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ABSTRACT
We describe interior layered deposits on Mars that have 

obstructed landslides before undergoing retreat by as much as 
2 km. These landslides differ from typical Martian examples in that 
their toe height increases by as much as 500 m in a distinctive frontal 
scarp that mimics the shape of the layered deposits. By using cra-
ter statistics to constrain the formation ages of the individual land-
slides to between ca. 200 and 400 Ma, we conclude that the retreat 
of the interior layered deposits was rapid, requiring erosion rates of 
between 1200 and 2300 nm yr–1. We suggest that the interior layered 
deposits are either extremely friable, if eroded strictly by wind, or 
composed of a material whose degradation has been enhanced by 
ice sublimation. These erosion rates also confirm that the interior 
layered deposits have been in a state of net degradation over the past 
400 m.y., suggesting that the process that caused net deposition in 
the past has ceased or slowed substantially on Mars relative to ero-
sion. Our results imply that interior layered deposits with a similar 
morphology across Mars, including the mound in Gale Crater, have 
probably undergone similar rapid erosion and retreat, suggesting 
that their total modern volume underrepresents the depositional 
record and thus sedimentary history of Mars.

INTRODUCTION
Landslides on Mars typically have runout distances much larger than 

equivalent features on Earth (Quantin et al., 2004a), and therefore can 
interact with older landforms that are distal to the failure scarp. Regardless 
of the exact formation mechanism of these landslides (Soukhovitskaya and 
Manga, 2006), it is evident that their combined large area and relatively 
well constrained formation age can be exploited to better understand the 
evolution of coincident features, particularly if those features have been 
modified since the landslide event. Mounds of layered deposits, often sev-
eral kilometers in height, are common in the canyons (Lucchitta et al., 
1994) and impact craters (Malin and Edgett, 2000) of Mars. These interior 
layered deposits (ILDs) are high-priority targets for exploration because 
they not only preserve long sequences of the stratigraphic record of Mars, 
but also exhibit evidence for hydrous mineral phases that indicates aqueous 
activity. Despite their importance, no consensus exists regarding how ILDs 
form and evolve. Their volumetric contribution to the global sedimentary 
record is also unknown. In this study we utilize the long runout nature of 
landslides on Mars and identify a unique region in Ophir Chasma, Valles 
Marineris, where ILDs have obstructed and diverted landslides. We use the 
age of the landslides to estimate the erosion rate of the ILDs and discuss 
the implications for the wider sedimentary history of Mars.

LANDSLIDE MORPHOLOGY

Obstructed Landslides
We used Mars Reconnaissance Orbiter Context Camera (CTX) vis-

ible wavelength images (5–6 m/pixel) and stereo-derived digital terrain 

models (DTMs) at 20 m/pixel to map and characterize the terminal edges 
of long runout landslides. In one location, where CTX stereo coverage 
was insufficient, we used a (100 m/pixel) High Resolution Stereo Camera 
(HRSC) DTM. We produced CTX stereo DTMs using standard methods 
(Kirk et al., 2008), with the vertical precision of the two DTMs estimated, 
using previous techniques (see Kirk, 2003), as 7.5 and 3.7 m.

We have identified three major occurrences of landslide deposits in 
Ophir Chasma (Fig. 1) that are indicative of obstruction and diversion 
by ILDs that are no longer present. These landslides differ from typical 
Martian examples in that their toe height increases at the landslide front, 
an indication that the landslides were obstructed. The elevated toes show 
distinctive concave scarp faces that are as much as 500 m above the can-
yon floor and as much as 400 m higher than the immediate upslope region 
of the landslide. This process of landslide obstruction is demonstrated 
in Coprates Chasma, where landslides have ridden up between 500 and 
800 m in height against bedrock material that has not subsequently been 
removed (Fig. DR2 in the GSA Data Repository1). Typical unobstructed 
Valles Marineris landslide topographic profiles consist of a steep head-
wall in the source region (failure scarp), with a long-profile slope that 
gradually decreases to the landslide toe (Quantin et al., 2004a) (Fig. DR2). 
Furthermore, by comparison with other landslides in Valles Marineris, it 
is evident that these frontal scarps have an elevation profile that cannot be 
accounted for by typical thrust faulting that is caused by deceleration and 
compression in the toe. The frontal scarps are also unlikely to be remnants 
of the ILDs because they have a different geomorphic expression and have 
a surface texture that is clearly continuous with the landslide. The land-
slide toe scarps in Ophir Chasma mimic the shape of the ILDs, which are 
currently 1–2 km away from the landslide front (Fig. 1). This indicates 
that the landslides were obstructed by the ILDs and that the ILDs have 
since retreated toward the interior of the chasma.

Age of Landslides
The interaction between the landslides and the ILDs provides a 

unique case on Mars where ILD retreat can be directly linked to a rapid, 
catastrophic event that provides a distinct time stamp for estimating retreat 
rates. Previous studies have constrained the formation of the Valles Mari-
neris canyon system to the Late Noachian to Hesperian Epochs (ca. 3.7–
3.0 Ga) (Schultz, 1991). ILD formation postdates the opening of the can-
yons with plausible formation ages that span the Hesperian (Fueten et al., 
2008) through the entire Amazonian (Okubo, 2010). Previous studies have 
also attempted to date individual landslides using impact crater statistics, 
providing ages for Valles Marineris examples that range from 3.5 Ga to 
50 Ma. For the landslides in Ophir Chasma (Quantin et al., 2004b), pre-
vious chronology data indicate ages between 1 Ga and 80 Ma. Here we 
refine the landslide age estimates from crater statistics based on higher 
resolution CTX imagery.
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To determine the relative superposition age of the different landslides 
we inspected the boundaries between different lobes to identify a relative 
age. The overlapping nature of the lobes, and the lack of noticeable burial 
or erosion of the landslide deposits, means that the relative stratigraphic 
ages can be determined with confidence (Fig. 2). To estimate the absolute 
age of the different landslides we used CTX images and standard crater 
counting techniques (Hartmann and Neukum, 2001; Ivanov, 2001; Michael 
and Neukum, 2010). We counted every crater >100 m in diameter, in units 
ranging in area from ~160 to 510 km2. In total, we counted 1122 craters 
over a landslide area of 1752 km2. The data suggest, for the central and 
eastern landslides in our study region, formation ages of 216 (+23/–24) to 
423 (+55/–58) Ma (Fig. 2). As confirmation of the crater chronology tech-
nique, the absolute model ages for individual landslides are consistent with 
the relative superposition relationships between different landslide lobes; 
for example, the topographically lowest landslide lobe has the oldest model 
age, 423 Ma, and the youngest mapped lobe indicates a 216 Ma age.

INTERIOR LAYERED DEPOSITS

Erosion Rate
The paucity of impact craters on the ILDs in Ophir Chasma, and 

elsewhere on Mars, is evidence of recent erosion of the ILDs. The ~30 

craters >50 m in diameter on the ILDs have a crater size-frequency 
distribution that does not follow established isochrons, suggesting 
that craters are being obliterated and a possible crater retention age of 
ca. 140 Ma (Fig. DR5). However, the combination of well-constrained 
chronology and the unique circumstance of diverted landslides provides 
an opportunity to quantify the erosion rate of the ILDs. Because the 
landslides did not overtop the ILD obstacle, there must have been at least 
500 m (depth) of ILD material removed, the mean maximum height of 
the frontal landslide scarps. Removing 500 m of the ILD mound over the 
time scales provided by the landslide ages gives an erosion rate between 
1200 and 2300 nm yr–1. By comparison, globally averaged erosion rates 
for Mars (Golombek et al., 2006) have been estimated as 0.02–7700 
nm yr–1. The higher rates are derived from only the most ancient, Late 
Noachian terrains where ubiquitous fluvial and eolian activity modified 
terrains in the presence of a thicker atmosphere. For Hesperian–Ama-
zonian surfaces of similar age to the ILDs of this study, erosion rates 
are generally considered to be several orders of magnitude lower. For 
example, the highest estimated erosion rate for a Hesperian-age surface 
at the Viking Lander 2 site is 100 nm yr–1. The lowest reported rate at the 
Mars Pathfinder landing site is 0.02 nm yr–1. All erosion-rate estimates 
for the Hesperian–Amazonian Epochs on Mars are therefore too low 
to account for such a rapid loss of material from the ILDs in the time 

Figure 1. Identification of landslide diversion and obstruction in Ophir Chasma, Valles Marineris, Mars, including Mars Reconnaissance 
Orbiter Context Camera (CTX) images, digital terrain model (DTM) contour maps, and topographic profiles showing frontal scarps and 
interior layered deposits (ILDs). Dark contours = 500 m, light contours = 100 m. V.E.—vertical exaggeration; px—pixel. A: Westernmost land-
slides. B: Central landslides. C: Easternmost landslides.
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since the landslides formed. Using the highest Hesperian estimate would 
require ~5 b.y. to remove 500 m of ILD material. We conclude that the 
ILDs in Ophir Chasma have undergone degradation by some mechanism 
at a rate that far exceeds any other surface or material reported for the 
Amazonian.

EROSION MECHANISM
The rapid erosion of ILDs is likely related to the complex inter-

play between the mechanism of sediment mobilization and the mate-
rial properties (composition, compaction, and lithification). We pres-
ent two possible mechanisms to explain such rapid degradation: (1) 
eolian modification of poorly lithified materials in the ILD mound, 
and (2) sublimation of cementing ice and disaggregation. The second 
mechanism would likely also require an eolian component to mobilize 
and remove the disaggregated sediment from the region. Importantly, 
no debris aprons, fans, or large eolian bedforms are present at the base 
of the ILDs, indicating that there was efficient removal of sediment 
from the mound.

Eolian Abrasion
A recent study (Bridges et al., 2012) derived mean eolian abrasion 

rates on Mars of between 4950 and 27,500 nm yr–1, accounting for Martian 
boundary conditions (e.g., gravity, atmosphere). These abrasion rates could 
plausibly remove 500 m of ILD material in 18–101 m.y. These accelerated 

rates are the result of saltation, a process that is capable of eroding friable 
material in hyperarid deserts on Earth (Rohrmann et al., 2013) at rates 
that are comparable to fluvial processes in more temperate climates. It is 
therefore physically plausible on Mars as well as Earth to remove substan-
tial volumes of material by solely eolian processes given a friable sub-
strate and the boundary conditions and grain sizes (sand sized) to support 
saltation-driven abrasion. For the ILDs of Ophir Chasma, large grooves 
on some sloping surfaces attest to an abrasive process that may have been 
triggered by off-mound slope winds (e.g., katabatic winds). These grooves 
are morphologically similar to yardangs on Earth and elsewhere on Mars 
and may represent the geomorphic expression of ILD retreat. However, 
other regions of the mound, including those most proximal to the landslide 
divergence point where retreat has clearly occurred, do not show evidence 
for yardang formation. At these locations it is possible that retreat is caused 
by more uniform abrasion or another process altogether.

Ice Sublimation
An alternative explanation for rapid degradation, and possibly more 

uniform degradation of the ILDs, requires the disaggregation of ice-
cemented sedimentary materials through sublimation. Ice could have been 
present from the initial formation of the ILDs (Michalski and Niles, 2012), 
from a previous glacial system in Valles Marineris (Gourronc et al., 2014), 
or more recent obliquity-driven processes (Madeleine et al., 2009). Sub-
limation of ice on Mars is a complex process that depends heavily on 
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parameters such as ambient and surface temperature, regolith diffusion 
properties, and wind (Williams et al., 2008). Here we estimate the likely 
minimum sublimation rate for the upper bound on the time required to 
remove 500 m of ice. The likely range of ambient temperatures in Ophir 
Chasma (Millour et al., 2012) gives rise to sublimation rates (Chittenden 
et al., 2008) that are as much as five orders of magnitude greater than the 
globally averaged Hesperian to Amazonian surface erosion rates, result-
ing in a maximum time of ~57 m.y. to remove 500 m of ice. Although 
it is unknown whether ice formed a significant volume of the ILDs, the 
possible rate of ice sublimation is likely always several orders of magni-
tude greater than the globally averaged erosion rate under a given envi-
ronmental condition, and so cannot be ruled out as a contributing loss 
mechanism. Importantly, if the ice sublimation model is correct, it would 
imply that large ice-rich deposits were present as recently as 400–200 Ma 
at the equator on Mars.

CONCLUSIONS AND IMPLICATIONS
We conclude that the ILDs of Ophir Mensa have eroded at rates that 

require the target material to be either friable and easily mobilized through 
saltation-driven eolian abrasion, or to contain significant cemented ice 
that has allowed rapid degradation, enhanced by eolian processes. Either 
scenario has major implications for the origin, evolution, and extent of 
ILDs across Mars. Both mechanisms imply that ILDs are composed of 
easily mobilized materials, providing possible predictions for the grain 
size and cementing characteristics of ILDs elsewhere on Mars, includ-
ing Aeolis Mons at Gale Crater, a location that will soon be sampled by 
the Mars Science Laboratory. Our results confirm that not only do ILDs 
erode quickly, but significant volumes of material have been removed and 
transported away from the mound. Our retreat rates also confirm that these 
ILDs have been in a state of net degradation over the past 400 m.y., sug-
gesting that the process that caused net deposition in the past, possibly as 
late as the Amazonian (Okubo, 2010), has ceased or slowed substantially 
on Mars relative to erosion. For the Ophir Chasma ILDs, we demonstrate 
unequivocally that the mound was once more extensive in the past and 
that its modern form underrepresents the actual volume of material that 
was once deposited into the canyon, in contrast to previous studies (e.g., 
Kite et al., 2013). Given the similarity between ILDs in different locations 
on Mars, it is possible that tectonic canyons and impact craters on Mars 
could have accommodated large volumes of sedimentary materials (pyro-
clastic, eolian derived, fluvial, lacustrine) that have since been removed. 
Because many of the ILD mounds on Mars are associated with sulfur-
bearing hydrated minerals (Michalski and Niles, 2012), the question of 
depositional volume has major implications for the sediment budget of 
Mars and for the total sulfur budget and the global pervasiveness of aque-
ous alteration.
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