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By analyzing the characteristics of whole-set orders problem and combining the theory of glowworm swarm optimization, a
new glowworm swarm optimization algorithm for scheduling is proposed. A new hybrid-encoding schema combining with two-
dimensional encoding and random-key encoding is given. In order to enhance the capability of optimal searching and speed up the
convergence rate, the dynamical changed step strategy is integrated into this algorithm. Furthermore, experimental results prove
its feasibility and efficiency.

1. Introduction

Whole-set orders problem refers to customers’ orders includ-
ing multiple workpieces with different processing time and
completion deadlines; since these workpieces are matching
together as one, the delivery delay of the whole order
will account for one delayed piece; customers are meeting
a matching problem. In the customized production envi-
ronment, whole-set orders problem can better reflect the
corporations’ service level and customers’ satisfaction. It has
become an important branch in the field of production
scheduling and has broadened practical backgrounds.

At present, the algorithms used in production scheduling
can be divided into accurate algorithms and approximation
algorithms. Accurate algorithms (mathematical program-
ming, branch and bound algorithm, Lagrangian relaxation,
etc.) can get accurate solutions of problems, but big amount
of calculation and time-consumption limit their applications
in solving small-scale problems. Approximation algorithms
(genetic algorithm, particle swarm optimization, ant colony
algorithm, etc.) for their simple operation, parallel process-
ing, have been widely applied in production scheduling and
large-scale problems.

Glowworm swarm optimization (GSO) is proposed by
Krishnanand and Ghose as one of the newest nature inspired
heuristics [1], with it’s simple model, less adjustable parame-
ters, and fast convergence rate, which can be usually viewed
in pattern recognition, routing, combinatorial optimization,
and so forth [2–6]. In the optimizations of production
scheduling, Kazem Sayadi et al. have successfully gotten
the better solutions of permutation flow-shop scheduling
problem [7].Wu et al. have proved its feasibility and efficiency
in the optimization of cross-dock scheduling [8]. Based on
the discrete characteristic of whole-set orders and GSO’s
good performance in discretization, this paper presents an
improved GSO for whole-set orders scheduling problem.

2. The Description of Weighted Whole-Set
Orders Problem

2.1.TheModel ofWhole-Set Orders Problem in SingleMachine.
Due to the definition of whole-set orders problem, when each
order includes only one workpiece, it becomes a problem of
weighed number of delay jobs, so whole-set orders problem
is a kind of NP-hard problem.
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Maximizing the number of weighted whole-set orders is
our objective function:

𝑓 = max
𝐻

∑
ℎ=1

𝑤
ℎ

𝑥
ℎ
. (1)

We suppose the following.

(1) There are 𝑁 independent workpieces that need to be
processed on one machine and belong to 𝐻 orders,
𝐺
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(1) The processing time of workpiece 𝑗ℎ
𝑗
(1 ≤ ℎ ≤ 𝐻,

1 ≤ 𝑗 ≤ 𝑛
ℎ
) is 𝑝ℎ
𝑗
(>0), and deadline is 𝑑ℎ

𝑗
.

(2) All the workpieces are got ready, which means arriv-
ing time 𝑟ℎ

𝑗
= 0.

(3) One piece can only be processed once, and single
machine should process one job each time, 𝑎

𝑖𝑗
stands

for if job 𝑖 was processed at the position of 𝑗, then
𝑎
𝑖𝑗

= 1, else

𝑎
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= 0 ,
𝑁

∑
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= 1, 𝑗 = 1, 2, . . . , 𝑁. (3)

(4) Once processed the workpiece should not be termi-
nated.

(5) The complete time ofworkpiece 𝑗ℎ
𝑗
is𝐶ℎ
𝑗
, and it defines

𝑥
ℎ
for whole-set coefficient as

𝑥
ℎ

=
{{
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,
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≤ 𝑑ℎ
𝑗
,

0, else.
(4)

2.2. Characteristics of Whole-Set Orders Problem. The char-
acteristics of whole orders problem include its complexity,
restriction, and discreteness.

(1) Complexity. For a machining sort with 𝑛 workpieces,
there may be 𝑁 factorial solutions. For example, if we get 7
customers, and 20workpieces tomachining, the total number
of the solutions will be 2.4329𝑒+18.This reflects that with the
enlargement of the scheduling scale, the space of solutions
will become lager, and the computation will increase expo-
nentially. This needs to keep the diversity of metapopulation
in solving whole-set orders problem, to shorten the solving
time, to increase the probability of acquiring optimal solution
and, to realize global optimization.

(2) Restraintion. As the optimal solution must meet the
machine’s or processing sequences’ restraint conditions in

whole-set orders problem, part of the sorts may become
unfeasible scheduling solutions for notmeeting the restraints.
We should note metapopulation individual’s validity in
searching process when using glowworm swarm optimiza-
tion and adopt revise strategies to unfeasible individual
coming from location update to ensure the feasibility of the
descendant.

(3) Discreteness. In classical GSO, the mobile step is usually
a fixed numerical value. And this has good effect on solving
continuous optimizing problems. But every metapopulation
individual represents an independent panel point in whole-
set orders problem, and unreasonable setting of the step may
lead to mismatching situations in searching process. So in
order to ensure the convergence effectiveness, we should do
some dynamic handlings on step.

3. Glowworm Swarm Optimization for Whole-
Set Orders Scheduling

3.1. Description of Classical Glowworm Swarm Optimiza-
tion. Most kinds of glowworms can locate its position and
exchange information by sending out rhythmed short beam.
The idea of GSO is glowworm individual finding flaring
neighbors in its searching scope. Move from initial position
to a better one and at last assemble into one or more extreme
value point.

In GSO algorithm, Glowworm individuals’ attraction
is only related to its brightness. Attraction of individual
is proportional to brightness and inversely proportional
to the distance between the two individuals. The position
of individuals account for objective function value. Define
dynamic decision domain as individual searching scope.
When updating position, individuals move by step.

Detailed procedures of classical GSO are as follows.

(1) Initialize parameters. 𝑛 individuals are randomly
placed in feasible region, 𝑙

0
accounts for fluorescein

value, 𝑟
0
for dynamic decision domain, 𝑠 for step, 𝑛

𝑡

for threshold in domain, 𝜌 for fluorescein elimination
coefficient, 𝛾 for fluorescein update coefficient, 𝛽
for update coefficient of domain, 𝑟

𝑠
for maximal

searching radius, and 𝑡 for iteration number.

(2) The objective function value 𝐽(𝑥
𝑖
(𝑡)) is transformed

to 𝑙
𝑖
(𝑡) as

𝑙
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in which 𝑥
𝑖
(𝑡) accounts for the position of individual

𝑖 at 𝑡 time.

(3) In each 𝑟𝑖
𝑑
(𝑡), select higher fluorescein value individ-

uals forming a set of neighborhood 𝑁
𝑖
(𝑡). Hence,

𝑁
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𝑖 (𝑡)
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𝑑
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(4) The probability of individual 𝑖 may move toward 𝑗 as

𝑝
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𝑖 (𝑡)
, (7)

in which 𝑗 is chosen by 𝑝
𝑖𝑗
(𝑡).

(5) The position of individual 𝑖 can be updated as
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(6) The dynamic decision domain can be updated as

𝑟𝑖
𝑑
(𝑡 + 1) = min {𝑟

𝑠
,max {0, 𝑟𝑖

𝑑
(𝑡) , 𝛽 (𝑛

𝑡
−

𝑁𝑖 (𝑡)
)}} . (9)

3.2. Glowworm Swarm Optimization for whole-set orders
Scheduling (GSOS). By analyzing the characteristics of
whole-set orders problem, this paper will solve it by using
glowworm swarm optimization. The key of this algorithm
includes encoding and decoding schema, individuals stand-
ing without neighbors, variable step strategy, and the distance
of individuals.

3.2.1. Encoding and Decoding Schema. A sound encoding
method can lower solving difficulty caused by constraint con-
ditions and raise efficiency. The common encoding methods
in approximation algorithms at present include machine-
based coding and process-based coding. Among these meth-
ods, machine-based coding can reflect limitations of the
processing machines, while it may easily result in deadlock
scheduling; Jobs’ relation-based coding uses binary coding
methodwhichmay easily cause redundant scheduling results.
Process-based coding assigns the same symbol to every
process of the same job, but the result producing through this
method is not an initiative scheduling.

In view of this, a hybrid encoding schema combiningwith
2-dimensional coding and random-key coding is given. In
whole-set orders problem, one individual’s location accounts
for one feasible code, and the movement of individual means
the exchange of codes.

In the coding, the method in this paper combines natural
numbers and randomly real numbers between 0 and 1.
Natural numbers 1,2,3,. . . 𝑛 stand for 𝑛 piece, and 𝑥

𝑖
stands

for positive real numbers between 0 and 1 without repetition
generated randomly. As is shown in Table 1.

This method increases bits of valid number. It could
avoid some repetitive sorts that may lead to invalid codes.
In decoding, relative size of number accounts for the process
position of workpiece 𝑖 in the sorts, ascending sort column
(𝑥
1
, 𝑥
2
, ..., 𝑥
𝑛
), and the corresponding sort of natural numbers

is the process sequence.
In example 1, there are 6 workpieces and their 2-

dimensional codes like Table 2.
There are 6workpieces and their 2-dimensional codes like

Table 2.
Ascending sort the real numbers we get 0.01-0.23-0.44-

0.48-0.76-0.79; the code of workpiece number 1 is 0.23, and

Table 1: 2-dimensional individual encoding.

1 2 3 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑛

𝑥
1

𝑥
2

𝑥
3

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑥
𝑛

Table 2: Case of codes.

1 2 3 4 5 6
0.23 0.48 0.76 0.01 0.44 0.79

0.23 is the secondminimum in the sort, so workpiece 1 will be
processed at second position. Successively analyzing, we can
get the process sequence: 4-1-5-2-3-6.

Furthermore, all the feasible codes and process sequences
are one-to-one correspondence. Because of the difference of
each real number, their ascending sort would be uniqueness.

3.2.2. Dispose of Individual without Neighbors. According to
classical GSO, an individual glowworm performs random
move towards a neighbor better than itself through prob-
ability in accordance with the neighborhoods’ fluorescent
brightness. If there are too many candidate solution or the
neighborhoods distribute unevenly, there may be a small
probability of the event that some individuals do not have
neighbors so that they would like to be stagnant, which may
results in the slowing down of the rate of convergence and
the likely access into the local optimization. To avoid the
above disadvantages, every individual must be ensured to be
dynamic in the optimizing process. Thus, in this algorithm,
if an individual has no neighbor, it should move one step at
random in the optimizing process of its own generation.

3.2.3. Strategy of Improved Moving Step. The step size of an
individual in GSO is ordinarily fixed. In solving the whole-set
orders problem or similar special problems, both bigger and
smaller steps will cause adverse effects in that the bigger steps
may result in missing the optimal solution, slowing down of
the rate of convergence, and the easy occurrence of shaking,
while the smaller steps may result in an early trapping in the
local optimization by which the optimal solution cannot be
obtained. Therefore, changing the step size dynamically can
improve the solving efficiency of the algorithm.

At the beginning of the algorithm, the step size should be
kept big enough to avoid trapping into the local optimization.
With the increasing of iteration, the step size should be
shortened gradually to ensure an optimal solution at the later
stage of the algorithm. So the formula of moving step is
designed as

(1 − 𝑎) ∗ 𝑠𝑡 = 𝑠,

𝑎 = exp(−20 × (
𝑡

𝑇max
)
𝑝

) ,
(10)

in which 𝑠 accounts for minimum step and can be initialized,
𝑇max for maximum iteration, 𝑡 for current iteration, 𝑝 and for
a integer between [1, 30]. Let 𝑝 = 5; the curve of 𝑎 is shown
as Figure 1.
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(a) Initialization: 𝑛, 𝑙
0
, 𝑟
0
, 𝑠, 𝑛
𝑡
, 𝜌, 𝛾, 𝛽, 𝑟

𝑠
, 𝑇max, 𝑝;

(b) While (𝑡 ≤ 𝑇max) then do:
{

for 𝑖 = 1 to 𝑛; do:
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𝑖
(𝑡) = (1 − 𝜌) 𝑙

𝑖
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𝑝
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);

𝑟𝑖
𝑑
(𝑡 + 1) = min {𝑟

𝑠
,max {0, 𝑟𝑖

𝑑
(𝑡), 𝛽 (𝑛

𝑡
−

𝑁𝑖 (𝑡)
)}}; }

𝑡 = 𝑡 + 1; }

Pseudocode 1
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Figure 1: Curve of 𝑎.

3.2.4. Formula of Distance between Individuals. In whole-set
orders problem, bit of codes is related to the numbers of
workpiece and usually may be multidimensional array, and
the key of it is how to calculate distance between individuals.
Here, we suppose there are𝑁workpieces to be processed, and
finally get two feasible sequences after decoding as follows:

𝑥
𝑖
= (𝑥
𝑖1
, 𝑥
𝑖2
, ..., 𝑥
𝑖𝑁

) , 𝑥
𝑗
= (𝑥
𝑗1

, 𝑥
𝑗2

, ..., 𝑥
𝑗𝑁

) , (11)

the distance from the symmetry of formula is obtained as

𝑑
𝑖𝑗

=

𝑥𝑖1 − 𝑥
𝑗1

 𝑐 +
𝑥𝑖2 − 𝑥

𝑗2

 𝑐 + ⋅ ⋅ ⋅ +
𝑥𝑖𝑁 − 𝑥

𝑗𝑁

 𝑐

𝑁 (𝑁 + 1) /2
, (12)

in which 𝑑
𝑖𝑗

= 𝑑
𝑗𝑖
. Thus, 𝑐 is usually fixed, and we make it to

be 4 in the experiments.

Table 3: Orders and weights.

Order 1 2 3 4 5 6 7 8 9 10
Weight 0.08 0.1 0.09 0.11 0.12 0.2 0.05 0.15 0.05 0.05

Table 4: Information of orders.

2 3 7 10 14 16 19 30 38 42 52 60
1 (1) (2) (2) (2) (2) (2)
2 (1) (2) (1) (2)
3 (1) (2) (2) (2)
4 (1) (2) (2) (1) (2)
5 (1) (1) (2) (2)
6 (1) (2) (2)
7 (1) (2) (2)
8 (2) (1) (2) (1) (2)
9 (1) (1) (2) (1)
10 (2) (1) (2)

For example, there are two process sequences after decod-
ing (6-5-4-3-2-1) and (1-2-4-3-6-5). By 𝑑

12
= 4∗{(|6−1|+|5−

2| + |4− 4| + |3− 3| + |2− 6| + |1− 5|)/(6∗ (6+ 1)/2)} = 64/21,
the distance needed is obtained.

The pseudo codes of GSOS as shown in Pseudocode 1.

4. Simulations and Results

To verify the feasibility of GSOS, we have tested two simula-
tions of different scales.

Case 1. According to [9], there are 41 workpieces of 10 orders,
detailed information are shown in Tables 3 and 4; target of
optimization is maximizing the number of weighted whole-
set orders.

In Table 4, numbers in row-1 account for deadlines, in
line-1 account for orders and in brackets for processing time.
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Table 5: Comparison of time consumption.

Algorithm 1 2 3 4 5 6 7 8 9 10 Ave
GA 121.8 117.9 118.2 117.6 118.2 117.5 119.6 117.9 117.8 118.6 118.5
GSO 84.90 83.70 83.81 83.15 83.39 83.72 84.19 83.63 83.54 83.52 83.76

Table 6: Results of numbers.

Algorithm Max Min Ave Var
GA 0.77 0.68 0.727 0.0762
GSOS 0.77 0.72 0.752 0.0531

Table 7: Orders and weights.

Order 1 2 3 4 5 6 7 8
Weight 0.14 0.15 0.15 0.13 0.12 0.12 0.09 0.1

Table 8: (a) Information of orders for Job 1–10. (b) Information of
orders for Job 11–21.

(a)

Job 1 2 3 4 5 6 7 8 9 10
Order 1 1 1 2 2 2 3 3 3 4
Deadline 8 23 40 10 26 42 15 32 48 17
Cpu time 4.5 4 3.5 4 2 4 3 3 3.5 3

(b)

Job 11 12 13 14 15 16 17 18 19 20 21
Order 4 4 5 5 5 6 6 7 7 8 8
Deadline 36 56 20 39 60 12 35 16 40 22 50
Cpu time 3 5 3.5 4.5 3 2 4 4 4 3 2

Table 9: Results of numbers.

Algorithm Max Ave Var
GA 0.77 0.728 0.0493
GSOS 0.78 0.749 0.0491

According to the above information, we contrast the results
between GSOS and GA. Simulation environment: Microsoft
Windows-XP system, AMD-A6-3400M CPU, 2G-RAM, and
the codes are programmed byMATLAB2012a, the population
size is fixed 𝑛 = 400, maximum iteration 𝑇max = 80, and the
program run 10 times independently.

The efficiency of results is shown in Table 5. FromTable 5,
we can find that average solving time of GSOS is shortened by
about 34.74 seconds compared with GA, which increases by
about 29.3%.

The results of optimization numbers are shown inTable 6.
Form Table 6, we realize that GSOS performs better than GA
in terms of average value, minimum value, and variance.

Case 2. To insure the performance of GSOS, Example 2 is
generated randomly, information is in detail in Tables 7 and
8.

The results of optimization numbers are shown in Table 9,
and the efficiency of results are shown in Table 10.
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Figure 2: Curves in case 1.
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Figure 3: Curves in case 2.

From Tables 9 and 10, we can find that the proposed
algorithm is better than GA.

The searching curves of GSOS and GA are shown in
Figures 2 and 3, there solid lines account for GSOS while
dotted lines for GA.

According to the Figures 2 and 3,GSOS andGAboth have
a high rate of convergence, but GSOS performs better than
GA in terms of average value, minimum value, and variance,
which proved its high-accuracy of solutions, the solving time
of GSOS decreases by about 29% compared with GA which
reflects its efficiency. In conclusion, GSOS ismore suitable for
solving whole-set orders problem.
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Table 10: Comparison of time consumption.

Algorithm 1 2 3 4 5 6 7 8 9 10 Ave
GA 121.8 117.9 118.2 117.6 118.2 117.5 119.6 117.9 117.8 118.6 118.5
GSO 84.90 83.70 83.81 83.15 83.39 83.72 84.19 83.63 83.54 83.52 83.76

5. Conclusions

An improved glowworm swarm optimization for scheduling
(GSOS) is proposed in this paper; we have verified its high
rate of convergence, efficiency, accuracy, and easy operation
through simulations on different scales of whole-set orders
problem. To test its performance on parallel machines and
bigger scales that will be our research direction later on.
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