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Abstract. The WG5 committee, at its meeting in Delft, May 2005, decided to include co-arrays in the next Fortran Standard. A
Fortran program containing co-arrays is interpreted as if it were replicated a fixed number of times and all copies were executed
asynchronously. Each copy has its own set of data objects and is called an image. The array syntax of Fortran is extended
with additional trailing subscripts in square brackets to give a clear and straightforward representation of access to data on other
images.

References without square brackets are to local data, so code that can run independently is uncluttered. Any occurrence of
square brackets is a warning about communication between images.

The additional syntax requires support in the compiler, but it has been designed to be easy to implement and to give the
compiler scope both to apply its optimizations within each image and to optimize the communication between images.

The extension includes execution control statements for synchronizing images and intrinsic procedures to return the number
of images, to return the index of the current image, and to perform collective operations.

The paper does not attempt to describe the full details of the feature as it now appears in the draft of the new standard. Instead,
we describe a subset and demonstrate the use of this subset with examples.

1. Introduction

The co-array extension to Fortran consists of two new features. One is a simple syntactic extension called the
co-dimension that describes data distribution. The other is the Single-Program-Multiple-Data (SPMD) programming
model that describes work distribution. The programmer moves data between replicated objects called co-arrays
using explicit co-array syntax that looks and feels like normal Fortran. The programmer also determines the execution
path through replicated copies of the program using explicit control constructs and synchronizations.

The programmer uses co-array syntax only where it is needed. A reference to a co-array with no square brackets
attached to it is a normal reference to the local object. Since most references to data objects in a parallel code should
be local, co-array syntax should appear only in isolated parts of the code. If not, the syntax acts as a visual flag to the
programmer that too much communication among images may be taking place. It also acts as a flag to the compiler
to generate code that avoids latency whenever possible.

Because co-arrays are integrated into the language, remote references automatically gain the services of Fortran’s
basic data capabilities, including the typing system and automatic type conversions in assignments, information
about structure layout, and even object-oriented features.

The co-array feature adopted by WG5 was formerly known as Co-Array Fortran, an informal extension to Fortran
95 by Numrich and Reid [18]. Co-Array Fortran itself was formerly known as F −−, which evolved from a simple
programming model for the CRAY-T3D described only in internal Technical Reports at Cray Research in the early
1990s. The first informal definition [13] was restricted to the Fortran 77 language and used a different syntax to
represent co-arrays. It was extended informally to Fortran 90 by Numrich et al. [21,22], and defined more precisely
for Fortran 95 by Numrich and Reid [18].
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Co-Array Fortran has been incorporated into the Cray Fortran compiler and various applications have been
converted to the syntax [14,15,20]. It was also an unsupported feature of the SGI Fortran compiler [20] for a brief
period in the late 1990s, but it never became a supported product. A portable compiling system for a subset of
the extension has been implemented by Dotsenko, Coarfa, and Mellor-Crummey [4]. It performs source-to-source
transformation of co-array code to standard Fortran 90 code augmented with calls to platform-specific communication
protocols. One instantiation uses the Aggregate Remote Memory Copy Interface (ARMCI) library for one-sided
communication [11] and another uses loads and stores for communication on shared-memory machines. Experience
with this compiling system is related in several papers by this group [3,8,9].

Reid [24,25] proposed that co-arrays be included in the revision of Fortran that is planned for 2008. The ISO/IEC
Fortran Committee agreed to include co-arrays in their May 2005 meeting [10] but made some changes. The US
Fortran Standards Technical Committee J3 [27], the primary development body, have made further changes since
then. This paper contains a description of the main features of the proposal as it now stands with applications to some
simple examples. For a more complete summary, see Reid [26], and for more extensive discussion and examples,
see Numrich and Reid [18,19].

2. Execution model

The co-array extension adopts the SPMD programming model. A single program is replicated a fixed number of
times with each replication called an image. The name image is used to avoid any connotation of how a particular
run-time system might implement the co-array extension, for example, using a thread model versus a process model,
or how an image is mapped onto a physical processor. The number of images should be thought of as the number of
virtual or logical processors; it may be the same as the number of physical processors, may be more than the number
of physical processors, or may be less than the number of physical processors.

A particular implementation may permit the number of images to be chosen at compile-time, at link-time, or at
run-time. Once fixed, however, it does not change. The programmer may retrieve the number of images at run-time
through the intrinsic function num images() and may retrieve the unique image index from the intrinsic function
this image(), which returns the index of the image that executes the function. Images are numbered from one in
the normal Fortran fashion.

Each image executes asynchronously, and the normal rules of Fortran apply. The programmer determines the
execution path on each image using normal Fortran control constructs and explicit synchronizations with the help of
the image index. The actual execution path followed on each image may, and probably will, be different from image
to image.

Provided no image encounters an error condition that may be expected to terminate its execution, all images
continue execution until they have all executed a stop or an end program statement. We call this ‘normal
termination’. If an error condition occurs on one image, the computation is probably flawed, and it is desirable to
stop the other images as soon as is practicable. We call this ‘error termination’.

An image that initiates normal termination does not complete termination until all other images have initiated
either normal or error termination allowing its data to remain accessible to the other images. The new statement all
stop allows the programmer to terminate execution on all images. When this statement executes on an image or an
error condition occurs on an image, the image initiates error termination for itself and causes all other images that
have not already initiated termination to initiate error termination. Within the performance limits of the processor’s
ability to send signals to other images, this propagation of error termination should be immediate and cause the
whole calculation to stop.

3. Co-dimensions

Each image has its own set of replicated data objects with the same names in each image. All of the objects may
be accessed in the normal Fortran way on each image. Some objects are also co-array objects that may be accessed
across images.
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3.1. Specifying co-array objects

Co-arrays are declared with co-dimensions in square brackets immediately following dimensions in parentheses
or in place of them. For example, the declarations,

real :: a(20)[20,*] ! An array co-array
real :: c[*], d[*] ! Scalar co-arrays
character :: b(20)[-5:20,0:*]
integer :: ib(10)[*]
type(interval) :: s[20,*]

define co-arrays of various types. The form for the dimensions in square brackets is the same as that for the
dimensions in parentheses for an assumed-size array. The total number of subscripts plus co-subscripts is limited to
15.

Each co-array exists with the same name and has the same shape on each image. In the example, each image has
a real co-array a of size 20 in its own local memory, two scalars c and d, and so forth. There is no concept of a
shared array without co-subscripts that spans the set of images. The programmer is responsible for decomposing
such a global array into local pieces that reside on each local image.

A co-array cannot be a pointer, but it may be allocatable,

real, allocatable :: u(:)[:], v[:,:]

The allocate statement has been extended so that the co-bounds can be specified at run-time,

allocate ( u(10)[*], v[-1:p,0:*] )

The programmer might, for example, pick the variable p at run-time to set a particular logical relationship between
the actual number of images. The co-bounds must always be included in the allocate statement and the upper bound
for the final co-dimension must always be an asterisk. The value of each bound, co-bound, or length type parameter
must be the same on all images.

The data in parentheses in a co-array’s declaration or allocation statement specify the normal rank, bounds,
extents, size, and shape of the co-array. They determine the access rules within an image’s own memory. The
data in square brackets specify the co-array’s co-rank, co-bounds, and co-extents. They determine the access rules
from one image to another. The syntax and semantics for co-dimensions mirror those of assumed-size arrays. The
final extent is always indicated with an asterisk, and there is no final co-extent, no final upper co-bound, and no
co-shape. Since a co-array exists on all images, the co-size of a co-array is always equal to the number of images.
This convention allows the programmer to write code independent of the number of images the code will eventually
use.

Co-dimensions allow the programmer to define a logical relationship among images for each co-array. This logical
relationship may be different for different co-arrays and may even change for the same co-array across procedure
calls. The set of subscript indices that correspond to the current image are always calculated from the declaration of
the co-array in the current procedure on that image. The programmer may retrieve them from the alternative form
of the intrinsic function this image(z) for any co-array z. For the co-array,

real :: z[10,0:9,0:*]

for example, this image() has the value 5 on image 5, and this image(z) has the value (/5,0,0/). For the
same example on image 213, this image(z) has the value (/3,1,2/).

Conversely, the programmer may retrieve the image index that corresponds to a set of co-subscript indices from
the inverse intrinsic function image index. For example, the value of image index(z,(/5,0,0/)) is 5 on
every image, and the value of image index(z,(/3,1,2/)) is 213.
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3.2. Referencing images

Co-array indices in square brackets provide a convenient notation for accessing an object within another image’s
memory in the same way that array indices in parentheses provide a notation for accessing an object within an
image’s own memory. A reference to an object without square brackets is always a reference to the object on the
invoking image. A reference to an object with co-subscripts enclosed in square brackets is a reference to the object
on the image corresponding to the co-subscripts. Co-subscripts map to an image index in the same way as array
subscripts map to a position in array element order. For example, if two objects, x and y, are declared as co-arrays,

real :: x(n)[-3:*],y(n)[5,*]

then an image that executes the statement,

x(:) = y(:)[q,r]

copies the array y(:) from the image corresponding to co-subscripts [q,r] into array x(:) in its own memory.
Images execute statements they encounter by the normal rules of Fortran. Co-subscripts do not determine how

work is assigned to different images. They are a logical description of the relationship between memory assigned
to different images. Whether the co-subscripts map to the executing image or not has no bearing on whether that
image evaluates the expression or assignment. For example, any image encountering the statement,

x(:)[p] = x(:) + y(:)[q,r]

executes it no matter what values are given for p, q and r. The invoking image copies array y(:) from the
image corresponding to [q,r], adds it to its local data x(:), and stores it to the remote array x(:) on the image
corresponding to p.

The co-subscripts [q,r] map to an image index based on the co-dimensions in the declaration statement for
co-array y. The co-subscript [p] maps to an image index based on the co-dimension in the declaration statement
for co-array x. Neither of these images is involved in the execution of this statement. If it is necessary to restrict
execution to a specific image, the programmer must use a Fortran if or case statement in the normal way. If it
is necessary to avoid memory race conditions, the programmer must use synchronization statements such as those
discussed in Section 4.

The programmer is responsible for generating valid co-subscripts that map to valid image indices. For example,
for the co-array y declared at the start of this subsection, a reference to y(:)[1,4] on 16 images is valid since it
has co-subscript order value 16, but a reference to y(:)[2,4] is invalid since it has co-subscript order value 17.

3.3. Co-arrays as actual arguments of procedures

A co-array may be an actual argument of a procedure either with or without co-subscripts in square brackets. If
the interface is not explicit, the compiler assumes that no dummy argument is a co-array. If the actual argument
contains co-subscripts,

real :: x[p,*]
call mysub(x[q,r])

the compiler is likely to make a local copy of x[q,r] before entering the routine and a remote copy upon exit from
the routine. To limit the number of copies made, the programmer must supply an explicit interface. For example,
the interface,

interface
subroutine mysub(x)
real,intent(out) :: x

end subroutine mysub
end interface

alerts the compiler that only copy out is required.
This feature is very important. It means that all the intrinsic procedures of Fortran 2003 and any procedure that

has been written for a uni-processor is available for co-arrays. Here is a very simple example:

s = sum(a(:)[p])
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3.4. Co-arrays as dummy arguments of procedures

A dummy argument of a procedure is permitted to be a co-array. It may be of explicit shape, assumed size,
assumed shape, or allocatable:

subroutine subr(n,w,x,y,z)
integer :: n
real :: w(n)[n,*] ! Explicit shape
real :: x(n,*)[*] ! Assumed size
real :: y(:,:)[*] ! Assumed shape
real, allocatable :: z(:)[:,:]

When the procedure is called, the corresponding actual argument must be a co-array or a subobject of a co-array
with no co-subscripts. The association is with the whole or part of the co-array itself and not with a copy, so the
programmer must avoid calls for which making a copy of an argument is necessary. For example, a noncontiguous
section such as a(1:6:2) is not acceptable if the actual argument is an explicit-size array. Copying is disallowed
because the called procedure may access the corresponding co-array on another image and that other image may
have not yet have made a copy of its co-array or indeed may never do so since it is executing some other procedure.

The interface is required to be explicit so that the compiler knows that the dummy argument is a co-array. Here is
an example

interface
subroutine sub(x,y)
real :: x(:)[*], y(:)[*]

end subroutine sub
end interface

:
real, allocatable :: a(:)[:], b(:,:)[:]
:

call sub(a(:),b(1,:))

If a dummy argument is an allocatable co-array, the corresponding actual argument must be an allocatable co-array
of the same rank and co-rank.

The rules for resolving generic procedure references take no account of the co-array properties and are therefore
unchanged. The rules cannot be extended to allow overloading of array and co-array versions since the syntactic
form of an actual argument would be the same in the two cases.

Each image independently associates its non-allocatable co-array dummy argument with an actual co-array and
defines the co-rank and co-bounds afresh. It uses these to interpret each reference to an object with co-subscripts,
taking no account of whether the remote image is executing the same procedure with the same co-array.

3.5. Co-arrays in procedures

Automatic-array co-arrays are not permitted (an automatic array is not a dummy array and has one or more bounds
that are not constant expressions). Were they permitted, it would be necessary to require image synchronization,
both after memory is allocated on entry and before memory is deallocated on return. A co-array function result is
like an automatic co-array and is disallowed for the same reasons.

Unless it is allocatable or a dummy argument, a co-array that is declared in a procedure must be given the save
attribute. This ensures that the system does not reallocate it on every entry. An allocatable co-array is not required to
have the save attribute because a recursive procedure may need separate allocatable arrays at more than one level
of recursion.



14 J. Reid and R.W. Numrich / Co-arrays in the next Fortran Standard

real :: p[*] | real :: p[*]

... | ...

sync all | sync all

if (this_image()==1) then | if (this_image()==1) then

read (*,*) p | read(*,*) p

| sync all

do i = 2, num_images() | else

p[i] = p | sync all

end do | p = p[1]

end if | end if

sync all | sync all

Fig. 1. Read data on image 1 and define it on other images.

4. Execution control statements

Each image executes on its own as a Fortran program without regard to the execution of other images. Each
image can define data in any other image’s memory and may access data from any other image’s memory at any
time during execution. A memory race condition may occur whenever an image alters the contents of a co-array,
even in its own memory. It is the programmer’s responsibility to avoid memory race conditions by using execution
control statements. The programmer must ensure that when an image assigns a new value to a co-array, no other
image still needs the old value. And when an image accesses the value of a co-array, it receives the expected value,
either an old value unchanged by other images or a new value changed in a controlled way by another image. In this
and later sections, we discuss the more important execution control statements available to the programmer: sync
all, allocate, deallocate, notify, query, sync team, call form-team, open, close, and a call
of a collective subroutine.

For code between execution control statements, the compiler is free to use all its normal optimization techniques as
if only one image were present. Execution of a execution control statement usually suppresses compiler optimizations
that might reorder memory operations across the statement. All memory operations initiated by an image before the
statement must complete before any memory operations following the statement are initiated by the image unless
the compiler can establish that failure to do so could not alter processing on another image.

4.1. Thesync all statement

The sync all statement provides a barrier for the important case where all images must synchronize before
moving forward. Any statement executed before the barrier on image P is also executed before any statement
executed after the barrier on any other image Q. The normal rules relating to execution order apply. In particular,
if the value of a co-array variable is changed by any image before the barrier, it is accessible to all images after the
barrier. The programmer must ensure that if one image changes a co-array value between two successive barriers,
another image does not reference or define that value between the barriers.

Figure 1 shows two simple examples of the use of the sync all statement. In the code shown on the left side of
the figure, image 1 reads data from standard input and broadcasts it to other images. The first sync all ensures
that image 1 does not interfere with any previous use of p by another image. The second sync all ensures that
another image does not access p before the new value has been set by image 1.

Alternatively, in the code shown on the right side of the figure, image 1 still reads data from standard input but
does not broadcast the value to the other images. Instead, each other image makes a copy. The first and last sync
all statements are there for the same reasons as before. The two new sync all statements ensure that no race
condition occurs. The other images wait at their sync all statement for image 1 to finish. When image 1 reaches
its sync all statement, the other images are released, and they copy the value of p from image 1. This alternative
version illustrates that the sync all statement on one image may correspond to a different sync all statement
on another image.
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4.2. Theallocate anddeallocate statements

There is an implicit synchronization of all images in association with each allocate statement that involves
one or more co-arrays. Images do not commence executing subsequent statements until all images finish executing
the same allocate statement. The programmer is responsible for ensuring that the shape and co-shape are the
same on all images. Similarly, for a deallocate statement involving one or more co-arrays, all images delay
making the deallocations until they are all about to execute the same deallocate statement. Without these rules,
an image might reference data on another image that has not yet been allocated or has already been deallocated.

For an allocatable co-array declared in a procedure without the save attribute, if the co-array is still allocated
when a return statement or an end statement is executed, there is an implicit deallocation (and associated
synchronization) before the procedure is exited.

Fortran 2003 allows the shapes to disagree in an intrinsic array assignment to an allocatable array; the system
performs the appropriate reallocation. Such disagreement is not permitted for an allocatable co-array, since it would
involve synchronization.

4.3. Thenotify andquery statements

The notify and query statements support an asynchronous programming style to enable better load balancing
between images. Rather than waiting for all the other images at a sync all statement, an image may proceed
with calculations while other images catch up.

Each of these statements specifies an imagesetin parentheses,

notify(imageset)
query(imageset)

as an integer scalar holding an image index, as a rank-one integer array holding distinct image indices, or as an
asterisk to indicate all images. The notify statement is non-blocking; the image executing it continues execution
without waiting for any of the images in its image set. The query statement is blocking; the image executing it
waits until it receives notification from every image in its image set.

An alternative form of the query statement,

query(imageset, ready=scalar logical variable)

is non-blocking. A query statement is said to be satisfied on completion if it has no ready= specifier or if its
ready= variable has been set to true. If the ready= value is false, we expect the image to execute further query
statements until it executes a satisfied query statement.

These control statements interact with each other in the following way. Let NP,Q be the number of notify
statements executed on image P with image Q in its image set. Let SQ,P be the number of satisfied query
statements executed by image Q with image P in its image set. A query statement on image Q without a ready=
variable delays until NP,Q > SQ,P for all images P in its image set. A query statement on image Q with a
ready= variable sets its value to true if and only if NP,Q > SQ,P for all images P in its image set.

An execution of a notify statement on image P with image Q in its image set corresponds to a satisfied
query statement on image Q with image P in its image set, if the number NP,Q of such notify statements on
image P is the same as the number SQ,P of such satisfied query statements on image Q.

Any statement executed before a notify statement on image P is also executed before any statement executed
after the corresponding query statement on image Q. The normal rules relating to execution order apply. In
particular, if the value of a co-array variable is changed by image P before the notify statement, it is accessible
to image Q after the query statement.

Figure 2 shows two examples of how to use notify/query pairs. On the left side, image p computes the
value of some variable z and then notifies image q. Image q executes a blocking query to image p and waits for
notification before reading the value of z. On the right side, image p does the same thing, but image q executes
non-blocking query statements. Image q continues execution doing work not dependent on the value of z and
loops back to check for a true value for its logical variable. Only then does it read the value of z from image p.
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real :: z[*] | real :: z[*]

... | logical :: ready=.false.

... | ...

sync all | sync all

if(this_image()==p) then | if(this_image()==p) then

z = some_function() | z = some_function()

notify(q) | notify(q)

elseif(this_image()==q) then | elseif(this_image()==q) then

query(p) | do while(.not.ready)

z = z[p] | ... ! Work not dependent on z

end if | query(p,ready=ready)

| end do

| z = z[p]

| end if

Fig. 2. Using notify and query statements.

4.4. Thesync team statement

A team of images is defined by the value of a scalar of type image team of the intrinsic module
ISO Fortran env. All the components of the type are private, and none is a co-array. A variable of this type
has default initialization to a value that identifies an empty team.

A team is established by executing the intrinsic subroutine,

call form_team(image_team,list)

with a rank-one integer array list containing the image index for each member of the team. Every image of the
team must call this procedure, and none of the team members continues beyond the call until all team members have
made the call. The intrinsic function,

list = team_images(team)

returns the images in the team as a rank-one array of type default integer.
The intention is to allow the processor to calculate optimized communication patterns during the call of

form team and to store them for all subsequent team actions. It is quite likely that different images would need
different data, so it is inappropriate to copy values between images. For this reason, a co-array is not permitted to be
of type image team.

The statement,

sync team (team)

behaves like sync all except that it applies only to the images of the team. The executing image must be a member
of the team.

5. Input/output

The main mechanism for parallel I/O is the direct-access file where the programmer arranges that the same record
is never accessed by more than one image without an intervening synchronization. If two images write to the same
record of a direct-access file, it is the programmer’s responsibility to separate the writes by appropriate flush
statements and image synchronizations.

The open statement has been augmented to allow several images to be connected on the same unit. The set of
images connected to a unit is called a connect team, specified as team=connect in the open statement by a
variable connect of type image team. The executing image must be a member of the team, and each member
of the team must execute the same open statement. There is an implicit team synchronization. If there is no team=
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program LU

integer :: n[*] ! Matrix order

integer :: nb[*] ! Block size

character(len=100) :: file[*] ! I/O File name

double precision, allocatable :: A(:,:)[:] ! Distributed matrix

integer,allocatable :: ipiv(:)[:] ! Row indices of the pivots

integer :: p ! Number of images

integer :: Iam ! This image

p = num_images()

Iam = this_image()

if(Iam == 1) then

read(*,*) n,nb,file

notify(*)

else

query(1)

file=file[1]

n=n[1]; nb=nb[1]

end if

allocate(A(n,nb*ceiling(real(n)/(nb*p)))[*])

allocate(ipiv(nb*ceiling(real(n)/(nb*p)))[*])

call dataIN(file,n,nb,A)

call LUfactorize(n,nb,A,ipiv)

call dataOUT(file,n,nb,A)

deallocate(A,ipiv)

end program LU

Fig. 3. Program for LU factorization.

specifier in an open statement, the connect team is the executing image. In that case, the normal rules for opening
a file apply.

If an open statement specifies a connect team of more than one image, the connection must be either direct access
or action=’write’. If the connection is for write, the processor ensures that once an image P commences
transferring the data of a record to the file, no other image Q transfers data to the file until the whole record from
image P has been transferred. In other words, each record in an external file arises from a single image. The
backspace, rewind, and endfile statements are not permitted for such a unit.

The default unit for input, either * in a read statement or input unit in the intrinsic module
iso fortran env, has a connect team consisting of image one only. Any other preconnected unit has a connect
team consisting of all the images, but a read statement for such a unit is permitted only on image one.

The processor is permitted to hold data in a buffer and to transfer several whole records on execution of a flush
statement. Without a flush, all writes may be buffered locally until the file is closed. Execution of a flush
statement is required only when a record written by one image is read by another or when the relative order of writes
from images is important. The flush statement ensures that any changed records in buffers are copied to the file
itself or to a replication of the file that other images access. Executing a flush statement also has the effect of
requiring the reloading of I/O buffers in case the file has been altered by another image.

If an image executes a close statement, all images in the connect team must execute the same close statement
for the unit with the same status. There is an implicit team synchronization.

6. An example: LU factorization

As an example, we examine in some detail a parallel algorithm for LU factorization, with row pivoting, of a
square matrix of order n. We decompose the matrix by columns into blocks of size n×nb. If the program executes
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subroutine dataIN(inputFile,n,nb,A)

character(len=*),intent(in) :: inputFile ! I/O file name

integer, intent(in) :: n ! Matrix order

integer, intent(in) :: nb ! Block size

double precision, intent(out) :: A(n,*) ! Distributed matrix

integer :: len ! Length of the block column

integer :: j ! Loop index

integer :: ja=1 ! Column in A

integer :: p ! Number of images

integer,parameter :: unit=999 ! Unit number

type(image_team) :: team ! Team

p = num_images()

call form_team( all, (/ (j,j=1,p) /) )

inquire (iolength=len) A(:,1)

open(unit,file=inputFile,status='old',access='direct',recl=len,team=all)

j = (this_image()-1)*nb+1

do while(j<=n)

read(unit,rec=j) A(:,ja)

j = j+1; ja = ja+1

if (mod(ja,nb)==1) j = j+nb*(p-1)

end do

close(unit)

end subroutine dataIN

Fig. 4. Parallel I/O from a file.

with p images, these blocks are held contiguously on images (1, 2, . . ., p, 1, 2, . . ., p, . . .) as a block-column,
cyclic-wrapped distribution.

Figure 3 shows a program that illustrates how we can tie together all the pieces of the co-array extension to carry
out an LU factorization. Image 1 reads the problem size, the block size, and the input file name from standard input
and notifies the other images once it has these values. The other images wait on a blocking query until they are
released and then read the values of the input variables from image 1. All images then allocate memory for the
matrix A and the pivot vector ipiv. These arrays are co-arrays so there is an implied synchronization for these two
allocate statements.

The matrix A has been previously written to a direct access file column-by-column. The procedure dataIN
shown in Fig. 4 reads the data from that file. There is a corresponding procedure dataOUT that writes the data out
to the file.

Our code for the actual factorization is based on the LAPACK procedure dgetrf [2] that performs a blocked
right-looking factorization. For each block column, dgetrf performs the following steps:

1. dgetf2: Apply interchanges within the block column and factor it.
2. dlaswp: Apply the interchanges to the previous columns, which belong to the factor L.
3. dlaswp: Apply the interchanges to the subsequent columns.
4. dtrsm: Compute the block row of U .
5. dgemm: Update the submatrix of subsequent rows and columns.

For large matrix order n compared with the block size nb, most of the work is performed in the Level-3 BLAS code
dgemm, which is likely to be highly optimized on every machine.

Figure 5 shows our co-array version. The major loop is over the block columns, as in dgetrf. The image
that holds the pivot block column uses dgetf2 to factor it, as in step 1. After a synchronization, each image uses
co-array syntax to make a copy of the pivot block column and the interchanges. Each image then executes step 2 for
those previous columns that it holds and steps 3 to 5 for those subsequent columns that it holds. Note that, for a large
problem, the bulk of the work is in step 5 and is performed in parallel as each image executes dgemm independently.
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subroutine luFactorize(n, nb, A, ipiv)

integer,intent(in) :: n ! Matrix order

integer,intent(in) :: nb ! Block size

double precision,intent(inout) :: A(n,*)[*] ! Matrix to factorized

integer,intent(inout) :: ipiv(*)[*] ! Row indices of the pivots

integer :: me ! This image

integer :: p ! Number of images

integer :: pivimage=1 ! Index of the image handling current pivot block

integer :: info ! Temporary variable

integer :: i ! Row index

integer :: j ! Pivot column index

integer :: jb ! Size of the pivot block

integer :: lastcol ! The local index of the last column on this image

integer :: lpiv(nb) ! Local copy of ipiv for pivot block

integer :: pivcol=1 ! The local index of the pivot column on its image

integer :: nextpiv=1 ! The local index of the next column on this image

double precision :: pivblock(n,nb) ! Copy of pivot block column

double precision :: one=1.0

p = num_images()

me = this_image()

lastcol = nb*ceiling(real(n/nb+1-me)/p)

if ( mod(n-1,p*nb)/nb+1 == me ) lastcol = lastcol + mod(n,nb)

Loop: do j = 1, n, nb

jb = min(nb,n+1-j) ! Size of the pivot block

! Factor diagonal and subdiagonal blocks on pivimage.

if (pivimage==me) call dgetf2( n-J+1, jb, A( j, pivcol ), n, ipiv( pivcol ), info )

SYNC ALL

! Copy the pivot columns from pivimage

PIVBLOCK(J:N,1:JB) = A(J:N,PIVCOL:PIVCOL+JB-1)[PIVIMAGE]

LPIV(1:JB) = IPIV(PIVCOL:PIVCOL+JB-1)[PIVIMAGE]

! Apply interchanges to columns 1:nextpiv-1.

call dlaswp( nextpiv-1, A(j,1), n, 1, jb, lpiv, 1 )

if (pivimage==me) nextpiv=nextpiv+jb

! Apply interchanges to columns nextpiv:lastcol.

if (nextpiv <= lastcol) then

call dlaswp( lastcol-nextpiv+1, A(j,nextpiv), n, 1, jb, lpiv, 1 )

! Compute block row of U

call dtrsm('l','l','n','u',jb,lastcol-nextpiv+1,one,pivblock(j,1),n,A(J,nextpiv),n)

! Update trailing submatrix

call dgemm('n','n',n-j-jb+1,lastcol-nextpiv+1,jb,-one, pivblock(j+jb,1), &

n, A(J,nextpiv),n,one,A(J+jb,nextpiv),n)

end if

SYNC ALL

! Adjust the pivot indices.

if (pivimage==me) then

do i = pivcol, pivcol+jb-1; ipiv(i) = j - 1 + ipiv(i); end do

end if

! Update pivimage, wrapping if necessary.

pivimage = pivimage + 1

if (pivimage>p) then; pivimage = 1; pivcol = pivcol + nb; end if

end do Loop

end subroutine luFactorize

Fig. 5. Code for LU factorization.
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Table 1
Execution time and computa-
tional power for a Cray-X1E
for matrix size n = 5000 and
block size nb = 50.

images time(s) Gflop/s

1 5.30 15.8
2 2.80 29.5
4 1.80 45.8
8 1.50 55.5

16 0.61 136
32 0.51 162

p

t(s)

10−1

100

101

20 21 22 23 24 25

p−1/2

p−2/3

p−1

. .
. .

.

Fig. 6. Execution time for a Cray-X1E as a function of the number of images. The matrix size is n = 5000 and the block size is nb = 50.
Perfect scaling corresponds to the dashed line marked p−1. Our code scales approximately as p−2/3.

Table 1 shows the execution times on a Cray-X1E for a matrix of order n = 5000 with block size nb = 50 as a
function of the number of images. Each processor has two vector pipelines, with frequency 1.13 MHz, capable of
two floating-point operations each for a peak computational power of 4.52 Gflop/s. Each image corresponds to four
processors working together (called MSP mode) with a peak computational power of 18.1 Gflop/s.

With one image, our code obtains the fraction, 15.8/18.1 = 0.87, of the peak theoretical power. As shown in
Fig. 6, our code scales quite well, as p−2/3 although not perfectly as p−1, as the number of images increases to 32.
The wiggles in the curve are caused by details of the Cray-X1E architecture [17]. We are aware that better scaling
may be obtained by a full decomposition in both rows and columns rather than decomposing by columns alone [6,7,
14,15,17], but the additional synchronization required and the additional complications required for pivoting make it
run slower for modest values of n. Besides, such a code is more complicated and would not be appropriate to show
in full here.

7. Co-arrays of derived type

By definition, co-arrays are the same size on each image. This restriction is not sufficient for handling applications
where the sizes of arrays are determined dynamically and different images may hold different amounts of data. But
a co-array may be of a derived type with pointer or allocatable components. The targets of such components are
always local with shapes that may vary from image to image. On each image, the component is allocated locally or
is pointer assigned to a local target with the desired size for that image. If an image has no data assigned to it, it
need not allocate the component or associate the pointer.
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For example, the derived type,

type VelocityField
real,allocatable :: x(:),y(:),z(:)
type(FieldMap),pointer :: map

end type

contains allocatable components that hold the values of a velocity field. It also contains a pointer of another derived
type that holds a map describing how the velocity field is distributed across images.

A variable of this type may be declared as a co-array,

type(VelocityField),allocatable :: v[:]

Allocation of an instance of this type as a co-array,

allocate(v[*])

is a collective allocation with implied synchronization across images.
Each image allocates memory for its own data components,

allocate(v%x(0:n+1),v%y(0:n+1),v%z(0:n+1))

using the normal Fortran allocate statement. These memory allocations are independent of each other, there
is no synchronization involved, and the memory allocated may be, and probably will be, at different locations on
the local heap for each image. The programmer must supply synchronization following these allocations before
referencing data across images.

Pointer assignment takes place locally on each image. For example, ifmap andlocalMap are of typefieldMap,
the code,

type(fieldMap),target :: map
type(fieldMap),pointer :: localMap
v%map => map
localMap => v%map

represents pointer assignment of the pointer component to a map on the invoking image, in the first case, and a local
pointer assignment to the pointer component, in the second case.

Pointers are not allowed to be co-arrays, and there is no concept of pointer assignment across images. For example,
the derived-type intrinsic assignments,

v[q] = v ! Pointer component of v[q] becomes undefined
v = v[q] ! Pointer component of v becomes undefined

result in these pointer components becoming undefined when such assignments are executed by an image other than
the one with co-subscript q. The data components of the structure, of course, are copied from one image to the other.

Co-array syntax supplies a straightforward way to access data from the components of such structures. The
co-subscript in square brackets is associated with the variable v, not with its component, for example,

vX(1:n) = v[p]%x(1:n)

This statement requires the image that executes it to obtain the address, on image p, of the allocated component v%x
and then to copy the data in the array itself to the local array vX. A typical example for using such data structures is
the exchange of halo cells from neighboring images [20,22],

v%x(n+1)=v[me+1]%x(1)
v%x(0) =v[me-1]%x(n)
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Data manipulation of this kind is handled awkwardly, if at all, in other programming models. Its natural expression
in co-array syntax gives the programmer power and flexibility for writing parallel code.

Note that the presence of co-arrays with pointer components may lead to variables that are not co-arrays being
accessed from other images or having their values changed by other images. For example, the variable map may be
accessed from another image through the co-array v. Of course, this cannot happen for a variable that does not have
the target attribute.

Co-arrays of derived type can be combined with the object-oriented features of Fortran 95 [1,12] and Fortran
2003 [5,23] to emulate object-oriented class libraries. Numrich used this technique to build an object-based parallel
numerical library [14–16]. This library defines distributed data structures as derived types such asBlockR8Matrix
for a blocked matrix with double precision data. Constructors create these distributed objects based on information
contained in another structure called a VectorMap, and they allocate memory space for the correct amount of data
for each image. The library contains procedures that perform various operations on these data structures including
the usual linear algebra operations like matrix multiplication, matrix transpose, and LU decomposition.

Figure 7 contains a code sample that shows how to use this object-based library for solving a system of linear
equations. The second line of the program gives access to the library through the module CafLib. The next
four lines of code declare some co-arrays: the block matrix A holds the distributed matrix, and the block vector X
holds the right-hand-side vector, which will be replaced by the solution vector. The pivot vector pivot holds pivot
information associated with the matrix A used during the decomposition and solution. The integers n and k contain
the global matrix size and the local block size. They are declared as co-arrays so that all images can obtain their
values from the first image, which reads them from an input file.

The first executable statement determines the image number for each image. The second executable statement
invokes the function factorNumImages, which returns an array of two integers that factor the image-index space
into a two-dimensional grid. These indices p and q are used in the constructors at run-time to determine how objects
are distributed across images.

The if statement controls execution so that image 1 opens the input file, reads the problem size and local block
size, and then closes the file. The other images wait at their barrier sync all until the values have been defined in
the co-array variables n and k, and they all copy the values from image 1 after passing the barrier.

Each image independently invokes the constructor newBlockMatrix to create a distributed matrix of global
size n×n. Inside the library, the co-array is declared with co-dimensions A[p,*]. The constructor decomposes
both rows and columns into a cyclic-wrapped distribution [7] with local blocks of size k × k held as allocatable
array components. The constructor allocates memory for these blocks and initializes them to zero. Next, each image
invokes the constructor newBlockVector to create a distributed vector of global size n with a cyclic-wrapped
distribution of local blocks of size k again held as allocatable array components. The constructor allocates memory
for these blocks and initializes them to zero. Inside the library, the co-array is declared with co-dimension X[*].

Each image invokes the constructor newPivotVector to create a pivot vector associated with the matrix A. It
is a collective subroutine with internal synchronization. The pivot vector is used internally by the library, and all
its components are private. Its co-dimensions inside the library match those of the matrix A. The library function
getPivotVector returns an array containing the usual pivot vector, like our array ipiv in Figure 5, if the
programmer needs it.

The library contains I/O routines for matrix and vector objects. To use them, each image invokes the construc-
tor newDiskFile to create objects of type DirectAccessDiskFile that enable them to read the matrix A
and the vector X from direct access files. Each image invokes the collective subroutines readBlockMatrix
and readBlockVector that read the data from the files. They then invoke the collective subroutine
luDecomposition that performs the LU decomposition followed by the collective subroutine solve that solves
the system. They all invoke the collective I/O subroutine writeBlockVector that saves the solution vector to a
file. After using the solution, each image comes to the second barrier sync all where they wait for all images to
arrive before deleting the data structures.

Reference [14] describes the performance of this code on the Cray-T3E and reference [17] describes the perfor-
mance on the Cray-X1E.
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program LU

use CafLib ! Access object-based library

type(BlockR8Matrix) :: A[*] ! Distributed matrix

type(BlockR8Vector) :: X[*] ! Distributed vector

type(R8PivotVector) :: pivot[*] ! Distributed permutation

integer :: k[*],n[*] ! Block size and matrix size

type(DirectAccessDiskFile) :: fileA ! Description of file for A

type(DirectAccessDiskFile) :: fileX ! Description of file for X

character,parameter :: myA='myA' ! File name for A

character,parameter :: myX='myX' ! File name for X

integer,parameter :: unit=888 ! Unit number

integer :: Iam ! Index of executing image

integer :: p,q,coDims(2) ! Co-dimensions

Iam = this_image()

coDims(:) = factorNumImages(2) ! Factor the image-index space

p = coDims(1); q = coDims(2) ! Co-dimensions; p*q<=num_images()

if(Iam == 1) then

open(unit=unit,file="input"); read(unit,*) n,k; close(unit)

end if

SYNC ALL ! Barrier

n = n[1]; k = k[1]

call newBlockMatrix(A,n,n,k,k,p,q) ! Construct block matrix

call newBlockVector(X,n,k,p*q) ! Construct block vector

call newPivotVector(A,pivot) ! Construct pivot vector: collective

call newDiskFile(fileA,unit,myA,n) ! Describe I/O for matrix A

call newDiskFile(fileX,unit,myX,n) ! Describe I/O for vector X

call readBlockMatrix(A,fileA) ! Read matrix A from a file: collective

call readBlockVector(X,fileX) ! Read vector X from a file: collective

call luDecomposition(A,pivot) ! Perform LU decomposition: collective

call solve(A,X,pivot) ! Solve the system: collective

: ! Make use of the solution

call writeBlockVector(X,fileX) ! Write vector X to a file: collective

call deletePivotVector(pivot) ! Remove block matrix: collective

call deleteBlockMatrix(A) ! Remove block vector

call deleteBlockVector(X) ! Remove block vector

call deleteDiskFile(fileA) ! Remove disk file A

call deleteDiskFile(fileX) ! Remove disk file X

end program LU

Fig. 7. Program for solving a system of linear equations using CafLib.

8. Collective subroutines

A collective subroutine is a member of a new category of intrinsic subroutines that perform operations across
co-dimensions in a way similar to intrinsic procedures that perform operations across normal dimensions.

co_all (mask,result[,team]) True if all values are true
co_any (mask,result[,team]) True if any value is true
co_count (mask,result[,team]) Numbers of true elements
co_maxloc (co_array,result[,team]) Image indices of maximum values
co_maxval (co_array,result[,team]) Maximum values
co_minloc (co_array,result[,team]) Image indices of minimum values
co_minval (co_array,result[,team]) Minimum values
co_product(co_array,result[,team]) Products of elements
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co_sum (co_array,result[,team]) Sums of elements

Each subroutine has a leading intent(in) co-array argument with the same shape on every image of the team,
an intent(out) result argument with the same shape as the first argument, and an optional scalar intent(in)
argument of type image team. If the optional argument is absent, the team consists of all images. The same
statement must be used to call the collective on all images of the team, and each call involves synchronization of the
images of the team. Upon completion, each image of the team receives the same result, each element of which
is calculated from the values of the corresponding elements on all the images of the team.

The following invocation, for example,

real :: x(n)[*],y(n)
call co_product(x,y)

returns to local array y(:) on each image the products,

y(i) =
∏

p

x(i)[p]. (1)

Roundoff effects may cause the result of co product, as well as the result of co sum, to vary between images.
An important case is for a scalar co-array. For example, the code,

real :: x(n), y(n), prod
real :: local_prod[*]

:
local_prod = dot_product(x(1:n),y(1:n))
call co_sum(local_prod,prod)

computes the inner-product of two rank-one arrays x and y. Each image computes its own local inner-product using
the normal dot product intrinsic function. No team is specified in the call of co sum, so the team is taken to be
all the images. There is an implied synchronization so the programmer need not supply it explicitly. The collective
procedure returns the sum over all the images to them all in the result variable prod.

9. Summary

The co-array programming model is the first official parallel extension to the Fortran language. We designed
co-arrays, from the beginning, to be a natural extension that makes sense to a Fortran programmer. Arrays are the
rock bottom essence of the language for expressing numerical algorithms in a very natural way. Co-arrays provide
an equally natural way for expressing parallel numerical algorithms.

The underlying philosophy of our design is to make the smallest number of changes to the language required to
obtain a robust and efficient parallel language without requiring the programmer to learn very many new rules. Co-
array syntax looks and feels like normal Fortran syntax and, for the most part, the rules that apply to co-dimensions
are the same as the rules that apply to normal dimensions.

Of equal importance in our design, the compiler is required to implement very little new technology. Because the
programmer is responsible for data distribution, for remote data communication, and for explicit synchronization,
the compiler is free to concentrate on local code optimization using all the compiler technology developed over
the past decades. Only where it sees explicit co-array syntax does it need to generate new code to use a specific
communication protocol for a particular machine. Square bracket syntax in a statement acts as an explicit flag to the
compiler, as well as to the programmer, that remote memory operations are taking place. The compiler optimizes
such statements locally using the same optimization techniques it uses to optimize local memory operations.

In this paper, we have explained the more important aspects of co-arrays for parallel programming as they have
been specified for the next Fortran standard. An image is a replication of the program, and the number of images is
fixed. Each image behaves as a uni-processor code except that some data objects are declared as co-arrays, and each
image has access to co-arrays on other images. That access is provided in a very natural way though an additional
set of subscripts.
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There is no attempt to treat the set of co-arrays with a given name as a huge shared array because that would
place a huge burden on the system to provide memory coherence. Instead, the programmer provides explicit
synchronizations, and the compiler is free, for code between synchronizations, to use all its normal optimization
techniques as if only one image were present.

Co-arrays have the same shape on every image. For irregular data, a co-array may be of a derived type that has
allocatable or pointer components that may vary in size between images. The allocated arrays or pointer targets
are always on the same image so that implementation is straightforward. We have outlined how to use such data
structures to design a library for numerical linear algebra that emulates an object-oriented class library.

We have concentrated on the more important mechanisms for synchronization, illustrated how to form and use
subsets of images as teams, described the new category of collective subroutines, and demonstrated the principal
mechanism for parallel I/O using direct-access files. Our code for parallel LU factorization shows the simplicity of
using the co-array model and how to combine it with well established numerical libraries that have been used as the
workhorses for performance for many decades.
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