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For the multisensor linear discrete time-invariant stochastic control systems with different
measurement matrices and correlated noises, the centralized measurement fusion white noise
estimators are presented by the linear minimum variance criterion under the condition that
noise input matrix is full column rank. They have the expensive computing burden due to the
high-dimension extended measurement matrix. To reduce the computing burden, the weighted
measurement fusion white noise estimators are presented. It is proved that weightedmeasurement
fusion white noise estimators have the same accuracy as the centralizedmeasurement fusion white
noise estimators, so it has global optimality. It can be applied to signal processing in oil seismic
exploration. A simulation example for Bernoulli-Gaussian white noise deconvolution filter verifies
the effectiveness.

1. Introduction

An important application background of white noise estimation is signal processing in oil
seismic exploration. After the explosives buried underneath earth surface are exploded,
analyzing the reflection coefficient formed by the reflections of every oil layer can be used
to determine whether there is oil underground and the geometry shape of the oil field. The
reflection coefficient can be described by Bernoulli-Gaussian white noise. So the white noise
estimation problem can be used in the oil seismic exploration. This problem has been deeply
researched by Mendel [1–3], but Mendel has not solved the system’s measurement white
noise estimation problem and also has not referred the problem of multisensor information
fusion white noise deconvolution estimation.

In order to improve the estimation accuracy of single sensor to thewhite noise, in [4, 5],
when input noise and measurement noise are not correlated, the multisensor information
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fusion white noise deconvolution filters are put forward, respectively, by Kalman filtering
method and modern time series analysis method. In [6–8], multisensor information fusion
white noise optimal filter is presented for the systems with correlated noise by Kalman
filtering method. In [9], modern time series analysis method and Gevers-Wouters algorithm
are used to present the information fusion white noise deconvolution filter for multisensor
systems with correlated noises. Thus, the solution of Riccati equation is avoided and the self-
tuning filter with unknownmodel parameters can be designed. The shortcomings of methods
presented in [3–9] are to require computing the high-dimension cross-covariance matrix and
the fusion accuracy is global suboptimal.

Recently, the weighted measurement fusion (WMF) method has gained great
attention. Its basic principle is to weigh local sensor measurements to obtain a low-
dimensional measurement equation according to some fusion criterion and then use a single
Kalman filter to obtain the final fused state estimation. It can, not only reduce the computing
burden greatly, but also give a global optimal estimation. This can be explained as the
accuracy of WMF and the centralized measurement fusion (CMF) filter [10] is the same.
Therefore, it is globally optimal. Gan and Chris [10] put forward the WMF algorithm with
the assumption that all the sensors have the same measurement matrix and the measurement
noises of each sensor are uncorrelated. Using the Lagrange multiplier method, the WMF
algorithm is presented when the measurement noises of each sensor are correlated [11]. Ran
et al. [12, 13] put forward the WMF algorithm when the extended measurement matrix of
all the sensors has full column rank or the measurement matrices of all the sensors have the
maximal right factor. Self-tuningWMFKalman filtering algorithm is presented in the work of
Gao et al. [14] and Ran andDeng [15]. In [16, 17], full-rank decomposition andweighted least
square theory is used under correlated noises and different sensor measurement matrices; the
WMF algorithm is presented.

However, using WMF method to solve the white noise estimation value problem of
multisensor system with correlated noise and with different measurement matrices in each
sensor is always a difficult issue to be solved, since the present white noise estimation theory
is not suitable for WMF method. In this paper, we use the WMF algorithm to solve the white
noise fusion estimation problem of multisensor systems with correlated noises and different
measurement matrices. Firstly, under the assumption that the noise input matrix is of full
column-rank, we present the CMF white noise estimators by the extended measurements of
all sensors. They have a large computing burden due to the high-dimension measurement
matrix. Further, the WMF white noise deconvolution estimators are presented to reduce the
computing burden, which have the global optimality.

The paper is structured as follows. The CMF white noise deconvolution estimators
are presented in Section 2. The multisensor WMF white noise deconvolution estimators are
designed in Section 3. A simulation example follows in Section 4. Some conclusions are given
in the end.

2. Multisensor CMF White Noise Deconvolution Filter

Consider the discrete time-invariant linear stochastic control systems with L sensors

x(t + 1) = Φx(t) + Bu(t) + Γw(t), (2.1)

yi(t) = Hix(t) + vi(t), i = 1, . . . , L, (2.2)
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where x(t) ∈ Rn is the state, yi(t) ∈ Rmi , i = 1, . . . , L are the measurements, u(t) ∈ Rp is
the known control input, Φ, B, and Γ are constant matrices with compatible dimensions.
Hi ∈ Rmi×n is the measurement matrix of the sensor i. w(t) and vi(t) are correlated white
noises with zero means, and

E

{[
w(t)
vi(t)

][
wT(k) vT

j (k)
]}

=
[
Qw Sj

ST
i Rij

]
δtk, (2.3)

where the symbol E denotes the expectation, δtt = 1, δtk = 0 (t /= k), Rii = Ri, the superscript
T denotes the transpose. Combining Lmeasurement equations of (2.2) yields the centralized
measurement equation:

y(I)(t) = H(I)(t)x(t) + v(I)(t), (2.4)

where

y(I)(t) =
[
yT
1 (t), . . . , y

T
L(t)

]T
, H(I) =

[
HT

1 , . . . ,H
T
L

]T
, v(I)(t) =

[
vT
1 (t), . . . , v

T
L(t)

]T
.

(2.5)

The fusion measurement white noise v(I)(t) has variance matrix R(I) = (Rij)LL. The correlated
function of w(t) and v(I)(t) is S = [S1, . . . , SL].

To convert the systems (2.1) and (2.4) into the uncorrelated system, (2.1) is equivalent
to

x(t + 1) = Φx(t) + Bu(t) + Γw(t) + J
[
y(I)(t) −H(I)x(t) − v(I)(t)

]
, (2.6)

where J is a pending matrix. (2.6) can be converted into

x(t + 1) = Φx(t) + u(t) +w(t), (2.7)

where Φ = Φ − JH(I), u(t) = Bu(t) + Jy(I)(t), w(t) = Γw(t) − Jv(I)(t). Jy(I)(t) as output
feedback becomes a part of the control item. Then primary system formulae (2.1) and (2.4)
are equivalent to the system formed by formulae (2.4) and (2.7). To make E[w(t)v(I)T(t)] = 0,
introduce J = ΓSR(I)−1 which ensures that w(t) and v(I)(t) are not correlated. Then variance
matrix of w(t) is yielded as Qw = Γ(Qw − SR(I)ST )ΓT .
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Lemma 2.1 (see [18, 19]). Multisensor systems (2.1) and (2.4) with correlated noise have CMF
global optimal input white noise deconvolution estimators ŵ(t | t+N) and the error variance matrices
Pw(t | t +N) as

ŵ(t | t +N) = 0, (N < 0)

ŵ(t | t) = S
[
H(I)P(t | t − 1)H(I)T + R(I)

]−1
ε(I)(t)

Pw(t | t +N) = Qw, (N < 0)

Pw(t | t) = Qw − S
[
H(I)P(t | t − 1)(I)T + R(I)

]−1
ST

ŵ(t | t +N) = ŵ(t | t) +
N∑
i=1

Mw(t | t + i)ε(I)(t + i), (N > 0)

Pw(t | t +N) = Qw −
N∑
j=1

M
(
t | t + j

)
Q

(I)
ε

(
t + j

)
MT(t | t + j

)
, (N > 0)

Mw(t | t + 1) = Dw(t, 1)H(I)T
[
H(I)P (I)(t + 1 | t)H(I)T + R(I)

]−1

Mw

(
t | t + j

)
= Dw(t, 1)

{
j−1∏
i=1

[
In −K

(I)
f (t + i)H(I)

]T
Φ

T

}
H(I)T

×
[
H(I)P (I)(t + j | t + j − 1

)
H(I)T + R(I)

]−1

Dw(t, 1) = −SK(I)T
f (t)Φ

T
+QwΓT − SJT

Ψ(I)
p (t) = Φ −K

(I)
p (t)H(I)

K
(I)
p (t) = ΦK

(I)
f (t), K(I)

p (t) = K
(I)
p (t) + J

K
(I)
f (t) = P (I)(t | t − 1)H(I)TQ

(I)−1
ε (t)

Q
(I)
ε (t) = H(I)P (I)(t | t − 1)H(I)T + R(I).

(2.8)

P (I)(t + 1 | t) satisfies Riccati equation:

P (I)(t + 1 | t) = Φ
[
P (I)(t | t − 1) − P (I)(t | t − 1)H(I)T

(
H(I)P (I)(t | t − 1)H(I)T + R(I)

)−1

×H(I)P (I)(t | t − 1)
]
Φ

T
+ Γ

[
Qw − SR(I)−1ST

]
ΓT ,

(2.9)

x̂(I)(t + 1 | t + 1) = x̂(I)(t + 1 | t) +K
(I)
f (t + 1)ε(I)(t + 1), (2.10)

x̂(I)(t + 1 | t) = Φx̂(I)(t | t) + Bu(t) + Jy(I)(t), (2.11)

ε(I)(t + 1) = y(I)(t + 1) −H(I)x̂(I)(t + 1 | t), (2.12)

K
(I)
f (t + 1) = P (I)(t + 1 | t)H(I)T

[
H(I)P (I)(t + 1 | t)H(I)T + R(I)

]−1
, (2.13)
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P (I)(t + 1 | t + 1) =
[
In −K(I)(t + 1)H(I)

]
P (I)(t + 1 | t), (2.14)

x̂(I)(t | t +N) = x̂(I)(t | t +N − 1) +K(I)(t | t +N)ε(I)(t +N), N > 0, (2.15)

P (I)(t | t +N) = P (I)(t | t) −
N∑
j=1

K(I)(t | t + j
)
Q

(I)
ε

(
t + j

)
K(I)T(t | t + j

)
. (2.16)

Smoothing gain has two computing methods:

K(I)(t | t +N) = P (I)(t | t − 1)

{
N−1∏
j=0

Ψ(I)T
p

(
t + j

)}
H(I)TQ

(I)−1
ε (t +N),

K(I)(t | t +N) = P (I)(t | t)ΦT

{
N−1∏
j=1

Ψ(I)T
p

(
t + j

)}
H(I)TQ

(I)−1
ε (t +N).

(2.17)

Theorem 2.2. Supposing Γ is full column-rank matrix, for systems (2.1) and (2.4), the optimal white
noise deconvolution estimator of CMF input white noisew(t) is given by

ŵ(I)(t | t +N) = 0, (N < 0), (2.18)

ŵ(I)(t | t) = −Ax̂(I)(t | t) + C(t). (2.19)

And the variance matrices of estimator errors w̃(I)(t | t +N) = w(t) − ŵ(I)(t | t +N) are given as

P
(I)
w (t | t +N) = Qw (N < 0), (2.20)

P
(I)
w (t | t) = AP (I)(t | t)AT +Q, (2.21)

Q = Qw − SR(I)−1ST (2.22)

defining

A = Γ+JH(I) = SR(I)−1H(I) ,

C(t) = Γ+
(
Jy(I)(t)

)
= SR(I)−1y(I)(t),

(2.23)

where Γ+ is the pseudo-inverse of Γ, that is,

Γ+ =
(
ΓTΓ

)−1
ΓT . (2.24)

Proof. Notice whenN < 0,w(t) ⊥ L(y(I)(t+N), y(I)(t+N−1) · · · ), then (2.18) holds obviously.
For (2.1), according to the projection theory [19], we have

Γŵ(I)(t | t) = x̂(I)(t + 1 | t) −Φx̂(I)(t | t) − Bu(t). (2.25)
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From (2.11) and (2.24), we have

ŵ(I)(t | t) = Γ+
[
Φx̂(I)(t | t) + Bu(t) + Jy(I)(t) −Φx̂(I)(t | t) − Bu(t)

]
(2.26)

which can be simplified to

ŵ(I)(t | t) = Γ+
[
−JH(I)x̂(I)(t | t) + Jy(I)(t)

]
. (2.27)

Then, from the definition of (2.23), we easily obtain (2.19).
Subtracting (2.25) from (2.1) yields the error relation

Γw̃(I)(t | t) = x̃(I)(t + 1 | t) −Φx̃(I)(t | t). (2.28)

Notice x̃(I)(t +N | t) = x(t) − x̃(I)(t +N | t); there is a prediction error relation

x̃(I)(t + 1 | t) = Φx̃(I)(t | t) +w(t). (2.29)

Substituting (2.29) into (2.28) yields

Γw̃(I)(t | t) = −JH(I)x̃(I)(t | t) +w(t). (2.30)

And notice x̃(I)(t | t) ⊥ w(t), then we have

ΓP (I)
w (t | t)ΓT = JH(I)P (I)(t | t)H(I)TJT +Qw. (2.31)

So, (2.21) holds. From (2.18), we have (2.20). The proof is completed.

Theorem 2.3. For (2.1) and (2.4), when Γ is a full column-rank matrix, one has optimal white noise
deconvolution smoothers of CMF input white noise w(t) as

ŵ(I)(t | t +N)

= ŵ(I)(t | t +N − 1) + E(I)(t)Ψ(I)T (t +N, t + 1)H(I)TQ
(I)−1
ε (t +N)ε(I)(t +N), N > 0.

(2.32)

The error variance matrices are computed by

P
(I)
w (t | t +N) = P

(I)
w (t | t +N − 1)

− E(I)(t)Ψ(I)T (t +N, t + 1)H(I)TQ
(I)−1
ε (t +N)H(I)Ψ(I)(t +N, t + 1)E(I)T (t).

(2.33)



Mathematical Problems in Engineering 7

Define

E(I)(t) = −AP (I)(t | t)ΦT
+QΓT , (2.34)

Ψ(I)(t +N, t +N) = In,

Ψ(I)(t +N, i) = Ψ(I)
p (t +N − 1) · · ·Ψ(I)

p (i).
(2.35)

Proof. For (2.1), the projection theory is used, and we have

Γŵ(I)(t | t +N) = x̂(I)(t + 1 | t +N) −Φx̂(I)(t | t +N) − Bu(t). (2.36)

From (2.15), we have

Γŵ(I)(t | t +N) = x̂(I)(t + 1 | t +N − 1) +K(I)(t + 1 | t +N)ε(I)(t +N)

−Φ
[
x̂(I)(t | t +N − 1) +K(I)(t | t +N)ε(I)(t +N)

]
− Bu(t).

(2.37)

From the recursive relation of (2.36), we have

ŵ(t | t +N) = ŵ(I)(t | t +N − 1) + Γ+
[
K(I)(t + 1 | t +N) −ΦK(I)(t | t +N)

]
ε(I)(t +N)

(2.38)

then we obtain (2.32). In fact, from (2.17), we have

Γ+
[
K(I)(t + 1 | t +N) −ΦK(I)(t | t +N)

]

= Γ+
⎡
⎣P (I)(t + 1 | t)

⎧⎨
⎩

N−1∏
j=1

Ψ(I)T
p

(
t + j

)
⎫⎬
⎭H(I)TQε

(I)−1

× (t +N) −ΦP (I)(t | t)ΦT ×
⎧⎨
⎩

N−1∏
j=1

Ψ(I)T
p

(
t + j

)
⎫⎬
⎭H(I)TQ

(I)−1
ε (t +N)

⎤
⎦,

(2.39)

which is simplified to

Γ+
[
K(I)(t + 1 | t +N) −ΦK(I)(t | t +N)

]

= Γ+
[
P (I)(t + 1 | t) −ΦP (I)(t | t)ΦT] ×

⎧⎨
⎩

N−1∏
j=1

Ψ(I)T
p

(
t + j

)
⎫⎬
⎭H(I)TQ

(I)−1
ε (t +N).

(2.40)

Define E(I)(t) as

E(I)(t) = Γ+
[
ΦP (I)(t | t)ΦT

+Qw −ΦP (I)(t | t)Φ
]

= −Γ+JH(I)P (I)(t | t)ΦT
+ Γ+Qw.

(2.41)
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Then we obtain (2.34). From the definition of (2.35), (2.32) is proved. Using w(t) minus both
sides of (2.32), and from w̃(I)(t | t + N) ⊥ ε(I)(t + N), (2.33) is proved. This completes the
proof.

Corollary 2.4. For multisensor systems with correlated noise (2.1) and (2.4), the nonrecursive white
noise smoothers are given by

cŵ(I)(t | t +N) = ŵ(I)(t | t) + E(I)(t)
N∑
j=1

Ψ(I)T(t + j, t + 1
)
H(I)TQ

(I)−1
ε

(
t + j

)
ε(I)

(
t + j

)
, N > 0.

(2.42)

The error variances satisfy

P
(I)
w (t | t +N)

= P
(I)
w (t | t) − E(I)(t)

⎧⎨
⎩

N∑
j=1

Ψ(I)T(t + j, t + 1
)
H(I)TQ

(I)−1
ε

(
t + j

)
H(I)Ψ(I)(t + j, t + 1

)
⎫⎬
⎭E(I)T (t).

(2.43)

Proof. (2.32) and (2.33) are iterated byN times; (2.42) and (2.43) are obtained. This completes
the proof.

3. Multisensor WMF White Noise Deconvolution Estimator

From [20], we know that any nonzero matrixH(I) has full-rank decomposition

H(I) = FH(II), (3.1)

where F is a full column-rank matrix with the rank r andH(II) is a full row-rank matrix with
the rank r, then measurement model (2.4) can be represented as

y(I)(t) = FH(II)x(t) + v(I)(t). (3.2)

Given that F is a full column-rank matrix, it follows that FTR(I)F is nonsingular. Then the
weighted least squares (WLS) [21, 22] method is used and the Gauss-Markov estimate of
H(II)x(t) is yielded as

y(II)(t) =
L∑
j=1

Ωiyi(t) =
(
FTR(I)−1F

)−1
FTR(I)−1y(I)(t), (3.3)

[Ω1,Ω2, . . . ,ΩL] =
(
FTR(I)−1F

)−1
FTR(I)−1 (3.4)
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then substituting (2.4) into (3.3) yields

y(II)(t) = H(II)x(t) + v(II)(t), (3.5)

v(II)(t) =
(
FTR(I)−1F

)−1
FTR(I)−1v(I)(t). (3.6)

The variance matrix R(II) = E[v(II)(t)v(II)T (t)] of v(II)(t) is given by R(II) = (FTR(I)−1F)−1.
For systems (2.7) and (3.5) using standard Kalman filtering algorithm [19], we can

obtain WMF Kalman estimators x̂(II)(t | t), and its variance matrices P(II)(t | t), innovation
ε(II)(t + j), j > 0. It is proved in [16] that the WMF Kalman filter x̂(II)(t | t) has the global
optimality; that is, it is numerically identical to the CMF Kalman filter x̂(I)(t | t) if they have
the same initial values.

The above WMF method can obviously reduce the computing burden since the
dimension of the measurement vector for the CMF ism× 1,m = m1 +m2 + · · ·+mL, while that
for the WMF is r × 1, and m is much larger than r generally.

Theorem 3.1. For (2.7) and (3.5), when Γ is a full column-rank matrix, one has WMF optimal
nonrecursive smoothers of input white noise w(t)

ŵ(II)(t | t +N)

= ŵ(II)(t | t) + E(II)(t)
N∑
j=1

Ψ(II)T(t + j, t + 1
)
H(II)TQ

(II)−1
ε

(
t + j

)
ε(II)

(
t + j

)
, N > 0.

(3.7)

The error variance matrices satisfy

P
(II)
w (t | t +N) = P

(II)
w (t | t) − E(II)(t)

×
⎧⎨
⎩

N∑
j=1

Ψ(II)T(t + j, t + 1
)
H(II)TQ

(II)−1
ε

(
t + j

)
H(II)Ψ(II)(t + j, t + 1

)
⎫⎬
⎭

× E(II)T (t),
(3.8)

where

E(II)(t) = −AP (II)(t | t)ΦT
+QΓT , (3.9)

Ψ(II)(t +N, t +N) = In,

Ψ(II)(t +N, i) = Ψ(II)
p (t +N − 1) · · ·Ψ(II)

p (i).
(3.10)

If x̂(I)(0 | 0) = x̂(II)(0 | 0) is satisfied, then WMF is numerically equivalent to CMF, that is,

ŵ(I)(t | t +N) = ŵ(II)(t | t +N) ∀N, ∀t,
P
(I)
w (t | t +N) = P

(II)
w (t | t +N) ∀N, ∀t,

(3.11)
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where white noise filter is

ŵ(II)(t | t) = −Ax̂(II)(t | t) + C(t). (3.12)

Proof. From [16], when x̂(I)(0 | 0) = x̂(II)(0 | 0), we have

H(I)TQ
(I)−1
ε (t)ε(I)(t) = H(II)TQ

(II)−1
ε (t)ε(II)(t),

Ψ(I)
p (t) = Ψ(II)

p (t),

P (I)(t | t) = P (II)(t | t),
x̂(I)(t | t) = x̂(II)(t | t).

(3.13)

So, we have E(I)(t) = E(II)(t). (2.19), (2.42), and (2.43) are compared with (3.7), (3.8), and
(3.12), then (3.11) are obtained.

Corollary 3.2. WMF input white noise recursive smoothers are

ŵ(II)(t | t +N) = ŵ(II)(t +N − 1) + E(II)(t)Ψ(II)T (t +N, t + 1)H(II)T

×Q
(II)−1
ε (t +N)ε(II)(t +N), N > 0.

(3.14)

The error variance matrices satisfy

P
(II)
w (t | t +N) = P

(II)
w (t +N − 1) − E(II)(t)Ψ(II)T (t +N, t + 1)H(II)T

×Q
(II)−1
ε (t +N)H(II)Ψ(II)(t +N, t + 1)E(II)T (t),

(3.15)

then, one has the following relation:

ŵ(I)(t | t +N) = ŵ(II)(t | t +N) ∀N, ∀t, (3.16)

P
(I)
w (t | t +N) = P

(II)
w (t | t +N) ∀N, ∀t. (3.17)

Proof. From Theorem 2.3 and (3.13), we have (3.14)–(3.17). This completes the proof.

4. Simulation Example

Consider the multisensor discrete linear stochastic ARMA signal system

A
(
q−1

)
s(t) = C

(
q−1

)
w(t),

yi(t) = H0is(t) + ξi(t), i = 1, 2, 3,

A
(
q−1

)
= a0 + a1q

−1 + a2q
−2,

C
(
q−1

)
= c0 + c1q

−1,

(4.1)
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Figure 1: w(t) and optimal fusion white noise filter ŵ(t | t), ŵ(i)(t | t), i = I, II.

5
4
3
2
1
0

−1
−2
−3
−4
−5

0 20 40 60 80 100 120 140 160 180 200
t/step

•
◦
□

(t|t + 1)ꉱw

(t|t + 1)ꉱw

(t|t + 1)ꉱw

(I)

(II)

Figure 2: w(t) and optimal fusion white noise smoother ŵ(t | t + 1), ŵ(i)(t | t + 1), i = I, II.

where s(t) ∈ R is the signal, yi(t) ∈ R, i = 1, 2, 3 are the measurement signals. ξi(t) ∈ R,
i = 1, 2, 3 are Gaussian white noises with zero mean and variance matrix Qξi . And w(t) =
b(t)g(t), where b(t) is Bernoulli white noise satisfying b(t) = 1 if P(b(t) = 1) = λ, and b(t) = 0
if P(b(t) = 0) = 1 − λ, where P denotes probability. b(t) is independent of g(t), then the
variance matrix of w(t) is σ2

w = λσ2
g . q

−1 is the back shift operator.
Our goal is to find the optimal white noise deconvolution estimators ŵ(t | t + N),

ŵ(I)(t | t + N), and ŵ(II)(t | t + N), N = 0, 1, 2, 3, and the corresponding error variance
matrices Pw(t | t +N), P (I)

w (t | t +N), and P
(II)
w (t | t +N), to test the estimation result values

of these three algorithms equal and to compare the computing burden.
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Figure 3: w(t) and optimal fusion white noise smoother ŵ(t | t + 2), ŵ(i)(t | t + 2), i = I, II.
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Figure 4: w(t) and optimal fusion white noise smoother ŵ(t | t + 1), ŵ(i)(t | t + 3), i = I, II.

The system (4.1) is converted to state space models

x(t + 1) = Φx(t) + Γw(t),

yi(t) = Hix(t) + vi(t), i = 1, 2, 3

s(t) = Hx(t) + c0w(t),

, (4.2)

where we define

cvi(t) = H0ic0w(t) + ξi(t),

Φ =
[−a1 1
−a2 0

]
, Γ =

[
c1 − a1c0
−a2c0

]
, H = [1, 0], Hi = H0iH.

(4.3)
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Table 2: Comparison of error variance for the local and fused estimators.

t = 50 P 1
w(t | t +N) P 2

w(t | t +N) P 3
w(t | t +N) Pw(t | t +N) P

(I)
w (t | t +N) P

(II)
w (t |
t +N)

N = 0 0.280 86 0.277 50 0.323 76 0.141 17 0.141 17 0.141 17
N = 1 0.245 02 0.242 37 0.240 57 0.130 67 0.130 67 0.130 67
N = 2 0.233 21 0.230 71 0.219 24 0.126 07 0.126 07 0.126 07
N = 3 0.232 14 0.229 63 0.219 13 0.125 09 0.125 09 0.125 09

In the simulation, we set

ca0 = 1, a1 = 0.2, a2 = 0.3, c0 = 1, c1 = −0.6, λ = 0.25, σ2
g =4,

cQξ1 = 0.1, Qξ2 = 0.2, Qξ2 = 0.4, H01 = 0.7, H02 = 1, H03 = 1.2.
(4.4)

So

H(I) =
[
0.7 1 1.2
0 0 0

]T
. (4.5)

It is not full column rank, so Hermite standard model [20] can be used to compute the
full-rank decomposition of H(I),H(I) = FH(II), where

F =
[
0.7 1 1.2

]T
, H(II) =

[
1 0

]
. (4.6)

The simulation results are presented by Figures 1, 2, 3 and 4, Tables 1 and 2. In Figures
1, 2, 3 and 4, the y-coordinates of endpoints on real lines represent real values w(t), y-
coordinates of solid round points’ centers represent ŵ(t | t + N), N = 0,1,2,3, y-coordinates
of hollow round points’ centers represent ŵ(I)(t | t +N), N = 0, 1, 2, 3. The y-coordinates of
hollow squares’ centers represent ŵ(II)(t | t +N), N = 0, 1, 2, 3. It can be seen that the results
are completely unanimous.

In Figure 1, it can be seen that at some specified time, the results of these three
algorithms are also completely the same. Figure 2 represents the sameness of estimation error
variances of the three fusion methods. The fusion accuracy is better than local estimation
accuracy of every single sensor.

These results all represent that WMF is completely equivalent to CMF, and the fusion
accuracy is higher than local estimation accuracy of each single sensor.

In the other aspect, it can be seen that when the filtering algorithm of CMF is used,
the dimension of y(I)(t) is 3 × 1, the Kalman filtering needs to compute the inverse matrix of
a 3 × 3 matrix at every time, while when the WMF Kalman filtering algorithm is used, the
dimension of fusion measurement y(II)(t) is 1 × 1, then the matrix inversion computation is
converted into scalar division, so the WMF method can obviously reduce the computational
burden.
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5. Conclusions

White noise deconvolution problems have great applications background in oil seismic
exploration. Under the condition that the white noise input matrix is full column-rank, the
centralized measurement fusion and weighted measurement fusion white noise estimators
are presented based on the projection theory, respectively. Their function equivalence
has been proved. Furthermore, the proposed weighted measurement fusion white noise
estimators can obviously reduce the computational burden.
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