

and 𝑝
high
𝑗

represent the prespecified lower bound
and the upper bound of the 𝑗-parameter, respectively, within
an 𝑛-dimensional space. Both rules show that the fitness
estimation strategy is simple and straightforward. Figure 3

illustrates the procedure of fitness computation for a new
candidate solution t𝑖 considering the two different rules. In
the problem the objective function 𝑓 is maximized with
respect to two parameters (𝑥1, 𝑥2). In all figures (Figures
3(a), 3(b), and 3(c)) the memoryM(𝑘) contains five different
elements (m1,m2,m3,m4, andm5) with their corresponding
fitness values (𝐽(m1), 𝐽(m2), 𝐽(m3), 𝐽(m4), and 𝐽(m5)) and
quality factors (𝑄(m1), 𝑄(m2), 𝑄(m3), 𝑄(m4), and 𝑄(m5)).
Figures 3(a) and 3(b) show the fitness evaluation (𝑓(𝑥1, 𝑥2))
or estimation (𝐹(𝑥1, 𝑥2)) of the new individual t𝑖 following
the rule 1. Figure 3(a) represents the case when mne holds a
good quality factor whereas Figure 3(b) whenmne maintains
a bad quality factor. Finally, Figure 3(c) presents the fitness
evaluation of t𝑖 considering the conditions of rule 2. The
procedure that implements the fitness estimation strategy is
presented in Algorithm 4, in form of pseudocode.

2.5. Memory Updating. Once the operations of exploration
and fitness estimation have been applied, it is necessary to
update the memoryM(𝑘). In the APRE algorithm, the mem-
oryM(𝑘) is updated considering the following procedure.

(1) The elements of M(𝑘) and T𝑘 are merged into M𝑈
(M𝑈 = M(𝑘) ∪ T𝑘).

(2) From the resulting elements of M𝑈, it is selected the
𝑁𝑝 best elements according to their fitness values to
build the new memoryM(𝑘 + 1).
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(1) Input: Population T𝑘 and memoryM(𝑘)

(2) for 𝑖 = 1 to𝑁
𝑘

𝑒
do

(3) mne
← FindNearestElementOfM(t𝑖)

(4) distance ← FindTheDistance(t𝑖,mne
)

(5) if (distance < 𝐷) then

(6) if (rand(0, 1) <= 𝑄(mne
)) then

(7) 𝐽(t𝑖) ← 𝑓(t𝑖) % Evaluation
(8) else (Rule 1)
(9) 𝐽(t𝑖) ← 𝐽(mne

) % Estimation
(10) end if

(11) else

(12) 𝐽(t𝑖) ← 𝑓(t𝑖) % Evaluation (Rule 2)

(13) end if
(14) end for
(15) Output: fitness values of T𝑘

Algorithm 4: Fitness estimation strategy.

(3) The counters 𝑐1, 𝑐2, . . . , 𝑐𝑁𝑝 must be updated.Thus, the
counter of the surviving elements is incremented by 1
whereas the counter of modified elements is set to
zero.

2.6. Exploitation Operation. The second main operation
applied by the APRE algorithm is the exploitation operation.
Exploitation, in the context of EA, is the process of refining
the solution quality of existent promising solutions within a
small neighborhood. In order to implement such a process,
a new memory ME is generated, which contains the same
elements that M(𝑘 + 1) but sorted according to their fitness
values. Thus, ME presents in its first positions the elements
whose fitness values are better than those located in the
last positions. Then, the 10% of the 𝑁𝑝 (𝑁𝑒) individuals are
taken from the first elements of ME to build the set E (E =

{me1,me2, . . . ,me𝑁𝑒}, where𝑁𝑒 = ceil (0.1 ⋅ 𝑁𝑝)).
To each element me𝑖 of E a probability 𝑝𝑖 which express

the likelihood of the elementme𝑖 to be exploited is assigned.
Such a probability is computed as follows:

𝑝𝑖 =
𝑁𝑒 + 1 − 𝑖

𝑁𝑒

. (12)

Therefore, the first elements of E have a better probability
to be exploited than the last ones. In order to decide if the
elementme𝑖 must be exploited, a uniform random number is
generatedwithin the range [0, 1]. If such a number is less than
𝑝𝑖, then the elementme𝑖 will be modified by the exploitation
operation. Otherwise, it remains without changes.

If the exploitation operation over me𝑖 is verified, the
position of me𝑖 is perturbed considering a small neigh-
borhood. The idea is to test if it is possible to refine the
solution provided by me𝑖 modifying slightly its position. In
order to improve the exploitation process, the proposed
algorithm starts perturbing the original position within the
interval [−𝐷,𝐷] (where 𝐷 is the distance defined in (11))
and then gradually is reduced as the process evolves. Thus,

the perturbation over a generic element me𝑖 is modeled as
follows:

𝑚𝑒
new
𝑖,𝑗

= 𝑚𝑒𝑖,𝑗 + [𝐷
𝑛𝑔 − 𝑘

𝑛𝑔
] (2 ⋅ rand (0, 1) − 1) , (13)

where 𝑘 is the current iteration and 𝑛𝑔 is the total number
of iterations from which consists the evolution process. Once
menew
𝑖

has been calculated, its fitness value is computed by
using the true objective function (𝐽(menew

𝑖
) = 𝑓(menew

𝑖
)). If

menew
𝑖

is better thanme𝑖 according to their fitness values, the
value of me𝑖 in the original memory M(𝑘 + 1) is updated
withmenew

𝑖
; otherwise thememoryM(𝑘+1) remains without

changes. The procedure that implements the exploitation
operation is presented in Algorithm 5, in form of pseu-
docode.

In order to demonstrate the exploitation operation,
Figure 4(a) illustrates a simple example. A memoryM(𝑘 + 1)

of ten different 2-dimensional elements is assumed (𝑁𝑝 =

10). Figure 4(b) shows the previous configuration of the
proposed example before the exploitation operation takes
place. Since only the 10% of the best elements of M(𝑘 + 1)

will build the set E, m5 is the single element that constitutes
E (me1 = m5). Therefore, according to (12), the probability
𝑝1 assigned to me1 is 1. Under such circumstances, the
element me1 is perturbed considering (13), generating the
new position menew

1
. As menew

1
is better than me1 according

to their fitness values, the value ofm5 in the original memory
M(𝑘 + 1) is updated with menew

𝑖
. Figure 4(c) shows the final

configuration ofM(𝑘+1) after the exploitation operation has
been achieved.

2.7. Computational Procedure. The computational proce-
dure for the proposed algorithm can be summarized in
Algorithm 6.

The APRE algorithm is an iterative process in which
several actions are executed. After initialization (lines 2-3),
the number of memory elements to be evolved are computed.
Such number is automatically modified at each iteration
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Figure 4: Example of the mating operation: (a) function example, (b) initial configuration before the exploitation operation, and (c)
configuration after the operation.

(1) Input:New memoryM(𝑘 + 1), current iteration 𝑘

(2) ME← SortElementsFitness(M(𝑘 + 1))

(3) 𝑁𝑒 ← ceil(0.1 ⋅ 𝑁𝑝)

(4) E← SelectTheFirstElements(ME, 𝑁𝑒)
(5) for 𝑖 = 1 to𝑁𝑒 do
(6) 𝑝𝑖 ← (𝑁𝑒 + 1 − 𝑖)/𝑁𝑒

(7) if (rand(0, 1) <= 𝑝𝑖) then
(8) for 𝑗 = 1 to 𝑛 do
(9) 𝑚𝑒

new
𝑖,𝑗

← 𝑚𝑒𝑖,𝑗 + [𝐷 ((𝑛𝑔 − 𝑘) /𝑛𝑔)] (2 ⋅ rand(0, 1) − 1)

(10) end for
(11) 𝐽(menew

𝑖
) ← 𝑓(menew

𝑖
)

(12) if (𝐽(menew
𝑖

) > 𝐽(me𝑖)) then
(13) M(𝑘 + 1) ←MemoryIsUpdated(menew

𝑖
)

(14) end if
(15) end if
(16) end for
(17) Output:MemoryM(𝑘 + 1)

Algorithm 5: Exploitation operation of APRE.
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(1) Input:𝑁𝑝, 𝑁0𝑒 ,MR,CH and max 𝑘 (where max 𝑘 is the maximum number of iterations).
(2) M(1) ← InitializeM(𝑁𝑝)

(3) 𝑐1, . . . , 𝑐𝑁𝑝
← ClearCounters()

(4) for 𝑘 = 1 to max 𝑘 do
(5) Algorithm 1
(6) Algorithm 2
(7) Algorithm 3
(8) Algorithm 4
(9) M(𝑘 + 1) ← UpdateM(M(𝑘))

(10) 𝑐1, . . . , 𝑐𝑁𝑝
← UpdateCounters(𝑐1, . . . , 𝑐𝑁𝑝 )

(11) Q ← CalculateQualityFactor(M(k))
(12) Algorithm 5
(13) end for
(14) Solution← FindBestElement(M(k))
(15) Output: Solution

Algorithm 6: Computational procedure of APRE.

ei

ej

ek

r

(x0,y0)

Figure 5: Circle candidate (individual) built from the combination
of points e𝑖, e𝑗, and e𝑘.

(lines 5-6). Then, a set of new individuals is generated as a
consequence of the execution of the exploration operation
(line 7). For each new individual, its fitness value is estimated
or evaluated according to a decision taken by a fitness
estimation strategy (line 8). Afterwards, the memory is
updated. In this stage, the new individuals produced by the
exploration operation compete against the memory elements
to build the final memory configuration (lines 9–11). Finally,
a sample of the best elements contained in the final memory
configuration is undergone to the exploitation operation (line
12). This cycle is repeated until the maximum number of the
iterations Max𝑘 has been reached.

3. Implementation of APRE-Based
Circle Detector

3.1. Individual Representation. In order to detect circle
shapes, candidate images must be preprocessed first by the
well-known Canny algorithm which yields a single-pixel
edge-only image. Then, the (𝑥𝑖, 𝑦𝑖) coordinates for each edge
pixel e𝑖 are stored inside the edge vector E = {e1, e2, . . . , e𝑧𝑛},
with 𝑧𝑛 being the total number of edge pixels. Each circle

𝐶 uses three edge points as individuals in the optimization
algorithm. In order to construct such individuals, three
indexes e𝑖, e𝑗, and e𝑘, are selected from vector E, considering
the circle’s contour that connects them. Therefore, the circle
𝐶 = {e𝑖, e𝑗, e𝑘} that crosses over such points may be
considered as a potential solution for the detection problem.
Considering the configuration of the edge points shown by
Figure 5, the circle center (𝑥0, 𝑦0) and the radius 𝑟 of𝐶 can be
computed as follows:

(𝑥 − 𝑥0)
2
+ (𝑦 − 𝑦0)

2
= 𝑟
2
. (14)

Considering

A = [

[

𝑥
2

𝑗
+ 𝑦
2

𝑗
− (𝑥
2

𝑖
+ 𝑦
2

𝑖
) 2 ⋅ (𝑦𝑗 − 𝑦𝑖)

𝑥
2

𝑘
+ 𝑦
2

𝑘
− (𝑥
2

𝑖
+ 𝑦
2

𝑖
) 2 ⋅ (𝑦𝑘 − 𝑦𝑖)

]

]

,

B = [

[

2 ⋅ (𝑥𝑗 − 𝑥𝑖) 𝑥
2

𝑗
+ 𝑦
2

𝑗
− (𝑥
2

𝑖
+ 𝑦
2

𝑖
)

2 ⋅ (𝑥𝑘 − 𝑥𝑖) 𝑥
2

𝑘
+ 𝑦
2

𝑘
− (𝑥
2

𝑖
+ 𝑦
2

𝑖
)

]

]

,

𝑥0 =
det (A)

4 ((𝑥𝑗 − 𝑥𝑖) (𝑦𝑘 − 𝑦𝑖) − (𝑥𝑘 − 𝑥𝑖) (𝑦𝑗 − 𝑦𝑖))

,

𝑦0 =
det (B)

4 ((𝑥𝑗 − 𝑥𝑖) (𝑦𝑘 − 𝑦𝑖) − (𝑥𝑘 − 𝑥𝑖) (𝑦𝑗 − 𝑦𝑖))

,

𝑟 = √(𝑥0 − 𝑥𝑑)
2
+ (𝑦0 − 𝑦𝑑)

2
,

(15)

where det(⋅) is the determinant and 𝑑 ∈ {𝑖, 𝑗, 𝑘}. Figure 5
illustrates the parameters defined by (14) to (17).

3.2. Objective Function. In order to calculate the error
produced by a candidate solution 𝐶, a set of test points
is calculated as a virtual shape which, in turn, must be
validated, that is, if it really exists in the edge image. The test
set is represented by A = {a1, a2, . . . , a𝑠𝑛}, where 𝑠𝑛 is the
number of points over which the existence of an edge point,
corresponding to 𝐶, should be validated. In our approach,
the set A is generated by the Midpoint Circle Algorithm
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Figure 6: Procedure to evaluate the objective function 𝐽(𝐶). The image (a) presents the original edge map while (b) present the virtual shape
A corresponding to 𝐶. The image (c) shows the coincidences between both images by means of white pixels whereas the virtual shape is
depicted in black.

(MCA) [29]. The MCA is a searching method which seeks
the required points for drawing a circle digitally. Therefore,
MCA calculates the necessary number of test points 𝑠𝑛 to
totally draw the complete circle. Such a method is considered
the fastest because MCA avoids computing square-root cal-
culations by comparing the pixel separation distances among
them.

The objective function 𝐽(𝐶) represents thematching error
produced between the pixels A of the circle candidate 𝐶

(individual) and the pixels that actually exist in the edge
image, yielding

𝐽 (𝐶) =
∑
𝑠𝑛

V=1 𝐺 (aV)
𝑠𝑛

, (16)

where𝐺(aV) is a function that verifies the pixel existence in aV,
with aV ∈ A and 𝑠𝑛 being the number of pixels lying on the
perimeter corresponding to𝐶 currently under testing.Hence,
function 𝐺(aV) is defined as

𝐺 (aV) = {
1, if the pixel (aV) is an edge point,
0, otherwise.

(17)

A value of 𝐽(𝐶) near to one implies a better response
from the “circularity” operator. Figure 6 shows the procedure
to evaluate a candidate solution 𝐶 by using the objective
function 𝐽(𝐶). Figure 6(a) shows the original edge map E,
while Figure 6(b) presents the virtual shape A representing
the particle𝐶 = {e𝑖, e𝑗, e𝑘}. In Figure 6(c), the virtual shapeA
is compared to the edge image, point by point, in order to find
coincidences between virtual and edge points. The particle
has been built from points e𝑖, e𝑗, and e𝑘 which are shown by
Figure 6(a). The virtual shape A, obtained by MCA, gathers
56 points (𝑠𝑛 = 56) with only 17 of them existing in both
images (shown as white points in Figure 6(c)) and yielding
∑
𝑠𝑛

V=1 𝐺(aV) = 17, therefore 𝐽(𝐶) ≈ 0.30.

3.3. The Multiple Circle Detection Procedure. In order to
detect multiple circles, the APRE-detector is iteratively
applied. At each iteration, two actions are developed. In the
first one, a new circle is detected as a consequence of

Table 1: APRE detector parameters.

𝑁𝑝 𝑁
0

𝑒
MR CH max 𝑘

50 20 0.6 0.8 200

the execution of the APRE algorithm. The detected circle
corresponds to the candidate solution 𝐶 with the best found
𝐽(𝐶) value. In the second one, the detected circle is removed
from the original edge map.The processed edge map without
the removed circle represents the input image for the next
iteration. Such process is executed over the sequence of
images until the 𝐽(𝐶) value would be lower than a determined
threshold that is considered as permissible.

4. Results on Multicircle Detection

In order to achieve the performance analysis, the proposed
approach is compared to the GA-based algorithm [5], the
BFAO detector [9] and the RHT method [4] over an image
set.

The GA-based algorithm follows the proposal of Ayala-
Ramirez et al. [5], which considers the population size as 70,
the crossover probability as 0.55, the mutation probability
as 0.10, and the number of elite individuals as 2 and 200
generations. The roulette wheel selection and the 1-point
crossover operator are both applied.The parameter setup and
the fitness function follow the configuration suggested in [5].
The BFAO algorithm follows the implementation from [9]
considering the experimental parameters as 𝑆 = 50, 𝑁𝑐 =

350, 𝑁𝑠 = 4, 𝑁ed = 1, 𝑃ed = 0.25, 𝑑attract = 0.1, 𝑤attract = 0.2,
𝑤repellant = 10, ℎrepellant = 0.1, 𝜆 = 400, and 𝜓 = 6. Such
values are found to be the best configuration set according to
[9]. Both, theGA-based algorithm and the BAFOmethod use
the same objective function that is defined by (16). Likewise,
the RHT method has been implemented as it is described
in [4]. Finally, Table 1 presents the parameters for the APRE
algorithm used in this work. They have been kept for all test
images after being experimentally defined.

Images rarely contain perfectly-shaped circles.Therefore,
with the purpose of testing accuracy for a single-circle, the
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Figure 7: Synthetic images and their detected circles for GA-based algorithm, the BFOA method, and the proposed APRE algorithm.

detection is challenged by a ground-truth circle which is
determined from the original edge map. The parameters
(𝑥true, 𝑦true, and 𝑟true) representing the testing circle are
computed using the (6)–(9) for three circumference points
over the manually-drawn circle. Considering the centre and
the radius of the detected circle are defined as (𝑥𝐷, 𝑦𝐷) and
𝑟𝐷, the Error Score (Es) can be accordingly calculated as

Es = 𝜂 ⋅ (
󵄨󵄨󵄨󵄨
𝑥true − 𝑥𝐷

󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨
𝑦true − 𝑦𝐷

󵄨󵄨󵄨󵄨)
+ 𝜇 ⋅

󵄨󵄨󵄨󵄨
𝑟true − 𝑟𝐷

󵄨󵄨󵄨󵄨
. (18)

The central point difference (|𝑥true − 𝑥𝐷| + |𝑦true − 𝑦𝐷|)

represents the centre shift for the detected circle as it is
compared to a benchmark circle.The radiomismatch (|𝑟true−
𝑟𝐷|) accounts for the difference between their radii. 𝜂 and 𝜇

represent two weighting parameters which are to be applied
separately to the central point difference and to the radio
mismatch for the final error Es. At this work, they are chosen
as 𝜂 = 0.05 and 𝜇 = 0.1. Such a choice ensures that the radius
difference would be strongly weighted in comparison to the
difference of central circular positions between the manually
detected and the machine-detected circles. Here, we assume

that if Es is found to be less than 1, then the algorithm gets
a success; otherwise, we say that it has failed to detect the
edge-circle. Note that for 𝜂 = 0.05 and 𝜇 = 0.1Es < 1

means themaximumdifference of radius tolerated is 10, while
the maximum mismatch in the location of the center can be
20 (in number of pixels). In order to appropriately compare
the detection results, the Detection Rate (DR) is introduced
as a performance index. DR is defined as the percentage of
reaching detection success after a certain number of trials. For
“success” it does mean that the compared algorithm is able to
detect all circles contained in the image, under the restriction
that each circle must hold the condition Es < 1. Therefore, if
at least one circle does not fulfil the condition of Es < 1, the
complete detection procedure is considered as a failure.

In order to use an error metric for multiple-circle detec-
tion, the averaged Es produced from each circle in the image
is considered. Such criterion, defined as the Multiple Error
(ME), is calculated as follows:

ME = (
1

NC
) ⋅

NC
∑

𝑅=1

Es𝑅, (19)
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Figure 8: Real-life images and their detected circles for GA-based algorithm, the BFOA method, and the proposed APRE algorithm.

where NC represents the number of circles within the image
according to a human expert.

Figure 7 shows three synthetic images and the resulting
images after applying the GA-based algorithm [5], the BFOA
method [9], and the proposed approach. Figure 8 presents
experimental results considering three natural images. The
performance is analyzed by considering 35 different execu-
tions for each algorithm. Table 2 shows the averaged execu-
tion time, the averaged number of function evaluations, the
detection rate in percentage, and the averaged multiple error
(ME), considering six test images (shown by Figures 7 and 8).
Close inspection reveals that the proposed method is able to
achieve the highest success rate still keeping the smallest error
and demanding less computational time and a lower number
of function evaluations for all cases.

In order to statistically analyze the results in Table 2, a
nonparametric significance proof known as the Wilcoxon’s
rank test [30–32] for 35 independent samples has been con-
ducted. Such proof allows assessing result differences among
two relatedmethods.The analysis is performed considering a
5% significance level over the number of function evaluations
and a multiple error (ME) data. Tables 3 and 4 report the 𝑃

values produced byWilcoxon’s test for a pairwise comparison
of the number of function evaluations and the multiple error
(ME), considering two groups gathered as APRE versus GA
and APRE versus BFOA. As a null hypothesis, it is assumed
that there is no difference between the values of the two
algorithms. The alternative hypothesis considers an existent
difference between the values of both approaches. All 𝑃

values reported in Tables 3 and 4 are less than 0.05 (5%
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Table 2: The averaged execution-time, detection rate, the averaged multiple error for the GA-based algorithm, the BFOA method, and the
proposed APRE algorithm, considering six test images are shown by Figures 8 and 9.

Performance indexes Synthetic images Natural images
(a) (b) (c) (a) (b) (c)

GA

Averaged execution time 2.23 3.15 4.21 5.11 6.33 7.62
Averaged number of function evaluations 14,000 14,000 14,000 14,000 14,000 14,000
Success rate (DR) (%) 88 79 74 90 83 84
Averaged ME 0.41 0.51 0.48 0.45 0.81 0.92

BFOA

Averaged execution time 1.71 2.80 3.18 3.45 4.11 5.36
Averaged number of function evaluations 17,500 17,500 17,500 17,500 17,500 17,500
Success rate (DR) (%) 99 92 88 96 89 92
Averaged ME 0.33 0.37 0.41 0.41 0.77 0.37

APRE

Averaged execution time 0.21 0.36 0.20 1.10 1.61 1.95
Averaged number of function evaluations 2,321 2,756 3,191 4,251 3,768 3,834
Success rate (DR) (%) 100 100 100 100 100 100
Averaged ME 0.22 0.26 0.15 0.25 0.37 0.41

Table 3: 𝑃 values produced by Wilcoxon’s test comparing APRE to
GA and BFOA over the averaged number of function evaluations
from Table 2.

Image 𝑃 value
APRE versus GA APRE versus BFOA

Synthetic images
(a) 3.3124𝑒 − 006 5.7628𝑒 − 006

(b) 5.3562e − 007 6.8354e − 007
(c) 4.1153𝑒 − 006 1.1246𝑒 − 005

Natural images
(a) 4.5724𝑒 − 006 4.5234𝑒 − 006

(b) 6.7186e − 006 5.3751e − 006
(c) 8.7691𝑒 − 007 6.2876𝑒 − 006

Table 4: 𝑃 values produced by Wilcoxon’s test comparing APRE to
GA and BFOA over the averaged ME from Table 2.

Image 𝑃 value
APRE versus GA APRE versus BFOA

Synthetic images
(a) 1.7345𝑒 − 004 1.5294𝑒 − 004

(b) 1.6721e − 004 1.4832e − 004
(c) 1.0463𝑒 − 004 1.9734𝑒 − 004

Natural images
(a) 1.5563𝑒 − 004 1.6451𝑒 − 004

(b) 1.2748e − 004 1.5621e − 004
(c) 1.0463𝑒 − 004 1.7213𝑒 − 004

significance level) which is a strong evidence against the null
hypothesis, indicating that the best APREmean values for the
performance are statistically significant which has not
occurred by chance.

Figure 9 demonstrates the relative performance of APRE
in comparison with the RHT algorithm as it is described in
[4]. All images belonging to the test are complicated and
contain different noise conditions. The performance analysis

is achieved by considering 35 different executions for each
algorithm over the three images. The results, exhibited in
Figure 9, present the median-run solution (when the runs
were ranked according to their final ME value) obtained
throughout the 35 runs. On the other hand, Table 5 reports
the corresponding averaged execution time, detection rate
(in %), and average multiple error (using (10)) for APRE
and RHT algorithms over the set of images. Table 5 shows
a decrease in performance of the RHT algorithm as noise
conditions change. Yet the APRE algorithm holds its perfor-
mance under the same circumstances.

5. Conclusions

In this paper, a novel evolutionary algorithm called the
Adaptive Population with Reduced Evaluations (APRE) is
introduced to solve the problem of circle detection. The pro-
posed algorithm reduces the number of function evaluations
through the use of twomechanisms: (1) adapting dynamically
the size of the population and (2) incorporating a fitness
calculation strategy which decides when it is feasible to
calculate or only estimate new generated individuals.

The algorithm begins with an initial population which
will be used as a memory during the evolution process. To
each memory element, it is assigned a normalized fitness
value called quality factor that indicates the solution capacity
provided by the element. From the memory, only a variable
subset of elements is considered to be evolved. Like other
population-based methods, the proposed algorithm gener-
ates new individuals considering two operators: exploration
and exploitation. Such operations are applied to improve
the quality of the solutions by (1) searching the unexplored
solution space to identify promising areas containing better
solutions than those found so far and (2) successive refine-
ment of the best found solutions. Once the new individuals
are generated, the memory is updated. In such stage, the new
individuals compete against the memory elements to build
the final memory configuration.

In order to save computational time, the approach
incorporates a fitness estimation strategy that decides which
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Figure 9: Relative performance of the RHT and the APRE.

Table 5: Average time, detection rate, and averaged error for APRE
and RHT, considering three test images.

Image Average time Success rate (DR) (%) Average ME
RHT APRE RHT APRE RHT APRE

(a) 7.82 0.20 100 100 0.19 0.12
(b) 8.65 0.12 64 100 0.47 0.11
(c) 10.65 0.15 11 100 1.21 0.13

individuals can be estimated or actually evaluated. As a result,
the approach can substantially reduce the number of function
evaluations, yet preserving its good search capabilities. The
proposed fitness calculation strategy estimates the fitness
value of new individuals using memory elements located
in neighboring positions that have been visited during the

evolution process. In the strategy, those new individuals,
close to a memory element whose quality factor is high,
have a great probability to be evaluated by using the true
objective function. Similarly, it is also evaluated those new
particles lying in regions of the search space with no previous
evaluations. The remaining search positions are estimated
assigning them the samefitness value that the nearest location
of the memory element. By the use of such fitness estimation
method, the fitness value of only very few individuals are
actually evaluated whereas the rest is just estimated.

Different to other approaches that use an already existent
EA as framework, the APRE method has been completely
designed to substantially reduce the computational cost but
preserving good search effectiveness.

To detect the circular shapes, the detector is implemented
by using the encoding of three pixels as candidate circles
over the edge image. An objective function evaluates if such
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candidate circles are actually present in the edge image.
Guided by the values of this objective function, the set of
encoded candidate circles are evolved using the operators
defined by APRE so that they can fit to the actual circles on
the edge map of the image.

In order to use either a fitness estimation strategy or an
adaptive population size approach, it is necessary but not
sufficient to tackle the problem of reducing the number
of function evaluations. Using a fitness estimation strategy,
during the evolution process with no adaptation of the
population size to improve the population diversity, makes
the algorithm defenseless against the convergence to a false
minimum and may result in poor exploratory characteristics
of the algorithm [18]. On the other hand, the adaptation of the
population size omitting the fitness estimation strategy leads
to increase in the computational cost [20]. Therefore, it does
seem reasonable to incorporate both approaches into a single
algorithm.

In order to test the circle detection accuracy, a score
function is used (19). It can objectively evaluate themismatch
between a manually detected circle and a machine-detected
shape. We demonstrated that the APREmethod outperforms
both the evolutionary methods (GA and BFOA) and Hough
Transform-based techniques (RHT) in terms of speed and
accuracy, considering a statistically significant framework
(Wilconxon test). Results show that the APRE algorithm is
able to significantly reduce the computational overhead as a
consequence of decrementing the number of function evalu-
ations.
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