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modeled using constitutive relations that require sets of material parameters to be specified. We present an inverse parameter
identification technique, based on statistical analyses and a particle swarm optimization algorithm, to be used in the calibration
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efficient and fast tool for finding improved parameter sets to represent the measured reference data.
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1. INTRODUCTION

When compared to most other engineering tasks, geotech-
nical problems are often characterized by the following
peculiarities. The materials involved are geological materials,
that is, soils and rocks, which are inhomogeneous and consist
of various phases in different states of aggregation. Initial and
boundary conditions tend to be complex and heterogeneous.
Furthermore, in real geotechnical field problems, the exact
geometry is usually not known, with the available geometry
information being limited to topographical surface data and
punctual outcrops or soundings. For this reason, in geotech-
nics, there is always a need for a high level of simplification
and abstraction. Frequently, continuum methods are used
to calculate deformations in soil or rock, and the material
behavior is simulated by means of constitutive models, which
require a certain set of material parameters.

Normally, in geotechnical engineering, the values of
these parameters are set based on the results of laboratory
experiments, literature data, or even just experience values
are used. The results of the calculation, a forward calculation,
are then compared to measurement data obtained in the
laboratory or in the field. Provided that the simplifica-

tions made and the constitutive model chosen are appro-
priate and provided that the performed calculation gives
plausible results, parameter values are then varied by trial
and error in order to reach an improved fit of the calculation
results to the measured data, the reference data.

Though this is done based on the experience of the
geoscientist, the procedure remains to a certain extent
arbitrary or at least subjective.

In recent years, due to the availability of sufficiently fast
computer hardware, there has been a growing interest in the
application of inverse parameter identification strategies and
optimization algorithms to geotechnical modeling in order
to make this procedure automated [1-5] and thus more
traceable and objective. Furthermore, this approach provides
statistical information, which can be used to quantify the
calibration quality of the developed geotechnical model.

Applications of optimization procedures in geotechnics
were described by many authors, for example, in the cali-
bration process of geotechnical models [1, 2], or to identify
hydraulic parameters from field drainage tests [6]. Already in
1996, Ledesma et al. [7] and Gens et al. [8] applied gradient
methods to a synthetic and a real example of a tunnel drift
simulation. Also during the excavation of a cavern in the
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FIGURE 1: Flowchart of the adopted iterative procedure.

Spanish Pyrenees the above mentioned group of authors
was applying gradient methods for the identification of
geotechnical parameters [9]. Malecot et al. [10] used inverse
parameter identification techniques for analyzing pressure-
meter tests and finite-element simulations of excavation
problems. For the identification of soil parameters, also
genetic algorithms were studied [11, 12]. Feng et al. [13] used
an inverse technique for the determination of the parameters
of viscoelastic constitutive models for rocks, based on genetic
programming and a particle swarm optimization algorithm.
In the field of geoenvironmental engineering, Finsterle
[14] examined the potential use of standard optimization
algorithms for the solution of aquifer remediation problems
in three-phase and three-component flow and transport
simulations of contamination plumes. As a different aspect
of parameter identification, Cui and Sheng [15] determined
the minimum parametric distance to the limit state of a strip
foundation by optimizing a reliability index. In 2006, J. Meier
and T. Schanzin [5] applied particle swarm optimization
techniques to geotechnical field projects and laboratory tests,
namely, a multistage excavation and the desaturation of a
sand column.

All cited references agree on the fact that back-calculation
of model parameters by means of optimization routines
is possible in the field of geotechnics, if an appropriate
forward calculation depending on adequately realistic model
assumptions is provided, for example, Calvello and Finno
[1, 2]. In this context, particle swarms represent a powerful
tool for finding parameter sets that best represent the
reference data, with acceptable calculation effort and time
consumption.

2. WORKING SCHEME OF THE ADOPTED PARAMETER
IDENTIFICATION STRATEGY

The starting point of the parameter identification strategy
presented in this study is given by an ordinary geotechnical
modeling-task, the so-called forward calculation. This for-
ward problem consists of a specified geometry with given
initial and boundary conditions and a material model, which
requires a set of material parameters to be determined. It
is generally also possible to identify geometrical parameters
[4], but this issue will not be discussed in this article. For
the first run of the forward calculation, the user presets

the unknown parameters, for example, entering estimated
values, or the preset of the parameter vector is done by a
random generator within values margins specified by the
user. The relevant results of the forward calculation are
then read out and their deviation from a set of reference
data, usually measured data, is determined by means of an
objective function. This procedure is repeated many times,
while at any one time, an optimization algorithm, based on
the parameter combinations and the values of the objective
function during the previous forward calculations, identifies
an improved parameter set to be used in the next forward
calculation.

This sequence of cycles, illustrated in Figure 1, is inter-
rupted when one of the following stop criteria is fulfilled:

(i) a maximum number of runs or maximum calcula-
tion time is reached;

(ii) the deviation from the reference dataset, described
by the value of the objective function, falls below a
specified limit;

(iii) the deviation could not be lowered during a certain
number of cycles.

Hence we use a direct approach as described by Cividini
et al. [16] to solve a back-analysis problem. In an iterative
procedure, the trial values of the unknown parameters are
corrected by minimizing an error function. It is therefore not
necessary to formulate the inverse problem itself, the desired
solution is obtained by combining the results of numerous
forward calculations with an optimization routine.

To quantify the deviation between the reference data
and the modeling results, we chose the frequently used and
relatively simple method of least squares. In this method, the
objective function f(x) for more than one reference dataset
is defined as

F) = Slwef ()] (1)
g
with
£ =~ S wy (e x) -y, @)
M2

In (1) and (2), x denotes the parameter vector to be
estimated and wy are positive weighting factors associated
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“Initialization of swarm”
create particle list
for each particle

next particle
“processing loop”
do

for each particle

next particle
for each particle

next particle

“join all calculations”

wait for all particle threads
“post-processing”

for each particle

end if
next particle
loop until stop criterion is met

set initial particle position and velocity

“get global best particle position”
determine best position in past of all particles
“determine current particle positions”

calculate and set new velocity based on a corresponding equation
calculate and set new position based on a corresponding equation

“parallelized calculation of objective function values”

start forward calculation and calculate objective function value

if current objective function is less than own best in past:
save position as own best

ArcoriTHM 1: Pseudocode of the used particle swarm optimizer.

correspondingly with the error measure f;(x). Via the
weights wg, the different series g can be scaled to the same
value range and different precisions can be merged, for
example, a series of measuring data possessing a higher pre-
cision is included with a higher weighting factor compared
to more uncertain data. The particular numbers for the
weights have to be given manually respecting the engineer’s
experience and they have to be specified depending on the
optimization problem. The weighting factors wy, are used to
provide a possibility for considering different precisions and
measurement errors within one and the same data series. The
dimensions of the weighting factors can be taken in the way
to obtain a dimensionless objective function quantity. For
minimizing the objective function, we use a particle swarm
optimization algorithm described by Eberhart and Kennedy
[17, 18].

A computer program developed by the first author
of this paper implements this algorithm and disposes of
interfaces to several commercial finite-element packages
used in geotechnical engineering. A short pseudocode of
the implemented PSO used in this study is presented in
Algorithm 1.

3. CONCEPT FOR THE APPLICATION TO
GEOTECHNICAL PROBLEMS

If the parameter identification strategy described above is
to be applied to geotechnical tasks, the geotechnical model

of the forward problem usually has to be adapted for its
use in the optimization routine. The runtime of a single
forward calculation has to be minimized in order to allow for
a high number of calls. The number of calls needed depends
furthermore on the number of parameters to be identified
and, of course, on the used optimization algorithm.

While the reduction of calculation time demands simpli-
fication and abstraction, the model still should be sufficiently
complex to reproduce the reference data with the required
accuracy. Furthermore, the number of required forward cal-
culations can be reduced by applying hypersurface approxi-
mation methods [4].

As a next step, it is essential to select the parameters to
be identified and to decide on the upper and lower limits
of their plausible values margins. The values of some of
the parameters might be fixed with the aid of previous
knowledge. These specifications must be done with care and
require the experience of the geoscientist, since they influ-
ence the obtained results. However, due to the application of
a particle swarm optimizer instead of, for example, a gradient
method, no initial guess for the parameter set is necessary
because initial positions are generated randomly within the
parameter value margins.

Due to the inhomogeneities of the geological materials
involved and the uncertainties related to the initial condi-
tions and the geometrical boundary conditions, geotechnical
problems tend to be underdetermined. In order to improve
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and ensure the efficiency of the back-analysis, it is of
significant importance to check if the set of parameters
to be identified may be reduced and if for the prescribed
trusted zone the optimization problem is well posed. For this
purpose, a statistical analysis is done based on the results of
a Monte Carlo procedure including a sufficient parameter
set. Figure 2 shows the principle scheme of the matrix
plot used here to visualize the results of the Monte Carlo
simulation. A standard mathematical tool for examining
multidimensional datasets is the scatter plot matrix (see
[19]), whic is included in the matrix plot presented in
Figure 2, where each nondiagonal element shows the scatter
plots of the respective parameters. The matrix is symmetric.
Matrix element D-B, for example, may suggest that the
involved parameters B and D are not independent, but
strongly correlated. The diagonal matrix plot elements (A-
A,...,D-D) show plots where the value of the objective
function is given over the parameter which is associated with
the corresponding column. These plots are called hereafter
objective function projections. If the problem is well posed,
each of these plots of the objective function projections has
to present one firm extreme value as it is the case in the
diagram D-D. Otherwise, the respective parameter could not
be identified reliably. By filtering out data points that have
objective function values larger than a certain threshold level,
the distribution of the remaining points gives a rough idea
of the size and shape of the extreme value (solution) space.
For further statistical analyses, the well-known linear 2D
correlation coefficient can be calculated from the individual
scatter plots. Referring to [20] in the analysis of our case
studies, we consider variables with a correlation coefficient
of less than 0.5 as “noncorrelated”.

4. APPLICATIONS

4.1. Description of the studied geological material
and the adopted constitutive model

In the following examples of applications of the presented
parameter identification technique using PSO, we are model-
ing the mechanical behavior of a natural soil. It is of geotech-
nical interest because it favors the development of numerous
landslides, namely, rotational soil slips, earth slides, and
earthflows. The studied material is clay that results from the
weathering of structurally complex geological formations,
the San Cassiano formation (Kassianer Schichten), and the
La Valle formation (Wengener Schichten) of the Alpine
Trias. These rock formations are made up by interbedded
strata of marls, tuffites, claystones, limestones, dolomites,
and sandstones. Like its source rocks, the soil is characterized
by a high clay and silt content. In the field, it consists
of a clayey matrix with coarser components, of diameters
from centimeters up to meters, floating in it without mutual
support. Therefore, it is not possible to sample the material as
a whole representatively. As it has been completely remolded
by earthflow phenomena, no preferred orientation of the
components can be observed. For this study, only the fraction
smaller than 2 mm was taken, as it is considered to determine
the relevant mechanical properties of the entire soil and it
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FIGURE 2: Statistical analyses via matrix plot, principle scheme.

TaBLE 1: Properties of the studied soil.

Percentage of clay particles (diameter < 2 ym) 26-34%
Bulk density (g/cm?) 1.82
Dry density (g/cm?) 1.29
Density of grains (g/cm?) 2.76
Porosity n 53%
Lime content 36%
Loss of ignition 6.5%
Liquid Limit W, 0.50
Plastic Limit Wp 0.27
Water content 0.41

allows for the manufacturing of reproducible samples and
test specimens. Some properties of the studied material are
listed in Table 1. Unless otherwise expressly stated, all tests
and classifications were carried out according to the German
standard DIN.

From this description of the material, it becomes clear
that its mechanical behavior is expected to be very complex
and therefore it is only possible to model some important
aspects of this behavior. Like many soils with a high clay and
silt content, the studied material is highly compressible and
exhibits a significant amount of creep deformations, thus
its behavior is strongly time-dependent. As a constitutive
model, we chose the soft soil creep model, which was
developed by Vermeer and Neher [21] to account particularly
for these phenomena. The soft soil creep model requires the
following material parameters to be specified (see Table 2).

A set of three parameters (c,¢and,y) is needed to
model failure according to the Mohr-Coulomb criterion.
Two further parameters are used to model the amount of
elastic and plastic strains and their stress dependency. The
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modified compression index (A*) represents the slope of
the normal consolidation line during one-dimensional or
isotropic logarithmic compression. In the same manner, the
modified swelling index (x*) is related to the unloading or
swelling line. The modified creep index (u*) serves as a
measure to simulate the development of volumetric creep
deformations with the logarithm of time.

In the modeling examples of this article, we will not
take into account the development and the influence of
water pressures, which would be also possible but imply a
considerable increase in calculation effort; and in the case
of the slope example in Section 4.4, more reference data
would be needed. All forward calculations were carried out
applying the finite-element method using the commercial
code PLAXIS (Version 8.2, professional, update-pack 8, build
1499) and considering the effect of large deformations by
means of an updated Lagrangian formulation (updated mesh
analysis) [22].

4.2. Oedometer test

A one-dimensional compression test was conducted by
MFPA Weimar (Germany) [23] in a fixed oedometer ring
with an inner diameter of around 7cm (71.45mm) and a
height of around 2 cm (20.21 mm). Drainage was allowed on
the top and at the bottom of the soil sample. All load steps
were applied vertically, while the sample was held radially,
impeding horizontal displacements. First, the sample was
preloaded with 9 kPa during two days and with 13 kPa during
one day. Then the load was doubled successively, with each
load step lasting 24 hours, loading the sample with 25, 50,
100, 200, 400, and 800 kPa. After that, it was unloaded at
400, 200, 100, and 50 kPa, and finally it was reloaded again
with 100, 200, 400, and 800 kPa (last step took 43 hours). The
displacements of the sample top were recorded continuously.

For the numerical model of the test setting, we used
an axisymmetric geometrical configuration with the exact
dimensions of the test specimen. In order to minimize
calculation runtime, the discretization was done with two
six-node triangular elements only, which is the minimum
possible number, as the software offers only triangular
elements. Thereby, the duration of a forward calculation
could be reduced to less than one minute on an ordinary
personal computer. The accuracy of the deformation results
was checked by carrying out comparative analyses with
finer meshes. Horizontal fixities were assigned to the lateral
boundary and to the rotation axis, simulating the stiff
oedometer ring and vertical fixities were attributed to the
basal boundary, representing the fix filter plate at the bottom.
After generating the initial stress state by applying the soil
self-weight (gravity loading procedure), distributed loads
were applied perpendicular to the top boundary analog to
the laboratory conditions.

Three parameters of the material model (A*, ¥*,and y*)
can be determined directly from the oedometer test. As the
material is known to show no dilatancy, ¥ can be set to
0° in all calculations. Laboratory data from shear tests on
similar soil samples reported by Panizza et al. [24] is shown
in Table 3.

5
TaBLE 2: Parameters of the soft soil creep model.

Parameter Description (Unit)
c Effective cohesion (kPa)
%) Effective friction angle ()
v Dilatancy angle ()
A* Modified compression index (dimensionless)
©* Modified swelling index (dimensionless)
u* Modified creep index (dimensionless)

TaBLE 3: Shear-test data reported by Panizza et al. 2006 [24].

Effective friction Effective cohesion

angle ¢'(°) ¢’ (kPa)
18 20
18 10
20 49
Direct shear 18 39
tests 16 49
14 69
18 25
20 20

o 19 7
Triaxial tests 28 14

We averaged these values, giving double weight to the
triaxial test data, which we assumed to be more precise,
coming out with an average friction angle of 20° and
an average cohesion of 27 kPa. The set of experimental
parameter values is shown by Table 4 and the results of a
forward calculation using these parameters are presented
in Figure 3 comparing them with the reference data of the
oedometer test.

The graph shows that the deformations are underesti-
mated by the simulation. In order to test the ability of the
PSO algorithm to find good parameter combinations, wide
search areas were chosen for the five parameters. A statistical
analysis (see Section 3) comprising 2000 calls of the forward
calculation was then performed varying these parameters.
Their value margins are displayed in Table 5.

The scatter plot matrix of all data points with objective
function values lower than 107 is given in Figure 4. For the
parameters A*, x*, and u*, logarithmized margins of the
search intervals were used in order to avoid overrepresen-
tation of high parameter values. Furthermore, a parameter
constraint was prescribed, demanding for A* > x*, which has
to apply for all materials. The objective function projections
of ¢, ¥*, and A* indicate that the data points showing good
model fits seem to concentrate in quantifiable value ranges
of these parameters, whereas y* and ¢ cannot be identified.
The modified compression index (1*) and the cohesion (c)
appear to be correlated (correlation coefficient of 0.88), to a
lesser extent, this holds true also for A* and x* (correlation
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—o— Simulation with parameters from laboratory tests
—e— Simulation with parameters from optimization with PSO

FiGure 3: Oedometer test calculation results versus reference data.

TaBLE 4: Parameters obtained from experiments and identified
parameters using PSO.

Experimental parameter values  Identified values PSO
A* 0.064 0.082
K* 0.035 0.051
u* 1.46E-03 —
¢ () 20 —
¢ (kPa) 27 25
v () 0 —

TaBLE 5: Search intervals for the parameters of the oedometer test.

Maximum Minimum In (max.) In (min.)
30 8 — —
c 100 0.001 — —
A* 1 0.002 0.00 -6.21
K* 0.5 0.001 —-0.69 -6.91
u* 0.75 0.00001 -0.29 —11.51

coefficient of 0.64). According to these findings, A*, x*, and
¢ were selected for the optimization procedure. The friction
angle (¢) and the modified creep index (u*) were fixed on
their experimental values.

After 159 cycles (1590 calls) the particle swarm optimizer
had reduced the deviation to 5%10°, which was found to
be a sufficiently low value to stop the optimization routine.
The identified best parameter set and the corresponding
calculation results can be seen also in Table 4 and Figure 3. It
becomes clear that the identified parameter set represents the
measurement data much better than the available laboratory
parameters.

4.3. Isotropic compression test

An isotropic compression test was performed in the triaxial
apparatus on a cylindrical soil sample with a diameter of 5 cm

(49.88 mm) and a height of 10 cm (98.55 mm). Drainage was
allowed on top and at the bottom of the specimen. All load
steps were performed isotropically, applying a hydrostatic
cell pressure. The sample was preloaded at 30 kPa for three
hours and, after that, at 50 kPa for 17 hours. Then it was
gradually loaded to 800 kPa in one hour, increasing the load
by steps of 100 kPa. After reaching this target load, the stress
level was left constant for 3 weeks. Top displacements and
volume change of the sample were recorded during the whole
test. A reference dataset for the horizontal displacements was
calculated from the vertical displacements and the volume
change, assuming the shape of the specimen to remain
exactly cylindrical until the end of the test.

For the numerical model of the test setting, an axisym-
metric geometrical configuration with the exact dimensions
of the test specimen was used. Again, the model was dis-
cretized only with two six-node triangular elements, to save
calculation time. The accuracy of the deformation results
was checked by carrying out several comparative analyses
with finer meshes. Horizontal fixities were assigned to the
rotation axis. Vertical fixities were attributed to the basal
boundary, representing the fix filter plate at the bottom. After
generating the initial stress state by applying the soil self-
weight (gravity loading procedure), two independent and
identical distributed loads were applied, one perpendicular
to the upper boundary (vertically) and the other one
perpendicular to the lateral boundary (radially). Loading was
carried out the same way as in the laboratory, but instead of
the stepwise application of the 800 kPa target load, this load
was applied directly after the 50 kPa load step. For this reason,
the 50 kPa load step in the model was prolonged in such a
manner that the integral of the load as a function of time
equals the test conditions.

In the example of the isotropic compression test, except
for the relatively short phases before reaching the target load,
only one load step (800kPa) is applied. Therefore, of the
model parameters only y* can be determined directly from
the test. This value (1.3%107°) is very similar to the one
obtained from the oedometer test. Figure 5 shows the results
of a forward calculation using this value together with the
laboratory values of Section 4.2.

Also in this example, the deformations are underesti-
mated by the simulation. A statistical analysis with 1820
calls was carried out varying the parameters ¢ (cohesion),
A* (modified compression index), and y* (modified creep
index) within the boundaries given in Table 7, logarithmic
values were used for the search intervals of the latter two
parameters.

As the modeled test contains no unloading phases, it
makes no sense to identify the modified swelling index «*. Its
value was therefore linked to the value of A* by multiplying
this parameter by 0.5, which is the typical ¥*/A* ratio, we
observed in our laboratory tests performed on this material
and similar materials.

The results of the statistical tests presented in Figure 6
suggest that good fits can be obtained for cohesion values
between 20 kPa and 90 kPa, but apart from this, the cohesion
value seems to have no influence on the quality of the
model calibration. Whereas for the modified compression
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FIGURE 4: Scatter plot matrix for the oedometer test.
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FiGURE 5: Isotropic compression test calculation results versus reference data.

index (A*) and the modified creep index (u*), the objective
function projections suggest a preferred value range for the
data points with low deviation values.

Furthermore, it can be concluded that A* and ¢ might
be quite closely related to each other (correlation coefficient
0.96), this means, for a given A*, an appropriated cohesion
value could be computed by the equation given also in

Figure 6. This linear relationship seems to be valid for
cohesion values between 20 and 90 kPa and A* values
between 0.064 and 0.165.

Therefore, only the parameters A* and y* were selected
for the optimization procedure via PSO. We stopped this
procedure after 500 calls (50 cycles). The identified values
are shown in Table 6. In Figure 5, the calculation results are
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FIGURE 6: Scatter plot matrix for the isotropic compression test.

TABLE 6: Parameters from laboratory tests and identified parame-
ters using PSO.

Experimental values Identified values (PSO)

A* 0.064 0.089
i 0.035 —

w* 1.30E-03 2.33E-03
¢ () 20 —

¢ (kPa) 27 —

v (°) 0 —

TaBLE 7: Isotropic compression test search intervals for the varied
parameters.

Maximum Minimum In (max.) In (min.)
¢ (kPa) 100 0.001 — —
A* 1.00 6.74E-03 0.00 -5.00
u* 0.75 0.00001 -0.29 —11.51

compared to the reference dataset and the results obtained by
using only laboratory data.

Like for the oedometer test, an improved parameter set
could be found also for the isotropic compression test. It can
be observed that the results are much better for the vertical
displacements, although a weighting factor of one had been
assigned to both datasets.

This may be due to the fact that the precision of the
reference data is lower for the horizontal displacements,
since the volume change of the sample could not be
measured with the same accuracy as the top displacements.
In addition to this, small inhomogeneities of the material
or a small frictional resistance at the sample top could have
caused a slight distortion of the cylindrical shape of the
specimen which was assumed to calculate the horizontal
displacements.

4.4. Deformations along a shear zone in
a natural slope

4.4.1. Analyzed section and reference data

The presented parameter identification technique was also
applied to the 2D-model of a natural slope which is located
in the municipality of Corvara in the Dolomites (Italy). It
shows continuous creep deformations at the basis of a 20—
40 m thick soil cover consisting mainly of the above studied
material and very similar materials. As slopes of this type
are known to show potential acceleration phases that can
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FIGURE 7: Site map with the location of the section and the GPS
points.

endanger human settlements, a detailed study of the geology
and geomorphology as well as comprehensive monitoring
were carried out by the University of Modena and Reggio
Emilia and by the National Research Council’s Group for
Hydrogeological Catastrophes Defense (CNR-GNDCI) [25]
by order of the Autonomous Province of Bolzano/South-
Tyrol [24].

In this context, the displacements of several surface
points were observed regularly by means of global position-
ing system (GPS) measurements. In our study, a subarea of
the slope was modeled along a representative 2D section. A
site plan with the location of the section and the GPS points
is given in Figure 7, whereas Figure 8 depicts a field survey of
this section and shows the abstracted geometry model.

4.4.2. Geotechnical model

The geometry was determined using all the information
available, that is, a core drilling near section-point B, the
local geomorphology, refraction seismics, and direct current
resistivity (DC-resistivity) [24]. As exposed in Figure 9,
the vertical profile of the slope was divided into three
layers interpreting various inclinometer profiles reported by
Corsini et al. [25]; the illustrated one is located near section-
point B. The uppermost layer, the soft soil cover, which is
showing little internal deformations, was only considered in
the form of its weight acting on the intermediate layer, the
shear zone. Therefore, the displacement vectors of section-
points C and F are presumed to be equal to those of section-
points B and E, respectively. The shear zone is assumed to be
a thin, soft, and highly plastic layer, exhibiting a pronounced
time dependency in its mechanical behavior. The third layer
is given by the underlying weathered bedrock, which is
supposed to be stable. The earth pressure at the foot of
the slope was assumed to be slightly lower than the earth

pressure at rest; this means that there is no support obtained
from the soil layer further downslope. A description of the
assumptions made for the foot load is shown in Figure 10.
The actual main detachment zone is modeled as an
open crack. No tensile forces are acting across it onto the
downslope section of the sliding body, which is moving
as a whole. Around section-point A, the soil body below
the secondary shear zone is assumed to move at the same
velocity as point B. The material properties of the secondary
shear zone, which is not subject of this study, were fixed
to comply with this criterion. At present, the displacement
rates observed along the slope are more or less constant,
being superposed only by seasonal variations attributed to
fluctuations of the groundwater conditions which are not
modeled in this study. Therefore, our geotechnical model
features displacement rates remaining constant with time.

4.4.3. Numerical model

Figure 11 shows the characteristics of the numerical model of
the studied slope. A plane strain geometrical configuration
with the real dimensions of the slope was used. The model
was discretized with 1070 triangular six-node elements. To
save calculation time, the number of elements was reduced by
modeling only the uppermost 20 m of the bedrock layer. The
upper and the lower layers were meshed with the automatic
meshing procedure of the software and using a very coarse
setting. A linear elastic material model was assigned to them.
Finally, one forward calculation took approximately three
minutes on an ordinary personal computer. The interme-
diate layer was meshed manually by predefining geometry
points in order to assure a sufficiently fine mesh and a
suitable orientation of the triangles in order to go against an
excessive distortion of the element shapes by the calculated
deformations. For the same reason, the updated mesh option
was only used in the last three years of the simulation (which
are compared to the reference dataset). The detachment
zones were modeled by means of interfaces on both sides
of their geometry lines. The interfaces were modeled with
a Mohr-Coulomb material model, with negligible cohesion,
the same friction angle as the basal shear zone and with
a constant reference stiffness in the order of magnitude
of the shear zone stiffness. The accuracy of the calculated
deformation results was checked by carrying out several
comparative analyses with finer meshes and also with a
horizontal basal boundary. Horizontal fixities were assigned
to the lateral edges of the model, which extends over a total
length of 1080 m. Vertical fixities were attributed to the basal
boundary, representing the stable bedrock.

4.4.4. Calculation phases

In the first calculation phase, all three layers are made up
by the bedrock material. An initial stress state is generated
by applying the self-weight of this material (gravity loading
procedure). In the second calculation phase, the two upper
layers are replaced by the weaker material of the soil cover.
The third calculation phase marks the starting point of the
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e(h) = earth pressure at depth h
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Ficure 13: Calibrated slope model—comparison of modeled displacement vectors (blue) with reference data derived from the GPS

measurements (brown).

slope instability in the model. The shear zone material with
time-dependent mechanical behavior is inserted and the
horizontal load at the foot is set. After that, the model is
left creeping with unchanged boundary conditions during
a period of 33 years. As the loading history of the shear
zone material is unknown, this time period had to be chosen
arbitrarily to reach constant displacement rates as they are
presently observed along the natural slope.

4.4.5. Results of initial model using parameters
derived from experiments

In a first trial forward calculation, for A*,«*, and y*, the
parameters calculated from the laboratory experiments were
used as input values. As the deformations along the shear
zone are known to persist since hundreds or thousands of
years [26], the shear strength of this zone has decreased to
a residual value that is characteristic for the soils originated
by the weathering of the San Cassiano and La Valle beds
outcropping in the whole slope area. Therefore, cohesion
was assumed to be negligible (0.01kPa) and a friction
angle of 10° was adopted, according to the average slope
inclination observed in nearby areas which were formed
since the Late Glacial by the studied processes (earth slides
and earthflows) and covered by comparable soil covers [27].
The stiffness of the uppermost layer was set equal to the
stiffness modulus observed in the oedometer test during
unloading and reloading between the load steps 400 kPa and
800 kPa. For Poisson’s ratio of this layer, we used 0.35, a
value that is considered to be characteristic of clayey soils.
The experimental parameter values are shown in Table 8
and the deformations calculated on their basis for the last
three years of the creep phase are presented by Figure 12.
The latter are only in the range of millimeters, and thus not
representing the actual situation in the field, where between
September 2001 and September 2004, displacements from
several centimeters to several decimeters were measured.

TaBLE 8: Laboratory values of the parameters used for the slope
example.

Experimental parameter values

A* 0.064
K* 0.035
w* 0.00146
¢ (kPa) 0.01
¢ () 10

G (kPa) 5560
v 0.35

4.4.6. Results of statistical analysis and
optimization procedure

A statistical analysis was carried out (which will not be
reported in detail here). One interesting finding of this
analysis was that the friction angle and the modified creep
index appeared to be closely correlated (coefficient of 0.92).
The parameters A*, x*, and p*; the friction angle; and the
stiffness of the uppermost layer (represented by its shear
modulus G) were chosen for the optimization procedure
during which they were varied within the intervals specified
in Table 9.

After 82 cycles, each of them consisting of 10 forward
calculations, the procedure was stopped because, from then
on, the deviation could no longer be reduced significantly.
The resulting parameter set is also given in Table 9. Figure 13
depicts the calculated deformations using the identified
parameter combination, together with the displacement
vectors of the GPS measurement points.

It can be observed that the identified parameter set is able
to reproduce the field measurements qualitatively. Because
of the simplifications made in the model, no exact fit of the
displacement vectors is possible. The presented back analysis
procedure gives one of a number of possible approximate
solutions to the geotechnical problem and the result returned
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TaBLE 9: Search intervals and identified parameters for the slope example.

Varied parameters Identified values

Parameter Fixed parameters (PSO)
Maximum Minimum

v 0.35 — — —

G (kPa) — 20000 200 5160

¢ (kPa) 0.01 — — —

v ) 0 — — —

K* — 1 0.005 0.60

A* — 2 0.01 1.42

u* — 1.5 0.001 0.145

o () — 16 8 10.7

by the particle swarm optimizer can be seen as a parameter
set that best represents the reference data.

5. CONCLUSIONS

A back analysis procedure for the identification of material
parameters of constitutive models applied to geotechnical
problems was presented. This procedure represents a direct
approach based on the method of least squares, correlation
analyses, and a particle swarm optimization algorithm. The
applicability and suitability of the technique was demon-
strated by means of three examples from the fields of soil
mechanics and engineering geology. The studied material
was a natural soil. Besides being way more objective and less
arbitrary than the conventional trial and error procedure,
the outlined method provides valuable information on the
quality of the model calibration, the uniqueness of an
obtained solution, or the determinateness of the problem.
In all three examples, the particle swarm optimizer was
able to identify an improved parameter set after a justifiable
amount of forward calculations. Further research should
also concentrate on the identification of the geometrical
parameters of geotechnical problems.
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