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The study of the evolution of the conduction band in dense gases and supercritical fluids near the critical point has been
complicated by a lack of precise experimental measurements. Both photoemission from an electrode immersed in the fluid and
field ionization of a molecule doped into the fluid have been used to probe solvent density effects on the energy of an excess
electron as a function of fluid number density and temperature. In this perspective, we present recent experimental results that
show a strong critical point effect on the minimum conduction band energy near the critical density and temperature of a fluid. We
also discuss the recent development of a new theoretical model that advances our understanding of the density and temperature
dependence of the conduction band minimum in near critical point fluids.

1. Introduction

The critical point of a dense gas represents a state of matter
under extreme conditions. (In argon, e.g., the critical point
occurs at Tc = −122.4◦C and pc = 48.7 bar.) In studies of the
evolution of the conduction band in insulators—from the
low density gas to the liquid to the solid—the unique proper-
ties of the critical point have only recently been investigated,
as will be described below. Our fundamental understanding
of the behavior of electrons in an insulator follows from
experimental and theoretical studies on conduction in solid
state systems, where translational symmetry allows one to
predict accurately the shape and electronic characteristics
of both the valence and conduction bands. The energy of
an electron at the bottom of the lowest conduction band
is the minimum energy V0 of the conduction band relative
to the vacuum level. In comparison to this picture, a free
electron injected into a perturber gas has an energy that can
be predicted based on single scattering interactions between
the electron and individual perturbers. However, as the
density of a perturber gas increases towards fluid densities,
the electron/perturber interaction cannot be treated as a
single scattering problem. Unlike in a solid, however, there
is no long range translational symmetry. Since the density of

the fluid can be adjusted dramatically using both pres-
sure and temperature, understanding the minimum energy
V0(ρP) of the conduction band of an electron in a fluid of
density ρP is a complex problem.

2. Minimum Conduction Band EnergyV0(ρP) in
Dense Gases

Two general methods [1–6] are available to measure the
minimum energy V0(ρP) of the conduction band in a fluid,
namely, photoemission from an electrode placed in the
fluid and photoionization of a dopant perturbed by the
fluid. Photoemission allows for the direct measurement of
V0(ρP) if the photoemission threshold of the metal in a
vacuum and in the fluid can be accurately determined.
However, contamination of the metal surface and coating of
the electrode surface by the fluid make accurate correction
of photoemission data problematic (cf. Figure 1(a)). The
second method involves the measurement of the photoi-
onization spectrum of a dopant perturbed by fluid. The
exact ionization energy of a dopant in a perturbing fluid
can be difficult to determine, because the perturbing fluid
broadens and shifts the ionization threshold as the density
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Figure 1: The quasifree electron energy V0(ρAr) in argon plotted as a function of argon number density ρAr. (a) V0(ρAr) obtained from
various photoinjection studies [3–6] at noncritical temperatures. The average error for these measurements is approximately 0.07 eV [3].
(b) V0(ρAr) obtained from (3) [2, 7–9] at noncritical temperatures (solid markers) and on an isotherm near the critical temperature (open
markers). The average error for these measurements is approximately 0.02 eV [7–9]. The line in (a) is provided as a guide to the eye. The lines
in (b) are calculated using the local Wigner-Seitz model (see text for discussion).

increases. This problem can be overcome by measuring the
photoionization spectrum of the dopant at two different
electric field strengths, since an electric field ionizes high-n
Rydberg states converging to the ionization threshold. Thus,
taking the difference between two photoionization spectra
measured with different applied electric fields (after intensity
normalizing the spectra to remove the effects of secondary
ionization) yields a peak that represents the Rydberg states
ionized by the high electric field FH but not by the low field
FL. The energy shift ΔI of the field ionization peak is given by
[1, 2, 4, 7–13]

ΔI = −c0

(
F1/2
L + F1/2

H

)
, (1)

where c0 is a dopant-dependent field ionization constant.
The zero-field dopant ionization energy I0(ρP) is, therefore,
[1, 2, 4, 7–13]

I0
(
ρP
) = IF

(
ρP
)

+ c0

(
F1/2
L + F1/2

H

)
, (2)

where IF(ρP) is the energy of the maximum of the dopant
field ionization peak at the perturber density ρP. Although
dopant field ionization allows one to determine the dopant
ionization threshold accurately, this ionization energy is not
the minimum energy V0(ρP) of the conduction band of the
perturbing fluid. The relationship between the perturber-
shifted dopant ionization energy I0(ρP) and V0(ρP) is [1, 2,
4, 7–13]

Δ
(
ρP
) = I0

(
ρP
)− Ig = P+

(
ρP
)

+V0
(
ρP
)
, (3)

where Ig is the ionization energy of the unperturbed dopant,
and P+(ρP) is the ensemble-averaged dopant core/perturber
polarization energy, which can be calculated using standard
statistical mechanical techniques [1, 2, 7–13]. Figure 1(b)
shows an example of V0(ρP) obtained from (3). Clearly, the
results from (3) are consonant with those obtained from
photoemission measurements. In fact, V0(ρP) determined
from the experimental Δ(ρP) has less scatter, thus making

field ionization of high-n dopant Rydberg states an ideal
technique for the study of critical point effects (cf. Figures
1(b) and 2).

3. Near Critical Point Fluids

Tc is that temperature above which distinct gas and liquid
phases do not exist. Above Tc, the single phase system is
generally referred to as a supercritical fluid (SCF) if the
pressure is above the critical pressure. In an SCF, the fluid
density, viscosity, solubility, and diffusivity can be tailored by
adjusting the pressure and temperature. Thus, SCFs consti-
tute controllable, tunable solvents that are currently being
employed in the synthesis of various nanoparticles [14–16]
having small size distributions with shorter preparation and
purification times. The bulk controllability of SCFs has also
been used in the pharmaceutical industry [17, 18] to create
high structural purity organic crystals. The lack of a detailed
understanding of the intermolecular interactions in SCFs,
however, hampers modeling the more complex reaction
dynamics involved in the synthesis of nanomaterials and
pharmaceutical compounds in an SCF solvent.

The myriad of factors that affect chemical reactions
in near critical point fluids, where the correlation length
is essentially unbounded, make the modeling and under-
standing of chemical processes in these fluids troublesome
[19–21]. The difficulty of isolating process control factors
in near critical point fluids dictates the study of simple
model systems, and therefore we have focused on the energy
of the quasifree electron in near critical point fluids. The
minimum energy V0(ρP) of the conduction band, obtained
from (3), is shown as a function of reduced number density
ρr ≡ ρP/ρc (with ρc being the critical number density)
for Ar in Figure 1(b) and for Kr, Xe, CH4, and C2H6 in
Figure 2. Clearly, there is little or no temperature dependence
in V0(ρP) along noncritical isotherms (solid markers).
However, V0(ρP) does vary considerably near the critical
temperature and density of the perturber fluid. The variation
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Figure 2: V0(ρP) plotted as a function of reduced number density ρr. Minimum energy V0(ρP) of the conduction band, obtained from (3),
plotted as a function of reduced number density ρr ≡ ρP/ρc, where ρc is the critical density, for Kr [2, 7, 10, 12], Xe [2, 8, 12], CH4 [1, 2], and
C2H6 [1, 2] at noncritical temperatures (solid markers) and on an isotherm near the critical temperature (open markers). The average error
in the Kr and Xe measurements presented here is approximately 0.02 eV [2]. The error bars for the CH4 and C2H6 measurements are shown.
The lines in these figures are calculated using the local Wigner-Seitz model (see text for discussion).

of V0(ρP) in near critical point SCFs may well have a bearing
on the changes in product distribution and reactivity [22]
observed in chemical reactions carried out in such systems.
Understanding why V0(ρP) changes in a near critical point
SCF requires a new model for conduction in a fluid, however.

4. Local Wigner-Seitz Model [1, 2, 7–13]

In the local Wigner-Seitz model, which is a recent modifica-
tion of the original Springett, Jortner, and Cohen model [23],
V0(ρP) is given by
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Figure 3: Critical point effects on the local density. (a) Radial distribution function of argon for the noncritical temperature of −118◦C
(black) and for the critical temperature of −122◦C (red). In both cases, the argon density is the critical density (8.0 × 1021 cm−3). (b) The
calculated local density ρloc plotted as a function of reduced density ρr in methane at noncritical temperatures (solid line) and on an isotherm
near the critical isotherm (dashed line). Adapted from [1, 2].

V0
(
ρP
) = P−

(
ρP
)

+ Ek
(
ρP
)

+
3
2
kBT, (4)

where P−(ρP) is the ensemble-averaged electron/perturber
polarization energy, Ek(ρP) is the zero-point kinetic energy
of the quasifree electron, and (3/2) kB T (kB ≡ Boltzmann’s
constant) is the thermal energy of the quasifree electron. The
average electron/perturber polarization energy is determined
using standard statistical mechanical techniques [2, 7]:

P−
(
ρP
) = −4πρP

∫∞
0
g(r)w−(r)r2dr, (5)

where g(r) is the perturber/perturber radial distribution
function and w−(r) is the electron/perturber interaction
potential. Any critical point behavior in P−(ρP) arises from
variations in g(r) near the critical density and temperature.

The zero-point kinetic energy Ek(ρP) of the quasifree
electron is obtained from solving the Schrödinger equation

∇2ψ +
2me

�2
[Ek −Vloc(r)]ψ = 0 (6)

for the quasifree electron in a dense perturber. In (6), Vloc(r)
is a short-ranged potential that accounts for local dynamic
polarization of a perturber by the optical electron, me is the
mass of the electron, and � is the reduced Planck constant.
The local potential Vloc(r) satisfies an average translational
symmetry

Vloc(r) = Vloc(r + 2rb), (7)

where rb is the interaction range. At any density, the mini-
mum distance between a quasifree electron with low kinetic

energy and a single perturber is given by the absolute value of
the scattering length A. At high perturber number densities,
under the assumption that interactions in the first solvent
shell dominate the dynamics of the problem, the maximum
distance r� for a short-ranged interaction is one-half of the
spacing between two perturbers in the first solvent shell. This
maximum spacing, otherwise known as the local Wigner-
Seitz radius, is

r� = 3

√
3

4πgmρP
, (8)

where gm is the maximum of g(r). Thus, the interaction
range for the local short-ranged potential is rb = r� − |A|.
By applying these conditions to the asymptotic solutions of
(6), the zero-point kinetic energy of the quasifree electron is

Ek
(
ρP
) = �2η2

0

2me(r� − |A|)2 . (9)

In (9), η0 is the phase shift induced by the short-ranged
potential, and the density dependence arises from r� . Thus,
any critical point behavior in Ek(ρP) will result from a change
in r� near the critical density along the critical isotherm due
to density fluctuations, as illustrated in Figure 3(a) for Ar.
Similarly, Figure 3(b) presents the maximum local density
in the first solvent shell (i.e., ρloc = gmρP) of methane
plotted as a function of the reduced perturber number
density ρr. Clearly, the enhancement of the local density at
the critical temperature extends to number densities around
the critical density, and not just to the critical density itself.
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Figure 4: Local Wigner-Seitz calculation for CH4. The calculated (a) average electron/perturber polarization energy P−(ρMe) and (b) zero-
point kinetic energy Ek(ρMe) plotted as a function of the CH4 number density ρMe, at noncritical temperatures (solid lines), and on an
isotherm near the critical temperature (dashed lines). Adapted from [1, 2].

(In fact, the critical isotherm turning points that bound the
saddle point in the perturber phase diagram coincide with
the number densities that delimit the deviations of ρloc from
the noncritical isotherm values.)

Figure 4 shows the average electron/perturber polariza-
tion energy P−(ρP) and the zero-point kinetic energy Ek(ρP)
for methane at noncritical temperatures and on an isotherm
near the critical isotherm of methane. Although P−(ρP)
shows a small critical point effect (Figure 4(a)), the critical
point variation in V0(ρP) is dominated by the effects on the
zero-point kinetic energy Ek(ρP) of the quasifree electron
(Figure 4(b)), which is dependent on the local density within
the first solvent shell through the local Wigner-Seitz radius.
Thus, as the local density in the first solvent shell increases,
the interaction range for the electron and a single perturber
decreases. This decrease in interaction box size increases
Ek(ρP) near the critical point of the fluid, thus leading to the
observed critical point effect.

The lines in Figures 1(b) and 2, which are calculated from
the local Wigner-Seitz model described above, accurately fit
the experimental data across the entire density range both for
noncritical temperatures and on an isotherm near the critical
isotherm. In conclusion, the development of dopant field
ionization as a technique to extract the minimum energy
of the conduction band, V0(ρP), with minimal scatter led to
the discovery of a strong critical point effect. This discovery,
in turn, has resulted in the development of a new model
for electron conduction in dense fluids that represents an
order of magnitude improvement over previous theoretical
treatments [1, 2, 7–13].
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