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We seek to provide practical lower bounds on the prediction accuracy of path loss models. We describe and implement 30
propagation models of varying popularity that have been proposed over the last 70 years. Our analysis is performed using a large
corpus of measurements collected on production networks operating in the 2.4 GHz ISM, 5.8 GHz UNII, and 900 MHz ISM bands
in a diverse set of rural and urban environments. We find that the landscape of path loss models is precarious: typical best-case
performance accuracy of these models is on the order of 12–15 dB root mean square error (RMSE) and in practice it can be much
worse. Models that can be tuned with measurements and explicit data fitting approaches enable a reduction in RMSE to 8-9 dB.
These bounds on modeling error appear to be relatively constant, even in differing environments and at differing frequencies.
Based on our findings, we recommend the use of a few well-accepted and well-performing standard models in scenarios where a
priori predictions are needed and argue for the use of well-validated, measurement-driven methods whenever possible.

1. Introduction

Predicting the attenuation of a radio signal between two
points in a realistic environment has entertained scientists
and experimenters for more than 70 years. This is for good
reason: accurate predictions of path loss and propagation
have many important applications in the design, rollout,
and maintenance of all types of wireless networks. As a
result, there have been no shortage of models proposed in
the literature that claim to predict path loss within some
set of constraints. Yet, despite the large quantity of work
done on modeling path loss, there is an important short-
coming that this paper begins to address: there have been
relatively few comparative evaluations of path loss prediction
models using a sufficiently representative data set as a basis
for evaluation. Those studies that do exist make comparisons
between a small number of similar models. And, where
there has been substantial work of serious rigor done, for
instance in the VHF bands where solid work in the 1960s
produced well-validated results for analog television (TV)
propagation, it is not clear how well these models work
for predicting propagation in different types of systems
operating at different frequencies. The result is that wireless
researchers are left without proper guidance in picking

among dozens of propagation models. Further, among the
available models it is not clear which is best or what the
penalty is of using a model outside of its intended coverage.
In [1], for instance, Camp et al. show that a wireless mesh
network planned with a given path loss model can be
massively under- or overprovisioned as a result of small
changes to model parameters.

In this paper, we implement and analyze 30 propagation
models spanning 65 years of publications using five novel
metrics to gauge performance. Although many of these
models are quite different from one another, they all make
use of the same basic variables on which to base their
predictions: position (including height and orientation) of
the transmitter and receiver, carrier frequency, and digital
elevation model and land cover classification along the main
line-of-sight (LOS) transmit path. These models are a mix of
approaches: empirical (purely), analytical, stochastic or some
combination thereof. In addition, we make use of explicit
measurement-based approaches to put a lower bound on the
accuracy of direct fitting methods. The present study does
not include ray-tracing models (e.g., [2]) or partition-based
models (e.g., [3]) that require substantial knowledge of the
environment, which is seldom available at all and rarely at
the precision required to make useful predictions. We are
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also not considering active-measurement models (e.g., [4]),
which make use of directed in situ measurements to correct
their predictions.

The focus in this paper is the efficacy of these models
at predicting median path loss values in environments with
representative terrain and a large range of equipment and
link lengths. We focus our analysis on a type of networks
of particular interest: point-to-point and infrastructure data
networks operating in the 2.4 GHz ISM and 5.8 GHz UNII
bands using the widely adopted 802.11x family of protocols.
Many authors have considered the problem of predicting
outdoor path loss in uncluttered environments to be solved.
We will see this is far from true—making accurate a priori
predictions about path loss, without in situ measurements,
with the models available, is a very difficult task even in
“simple” environments.

In the end, the results show that no single model is able
to predict path loss consistently well. Even for the seemingly
simple case of long links between well-positioned antennas
in a rural environment, the available models are unable to
predict path loss at an accuracy that is usable for any more
than crude estimates. Indeed, no model is able to achieve
a Root Mean Square Error (RMSE) of less than 14 dB in
rural environments and 8-9 dB in urban environments—a
performance that is only achieved after substantial hand tun-
ing. Explicit data-fitting approaches do not perform better
producing 8-9 dB RMSE as well. This conclusion moti-
vates further work on more rigorous measurement-based
approaches and the use of well-validated industry-standard
models when it is not possible to use measurements.

2. Path Loss Models

Table 1 provides details of the models evaluated in this study.
In the following subsections we will briefly discuss each
major category of model within our proposed taxonomy and
list notable examples. Due to space constraints, we are unable
to discuss each model that we implement and instead focus
on describing the most prevalent themes: Theoretical Mod-
els, Basic Models, Terrain Models, Supplementary Models,
and Advanced Models. The models implemented here are
described in more detail in [33].

At a high level, a model task is to predict the value of L+S
when computing power observed at the receiver

Pr = Pt − (L + S + F), (1)

Pt is the transmitted power and the total path loss (L+ S+F)
is the sum of the free-space path loss (L), the loss due
to shadowing/slow-fading (S, i.e., large fixed obstacles like
mountains and buildings), and the small-scale/fast fading
(F) due to destructive interference from multipath effects
and small scatterers. Models cannot, without perfect knowl-
edge of the environment, be expected to predict the quantity
F. In most applications, this additional error is computed
from a probability distribution (often Raleigh, although
Rician and m-Nakagami are popular).

It is worth noting that among the models we have
implemented, very few were designed for exactly the sort of

networks we are testing them against. Indeed, some are very
specific about the type of environment in which they are to
be used. Table 1 lists the coverage domain of each model we
have implemented, when available. In this work we do not
strictly adhere to these coverage requirements because we
observe that they are not largely followed in the literature
(the Longley-Rice Irregular Terrain model, in particular,
is frequently used well outside of its intended coverage
domain). In this study both appropriate and “inappropriate”
models are given an equal chance at making predictions for
our network. We have no starting bias about which should
perform best.

2.1. Theoretical/Foundational Models. The first models
worth considering are purely analytical models derived from
the theory of idealized electromagnetic propagation. These
models are simple to understand and implement and as a
result they have been widely adopted into network simulators
and other applications and often function at the center
of more complex models. Important examples include
Friis equation for free space path loss between isotropic
transmitters [5] and the two-ray ground-reflection model [7,
17]. Friis equation is an integral component of many of the
more complex models. It observes that power is attenuated
in free space proportional to the distance squared. The ratio
between received power and transmitted power

Pr
Pt
=
(

λ

4πd

)2

, (2)

is given as a function of distance (d) and wavelength (λ).
More commonly this equation is given in the logarithmic
domain by

Pr = Pt −
(

20 log10(d) + 20 log10

(
f
)

+ 32.45
)

, (3)

where distance (d) is given in km, carrier frequency ( f ) in
MHz, and power in units of decibels relative to a mW (dBm).

2.2. Basic Models. The models that we call “basic” models are
the most numerous. They compute path loss along a single
path and often use corrections based on measurements made
in one or more environments. In general, they use the dis-
tance, carrier frequency, and transmitter and receiver heights
as input. Some models also have their own parameters to
select between different modes of computation or fine tun-
ing. Here we subdivide these models into deterministic and
stochastic categories. The stochastic models use one or more
random variables to account for channel variation (and
hence are able to predict a distribution instead of a median
value). The Egli model [6, 34, 35], Green-Obaidat [25], Hata-
Okumura [8, 35] (and its many derivative models [16, 22, 29,
36]), and the Walfisch-Ikegami model [37] are good exam-
ples of deterministic basic models. Stochastic models include
the recent Herring models [32] and the Erceg models [20,
24]. Because we are concerned with predicting median path
loss, we disable the stochastic element of these models and
simply use their median prediction.
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Table 1: Models studied along with their categorization, required input, coverage remarks, relevant citations, and year of (initial)
publication.

Name Short name Category Coverage notes Citations Year

Friis Freespace friis Foundational d > 2a2/λ [5] 1946

Egli egli Basic 30 MHz < f < 3 GHz [6, 7] 1957

Hata-Okumura hata Basic

1 km < d < 10 km
150 ≤ f ≤ 1500 MHz

30 ≤ h1 ≤ 200 m
1 ≤ h1 ≤ 20

[8] 1968

Edwards-Durkin edwards Basic/Terrain [9] 1969

Allsebrook-Parsons allsebrook Basic/Terrain f ∈ 85, 167, 441 MHz; urban [10] 1977

Blomquist-Ladell blomquist Basic/Terrain [11] 1977

Longley-Rice Irregular itm Terrain 1 km < d < 2000 km [12] 1982

Terrain Model (ITM) 20 MHz < f < 20 GHz

Walfisch-Bertoni bertoni Basic [13] 1988

Flat-Edge flatedge Basic [14] 1991

TM90 tm90 Basic
d ≤ 10 miles
h1 ≤ 300 feet

[15] 1991

COST-231 cost231 Basic 1 km < d < 20 km [16] 1993

Walfisch-Ikegami walfisch Basic

200 m < d < 5 km;
800 MHz < f < 2 GHz

4 m < hb < 50 m
1 m < hm < 3 m

[16] 1993

Two-Ray (Ground Reflection) two.ray Foundational [17] 1994

Hata-Davidson davidson Basic

1 km < d < 300 km
150 MHz < f < 1.5 GHz

30 m < hb < 1500 m
1 m< hm < 20 m

[18] 1997

Oda oda Basic [19] 1997

Erceg-Greenstein erceg Basic f ≈ 1.9 GHz; suburban [20] 1998

Directional Gain Reduction grf Supplementary Dir. Recv. Ant., f ≈ 1.9 GHz [21] 1999

Factor (GRF)

Rural Hata rural.hata Basic
f ∈ 160, 450, 900 MHz

Rural (Lithuania)
[22] 2000

ITU Terrain itu Terrain [7, 23] 2001

Stanford University sui Basic 2.5 < f < 2.7 GHz [24] 2001

Interim (SUI)

Green-Obaidat green Basic [25] 2002

ITU-R itur Basic

1 km < d < 10 km
1.5 GHz < f < 2 GHz

30 m < hb < 200 m
1 m < hm < 10 m

[23] 2002

ECC-33 ecc33 Basic

1 km < d < 10 km
700 ≤ f ≤ 3000 MHz

20 ≤ h1 ≤ 200 m
5 ≤ h1 ≤ 10

[26] 2003

Riback-Medbo fc Supplementary 460 MHz < f < 5.1 GHz [27] 2006

ITU-R 452 itur452 Terrain [28] 2007

IMT-2000 imt2000 Basic Urban [29] 2007

deSouza desouza Basic f ≈ 2.4 GHz; d < 120 m [30] 2008

Effective Directivity edam Supplementary
Directional antennas

f ≈ 2.4 GHz
[31] 2009
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Table 1: Continued.

Name Short name Category Coverage notes Citations Year

Antenna Model (EDAM)

Herring Air-to-Ground herring.atg Basic f ≈ 2.4 GHz [32] 2010

Herring Ground-to-Ground herring.gtg Basic f ≈ 2.4 GHz [32] 2010

2.3. Terrain Models. Terrain models are similar to the basic
models but also attempt to compute diffraction losses along
the line of sight path due to obstructions (terrain or
buildings, for instance). They are an order of magnitude
more complex but are immensely popular, especially for
long propagation distances at high power in the VHF band
(i.e., television transmitters). Important examples include
the ITM [12, 38], which is widely used in propagation
planning software (e.g., [39, 40]), the ITU-R 452 model,
which is quite similar but with some added complexities [28],
and the straight-forward ITU-Terrain Model [7, 23].

2.4. Supplementary Models. Supplementary models cannot
stand on their own but are instead intended to make
corrections to existing models. These models are best
subdivided into the phenomenon they are wishing to
correct for: stochastic fading [35, 41, 42], frequency [27],
atmospheric gases [43], terrain roughness [34], and antenna
directivity [21, 44] cover the majority of models. When
appropriate, we use these models to correct the other models
(i.e., frequency correction for the Hata model (hata.fc) or
directivity correction for the CU-WART measurements).

2.5. More-Advanced Models. There are also two major cate-
gories of models that we are not considering in this study:
many-ray (ray-tracing) models and active-measurement
models. Although to some extent these models typify the
state-of-the-art with respect to propagation modeling, they
are not the models that are widely used in simulators and
propagation planning tools. To a large extent, this is because
they have greater data requirements. Many-ray models
require high-resolution data describing the environment and
substantial computation time. These predict the summed
path loss along many paths by uniform theory of diffraction
(or similar) [2, 45, 46].

Active-measurement models take the perspective that the
only way to make realistic predictions is to combine an a
priori model with in situ measurements. The development
of these models is fairly immature but there are front-
runners, including the proposal of Robinson et al. in [4]. A
related set of “partition” models, most well known in indoor
propagation applications, combines the multiray approach
with some direct measurement of losses due to obstacles [3].

3. Existing Comparative Studies

The vast majority of existing work analyzing the efficacy of
path loss models has been carried out by those authors who
are proposing their own improved algorithm. In such cases,
the authors often collect data in an environment of interest

and then show that their model is better able to describe
this data than one or two competing models. Unfortunately,
this data is rarely published to the community, which makes
comparative evaluations impossible. One noteworthy excep-
tion is the work of the European Cooperation in the field
of Scientific and Technical Research Action 231 (COST-231)
group in the early 1990s, which published a benchmark data
set (900 MHz measurements taken in European cities) and
produced a number of competing models that were well-
performing with respect to this reference [16]. We consider
all of the proposed COST-231 models and data in the analysis
that follows.

Similarly, there was substantial work done in the USA,
Japan, and several other countries in the 1960s and 1970s
to derive accurate models for predicting the propagation of
analog TV signals (e.g., [47]). This flurry of work produced
many of the models that are still used today in network
simulators and wireless planning tools: the Irregular Terrain
Model (ITM) [12], the Egli Model [6], and the Hata-
Okumura model [8], to name a few. However, it is unclear
what the implications are of using these models, which were
created for use in a specific domain, to make predictions
about another domain. Understanding and quantifying the
error associated with such applications is a central goal of
our work here.

There are several studies similar to this work, which
compare a number of models with respect to some data.
In [34], the authors compare five models with respect to
data collected in rural and suburban environments with a
mobile receiver at 910 MHz. They discuss the abilities of
each model, but abstain from picking a winner. In [48],
the authors compare three popular models to measurements
collected at 3.5 GHz by comparing a least squares fit of
measurements to model predictions. The authors highlight
the best of the three, which turns out to be the ECC-33
model proposed in [24]. In [49], Sharma and Singh do a very
similar analysis but instead focus on measurements made
in India at 900 and 1800 MHz. In contrast to [48], they
find that the Stanford University Interim model (SUI) and
COST-231 models perform best. The work presented here
is the first to do an in-depth and rigorous analysis of a
large number of diverse propagation models using a large and
realistic data set from a production network. And, it is the first
such comparative study looking at results for the widely used
2.4 and 5.8 GHz bands.

4. Measurement

In this section, we describe data sets collected to act as a
ground truth basis for comparison to model predictions.
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These measurements were collected over the course of several
years in multiple environments and with differing (but con-
sistent) hardware. They range from “clean” measurements
taken in rural New Zealand to “noisy” measurements col-
lected in the urban center of a large US city along with some
special measurements to investigate points of particular
interest, such as measurements with phased-array and
directional antennas, and some in suburban environments.
Overall, these data sets combine to paint a unique picture of
the real-world wireless radio environment at varying levels of
complexity. Table 2 provides a summary of these data sets.

4.1. Packet-Based Measurements. With the exception of the
COST-231 data (campaign D in Table 2), all data sets used
here were collected using commodity hardware and packet-
based measurements were used to determine received signal
strength. This approach differs from some prior work on
path loss modeling that uses continuous wave (CW) mea-
surements [16, 50]. When using packet-based methods to
collect information about received signal strength and path
loss, a transmitter is configured to transmit “beacon” frames
periodically. A (often mobile) receiver records these beacon
frames. Using an open-source driver, such as MadWifi [51],
and a compatable chipset, frames can be recorded in their
entirety to the hard disk in realtime using any number of
user space software tools (e.g., tcpdump). If these frames are
recorded with the optional Radiotap header [52] (or equiv-
alently, the more archaic Prism II header), then the record
will include information about the physical layer, such as
the received signal strength of the frame, any Frame Check
Sequence (FCS) errors, and a noise floor measurement.
Using this approach, inexpensive commodity hardware can
be used to make extensive passive measurements of a wireless
network.

To get an idea of how accurate commodity radios are in
measuring Received Signal Strength (RSS), some calibration
experiments were performed in a conductive setting. Each
of four radio cards was directly connected to an Agilent
E4438C Vector Signal Generator (VSG). The cards were all
Atheros-based Lenovo-rebranded Mini-PCI Express, of the
same family (brand and model line) chipset to those used
for all of our packet-based measurements. The VSG was con-
figured to generate 802.11 frames and the laptop to receive
them. For each of the four cards many samples were collected
while varying the transmit power of the VSG between
−20 dBm and −95 dBm (lower than the receive sensitivity
threshold of just about any commodity 802.11 radio) on 5 dB
increments. Finally, a linear least squares fit was performed,
finding a slope of 0.9602 and adjusted R-squared value
of 0.9894 (indicating a strong fit to the data). Thus, the
commodity radios perform remarkably well in terms of RSS
measurement. To correct for the minor error they do exhibit,
we can use the slope of this fit to adjust our measurements,
dividing each measurement by the slope value.

However, there is a drawback to this approach. Packet-
based methods necessarily “drop” measurements for packets
that cannot be demodulated. All receivers have fundamental
limits in their receive sensitivity that are a function of
their design. However, because packet-based measurement

techniques rely on demodulation of packets to determine the
received signal strength, they have a necessarily lower sensi-
tivity than receivers that calculate received power from pure
signal (continuous wave measurements). Additionally, with-
out driver modification, commodity receivers generally
update noise floor measurements infrequently. For the
purpose of analyzing accuracy of median path loss predic-
tion, these limitations are not problematic. In one sense,
commodity hardware “loses” only the least interesting
measurements—if we are unable to decode the signal at a
given point, we are at least aware that the signal is below the
minimum detectable signal for basic modulation schemes
and is as a result, unlikely to be usable for many applications.

It should be noted that packet-based measurement
methods are not appropriate for all modeling tasks—the
tradeoff between convenience and affordability of com-
modity hardware versus the completeness of the measure-
ments must be considered. For instance, if the goal of a
measurement campaign is to sense signals or interference
near the noise floor in order to predict capacity for next
generation protocols or if the goal is to model delay spread
or Doppler shift, then packet-based measurements will not
be sufficient. However, our work here has less demanding
data requirements than these applications. For the purpose
of measuring median Signal-to-Noise Ratio (SNR) at a given
point in space from the perspective of a typical receiver,
packet-based measurements made with commodity hard-
ware are both sufficiently accurate and convincingly repre-
sentative.

4.2. Rural Measurements. In cooperation with the Waikato
Applied Network Dynamics (WAND) research group at
the University of Waikato [53] and the RuralLink wireless
internet service provider (WISP) [54], we acquired a large set
of measurements from a commercial network in rural New
Zealand. These measurements were collected for the Wireless
Measurement Project (WMP) [55] and are labeled campaign
E in Table 2. Rural environments are simpler than cluttered
urban environments because there are fewer obstacles to
cause fading. Those obstacles that do exist are typically
large and constant (e.g., mountains and terrain features)
which produce only large-scale shadowing and minimal
small scale (fast) fading. Moreover, the isolated nature of
rural networks results in less interference from neighboring
competing networks, which can create random fades that
are difficult to predict and model. Hence, our measurements
here are intended to form a comparative baseline for the
measurements in more complex environments.

The network used in our study is a large commercial
network that provides Internet access to rural segments of
the Waikato region in New Zealand (as well as some in other
regions). Our overall approach to measurement involves
periodically broadcasting measurement frames from all
nodes and meanwhile recording any overheard measurement
frames. Every two minutes, each device on the network
transmits a measurement frame at each supported bitrate.
Meanwhile, each device uses a monitor mode interface to log
packets. Because this is a production network, privacy con-
cerns are of clear importance which is why all measurements
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Table 2: Summary of data sets.

Campaign Name Environment Type Frequency Method Sites Measurements

A wart Campus Point-to-point 2.4 GHz Packet 7 33,881

A wart/snow Campus Point-to-point 2.4 GHz Packet 7 24,867

B pdx Urban Urban mesh/infrastructure 2.4 GHz Packet 250 ≈117

B pdx/stumble Urban Urban mesh/infrastructure 2.4 GHz Packet 59,131 200,694

C boulder/ptg Campus Infrastructure/downstream 2.4 GHz Packet 1,693 1,693

C boulder/gtp Campus Infrastructure/upstream 2.4 GHz Packet 329 329

D cost231 Urban Infrastructure/downstream 900 MHz CW 2,336 2,336

E wmp/a Rural Point-to-point/Infrastructure 5.8 GHz Packet 368 2,090,943

E wmp/g Rural Point-to-point/infrastructure 2.4 GHz Packet 368 20,314,594

are made with injected packets and a Nondisclosure Agree-
ment (NDA) was required for use of parts of the data
that contained sensitive information (principally client loca-
tions).

The network is arranged in the typical hub-and-spoke
topology, as can be seen in Figure 1. The backhaul network
is composed of long-distance 802.11a links operating at
5.8 GHz (“wmp/a” in Table 2). Atypically liberal power regu-
lations in New Zealand and Australia around 5.8 GHz allow
for much longer links than can be seen in most other places
in the world −40 km is a typical link length in this network-
mark (fixed radio links (Unlicensed National Information
Infrastructure (U-NII) devices) operating between 5.725 and
5.825 GHz that use wide band digital modulation are allowed
an Effective Isotropic Radiated Power (EIRP) of 200 W [56]).
These are commonly point-to-point links that use highly
directional antennas that are carefully steered. The local
access network is composed of predominantly 802.11b/g
links that provide connectivity to Client Premises Equipment
(CPE) (“wmp/g” in Table 2). Often, an 802.11 g Access Point
(AP) with an omnidirectional or sector antenna will provide
access to a dozen or more CPE devices that have directional
(patch panel) antennas pointing back to the AP. With few
exceptions, each node in the network is an embedded com-
puter running the Linux operating system that allows us to
use standard open-source tools to perform measurement and
monitoring. All nodes under measurement use an Atheros-
brand radio and the MadWifi driver [51] is used to collect
frames in monitor mode and record received signal strengths
using the radiotap extension to libpcap [52].

After collection, the data requires scrubbing to discard
frames that have arrived with errors. Because there is sub-
stantial redundancy in measurements (many measurements
are made between every pair of participating nodes), discard-
ing some small fraction of (presumably randomly) damaged
frames is unlikely to harm the integrity of the data overall.
As a rule, any frame that arrives with its checksum in error
or those from a source that produces less than 100 packets
is discarded. For the work here, one representative week
of data collected between July 25th, 2010, and August 2nd,
2010 is used. Because detailed documentation about each
node simply did not exist, some assumptions were made for
analysis. The locations of nodes for which there is no specific
Global positing system (GPS) reading are either hand coded

Figure 1: The largest of three disconnected sections of the network
(80 × 100 km). Link color indicates strength: blue implies strong,
red implies weak. Backhaul nodes (mainly 5.8 GHz) are red and
CPEs are light blue.

or, in the case of some client devices, geocoded using an
address. Antenna orientations for directional antennas are
assumed to be ideal—pointing in the exact bearing of their
mate. All nodes are assumed to be positioned 3 m off the
ground, which is correct for the vast majority of nodes. While
these assumptions are not perfect and are clearly a source
of error, they are reasonably accurate for a network of this
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A: Roof/roof

B: Ground/ground

C
: Roof/ground

Figure 2: Visual schematic of three urban data sets. A: roof-to-roof
measurements from CU WART (Wide area radio testbed), B:
ground- (utility poles) to-ground (mobile node) measurements
in Portland, and C: roof-to-ground and ground-to-roof measure-
ments from CU WART.

size and complexity. Certainly, any errors in antenna heights,
locations, or orientations are on the same scale as those errors
would be for anyone using one of the propagation models
analyzed to make predictions about their own network of
interest.

In the end, our scrubbed data for a single week con-
stitutes 19,235, and 611 measurements taken on 1328 links
(1262 802.11 b/g links at 2.4 GHz and 464 802.11a links at
5.8 GHz) from 368 participating nodes. Of these nodes, the
vast majority are clients and hence many of the antennas are
of the patch panel variety (70%). Of the remaining 30%,
21% are highly directional point-to-point parabolic dishes
and 4.5% each of omnidirectional and sector antennas.

4.3. Urban Measurements. In addition to the “baseline” mea-
surements in a rural setting, we collected measurements in
three additional environments to complete the picture of
the urban/suburban wireless propagation environment. The
three campaigns cover the three transceiver configurations
that are most important in the urban wireless environment
(see Figure 2). The first, A, concerns well-positioned (i.e.,
tower or rooftop) fixed wireless transceivers. This sort of link
is typically used for backhaul or long-distance connections
(e.g., [57]). The second, B, concerns propagation between
a single fixed ground-level node (i.e., on a utility pole) and
mobile ground-level client devices. Finally, the third C,
concerns infrastructure network configurations where one
fixed well-positioned transmitter (AP) is responsible for
serving multiple ground-level mobile nodes.

4.3.1. Backhaul. The first data set, A, was collected using the
University of Colorado at Boulder (CU) Wide Area Radio
Testbed (WART), which is composed of six 8-element

Figure 3: University of Colorado Wide Area Radio Testbed (CU-
WART).

uniform circular phased-array antennas [58]. The devices are
mounted on rooftops on the CU campus and in the sur-
rounding city of Boulder, CO (see Figure 3). These devices
can electronically change their antenna pattern, which allows
for them to operate as a directional wireless network with
a main lobe pointed in one of 16 directions or as an omni-
directional antenna whose gain is (approximately) uniform
in the azimuth plane. To collect this data, an “N × N scan”
is done of the sort proposed in [59], which results in RSS
measurements for every combination of transmitter, receiver,
and antenna pattern. In short, this works by having each AP
take a turn transmitting in each state while all other nodes
listen and log packets. Identical measurements were collected
during the winter (no leaves), during a snowstorm, and dur-
ing the summer of 2010. These network measurements are
applicable to rooftop-to-rooftop communication systems,
including cell networks, and point-to-point or point-to-
multipoint wireless backhaul networks both with directional
antennas and with omnidirectional antennas. Although this
is a reasonably small network, the representativeness of
the environment (a typical urban/suburban campus) and
the large number of effective antenna patterns (176 unique
combinations) that can be tested provide a strong argument
for the generalizability of this data. This data is available at
[60].

4.3.2. Street-Level Infrastructure. The second set of urban
measurements, B, involves three data sets from three urban
municipal wireless networks: a (now defunct) municipal
wireless mesh network in Portland, OR, the Google WiFi
network in Mountain View, Ca, and the Technology For All
(TFA) network in Houston, TX. All three data sets involve
data collected with a mobile client. As a standard practice
we truncate the precision of the GPS coordinates to five
significant digits, which has the effect of averaging measure-
ments within a 0.74 m (≈6 wavelength) circle (a conservative
averaging by the standard of [61]).

(a) Portland, OR. In this network, 70 APs are deployed on
utility poles in a 2 km by 2 km square region. Each AP
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Figure 4: Google WiFi Network in Mountain View, CA.

has a 7.4 dBi omnidirectional antenna that provides local
coverage in infrastructure mode. These measurements were
collected during the summer of 2007. This data set, which
consists of both laborious point testing and extensive war-
driving data, is most representative of ground-to-ground
links in urban environments. Collection involved a two-stage
process. First, a mobile receiver was driven on all publicly
accessible streets in the 2 km by 2 km region. The receiver
was a Netgear WGT-634u wireless router running OpenWRT
linux [62] and the open-source sniffing tool Kismet [63].
The Kismet tool performs channel hopping to record
measurements on all 11 802.11b/g channels which imposes
a uniform random sampling (in time) on the observed mea-
surements. The receiver radio is an Atheros-brand chipset,
with an external 5 dBi magnetic roof-mount “rubber duck”
antenna and a Universal Serial Bus (USB) GPS receiver.
Passive measurements of overheard management frames
(beacons) were recorded to a USB compact flash dongle. This
results in a large set of measurements that is referred to as
“pdx/stumble” here. After this initial stage, 250 additional
locations were selected at random from within the region and
tested more rigorously with a state-based point tester. At each
of these points, physical layer information was recorded (i.e.,
SNR) along with results from higher layer tests. This smaller
data set is called “pdx” in the remainder of the paper, and the
data collection procedure is described in more detail in [64]
and is available for download at [65].

(b) Mountain View, CA. The Google WiFi network [66],
deployed in Mountain View, CA covers much of the city
(31 km2) with 447 Tropos-brand [67] 2.4 GHz 802.11 mesh
routers (see Figure 4). The measurements used here were
collected by Robinson et al. between October 3rd and 10th in
2007 for their work in [4]. These measurements were made
publicly available at [68] and involve passive measurements
over a subset of the coverage area (12 km2) encompassing
168 mesh nodes. These nodes are mounted on light
poles as in the Portland measurements and have a 7.4 dBi
omnidirectional antenna for local coverage in addition to
the backhaul network. The measurements were made with
an IBM T42 laptop with a 3 dBi antenna and GPS receiver
running the NetStumbler sniffing software [69]. As with the
Portland measurements, these are all passive measurements
of management frames (beacons) and the sniffer employs
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Figure 5: TFA-Wireless Network measurements in Houston, TX.

channel hopping to make a uniform random sample (in
time) of all 11 channels. The Received Signal Strength Indi-
cator (RSSI) and noise values are recorded for each packet
overheard along with a time-stamp and GPS location. Some
minor anonymization of the data has been done to remove
unique identifiers (basic service set identifier (BSSID)s).
RSSI is converted to RSS using by subtracting 149 from
each value [70]. Precise height and transmit power control
information was not recorded for this data, so in our
application we use the reasonable constant values of 20 dB
(100 mW) transmit power (as extracted from Tropos product
white-paper specifications) and 12 m for the utility pole
height.

(c) Houston, TX. The final set of street-level infrastructure
measurements comes from the community wireless mesh
network constructed by Rice University and the TFA non-
profit organization in Houston, TX [71]. Figure 5 shows a
heat map of the measurements. These measurements were
collected by Robinson et al. and Camp et al. for their
work in [1, 4]. The measurements have been made publicly
available at [72]. This network involves 18 wireless nodes in
a residential area in Southeast Houston, providing coverage
to approximately 3 km2 and more than 4000 users. In
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the data collection, the NetStumbler software was used on
a laptop with an a GPS device and Orinoco Gold 802.11b
wireless interface (Atheros chipset) connected to a car-roof
mounted 7 dBi omnidirectional antenna. As with the other
measurements, all data collection is passive and the software
channel hops to record a random sample of overheard
management frames (beacons) on each of the 11 channels.
The drive test covers all city streets in the region and was
carried out 15 times between the hours of 10 AM and 6
PM between December 15th, 2006, and February 15th, 2007.
Although this is a winter data collection, Houston has a
tropical climate, so it is presumed that there is fading due to
foilage throughout the year. The measurements contain sig-
nal strength, noise, and location values as well as the vehicle’s
average velocity at the point of measurement.

4.3.3. Wide-Area Infrastructure. The final data set, C,
involves two sets of measurements: one from the CU WART
and one set of published measurements from a well-placed
transmitter in Munich, Germany.

(a) Boulder, CO. The first data set was collected using a
mobile node (a Samsung brand “netbook”) with a pair of
diversity antennas. In this experiment, the 6 rooftop CU
WART nodes were configured to transmit 80-byte “beacon”
packets every 0.5 + U(0.0, 0.5) seconds, where U(X ,Y) is a
uniformly distributed random number between X and Y .
Beacons are configured to transmit at 1 Mbps so that possible
effects of Doppler spread on higher-data rate waveforms
are avoided. Similarly, the mobile device was configured to
transmit beacons at the same rate. Meanwhile, each rooftop
testbed node was configured to its 9 dBi omnidirectional
antenna pattern.

All nodes, including the mobile node, were configured
to log packets using a second monitor mode (promiscu-
ous) wireless interface. The mobile node was additionally
instrumented with a USB GPS receiver that was used both
to keep a log of position and to synchronize the system clock
so that the wireless trace was in sync with the GPS position
log. These measurements were collected during the summer
of 2010. During the experiment, the mobile node was
attached to an elevated (nonconducting) platform on the
front of a bicycle. The bicycle was pedaled around the CU
campus on pedestrian paths, streets, and in parking lots. This
data set is most representative of an infrastructure wireless
networks where a well-positioned static transmitter must
serve mobile clients on the ground. This data set is
subdivided into the upstream part (boulder/gtp) and the
downstream part (boulder/ptg).

(b) Munich, Germany. The second group of measurements
are from a reference data set collected by the COST-231
group at 900 MHz [16] in Munich in 1996. This data set,
which provides path loss measurements collected by a mobile
receiver from three well-placed (rooftop) transmitters, is the
closest in intent to our data set C but does not include
upstream measurements. This data set is fundamentally
different from our other data sets in that it involves

continuous wave (CW) measurements instead of packet-
based measurements and was collected with differing hard-
ware at a much lower frequency. Because quality reference
data sets of this sort are few and far between and the COST-
231 is an early example of such a campaign, we have included
it for completeness and comparison.

5. Implementation

Each of the 30 models is implemented from their respective
publications in the Ruby programming language. Only one
of the models, the ITM [12], has a reference implementation.
Hence, there are fundamental concerns about correctness.
To address this, basic sanity checking of model output is
performed. However, without access to the data sets on which
the models were derived, or reference implementations, it is
impossible to make a more rigorous verification than this.

5.1. Terrain Databases. Terrain Models require access to a
Digital Elevation Model (DEM). In the the case of the
International Telecommunications Union Radiocommuni-
cation Sector (ITU-R) 452 model, a Landcover Classification
Database (LCDB) is required as well. The DEM used for the
networks in the United States is publicly available raster data
set from the United States Geological Survey (USGS) Seam-
less Map Server, providing 1/3-arcsecond spatial resolution.
The US LCDB is also provided by the USGS as a raster data
set, which is generated by the USGS using a trained decision
tree algorithm. For the New Zealand data sets, DEM and
LCDB data are provided by the Environment Waikato
organization. The DEM has a vertical precision of 1 m and an
estimated accuracy of 5-6 m RMSE. The GDAL library [73] is
used to perform coordinate conversions and data extraction
to generate path profiles for the terrain algorithms.

5.2. Corrections for Hata-Okumura. In our implementation
of Hata-Okumura, and its derivative models, a few crude
corrections are made to antenna heights in the event that
they fall outside of the models coverage (and would therefore
produce anomalous results). First, the minimum of the two
heights is subtracted from both so that they are relative. For
instance, antenna heights of 30 and 40 m become 0 and 10.
Then, heights are swapped if necessary so that the transmitter
height is always higher than the receiver height (at this point
the receiver height will be zero). Next, one is added to the
receiver height and one is subtracted from the transmitter
height, keeping the relative difference but setting the receiver
height to 1 m. For instance 0 and 10 m would become 1 and
11 m. Finally, the transmitter height is decreased or increased
as necessary so that it is above the minimum (30 m) and
below the maximum (200 m).

These corrections are necessary to use the Hata-
Okumura model with transmitter or receiver heights that
would otherwise produce meaningless (infinite) results. It is
not certain what the impact is on the model performance by
making these corrections. However, it stands to reason that
even if the performance is negatively impacted, an inaccurate
prediction will still be closer to the true answer than
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an anomalous (infinite) prediction. We believe this to be
acceptable due diligence in terms of applying the model
outside of its domain of coverage (where the accuracy of
predictions is already questionable).

6. Method

To obtain results we ask each model to offer a prediction of
median path loss for each link in the data. The model is fed
whatever information it requires, including DEM and LCDB
information. The model produces an estimate of the loss L̂
that is combined with known values to calculate the pre-
dicted received signal strength

Pr = Pt + Gt(θ) + Gr
(
φ
)− L̂, (4)

where Gt is the antenna gain of the transmitter in the
azimuthal direction (θ) of the receiver and Gr is the antenna
gain of the receiver in the azimuthal direction (φ) of the
transmitter. These gains are drawn from measured antenna
patterns. The antenna patterns were derived for each direc-
tional antenna empirically, using the procedure described in
[74], or from manufacturer specifications. Omnidirectional
antennas were modeled as constant gain (isotropic). The
transmit power (Pt) is set to 18 dBm for all nodes, which is
the maximum transmit power of the Atheros radios that all
measurement nodes use. For a given link, we calculate the
median received signal strength value across all measure-
ments (Pr). Then, the prediction error, ε, is the difference
between this prediction and the median measured value

ε = Pr − Pr. (5)

Some models come with tunable parameters of varying
esotericism. For these models, we try a range of reasonable
parameter values without bias towards those expected to
perform best.

This entire process requires a substantial amount of
computation but is trivially parallelizable. To make the com-
putation of results tractable, we subdivide the task of predic-
tion into a large number of simultaneously executing threads
and merge the results after completion. This must occur in
two sequential stages. During the first stage, path profile
information is extracted and prepared for each link in paral-
lel, and during the second stage this information is provided
to each algorithm for each link, which can also be done
in parallel. With the merged data in hand, each prediction is
compared with an oracle value for the link. This oracle value
is computed from the measured received signal strength for
the link as well as known values for the transmitter power
and antenna gain.

It is worth noting that very few of the models tested were
designed with the exact sort of network that we are studying
in mind. Indeed, some are very specific about the type of
environment in which they are to be used. In this study both
appropriate and “inappropriate” models are given an equal
chance at making predictions for our network—there is no
starting bias about which should perform best.

Measurement
spread

Measurement
median

Predicted
median

ε

ε′

Figure 6: Schematic explaining error (ε) and spread corrected error
(ε′) in terms of measurement spread and measured and predicted
median values.

6.1. Five Metrics. The performance of the models is analyzed
with respect to several metrics in order of decreasing
stringency:

(1) RMSE and and spread corrected root mean square
error (SC-RMSE),

(2) Competitive success,

(3) Individual accuracy relative to spread,

(4) Skewness,

(5) Rank correlation.

RMSE is the most obvious and straightforward metric
for analyzing the error of a predictive model of this sort. As
discussed above, for a given model we compute an error value
(ε as in (5)) for each prediction for each link in each data set.
For a given set of links l in a given data set D and a given
model m, we can define the overall RMSE for a given model
for a given data set as

RMSEm,D =
√√√√
∑

l∈D ε2
m,l

|D| , (6)

where εm,l is the error of model m for link l and |D| is the
number of links in the data set D. SC-RMSE is a version of
RMSE that subtracts off the expected spread in the measure-
ments from the RMSE. This way, if a given link has large
variation in our measurements, then the error a model
obtains on that link is reduced by a proportional amount.
This has the effect of reducing the error associated with
especially noisy links. Figure 6 provides an explanatory dia-
gram comparing normal error (ε) and spread corrected error
(ε′). The spread corrected error for a given model m and link
l is the absolute value of the error, reduced by the standard
deviation (σl) of measurements on link l, with

ε′m,l =
∣∣εm,l

∣∣− σl. (7)

Computing SC-RMSE is identical to RMSE as shown in
(6), except that ε′ is substituted for ε.

The competitive success metric is the percentage of links
in a given data set that a given model has made the best
prediction for. For each link we keep track of the model that
makes the prediction with the smallest ε, count the number
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of best predictions for each model, and then divide this count
by the total number of links:

CSm,D = 100
Nbest,m,D

|D| . (8)

We would expect that when analyzing many models, if
one model (or a set of related models) is dominant for a given
environment, then it would score near 100 on this metric.
Because the percentage points are divided evenly between all
models tested, if we test a large number of models, this metric
may be spread too thinly to be useful for analysis (i.e., too
many similar models share the winnings and no single model
comes out on top).

The individual accuracy metric is the percentage of links
where the given model is able to make a prediction within
one or two standard deviations of the measured spread

IAm,D = 100

∑
l∈D
{

1 |εm,l|<kσl
0 o.w.

|D| , k = 1, 2, . . . , (9)

where k is how many standard deviations to use for the
metric. In the following analysis, we present results for k = 1
and k = 2.

The fourth metric is skewness, which is simply the sum
of model error across all links

Sm,D =
∑
l∈D
εm,l . (10)

This metric highlights those models that systematically
over- and underpredict. Some applications may have a par-
ticular cost/benefit for under- or overpredictions. Models
that systematically overpredict path loss (and therefore
underpredict received signal strength) score a high value on
this metric. Models that systematically underpredict score a
large negative value. And, models that make an equal amount
of under- and overpredictions will score a value of zero.

Our final metric is rank correlation using Spearman’s
ρ (Kendall’s τ would be an equally appropriate metric but
is slower to compute). In some applications, predicting an
accurate median path loss value might not be necessary so
long as a model is able to put links in a correct order from
best to worst (consider, e.g., the application of dynamic rout-
ing). Spearman’s ρ is a nonparametric measure of statistical
dependence and in this application describes the relationship
between ranked predictions and oracle values using a value
between −1.0 (strong negative correlation) and 1.0 (strong
positive correlation).

7. Results

We begin by explicitly fitting the data to a theoretical model
and looking at the number of measurements required for a
fit. This gives an initial estimate of expected error for direct
(naı̈ve) fits to the collected data. Then, to analyze the per-
formance of the algorithms, we apply five domain-oriented
metrics of decreasing stringency. We discuss the performance
results for each data set with respect to these metrics, as well
as general trends and possible sources of systematic error.

Finally, explicit parameter fitting of the best models is
performed, and this best-case performance is used to define
practical lower bounds on model prediction error.

7.1. Explicit Power Law Fitting. In this section we attempt
to explicitly fit the relationship between attenuation and
distance as a straight line on a log/log plot. To this end, we
extend the classic equation for freespace path loss from [5]
to allow for a fitted path loss exponent (α) and offset (ε) and
proceed with least squares fitting

Pr = Pt −
(
α10 log10(d) + 20 log10

(
f
)

+ 32.45 + ε
)
. (11)

Figure 7 shows the resulting fits using this method for a
subset of our data sets. One unavoidable side effect of packet-
based measurements is that it is impossible to record SNR
values for packets that fail to demodulate. Hence, because
the 2.4 and 5.8 GHz data is derived from packet-based
measurements, low SNR values (and therefore high path loss
values) are underrepresented here, which leads to “shallow”
fits and unrealistically low values of α. As a result, while it is
safe to make comparisons between the 2.4/5.8 GHz data sets,
it is not safe to directly compare the slope of the 900 MHz
and 2.4/5.8 GHz fits.

Table 3 lists fitted parameters (α, ε) and residual standard
error (σ) (for all intents and purposes, standard error (σ) and
RMSE are interchangeable). Between the 2.4 GHz data sets,
we can see that there is little consensus about the slope or
intercept of this power law relationship, except that it should
be in the neighborhood of α ≈ 2 and ε ≈ 15. All fits are noisy,
with standard error around 8.68 dB on average for the urban
data sets. This residual error tends to be Gaussian, which is
also in agreement with previously published measurements
(e.g., [17]). However, the size of this error is almost two
orders of magnitude from the 3 dB that Rizk et al. suggest as
an expected repeated measures variance for outdoor urban
environments (and hence the expected magnitude of the
error due to temporally varying fast fading) [75]. Looking at
Figure 7, it is easy to see that the 2.4 GHz measurements are
substantially less well behaved than the 900 MHz COST-231
data, even in comparable environments.

In order to understand how many measurements are
needed to create a fit of this sort, we take successively increas-
ing random samples of the data sets and use these subsets
to generate a fit. We then look at how the residual error of
the model (with respect to the complete data set) converges
as the subsample size increases. Figure 8 shows this plot
for one representative data set. However, all plots follow a
similar trend: the eventual model is closely matched with
approximately 20, or at most 40, data points. Table 3 gives
an approximate minimum sample size for each data set in
the column labeled N derived from these plots.

7.2. Performance Comparison. Figure 9 shows the results of
the five metrics for all data sets combined. To conserve
space, we have omitted results for the individual data sets
and instead have summarized the important results in the
following discussion. Also, to simplify the plots, we have only
included results from the 18 best performing models.
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Figure 7: Explicit power law fits to data. Fit parameters are provided on the plots.

Looking first at the results for the rural (WMP) data, the
best performing models achieve an RMSE on the order of
15 dB. The best models are the Allsebrook model (with its
terrain roughness parameter set to 200 m) at just under 18 dB
RMSE (16.7 dB when corrected) and the Flat-Edge model
(with 10 “buildings” presumed) at 16.5 dB RMSE (15.3 dB
when corrected). The urban models do much better in terms
of RMSE. The best models achieve an RMSE on the order of
10 dB and the worst (of the best) approach more than 50 dB.
The overall winners are the Hata model, the Allsebrook
model, the Flat-Edge model, and the ITU-R model. This

follows from expectations because all of these models were
derived for predicting path loss in urban environments. The
Hata model and Allsebrook model are based on measure-
ments from Japanese and British cities, respectively. The
Flat-Edge model is a purely theoretical model based on the
Walfisch-Bertoni model, which computes loss due to diffrac-
tion over a set of uniform screens (simulating buildings
separated by streets). Table 3 provides the top three models
by SC-RMSE for each data set and their corresponding error.

For the second metric, competitive success, look to the
leftmost (red) bar in the second of the plots. For most of
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Table 3: Summary of results by data set.

Name α ε σ N Top three performing models by SC-RMSE Ideal
RMSE

wart 1.86 9.05 13.26 15 flatedge 13.73 itu.terrain 13.89 hatao 14.03 1.96

wart/snow 1.92 9.25 13.36 15 itu.terrain 13.93 flatedge 14.16 hatao 14.19 1.87

pdx 2.25 19.53 7.8 5 allsebrook200 8.38 hatal 8.97 davidson 9.37 1.14

pdx stumble 1.79 27.08 8.96 40 allsebrook400 8.34 itur25 10.50 hatam 10.51 1.02

boulder/ptg 0.79 19.56 7.36 20 allsebrook400 7.90 ecc33m 9.38 hatam 10.47 0.94

boulder/gtp 0.27 10.88 3.67 5 allsebrook400 5.45 hatal.fc 7.15 edwards200 8.51 1.01

cost231 6.25 51.19 6.36 15 edwards200 9.23 hatam 9.99 itur25 10.55 1.23

wmp 0.62 13.74 13.92 15 flatedge 15.34 allsebrook200 16.72 egli 16.83 5.98

tfa 0.95 22.76 7.89 20 herring.atg 8.90 allsebrook200 9.03 flatedge 10.83 1.43

google 0.54 6.15 7.37 30 davidson 13.56 itu.terrain 16.12 hatal 16.83 2.93
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Figure 8: Number of samples required for naı̈ve fit for the “Google”
data set. Plots show fit standard error for fits increasing random
samples, and a horizontal line is given at the RMSE obtained for all
points.

the data sets, there is no clear winner with the best models
sharing between 10 and 15 percent of the winnings. This
indicates that there is no single model that outperforms all
others. There are a few exceptions. For the PDX data set,
the Davidson model takes 40% of the winnings, in the COST-
231 data set, the ITU-R 25 model takes 30%, in the Google
data set, the Davidson model takes more then 30%, and, in
the downstream Boulder measurements (boulder/gtp), the
Davidon model again takes 25% of the winnings. There is
not, however, a single model or two that outperform all oth-
ers in a large subset of our data. Hence, we can conclude that
the choice of the most winning model is environment depen-
dent.

The third metric is percentage of predictions within
one (or two) standard deviation of the true median value.
This metric requires multiple measurements at each point

in order to estimate temporal variation in the channel. Of
our data sets, six have this data available: WMP, COST-231,
PDX/Stumble, Google, TFA, and WART. For the WMP data
the best performing models (Allsebrook, Flat Edge, Herring
Air-to-Ground, and ITU-R) score between 10% (for within
one standard deviation) and 20% (for within two standard
deviations) on this metric. We see similar results for our
other data sets but different winners. For the PDX/Stumble
data the winners are Herring Air-to-Ground, Hata, and ITU-
R 25. For the WART data set, the winners are the ITM,
ITU-Terrain, and Blomquist. For the COST-231 data set the
winners are Herring Air-to-Ground, Hata, and Allsebrook.
Again, the best performing model appears to be largely
environment dependent.

Our fourth metric is skewness. The interpretation of this
metric is largely application dependent—it is hard to know in
advance whether over- or underestimates are more harmful.
If a model makes an equal amount of over- or underestimates
(resulting in zero skewness) but has a large RMSE, is it
better than a model that systematically overestimates but
has a small RMSE? The Hata model is particularly well
behaved by this metric, producing a value near zero for all
data sets. As one would expect, the Hata-derived models
perform similarly (i.e., ITU-R 25, Davidson, etc.). The rest
of the models seem to vary largely from data set to data set,
although ITU-R 452 performs well for some data sets.

The final metric is rank correlation. For just about all of
the models we see a rank correlation around 0.5, which indi-
cates a moderate (but not strong) correlation between mea-
sured and predicted rank orderings. Models that perform
particularly poorly by this metric achieve values much lower
on occasion. A result near zero indicates that there is no
noticeable correlation between rank orderings. The COST-
231 rank correlations are substantially higher than all other
data sets. We believe this is related to the fact that the COST-
231 data more closely fits theoretical expectations of the
relationship of path loss to distance. Hence, models that use
something like Friis equation at their core will produce rank
values that are closer to data in this data set. Overall, however,
there does not seem to be a consensus about which model
performs best at rank ordering—the winners are different for
each data set.
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Figure 9: Continued.
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Figure 9: Five metric results for all data sets combined.

7.3. Explicit Parameter Fitting. In order to determine the
minimum obtainable error with these models, we take
two well-performing models that have tunable parameters,
Allsebrook-Parsons and Flat-Edge, and proceed by searching
the parameter space to find the best possible configuration
(data from the Boulder, WART, and PDX data sets were
used for this experiment). The Allsebrook-Parsons model
takes three parameters (besides carrier frequency, which is
common to nearly all the models): Δh, a terrain roughness
parameter (in m), h0, the average height of buildings (in m),
and d2, the average width of streets (in m). The Flat-Edge
model also takes three parameters: n, the number of build-
ings between the transmitter and receiver, h0, the average
height of these buildings (in m), and w, the street width (in
m). After sweeping the parameter space, we use an ANOVA
to determine the parameters that best explain the variance in
the data.

For the Allsebrook model, the Δh and h2 parameters are
both important, and, for the Flat-Edge model, h0 is the only
significant parameter. Figure 10 shows the response (in terms
of RMSE) for tuning these parameters. The optimal values
can be determined from the minima of these plots, and
a similar approach could be carried out with any subset of
our data. However, the optimal parameters for one datum are
not usually in agreement with others, forcing a compromise
in terms of accuracy and specificity. Even with cherry-picked
parameters, the RMSE is still in the neighborhood of 9–
12 dB, which is too large for many applications.

If we consider 9 dB to be the minimum achievable error
of a well-tuned model, it is interesting to note that approxi-
mately the same performance can be achieved with a straight
line fit through a small number (≈20) of measurements as
was done in Section 7.1. In [76], the authors found similar
bounds on error (6–10 dB) attempting to fit a single model
to substantial measurement data at 1900 MHz.

7.4. Factors Correlated with Error. In order to understand
which variables may serve to explain model error, we
performed a factorial analysis of variance (ANOVA) using
spread corrected error as the fitted value and transmitter
height, receiver height, distance, line-of-sight (a boolean
value based on path elevation profile), and data set name.
Although all of these variables show moderate correlations
(which speaks to the fact that many models add corrections
based on these variables), some are much better explanations
of variance than others. Perhaps not surprisingly; distance
and data set name are the biggest winners with extremely
large F-values (16687.34 and 52375.54, resp., and 14156.54
when combined) Figure 11 plots the relationship between
error and link distance for each of the best performing mod-
els for two representative data sets—the relationship is plain
to see. This leads to the conclusion that the best results can
be obtained when an appropriate model is known for a given
environment and when the model is designed for the same
distances of links being modeled.

One conclusion from this is that hybrid models, which
combine the strengths of multiple simpler models, may
perform better than any one model alone. To understand
the possible benefit of hybridized models, we implemented
three hybrid models and applied them to the WMP data. The
WMP data was chosen because it includes the largest variety
of link lengths. The first uses the Hata model (for medium
cities) for links under 500 m (where it is well-performing)
and the Flat-Edge model (with 10 “buildings”) for longer
links (hatam.flatedge10). This model performs marginally
better than all other models, producing a corrected RMSE
of 14.3 dB. Very slightly better performance is achieved by
combining the Hata model with the Egli Model (14.2 dB
RMSE). We also tried using the TM90 model for links less
than 10 miles and the ITM for longer links (tm90.itmtem),
but this combination is not well-performing with respect to
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Figure 11: Correlation between model accuracy and link distance for each data set. Distance is bucketed by kilometer.

our measurements. Treating this tuning and hybridization
as an optimization problem with the goal of producing the
best performing configuration of the existing protocols is
a promising project for future work. Taking this approach;
however, one must be careful to avoid overfitting a model to
the data available.

7.5. Practical Interpretation. As an example of what these
results mean for real applications, consider Figure 12, which
shows a predicted coverage map for the Portland MetroFi
network using two well-performing models tuned to their
best performing configurations. We have also included versions
of these maps with zero-mean 12 dB Gaussian noise, which
approximates the expected residual error from these models.

To generate these maps, the 2 km by 2 km coverage area was
divided into a 500× 500 raster and each pixel is colored based
on predicted received signal strength, linearly interpolated
between red (at−95 dBm) and green (at−30 dBm). For each
pixel, we compute the predicted path loss from all 72 APs,
and the maximum value is used to color the pixel.

Comparing these maps to the empirical and operator
assumed coverage maps shown in Figure 13, it is clear to see
that there is no consensus on what the propagation environ-
ment looks like. The Hata model may produce the picture
that is the closest to the measurements, but our results show
that it is not the best performing model overall. Moreover,
the Allsebrook-Parsons model, which is well-performing
overall and has been tuned to its best configuration, produces
a map that is in stark disagreement with reality.
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(a) Allsebrook (b) Allsebrook with noise

(c) Hata (d) Hata with noise

Figure 12: Comparison of predicted coverage maps for Portland, OR using two well-performing models, with and without the same scale
Gaussian error included. True green indicates predicted recieved signal at −30 dBm, and true red indicates predicted recieved signal at the
noise floor (−95 dBm). Intermediary values are linearly interpolated between these two color values.

Yet, the future holds promise. Consider the final column
in Table 3, which gives the RMSE for each data set if we
choose to take only the best prediction among all the predic-
tions made by the 30 models and their configurations. This
represents one version of a minimal achievable error in a
world with a perfectly hybridized model that always knows
which model to use when. In this scenario, we can see a very
attractive bound on error—as low as 1 dB. This indicates that
there is still room for improvement. If we were able to deter-
mine the situations when each model is likely to succeed,
then it is reasonable to assume that it is possible to construct
a single hybrid model that is more accurate than any one
model alone.

7.6. Additional Observations. In this section, we discuss
several important observations based on the results above.

7.6.1. Modeling Directional Antennas Is Challenging. One
interesting additional observation from this data is that
modeling path loss from directional transmitters is especially

difficult. This can be seen in the fact that our data from
the directional CU-WART testbed is particularly noisy. There
have been at attempts to model this phenomenon explicitly
in the past [21, 44], but even using this correction, the error
in prediction of directional propagation is still much greater
than for omnidirectional transmitters.

7.6.2. Models That Generate Errors. It is worth noting that
some algorithms will generate errors when used outside of
their intended coverage. If we give these models the benefit of
the doubt and only make use of those predictions where no
errors or warnings were generated, the overall performance
looks better. For instance, the corrected RMSE for ITM (with
parameters for a temperate environment) on the WMP data
set improves from 28.2 dB to to 23.1 dB if the most egregious
errors are discarded (which stem from problems predicting
refraction over certain terrain types and are only 290 of 2492
predictions) and down to 17.3 dB when only those predic-
tions that generate zero warnings are used (which usually
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1000m0

Figure 13: Measurements from “pdx/stumble” data set. Signal
strength at measurement points is plotted as green (light) when
it is strong to red (dark) when it is weak. The operator-assumed
coverage is given as 500′ circles centered at each AP, and the goal
coverage area is given as larger 1000′ circles centered at each AP.

stem from links that are too short and are only 696 of 2492
predictions). This is a substantial improvement—at 17.3 dB
corrected RMSE, the ITM is performing on par with the
best of the other models.

7.6.3. Prediction in Rural Environments Is Challenging. In
a result that appears completely counterintuitive, the rural
data set is much more difficult to model than our urban data
sets. To look for sources of systematic error, we analyzed the
covariance (correlation) between “best prediction error” (the
error of the best prediction from all models) and various
possible factors. There appears to be no significant cor-
relation between carrier frequency (and therefore neither
modulation scheme nor protocol) and antenna geometry.
However, there is a large correlation between error and
distance. It is our hypothesis that the reason the WMP data
is especially difficult to model has to do with two factors.

(i) Because researchers have assumed that rural environ-
ments are “easy” or “solved,” there has been substan-
tially more work in developing (empirical) models
for urban environments. The majority of state-of-
the-art rural models on the other hand are largely
analytical and were mostly developed 30 or more
years ago (i.e., the ITM).

(ii) This data set has an exceptionally large variety of link
lengths, and as has been shown, prediction error is
strongly correlated with distance for many models.

8. Conclusion

In this work, we have performed the first rigorous evalua-
tion of a large number of path loss models from the

literature using a sufficiently representative data set from real
(production) networks. Besides providing guidance in the
choice of an appropriate model when one is needed, this
work was largely motivated by a need to create baseline per-
formance values. Without an existing well-established error
bound for these approaches, it is impossible to evaluate the
success (or failure) of more complex approaches to path loss
modeling (and coverage mapping). For the models imple-
mented here and the data sets analyzed, it is possible to say
that a priori path loss modeling will achieve, at least, 8-9 dB
RMSE in urban environments and ≈15 dB RMSE in rural
environments. This is true almost regardless of the model
selected, how complex it is, or how well it is tuned. And, this
bound seems to agree with prior work at other frequencies
in similar environments that have also produced results with
RMSE in the neighborhood of 9 dB (e.g., [76, 77]).

Direct approaches to data fitting, such as a straight
line fit to the log/log relationship between path loss and
distance, produce a similar level of error: 8-9 dB for urban
environments and ≈15 dB for rural environments. Fits of
this quality can be obtained after only 20–40 measurements.
Hence, we can say with some confidence that whether a
network operator does a small random sampling and basic
fit or carefully tunes an a priori model to their environment,
they can still expect approximately the same magnitude of
error. We believe that there is substantial opportunity for
future work in the area of measurement-driven path loss
modeling and coverage mapping. Although there has been
some solid preliminary work in this area (e.g., [4]), there
appears to be substantial room for improvement in terms
of developing robust statistical methods for sampling and
interpolating between measurements.

Among the most important outcomes of this work
is a set of guidelines for researchers, which can help
provide direction in the complicated landscape of path loss
prediction models. As a general rule, when it is feasible to
make direct measurements of a network, one should do so.
We have shown that a small number of measurements can
have substantial power in terms of tuning the models we
have studied and in fitting parameters for basic empirical
models. When it is not possible to make measurements
of a network, the careful researcher should choose from
standard well-accepted models such as Okumura-Hata or
Davidson, which generally have the least systematic skew
in predictions and are among the best performing models
overall. In simulation studies, we advocate a repeated-
measures approach, where stochastic models are used in a
repeated-measures/Monte Carlo experimental design, so that
a realistic channel variance can be modeled. For this appli-
cation, the recent proposal of Herring appears to be a good
choice or, for the greatest comparability, the Hata model
with stochastic Lognormal fading. Although there are a large
number of models from which to choose, our work here
shows that in many cases the most important factors that a
researcher should consider are having a realistic expectation
of error and choosing a model that enables repeatability and
comparability of results.
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