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Abstract

Although much of cognitive science assumes thatditcategories are central to cognition,
there is scant evidence for a psychologically megini distinction between the literal and
nonliteral. We advance the idea that there isaat,fno principled difference between literal
and nonliteral comparisons; each is a differenetgb contextual modulation of semantic
knowledge. Generally, the context specificity ofnfan thought is viewed by some as
‘mysterious’ under current models of cognition (ekpdor, 2000). Using connectionist
modelling, we demonstrate a simple computationahcgple by which this contextual

modulation might be achieved, beginning with a serfiye-unit network, then showing how

the principle scales to more complex models of sgimamemory and metaphor

comprehension, establishing that the similarityuctire of semantic knowledge can be
fluidly manipulated by context within a structusafixed processing structure. The theory of
metaphor suggested by this computational view ptenapparticular view of the relation

between language and thought, namely that langafigels the strategic control of context
on semantic knowledge, allowing information to Wweught to bear in a given situation that
might otherwise not be available to influence pesteg. The implications of such a view for

creativity and the nature of categories are dismliss



Introduction

Much of cognitive science is premised on the assiompthat the discovery of literal
categories (i.e., pre-existing groups of relatedd&i in the world) is crucial to human
cognition (e.g., Murphy, 2003). Intrinsic to thes&of literal categories is literal similarity,
most obviously used to identify the category toahha given entity belongs. However, high-
level human cognition is also characterized byubke of non-literal similarity, exemplified
by metaphor and analogy, which rely on the nonmdiltsimilarity between categories. If there
is a fundamental divide between literal and figweatsimilarity, the production and
comprehension of metaphorical and analogical corsmas would seem to imply the

existence of additional, special cognitive mechassis

In fact, there is very little evidence to suggdsattthe distinction between literal and
nonliteral similarity has any psychological validitt may be unsurprising that the figurative
meanings of well-known idioms, such as “chew th& fand “kick the bucket”, are
comprehended more quickly than their literal intetations (Gibbs, Nayak, & Cutting,
1989); it seems plausible that they are lexicalisedspecialist vocabulary. However, given
enough context, people are no slower at readinglifanmetaphorical sentences than
comparable literal ones (Gibbs & Nagaoka, 19850yt Schallert, Reynolds, & Antos,
1978). Inhoff, Lima and Carroll (1984) confirmedstiinding with an eye-tracking study and
also replicated it with shorter contexts. This irepleither that the metaphors were not
interpreted figuratively, or, if they were, therethrocess required no additional computation
to that required by literal processing. Furthermoeven novel metaphors may be
comprehended as rapidly as comparable literal seese provided that the metaphors are apt

(Blasko & Connine, 1993).



Any difference between literal and nonliteral pregiag might be expected to be seen in
differential activation of brain areas for each dypf processing. However, neuroimaging
studies also support the idea that literal-norditenay be an uninformative dichotomy. Rapp
and colleagues (Rapp et al.,, 2007) failed to finffeences in laterality between
metaphorical and nonmetaphorical sentences, eitliean the task involved judging a
statement’s metaphoricity, or whether it had pwsitor negative connotations. In another
fMRI study, Stringaris and colleagues (Stringarisak, 2007) found that the left inferior
frontal gyrus (LIFG) was more activated when judgimetaphorical and anomalous
sentences than when judging comparable literadrstants. The LIFG has been hypothesised
to mediate retrieval of semantic knowledge (e.g@zFet al., 1992; Thompson-Schill et al.,
1997) and the authors suggested that additionahisgéerprocessing capacities were required
for metaphorical processing. However, their taskoiwved explicit judgement of the
meaningfulness of statements, so it is not cleaetidr this recruitment of additional
resources would take place in passive comprehensiothermore, the LIFG was also more
active when judging anomalous statements, so waatée region was doing, there was no

suggestion that it was specific to nonliterality.

Other imaging techniques have also failed to fimatlence in favour of a literal-nonliteral

distinction. Pynte and colleagues (Pynte et al96)Yecorded ERPs and found that the
terminal word of metaphors elicited larger N400 paments than did the terminal word of
literal sentences, suggesting that the (incongruéitesal meaning of the metaphors was
accessed during metaphor comprehension. Howeverstimuli in that experiment were

unfamiliar metaphors. In a further experiment, &safound that preceding the metaphorical
statement with a sentence that provided relevantegb for the metaphor strongly reduced

the N400 component, consistent with the notion,thaten contextually relevant, the



metaphorical meaning is the only one accessed.tHeravords, with sufficient context,

metaphors appear to be processed in the same Miggralsstatements.

In this article, we advance the idea that theranidact, no principled difference between
literal and nonliteral comparisons; each is a d#ifeé type of contextual modulation of
semantic knowledge. Metaphor, on this view, is@ess of utilising language as a strategic
control mechanism to manipulate context, bringiray bdear particular knowledge in
processing a given semantic token. This knowledgg not have been available without this

manipulation of context.

Contextual effects on semantic knowledge are wathl#ished. Barsalou (1993) noted that
when participants are asked to provide definititarscategories, such dsrd, on average,
more features differed across two participants’iniébns than were shared by those
participants, suggesting that considerable reptagenal flexibility exists between
individuals. However, there may also be markedilfidity within individual participants: if
different supporting contexts are provided for $slaene category label, the prototypicality (or
representativeness) of particular exemplars maferdifvildly (e.g., Glucksberg & Estes,
2000; Murphy, 1988; Roth & Shoben, 1983). For exiamipom the imagined perspective of
a Chinese persorswan and peacockmay be highly representative, whereas from the
perspective of an Americamgbin and eagle may be prototypical. Such flexibility cannot
reflect differences in underlying knowledge, beeatlee same participants were involved in
each context. Even across participants, the knaeldzhse may be quite uniform: Barsalou
(1993) reported that when all the features produmegarticipants fobird were pooled and
presented to a new group of participants, and ribat group asked to judge whether each

feature was potentially true of birds, the agreenaenoss the groups was near-perfect. Thus,



differences in features listed for a definition adifferences in prototypicality of category

exemplars do not owe primarily to differences iowtedge, but to those of context.

The idea that categories are context-specific rtaicgdy not new: William James, iithe
Principles of Psychology chapter on “Reasoning” (James, 1890/1999), @eied the view
that categories are goal-directed and context-BpetiNow that | am writing, it is essential
that | conceive my paper as a surface for insanipti But if | wished to light a fire, and no
other materials were by, the essential way of cwirgg the paper would be as combustible
material” (pp.959). Wittgenstein, too, in Hisvestigations states that “how we group words
into kinds depends on the aim of our classificatienand on our own inclination”
(Wittgenstein, 1953). Wittgenstein famously demaatsd the difficulties of defining the
word “game”, not to show that to do so is impossilblut to point out that a rigid definition is
not necessary for people to use the term succissfpkeople clearlylo use and comprehend

the word without apparent difficulty.

If categories are specific to contexts, then whait ithat binds categories together? Quine
(1977) made the point that simply invoking simifaras mental glue raises the very problem
that it is intended to answer: things may seemlamsimplybecausdhey belong to the same

category. Murphy and Medin (1985) have criticisked prevalent focus on similarity and the
associated tendency to break down concepts intstiteent attributes or components, noting
that such practice ignores human goals, needshaatiés. An alternative account, then, is
that categories with exemplars connected by stredtinction relationships, or by causal

schemata of some kind, will be more coherent tlzegories with exemplars that are not.

One might have a goal-state that could connectdtne degree) objects that appear to share
very few features: Barsalou (1983) investigatedpitoperties ohd hoccategories, which are

presumed to be formed ‘on the fly’ rather thaniestd from long-term memory. Two
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examples are “Ways to escape being killed by théad'vegetarian dishes to accompany
melanzane alla parmigiaria For ad hoc categories, typicality cannot be determined by
similarity to a category concept, but must be driby dimensions relevant to the goal that
the category serves. Even sa, hoccategories were found to show typicality gradignts
some exemplars being more representative thansjythsrsalient as those associated with
‘common’ categories (such &slit or birds): ad hoc categories varied as much in typicakty a
common categories and participants showed sim#éael$ of agreement in typicality
judgements of exemplars from each. These findimgscansistent with the notion that the
same kind of mental processes underlie laotihocand common categories, with each being

context-dependent and fluid.

Fodor (2000) has endorsed the view that high-ldughan cognition (or ‘thinking’) is
characterized by context-sensitivity and globaliglithough Fodor argues that low-level
sensory and motor functions are subserved by modylstems, the ‘central system’ is
conceived as having access to the entirety of dinidual's knowledge, in order that it might
guide behaviour; Fodor refers to this complete s&€@sglobdity. Centrality and simplicity
are viewed as illustrative giobality. Centralityrefers to the notion that an individual item of
information may be central to one idea but periphtw another (cf. Barsalou, 1982); the
centrality of the information is context-specific inasmuchitas dependent on the particular
idea under consideration and is therefore notnsiti to the item of information itself.
Simplicity refers to the idea that two different explanatiamawn from the same set of
representations may differ in their degree of camipy; simplicity is a property at the level
of the explanation, but not of the constituent espntations. Fodor (2000) has expressed
scepticism that current computational theories ofdrare sufficient to explain the context

sensitivity of human thought. His concern is that both symbolic and connectionist



approaches to cognition, the causal propertiesaganing systems are driven by local rather
than global properties of representations (theagfitt structure and the connectivity matrix,

respectively).

Thus, Fodor's comments highlight that context-g@ni appears mysterious under current
conceptions of the mind. How could context-sensitivoperate in real representational
systems with fixed causal structures? Can contexisigvity emerge from cognitive
development? It is difficult to address such questiunless they can be precisely formulated.
The contribution of the current article is to shbew it can be done: context-sensitivity may
not be particularly mysterious, but rather straigiward. This demonstration will utilise
computational (and specifically connectionist) mbdg: we will begin by describing a very
simple five-unit neural network in which the simitg structure of the internal
representations is altered by context. This modlékerve as a ‘teaching example’ to plainly
demonstrate the computational mechanism we profoossontext-sensitivity. We will then
illustrate this mechanism in two more complex meded human cognition to show how
semantic memory could demonstrate context depeedamt then to argue that metaphor can
be viewed as merely a variety of contextual modutatComputational models have proved
useful to cognitive science because they demoestratv complex theoretical notions can
work in practice. For example, Oakes, Newcombe Bhanert (2009) have argued that
modelling has made a significant contribution tgaatting our understanding of the concepts
of interaction and emergence, even though thess idere already present in the theories of
Piaget, Gibson, and Vygotsky. In the same wayjrtention here is to show that very simple
computational architectures can nevertheless shomplex patterns of context-sensitive
processing, and also to show that this propertyplesasimilar models to account for high-

level human behaviours.



A mechanism for contextual modulation

The exclusive-or (XOR) logical problem was used the early exploration of the
computational properties of connectionist netwolecause solving it requires internal
representations (Rumelhart, Hinton, & Williams, &9&i.e. it cannot be solved by a two-
layer network). The network traditionally used tdve the problem has only five units: two
input units, two ‘hidden’ (i.e. internal) units, done output unit (Figure 2). This network is
both well-known and very simple, so it is ideallyited to introducing the computational

principle of context-sensitivity that is the foauisthis article.

The XOR problem is specified over two inputs and ontput (see Table 1). Figure 1a shows
the four patterns comprising the problem represkme two-dimensional ‘input space’. The
computational complexity arises because the outpiitof a network can only make a single
categorization in input space, equivalent to drgwaridecision line’ through input space and
responding positively to inputs falling on one sal®l negatively to units falling on the other.
However, the two inputs that must be classifiedtpaty, namely [1,0] and [0,1], cannot be
separated with a straight line from those to whichust respond negatively, [0,0] and [1,1].
Hence, the problem is termed ‘linearly inseparab®ehetwork with a layer of hidden units
can learn to re-represent the similarity structofré¢he problem over these hidden units, so

that the problem becomes linearly separable foothput unit.

The following is an example of such a five-unitwetk learning the internal representations

necessary to solve the XOR problem, which demoestdiaow the similarity structure of the



internal representations develops to solve thegoaitsation problem: The network was
trained for 2500 presentations of the completenitngi set, using the back-propagation
learning algorithm. The learning rate and momentuene set to 0.1 and 0.0, respectively.
Figure 1b shows how the similarity structure of iimgut space has been re-represented over
the hidden units, for one sample run of the XORwoek. The figure includes the decision
line employed by the output unit, which is deteredrby its threshold and the two weights
connecting the hidden units to the output units levident that the patterns [1,0] and [0,1]

now fall on one side of the decision line and [@Ad [1,1] fall on the other.

We now introduce a new problem whose solution megucontextual modulation of the
internal similarity structure. The Hexagon problshown in Table 2 is a slightly modified
version of the XOR problem. There are now six inpatterns, in the shape of a hexagon in
input space (Figure 3a and 3b). However, the nétwgonow required to leartwo different
categorisationsof these input patterns, depending on the confExé categorisations are
both linearly inseparable and are partly mutualglasive (that is, two of the input patterns
that must be classified positively in one contexistrbe classified negatively in the other and
vice versa, while two must be classified negativalypoth). The current context is provided

to the network by two additional input units (Figut).
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Again, we can examine the similarity structurerdérnal representations that are developed
when the network is trained on the Hexagon probl&he network was trained for 8000
presentations of the training set, with backpropaga a learning rate of 0.1, and a
momentum of 0.0. Figure 3c and 3d show the sintylastructure of the internal
representations under the two contexts, for a samptwork. Both cases resemble the
solution for the XOR network: the input space hasrbrepresented over the two hidden units
in such a way that patterns to be classified paditilie on one side of the output unit's
decision line, while those to be classified negdyivie on the other side. The crucial point to
note here is that, although the decision line ledrny the output unit is itself insensitive to
context,the similarity structure of the internal represettas shifts dynamically underneath
this line in a manner that depends on cont&dame patterns that fall on one side of the
decision line in one context, fall on the otheres@f the decision line in the other context.
Note that the network has a fixed architecture ¢enection weights and thresholds are the
same for each context), which is the attribute thador, for example, considers to be the
causally efficacious property of connectionist nateg. How, then, does the network manage
to alter the similarity structure of its internapresentations depending on the context?
Figure 5 shows sample solutions adopted by the X0&® Hexagon networks, in terms of

their connection weights and unit thresholds.
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Note that in the Hexagon diagram in Figure 5, weeh@cluded the contribution of each
context unit in terms of theffectivethresholds that they produce in the respectiveldnd
units.This means that if a context unit servesxtote a hidden unit, it is lowering the hidden
unit's effective threshold. If it inhibits the hidd unit, it is raising the effective threshold,
because less excitation is now necessary for {at ianits to push the hidden unit over its
threshold. For example, if thectual threshold of a hidden unit is 5 (i.e., the valdethe
incoming activation that must be exceeded for tldeldn unit to turn itself on), context unit
A connects to this unit with a weight of -4, anchtext unit B connects to the unit with a
weight of +1, then the effective threshold of théden unit is [5 - (-4) = 9] in context A and
[5 - (+1) = 4] in context B. In other words, indubm A makes the hidden unit more likely to

turn on, while input from B makes it less likelytton on.

The notion of threshold used in this example ifghssimplification, since the activation of

a processing unit in a typical connectionist netwi; in fact, determined by passing the
summed input through a smoother sigmoid activatimttion, rather than through a binary
step function. Nevertheless, it should be cleae l@mw context succeeds in modulating the
similarity structure of the internal representasioit does so by producing different effective
thresholds in the hidden units. The activationvarg from the input units is the same in each
case, because the weights between inputs and hiddesnare fixed. The decision line of the
output unit is the same in each case because,,dtgitonnections to the hidden units are
fixed and it receives no direct input from the @tunits. In contrast, the computational
properties of the internal representations witlpees to the input are defined with respect to

the activity of the context units.

Importantly, then, this simple model demonstratest it is quite feasible for context to
radically alter the similarity structure of intetn@presentations — sufficient for the output

12



units to achieve different categorizations of thegut. The fluidity of the internal

representations occurs by virtue of the activatignamics in the network, even though the
weight matrix of the network is fixedContra Fodor, then, it is the permissible activation
dynamics of a connectionist network that define dégisal properties, not its connection

weights alone (although it should be noted thatwweeare, of course, very closely linked).

With this demonstration in place, we can now moveto more complex models that
illustrate the contextual modulation of semantiowtedge. These models will demonstrate

how thesimilarity structure of semantic knowledge can loedfy manipulated by context.

Two models of context-dependent categorization

1. The development of semantic knowledge

Rogers and McClelland (2004) explored a model efdbvelopment of semantic knowledge.
Extending initial work by Hinton (1981) and Rumathand Todd (1993), the authors
construed semantic knowledge in terms of sets opgmitions linking items and features
(e.g.,a robin is a bird a robin can fly a robin has wings The architecture of the model is
shown in Figure 6. The individual nodes in the rekis input and output layers correspond
to the constituents of these propositions: itemg. (@ne rose robin, salmor), relations (S

A, is, can hag, and attributes (e.diving thing, plant, animal bird, red, grow, fly, wings
leaves skin). When presented with a particular pair of itenmsl aelations at input, the
network attempts to switch on the attribute unitghie output layer that correspond to valid
completions of the proposition. For example, whiea tinits corresponding tealmonand
canare activated at input, the network must learnctivate the nodes that represgnbw,
moveandswim Although localist representations are used atntloeel’s input and output,

the learning process allows the model to deriviidiged internal representations that do not
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have this atomic character. This conceptual knogdedstored across distributed

representations, gradually differentiates acroseldement.

This model is important because the authors argbhatithe model exhibits many of the
behaviours that other researchers had taken toatedthe presence of naive, domain-specific
theories guiding children’s semantic cognition (e@ne might have a theory about the
differences between plants and animals, involvaxgd such as that the latter tend to move
around a lot more.) In thbeorytheory, knowledge of a concept consists not itaficslist of
features, but in its relation to a set of theoaékow entities of various types tend to behave
(e.g., this object is a living thing, it is an amilnand it is a bird; it therefore inherits a ssrie
of properties of living things, a more restricteet ®f properties for animals, and more

restricted still for birds, and so forth).

One behaviour used to measure the structure ofrgemanowledge isnductive projection
Children and adults are told that a given item &a®vel property (e.g., it cajueem or it
has agueemor it is agueen). They are then asked which other items (objestanals, etc.)
might also have this novel property. In a serieexgeriments, Carey (1985) showed that
children’s answers to these kinds of questions glan systematic ways over development.
Because abstraction and induction are key functairthe semantic system, these patterns
provide important evidence about developmental gbham the structure of semantic
representations. Rogers and McClelland (2004) ptedea series of simulations aimed at
explaining two of these empirical effects: patseof inductive property attribution can be
different for different kinds of object propertieeyd patterns of inductive projection change

over development, generally becoming more specific.
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In order to simulate inductive projection, Rogersl dcClelland took models at different
stages of training and added a new attribute feafline model was then trained to associate
this attribute to the existing representation ie thipper hidden layer in the context of a
particular relation (e.g., learning that aak can queen). The authors then explored which
other items also activated the new attribute, aseasure of inductive generalization. Could

pinesalso queem? What abautips, or canarie®

Importantly, Rogers and McClelland viewed the repregations in the upper hidden layer as
being context-dependent, exhibiting different samtly structure depending on the relation
that was specified, and as a consequence, diffgerdralization properties. Figure 7 depicts
the similarity structure of the representationsthe upper hidden layer for two different
contexts, thes relation and theanrelation (adapted from Rogers & McClelland, 2004y. F
8.2). Items that share maigy or can properties generate similar patterns of activityoas
units in the upper hidden layer when that relatimit is activated. The model’'s behaviour
reflects the acquisition of knowledge that diffdrkimds of properties extend across different

sets of objects.

Similar to the results of Carey's (1985) studidsis tknowledge undergoes a gradual
developmental change, whereby the model learngdiffatent kinds of properties should be
extended in different ways. Th&context produces representations that are moneedédd,
because in the network’s world, there are few priogse shared among objects of the same
kind. It therefore differentiates items in this text and as a result shows less of a tendency
to generalize newly learnad context properties across categories. By contnaghe can
context, the items show less differentiated repredmns. For example, plants are collapsed
into a single clump. This is because in tan context, all plants are associated with very
similar upper hidden layer representations, becahsy all share exactly the same

15



behaviours: in the network’s world, the only thiagplant can do is grow. Novel properties
associated to any given plant in ten context are therefore more likely to be generdlize

other plants.

In this model, then, the context of the relatiamdly shifted the similarity structure within

semantic knowledge. The shift altered inductivedv&bur in such a way that the network’s
behaviour seemed to be shaped by implicit concepgheories. In fact, these theories
consisted of statistical regularities learned imgigen context. Rogers and McClelland’s
model shows us that the computational principlecomtext-sensitivity expostulated here
(arising from activation dynamics) scales to a déargnd more complex connectionist
network, altering the ‘meaning’ of semantic tokeHsving demonstrated this principle in
inductive projection, we will now do the same inmdel of metaphor comprehension.
Metaphor comprehension is sensitive to context @igbs & Nagaoka, 1985; Inhoff, Lima,

& Carroll, 1984), rendering it a particularly appr@te area to illustrate the computational

principle under consideration.

2. Metaphor comprehension

Thomas and Mareschal (2001) investigated the pedgbat metaphor may be viewed as a
form of categorization (Glucksberg & Keysar, 199Dhat is, when | say my job is a jail, |
am indicating that my job falls within the abstrategory of jails, i.e., the category of
constraining things. Thomas and Mareschal (2004;ade0 Purser et al., in press) used an
autoassociative model of semantic memory to explire hypothesis that metaphor
comprehension may involve a form of strategic naissification (see McClelland &

Rumelhart, 1986, on the use of autoassociator mksaas a model of semantic memory). It is
16



the process of classification that transfers cemributes from the B term (e.g., constraining
things) to the A term (my job). In order to testefier A is a member of B, A is transformed
by B knowledge. If it is little changed, it is likea member of B. Reproduction as a means of
assessing category membership is a widely used anerh in connectionist models of

memory (see Mareschal & Thomas, 2007).

One version of this model is shown in Figure 8. Tieéwork has distributed representations
at all layers. For an illustrative example, the eloevas given a restricted semantic
knowledge base covering just three concepts: applaés, and forks. Training involved
learning to reproduce the semantic features faviddal exemplars of each category in the
presence of the labels for that category (see Petsal., in press). Once trained, a token is
presented to the network, let us say an instanegpafticular green apple. The system is now
required to assess literal, metaphorical, or anousatomparisons relating to this token. The
sentencehis apple is an applevould be viewed as a literal comparison; the serg¢his
apple is a balwould be viewed as a metaphorical comparison, psrieanphasizing that this
apple is particularly round and that you are mikely to hit, kick or throw it than eat it; and

the sentencthis apple is a forkvould be viewed as an anomalous comparison.

Each sentence is applied to the model in the fallgwnanner. The semantic features for the
A term, the green apple, are applied to the inpitsiacross a semantic feature set, while the
label for the B term (apple, ball, or fork) is alactivated. The semantic output represents a
version of the A term transformed by the comparjsamle the activation of the output label
tests membership of the category. Figure 9 showes itiputs and outputs for these

comparisons over a set of semantic features. Tarllicomparison reproduces the apple
17



features accurately and indicates high confideme¢ the token is indeed an apple. The
metaphorical comparison produces lower confiderz the apple is a member of the
category ball, but produces a transformed repratient of the apple that attenuates the
‘eaten’ feature, and exaggerates both the ‘rourslreéshe apple and that it will be ‘kicked’

or ‘hit’. The anomalous comparison produces theestwconfidence that the apple is a
member of the category fork, and imposes propexiethe central features of the fork

category on the transformed representation: ‘whiireegular’, and ‘large’.

The model functions by using the context of theeldb alter the similarity structure of the
internal representations. The similarity structseeves to apply a different transformation to
the semantic feature input, in a way that partlgeshels on the identity of that input. Figure
10 depicts the similarity structure of the interreghresentations under four contexts: (a) with
each training exemplar for apples, balls, and fgkessented in the context of its correct
category label; (b) each exemplar presented inctir@ext of the apple label; (c) each
exemplar presented in the context of the ball lafaBleach label presented in the context of
the fork label. The figure indicates the extentaich the similarity structure is warped by
each label. This model can also be viewed as dxpdoithe globality of knowledge
characterized by Fodor (2000). For example, one wiay the output labels as testing the
respectivesimplicity of the theory that the A term is a member of theaBegory: here, the
simplest theory is that the green apple is indeadeanber of the category apple. And the
semantic transformation caused by activating dfiefabels may be seen as exaggerating the

central features of the B category when they are preserthe A term. The globality of
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knowledge, in this case, is achieved by the fulhretivity between features, internal

representations, and labels.

The model constitutes the following theory of méiap all semantic knowledge is stored
across a global representational system (as in Raged McClelland’s model). Language
labels are used as part of a strategic mechanismatapulate context, bringing to bear
different knowledge in the processing of a givemaetic token than would normally be
available when that token is met (e.g., ball knagkwould not normally be brought to mind
when presented with apple tokens). This alteredextrserves to exaggerate or attenuate
particular features of the token (depending on twrethey are covariant with those same
features in the ‘ball’ knowledge base, in this epdejy in the service of facilitating a
particular communicative goal appropriate to therent discourse context (e.g., that this
token of an apple is markedly round, or it may tm@wn). However, within this framework,
there is no principled difference between literaktaphorical, or anomalous comparisons:
they are just different forms of contextual modiatof semantic knowledge (see Leech,

Mareschal, & Cooper, 2008, for a related model iado analogy).

Discussion

The aim of this article was to demonstrate a coatmrial mechanism by which both
metaphorical and literal comparisons can be acHieshowing that context-dependent
cognitive flexibility can be implemented in a cogtienist network. Implementation
demonstrates the viability of the theoretical prsgdacontra for example, arguments by
Fodor that context-dependent processing in cornmasti networks is not possible because

the causal property that drives processing — tmmectivity matrix — is itself not dependent
19



on context. This view is erroneous because it oalttrations in the effective thresholds of
processing units. These change the computatiohs tlager of units can perform, even while
the connectivity matrix is fixed. (It should be adtthat Fodor has other reasons for not
preferring connectionist architectures; see Fo000). Thus, context sensitivity may not be
a mysterious aspect of cognition, since it canrstantiated with a simple computational

principle.

Implementation also clarifies the assumptions dheoretical proposal. In this case, the
assumptions are that: (1) categorisation behavimwertheless relies on feature-based
representations that are meaningful to the taslaadl (even if these features may in practice
be sub-lexical; see Thomas & Mareschal, 2001). &Heatures are flexibly combined in
different ways according to context; and (2) gldigalwhere it occurs, is achieved by
multiple connectivityIn other words, all bits of information can inimmiple influence the
processing of all other bits of information becaukeir representations are physically
connected (directly or indirectly). Furthermore, piementation demonstrates that the
representations required for context-dependengoasation are learnable — all three models

considered acquired their processing propertieexsure to a training set.

This computational principle was initially demoradéd using a simple five-unit
connectionist network, affording a clear examplelldwing this, it was shown that the
principle scaled up to larger and more complex nsdésemantic memory. In Rogers and
McClelland’s (2004) model, context specified thiee'dry’ (i.e.the thing caror the thing i$
that was brought to bear by the network in its oithe projection behaviour. Finally, a
model of metaphor comprehension was outlined, irchivthe context of verbal labels served

to alter the similarity structure of internal repeatations.
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This last model demonstrated a new view of metaphamely that metaphorical statements
are, at bottom, no different from literal ones. Eachieves its communicative purpose by
strategically modulating context, in order to britmy bear particular information in the
processing of a given semantic token. In the césaetaphor, this information would not
normally be active in the current discourse contéxhe statement is literal, this information
would typically be active. If there is no meaningdiifference between literal and nonliteral
similarity, then metaphor may be said not to eximcause all comparisons are simply
context-specific coalescences of particular sernaf@atures and dimensions. It is worth
pointing out that ‘nonliteral comparison’ is a pati@lly confusing notion: the features that
are highlighted by a nonliteral (metaphorical) camgon literally are shared (e.g. “The apple
is a ball”: the apple really is small, round andbthable). Of course, this reflects the central
message of the current article: literal and norditeomparisons are really the same kind of
thing; the literal version of a category is its Bamty structure in the most commonly

encountered context of usage.

This theory of metaphor supports a particular vigiwthe relation between language and
thought, namely that language affords the strategmtrol of context on semantic knowledge,
allowing information to be brought to bear that hiigotherwise not be available for

processing. In other words, language is a strategicto manipulate the context of thought.
Within this framework, the similarity structure @nguage representations is orthogonal to
the function that they perform. Hence, in the medaéscribed in this article, language
consists of atomic labels, whereas it is semaettures that have a similarity structure. In
the absence of language, on this view, the avétlalmf semantic knowledge would be

situationally determined. One prediction that avisaturally from this hypothesis is that
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animals that do not have language will be unablértog to bear knowledge that is not

determined by the current situation.

In order to put this view of language in contekisiworth briefly describing two well-known
alternatives. One is the Sapir-Whorf hypothesii(i$4929/1958; Whorf, 1940), the strong
form of which states that our thinking is deterndiry language, and that linguistic form and
meaning are inseparable. In contrast, the notiorverbal report’ in psychology, which
entails that language is (or, at least, can berdebed by thought. A more formal account is
Karmiloff-Smith’s (1992) Representational Redesoip model, which also holds that the
language system can ‘read off’ mental represemtst{poe. thoughts) in a direct manner. This
view seems uncontroversial, in essence. We sugiigsboth language and thought influence
each other: if we want to say that an apple isvihatde, this thought athrowing might bring

to mind the wordall, which, in turn, would influence the featuresapplethat were brought
to mind. On this view, then, language allows ugdatrol thought and this control is fluid,
goal-directed and adaptive. In contrast, accordmnthe Sapir-Whorf hypothesis, language
influences thought through some deterministic iasaipility of language and meaning; a
critical difference between these conceptions, tiethat the similarity structure of language

representations isot orthogonal to the function that they perform ia 8apir-Whorf view.

If language affords the strategic control of thaygthen something that is generally
considered rather mysterious might ‘come for fremely creativity (at least according to
some definitions): while some other, verbal, act¢swi metaphor allude vaguely to notions
of conceptual recombination and the like, the antoaf metaphor expounded here
demonstrates how particular features or dimensdbrasmetaphor topic may be exaggerated
and attenuated, depending on context, allowing eiscto be modified online. Thus, after
comprehending “The apple is a ball”, one’s onlioaaept ofball will have been modified in
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such a way that themall round and throwable aspects of the concept will have been
exaggerated. Mareschal and colleagues have arppaechiman categorization behavior is
often driven bypartial representationsso that only some dimensions of knowledge are
activated by a given situation, and different asp@¢ a category are activated by different
situations (Mareschal et al., 2007; Mareschal & ,Ta807). Synthesising Mareschal’s
position with our view that metaphor is not priradig different from the literal, we suggest
that creativity is not some esoteric notion reaqugriesoteric mechanisms: it is just a
consequence of how the mind works, because cogngimtrinsically context-dependent and
therefore is creative to the extent that contexinges (and can be manipulated). Creativity,
then, may be considered a tool to manipulate thensa of different features of a given
object or situation, where exaggerated featurggeri associations or task schemas that were

previously unnoticed.

Murphy and Medin (1985) make the point that menta@mistry is a more apt metaphor for
understanding concepts than mental composition,hasiping relations, operations and
transformations, as opposed to viewing featuréeeas and independent entities. John Stuart

Mill (1843/1965) had the following to say on thettea

...when the seven prismatic colors are presentditeteye in rapid succession, the sensation pradiscihat of
white. But in this last case it is correct to shattthe seven colors when they rapidly follow omether
generatewhite, but not that they actualfre white; so it appears to me that the Complex Ideamed by the
blending together of several simpler ones, showlten it really appears simple, (that is when theasste
elements are not consciously distinguishable ifbét)said taesult from or begenerated byhe simple ideas,
not to consistof them. . . . These are cases of mental chemistryhich it is possible to say that the simple

ideas generate, rather than that they composepthplex ones. (p. 29)

The idea of partial representations interactingptoduce new concepts, then, is long-

established (see Barsalou, 1993; Chalmers et @2;IMareschal et al., 2007; Smolensky,
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1988; for interim development of the idea). Toerte, the contribution of the current article

is to demonstrate mechanisniby which this can be achieved.

What exactly are categories, if they are not lgftdeatures stored in long-term memory?
Harnad (2005) has argued that “categorization ig systematic differential interaction
between an autonomous, adaptive sensorimotor syatelrits world (p.21)”. In his view,
categories only exist to the extent that we beltifferently to different kinds of entities: a
hard-line commitment to context-specificity and lgd@ection. The other side of the coin of
context-specific categories imcomplete contenbf definitions of those categories: it is
almost always possible to think of additional wayslescribing and defining a category, e.g.
birds do not have fur, they tend to drink wateeytlare descended from dinosaurs. Linguistic
descriptions may be recursive, or nested, such ahgtgiven level of description can be
further explicated in terms of another. This patdht limitless aspect of description renders
the possibility of complete content rather remétart of this problem of incomplete content
stems from the difference between stored and ideknowledge (Barsalou, 1993), because
many of the linguistic descriptions that peopleeofor categories are likely to be formulated
spontaneously rather than retrieved from long-tenemory. Semioticians have used the
problem of incomplete content to argue that lingcitabels (i.e. words) have no ultimate
determinable meaning: Derrida (1976, 1978) coimediérm ‘différance’ to allude to the way
in which (in his view) meaning is endlessly defdtra notion earlier offered by Peirce (1931-
1958): "The meaning of a representation can be imptibut a representation ... the
interpretant is nothing but another representationand as representation, it has its
interpretant again. Lo, another infinite seriesbwéver, the view that categories are context-
specific deftly avoids this problem: the meaningaofabel is constrained by context and

communicative intent. ‘Complete’ content, then, Wbbe the integrated descriptions of a
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category in every possible context. In neurocowmsitrist terms, Sirois and colleagues (Sirois
et al., 2008) suggest that “For a representatiometmome full, the individual must integrate

the partial representations across the entire rahgentexts in which the concept is used.”

What is context? In the various models demonstratedtext took different guises, but in
each case it represented an additional input tontbdel. One could therefore argue that
“context-dependent processing” is an artefact ofdmiinitions. We call one part of the input
layer “The Input” and another part “The Contextdashow how the activity of one part of
the input layer influences computations carriedawdr another part of the input layer. But in
reality, there is only a pattern of activation owar input layer. ‘Context’ is therefore just
another form of knowledge. The response to thisirment is simply to ask, what else could
context be but another source of information? Thedlenge is to identify experimentally the
information sources that drive contextual effeectshuman categorization. Of course, the
division of input layers into Input and Context ts, some extent, arbitrary. In reality, all
inputs serve as the context for all other inputssTs an intrinsic property of connectionist
networks, which makes them advantageous architctor capturing the fluidity with which

humans apply their knowledge to guiding their bedav
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Tables

Table 1: The XOR mapping problem.

Pattern Input 1 Input 2 Output

pl 0 0 0

p2 1 0 1
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p3 0 1 1

p4 1 1 0

Table 2: The Hexagon mapping problem.

Pattern Inputl Input?2 Output

Context A Context B

pl 25 0 0 0
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p2 75 0 1 0

p3 1 5 0 1
p4 75 1 0 0
p5 25 1 0 1
p6 0 5 1 0

Figure Captions

Figure 1: Geometric representation of the XOR ingpace and a sample hidden unit space
for a network.
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Figure 2: Exclusive-or (XOR) network.

Figure 3: Input and sample hidden unit spacesherHexagon network, for categorizations

in two different contexts.

Figure 4: Hexagon network.

Figure 5. Network solutions for XOR and Hexagonhpeons (numbers inside units show

effective thresholds).

Figure 6: Model of the development of semantic kieolge (Rogers & McClelland, 2004).

Figure 7: Similarity structure of hidden unit repeatations in the upper layer using multi-

dimensional scaling, under two different ‘relatibrtantexts.

Figure 8: Model of metaphor comprehension (Thomasi&eschal, 2001); labels of the B

term in the metaphor ‘an A is a B’ serve as thete&xrfor reproducing the features of A.

Figure 9: Transformations of the meaning of theefrt (a particular token of apple) by
comparison to three B domains for the metaphor ais A B. Ellipses indicate semantic

features showing particular modulation (see text).

Figure 10: The similarity structure of the intermapresentations (1st and 2nd principal
components) under four contexts: (a) semantic featactors accompanied by their correct

label; (b) all vectors labelled as balls; (c) aktors labelled as apples; (d) all vectors labelled

as forks.
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Figure 6
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Figure 7
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Figure 8
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Figure 10
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