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Abstract 

Although much of cognitive science assumes that literal categories are central to cognition, 

there is scant evidence for a psychologically meaningful distinction between the literal and 

nonliteral. We advance the idea that there is, in fact, no principled difference between literal 

and nonliteral comparisons; each is a different type of contextual modulation of semantic 

knowledge. Generally, the context specificity of human thought is viewed by some as 

‘mysterious’ under current models of cognition (e.g. Fodor, 2000). Using connectionist 

modelling, we demonstrate a simple computational principle by which this contextual 

modulation might be achieved, beginning with a simple five-unit network, then showing how 

the principle scales to more complex models of semantic memory and metaphor 

comprehension, establishing that the similarity structure of semantic knowledge can be 

fluidly manipulated by context within a structurally fixed processing structure. The theory of 

metaphor suggested by this computational view prompts a particular view of the relation 

between language and thought, namely that language affords the strategic control of context 

on semantic knowledge, allowing information to be brought to bear in a given situation that 

might otherwise not be available to influence processing. The implications of such a view for 

creativity and the nature of categories are discussed. 
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Introduction 

Much of cognitive science is premised on the assumption that the discovery of literal 

categories (i.e., pre-existing groups of related kinds in the world) is crucial to human 

cognition (e.g., Murphy, 2003). Intrinsic to the idea of literal categories is literal similarity, 

most obviously used to identify the category to which a given entity belongs. However, high-

level human cognition is also characterized by the use of non-literal similarity, exemplified 

by metaphor and analogy, which rely on the non-literal similarity between categories. If there 

is a fundamental divide between literal and figurative similarity, the production and 

comprehension of metaphorical and analogical comparisons would seem to imply the 

existence of additional, special cognitive mechanisms.  

In fact, there is very little evidence to suggest that the distinction between literal and 

nonliteral similarity has any psychological validity. It may be unsurprising that the figurative 

meanings of well-known idioms, such as “chew the fat” and “kick the bucket”, are 

comprehended more quickly than their literal interpretations (Gibbs, Nayak, & Cutting, 

1989); it seems plausible that they are lexicalised as specialist vocabulary. However, given 

enough context, people are no slower at reading familiar metaphorical sentences than 

comparable literal ones (Gibbs & Nagaoka, 1985; Ortony, Schallert, Reynolds, & Antos, 

1978). Inhoff, Lima and Carroll (1984) confirmed this finding with an eye-tracking study and 

also replicated it with shorter contexts. This implies either that the metaphors were not 

interpreted figuratively, or, if they were, then the process required no additional computation 

to that required by literal processing. Furthermore, even novel metaphors may be 

comprehended as rapidly as comparable literal sentences, provided that the metaphors are apt 

(Blasko & Connine, 1993). 
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Any difference between literal and nonliteral processing might be expected to be seen in 

differential activation of brain areas for each type of processing. However, neuroimaging 

studies also support the idea that literal-nonliteral may be an uninformative dichotomy. Rapp 

and colleagues (Rapp et al., 2007) failed to find differences in laterality between 

metaphorical and nonmetaphorical sentences, either when the task involved judging a 

statement’s metaphoricity, or whether it had positive or negative connotations. In another 

fMRI study, Stringaris and colleagues (Stringaris et al., 2007) found that the left inferior 

frontal gyrus (LIFG) was more activated when judging metaphorical and anomalous 

sentences than when judging comparable literal statements. The LIFG has been hypothesised 

to mediate retrieval of semantic knowledge (e.g. Fiez et al., 1992; Thompson-Schill et al., 

1997) and the authors suggested that additional semantic processing capacities were required 

for metaphorical processing. However, their task involved explicit judgement of the 

meaningfulness of statements, so it is not clear whether this recruitment of additional 

resources would take place in passive comprehension. Furthermore, the LIFG was also more 

active when judging anomalous statements, so whatever the region was doing, there was no 

suggestion that it was specific to nonliterality. 

Other imaging techniques have also failed to find evidence in favour of a literal-nonliteral 

distinction. Pynte and colleagues (Pynte et al., 1996) recorded ERPs and found that the 

terminal word of metaphors elicited larger N400 components than did the terminal word of 

literal sentences, suggesting that the (incongruous) literal meaning of the metaphors was 

accessed during metaphor comprehension. However, the stimuli in that experiment were 

unfamiliar metaphors. In a further experiment, it was found that preceding the metaphorical 

statement with a sentence that provided relevant context for the metaphor strongly reduced 

the N400 component, consistent with the notion that, when contextually relevant, the 
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metaphorical meaning is the only one accessed. In other words, with sufficient context, 

metaphors appear to be processed in the same way as literal statements. 

In this article, we advance the idea that there is, in fact, no principled difference between 

literal and nonliteral comparisons; each is a different type of contextual modulation of 

semantic knowledge. Metaphor, on this view, is a process of utilising language as a strategic 

control mechanism to manipulate context, bringing to bear particular knowledge in 

processing a given semantic token. This knowledge may not have been available without this 

manipulation of context. 

Contextual effects on semantic knowledge are well established. Barsalou (1993) noted that 

when participants are asked to provide definitions for categories, such as bird, on average, 

more features differed across two participants’ definitions than were shared by those 

participants, suggesting that considerable representational flexibility exists between 

individuals. However, there may also be marked flexibility within individual participants: if 

different supporting contexts are provided for the same category label, the prototypicality (or 

representativeness) of particular exemplars may differ wildly (e.g., Glucksberg & Estes, 

2000; Murphy, 1988; Roth & Shoben, 1983). For example, from the imagined perspective of 

a Chinese person, swan and peacock may be highly representative, whereas from the 

perspective of an American, robin and eagle may be prototypical. Such flexibility cannot 

reflect differences in underlying knowledge, because the same participants were involved in 

each context. Even across participants, the knowledge base may be quite uniform: Barsalou 

(1993) reported that when all the features produced by participants for bird were pooled and 

presented to a new group of participants, and that new group asked to judge whether each 

feature was potentially true of birds, the agreement across the groups was near-perfect. Thus, 
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differences in features listed for a definition and differences in prototypicality of category 

exemplars do not owe primarily to differences in knowledge, but to those of context. 

The idea that categories are context-specific is certainly not new: William James, in The 

Principles of Psychology’s chapter on “Reasoning” (James, 1890/1999), articulated the view 

that categories are goal-directed and context-specific: “Now that I am writing, it is essential 

that I conceive my paper as a surface for inscription... But if I wished to light a fire, and no 

other materials were by, the essential way of conceiving the paper would be as combustible 

material” (pp.959). Wittgenstein, too, in his Investigations, states that “how we group words 

into kinds depends on the aim of our classification, – and on our own inclination” 

(Wittgenstein, 1953). Wittgenstein famously demonstrated the difficulties of defining the 

word “game”, not to show that to do so is impossible, but to point out that a rigid definition is 

not necessary for people to use the term successfully – people clearly do use and comprehend 

the word without apparent difficulty. 

If categories are specific to contexts, then what is it that binds categories together? Quine 

(1977) made the point that simply invoking similarity as mental glue raises the very problem 

that it is intended to answer: things may seem similar simply because they belong to the same 

category. Murphy and Medin (1985) have criticised the prevalent focus on similarity and the 

associated tendency to break down concepts into constituent attributes or components, noting 

that such practice ignores human goals, needs and theories. An alternative account, then, is 

that categories with exemplars connected by structure-function relationships, or by causal 

schemata of some kind, will be more coherent than categories with exemplars that are not.   

One might have a goal-state that could connect (to some degree) objects that appear to share 

very few features: Barsalou (1983) investigated the properties of ad hoc categories, which are 

presumed to be formed ‘on the fly’ rather than retrieved from long-term memory. Two 
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examples are “Ways to escape being killed by the Mafia”, “vegetarian dishes to accompany 

melanzane alla parmigiana”. For ad hoc categories, typicality cannot be determined by 

similarity to a category concept, but must be driven by dimensions relevant to the goal that 

the category serves. Even so, ad hoc categories were found to show typicality gradients (i.e. 

some exemplars being more representative than others) as salient as those associated with 

‘common’ categories (such as fruit or birds): ad hoc categories varied as much in typicality as 

common categories and participants showed similar levels of agreement in typicality 

judgements of exemplars from each. These findings are consistent with the notion that the 

same kind of mental processes underlie both ad hoc and common categories, with each being 

context-dependent and fluid.  

Fodor (2000) has endorsed the view that high-level human cognition (or ‘thinking’) is 

characterized by context-sensitivity and globality. Although Fodor argues that low-level 

sensory and motor functions are subserved by modular systems, the ‘central system’ is 

conceived as having access to the entirety of an individual’s knowledge, in order that it might 

guide behaviour; Fodor refers to this complete access as globality. Centrality and simplicity 

are viewed as illustrative of globality. Centrality refers to the notion that an individual item of 

information may be central to one idea but peripheral to another (cf. Barsalou, 1982); the 

centrality of the information is context-specific inasmuch as it is dependent on the particular 

idea under consideration and is therefore not intrinsic to the item of information itself. 

Simplicity refers to the idea that two different explanations drawn from the same set of 

representations may differ in their degree of complexity; simplicity is a property at the level 

of the explanation, but not of the constituent representations. Fodor (2000) has expressed 

scepticism that current computational theories of mind are sufficient to explain the context 

sensitivity of human thought. His concern is that for both symbolic and connectionist 
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approaches to cognition, the causal properties of reasoning systems are driven by local rather 

than global properties of representations (the syntactic structure and the connectivity matrix, 

respectively).  

Thus, Fodor’s comments highlight that context-sensitivity appears mysterious under current 

conceptions of the mind. How could context-sensitivity operate in real representational 

systems with fixed causal structures? Can context sensitivity emerge from cognitive 

development? It is difficult to address such questions unless they can be precisely formulated. 

The contribution of the current article is to show how it can be done: context-sensitivity may 

not be particularly mysterious, but rather straightforward. This demonstration will utilise 

computational (and specifically connectionist) modelling: we will begin by describing a very 

simple five-unit neural network in which the similarity structure of the internal 

representations is altered by context. This model will serve as a ‘teaching example’ to plainly 

demonstrate the computational mechanism we propose for context-sensitivity. We will then 

illustrate this mechanism in two more complex models of human cognition to show how 

semantic memory could demonstrate context dependence and then to argue that metaphor can 

be viewed as merely a variety of contextual modulation. Computational models have proved 

useful to cognitive science because they demonstrate how complex theoretical notions can 

work in practice. For example, Oakes, Newcombe and Plumert (2009) have argued that 

modelling has made a significant contribution to advancing our understanding of the concepts 

of interaction and emergence, even though these ideas were already present in the theories of 

Piaget, Gibson, and Vygotsky. In the same way, the intention here is to show that very simple 

computational architectures can nevertheless show complex patterns of context-sensitive 

processing, and also to show that this property enables similar models to account for high-

level human behaviours. 
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A mechanism for contextual modulation 

The exclusive-or (XOR) logical problem was used in the early exploration of the 

computational properties of connectionist networks because solving it requires internal 

representations (Rumelhart, Hinton, & Williams, 1986) (i.e. it cannot be solved by a two-

layer network). The network traditionally used to solve the problem has only five units: two 

input units, two ‘hidden’ (i.e. internal) units, and one output unit (Figure 2). This network is 

both well-known and very simple, so it is ideally suited to introducing the computational 

principle of context-sensitivity that is the focus of this article. 

The XOR problem is specified over two inputs and one output (see Table 1). Figure 1a shows 

the four patterns comprising the problem represented in a two-dimensional ‘input space’. The 

computational complexity arises because the output unit of a network can only make a single 

categorization in input space, equivalent to drawing a ‘decision line’ through input space and 

responding positively to inputs falling on one side and negatively to units falling on the other. 

However, the two inputs that must be classified positively, namely [1,0] and [0,1], cannot be 

separated with a straight line from those to which it must respond negatively, [0,0] and [1,1]. 

Hence, the problem is termed ‘linearly inseparable’. A network with a layer of hidden units 

can learn to re-represent the similarity structure of the problem over these hidden units, so 

that the problem becomes linearly separable for the output unit. 

======== insert Table 1 about here ========= 

 

The following is an example of such a five-unit network learning the internal representations 

necessary to solve the XOR problem, which demonstrates how the similarity structure of the 
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internal representations develops to solve the categorisation problem: The network was 

trained for 2500 presentations of the complete training set, using the back-propagation 

learning algorithm. The learning rate and momentum were set to 0.1 and 0.0, respectively. 

Figure 1b shows how the similarity structure of the input space has been re-represented over 

the hidden units, for one sample run of the XOR network. The figure includes the decision 

line employed by the output unit, which is determined by its threshold and the two weights 

connecting the hidden units to the output unit. It is evident that the patterns [1,0] and [0,1] 

now fall on one side of the decision line and [0,0] and [1,1] fall on the other. 

======== insert Figure 1 about here ========= 

 

======== insert Figure 2 about here ========= 

 

We now introduce a new problem whose solution requires contextual modulation of the 

internal similarity structure. The Hexagon problem shown in Table 2 is a slightly modified 

version of the XOR problem. There are now six input patterns, in the shape of a hexagon in 

input space (Figure 3a and 3b). However, the network is now required to learn two different 

categorisations of these input patterns, depending on the context. The categorisations are 

both linearly inseparable and are partly mutually exclusive (that is, two of the input patterns 

that must be classified positively in one context must be classified negatively in the other and 

vice versa, while two must be classified negatively in both). The current context is provided 

to the network by two additional input units (Figure 4). 

======== insert Table 2 about here ========= 
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Again, we can examine the similarity structure of internal representations that are developed 

when the network is trained on the Hexagon problem. The network was trained for 8000 

presentations of the training set, with backpropagation, a learning rate of 0.1, and a 

momentum of 0.0. Figure 3c and 3d show the similarity structure of the internal 

representations under the two contexts, for a sample network. Both cases resemble the 

solution for the XOR network: the input space has been represented over the two hidden units 

in such a way that patterns to be classified positively lie on one side of the output unit’s 

decision line, while those to be classified negatively lie on the other side. The crucial point to 

note here is that, although the decision line learned by the output unit is itself insensitive to 

context, the similarity structure of the internal representations shifts dynamically underneath 

this line in a manner that depends on context. Some patterns that fall on one side of the 

decision line in one context, fall on the other side of the decision line in the other context. 

Note that the network has a fixed architecture (the connection weights and thresholds are the 

same for each context), which is the attribute that Fodor, for example, considers to be the 

causally efficacious property of connectionist networks. How, then, does the network manage 

to alter the similarity structure of its internal representations depending on the context? 

Figure 5 shows sample solutions adopted by the XOR and Hexagon networks, in terms of 

their connection weights and unit thresholds. 

======== insert Figure 3 about here ========= 

 

======== insert Figure 4 about here ========= 

 

======== insert Figure 5 about here ========= 
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Note that in the Hexagon diagram in Figure 5, we have included the contribution of each 

context unit in terms of the effective thresholds that they produce in the respective hidden 

units.This means that if a context unit serves to excite a hidden unit, it is lowering the hidden 

unit’s effective threshold. If it inhibits the hidden unit, it is raising the effective threshold, 

because less excitation is now necessary for the input units to push the hidden unit over its 

threshold. For example, if the actual threshold of a hidden unit is 5 (i.e., the value of the 

incoming activation that must be exceeded for the hidden unit to turn itself on), context unit 

A connects to this unit with a weight of -4, and context unit B connects to the unit with a 

weight of +1, then the effective threshold of the hidden unit is [5 - (-4) = 9] in context A and 

[5 - (+1) = 4] in context B. In other words, input from A makes the hidden unit more likely to 

turn on, while input from B makes it less likely to turn on. 

The notion of threshold used in this example is a slight simplification, since the activation of 

a processing unit in a typical connectionist network is, in fact, determined by passing the 

summed input through a smoother sigmoid activation function, rather than through a binary 

step function. Nevertheless, it should be clear here how context succeeds in modulating the 

similarity structure of the internal representations: it does so by producing different effective 

thresholds in the hidden units. The activation arriving from the input units is the same in each 

case, because the weights between inputs and hidden units are fixed. The decision line of the 

output unit is the same in each case because, again, its connections to the hidden units are 

fixed and it receives no direct input from the context units. In contrast, the computational 

properties of the internal representations with respect to the input are defined with respect to 

the activity of the context units.  

Importantly, then, this simple model demonstrates that it is quite feasible for context to 

radically alter the similarity structure of internal representations – sufficient for the output 
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units to achieve different categorizations of the input. The fluidity of the internal 

representations occurs by virtue of the activation dynamics in the network, even though the 

weight matrix of the network is fixed. Contra Fodor, then, it is the permissible activation 

dynamics of a connectionist network that define its causal properties, not its connection 

weights alone (although it should be noted that the two are, of course, very closely linked).  

With this demonstration in place, we can now move on to more complex models that 

illustrate the contextual modulation of semantic knowledge. These models will demonstrate 

how the similarity structure of semantic knowledge can be fluidly manipulated by context. 

Two models of context-dependent categorization 

1. The development of semantic knowledge 

Rogers and McClelland (2004) explored a model of the development of semantic knowledge. 

Extending initial work by Hinton (1981) and Rumelhart and Todd (1993), the authors 

construed semantic knowledge in terms of sets of propositions linking items and features 

(e.g., a robin is a bird, a robin can fly, a robin has wings). The architecture of the model is 

shown in Figure 6. The individual nodes in the network’s input and output layers correspond 

to the constituents of these propositions: items (e.g. pine, rose, robin, salmon), relations (IS 

A, is, can, has), and attributes (e.g. living thing, plant, animal, bird, red, grow, fly, wings, 

leaves, skin). When presented with a particular pair of items and relations at input, the 

network attempts to switch on the attribute units in the output layer that correspond to valid 

completions of the proposition. For example, when the units corresponding to salmon and 

can are activated at input, the network must learn to activate the nodes that represent grow, 

move and swim. Although localist representations are used at the model’s input and output, 

the learning process allows the model to derive distributed internal representations that do not 
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have this atomic character. This conceptual knowledge, stored across distributed 

representations, gradually differentiates across development.  

This model is important because the authors argued that the model exhibits many of the 

behaviours that other researchers had taken to indicate the presence of naïve, domain-specific 

theories guiding children’s semantic cognition (e.g., one might have a theory about the 

differences between plants and animals, involving facts such as that the latter tend to move 

around a lot more.) In the theory theory, knowledge of a concept consists not in a static list of 

features, but in its relation to a set of theories of how entities of various types tend to behave 

(e.g., this object is a living thing, it is an animal, and it is a bird; it therefore inherits a series 

of properties of living things, a more restricted set of properties for animals, and more 

restricted still for birds, and so forth). 

One behaviour used to measure the structure of semantic knowledge is inductive projection. 

Children and adults are told that a given item has a novel property (e.g., it can queem, or it 

has a queem, or it is a queem). They are then asked which other items (objects, animals, etc.) 

might also have this novel property. In a series of experiments, Carey (1985) showed that 

children’s answers to these kinds of questions change in systematic ways over development. 

Because abstraction and induction are key functions of the semantic system, these patterns 

provide important evidence about developmental change in the structure of semantic 

representations. Rogers and McClelland (2004) presented a series of simulations aimed at 

explaining two of these empirical effects:  patterns of inductive property attribution can be 

different for different kinds of object properties; and  patterns of inductive projection change 

over development, generally becoming more specific. 

======== insert Figure 6 about here ========= 
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In order to simulate inductive projection, Rogers and McClelland took models at different 

stages of training and added a new attribute feature. The model was then trained to associate 

this attribute to the existing representation in the upper hidden layer in the context of a 

particular relation (e.g., learning that an oak can queem). The authors then explored which 

other items also activated the new attribute, as a measure of inductive generalization. Could 

pines also queem? What about tulips, or canaries? 

Importantly, Rogers and McClelland viewed the representations in the upper hidden layer as 

being context-dependent, exhibiting different similarity structure depending on the relation 

that was specified, and as a consequence, different generalization properties. Figure 7 depicts 

the similarity structure of the representations in the upper hidden layer for two different 

contexts, the is relation and the can relation (adapted from Rogers & McClelland, 2004, Fig. 

8.2). Items that share many is or can properties generate similar patterns of activity across 

units in the upper hidden layer when that relation unit is activated. The model’s behaviour 

reflects the acquisition of knowledge that different kinds of properties extend across different 

sets of objects.  

Similar to the results of Carey’s (1985) studies, this knowledge undergoes a gradual 

developmental change, whereby the model learns that different kinds of properties should be 

extended in different ways. The is context produces representations that are more delineated, 

because in the network’s world, there are few properties shared among objects of the same 

kind. It therefore differentiates items in this context and as a result shows less of a tendency 

to generalize newly learned is context properties across categories. By contrast, in the can 

context, the items show less differentiated representations. For example, plants are collapsed 

into a single clump. This is because in the can context, all plants are associated with very 

similar upper hidden layer representations, because they all share exactly the same 
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behaviours: in the network’s world, the only thing a plant can do is grow. Novel properties 

associated to any given plant in the can context are therefore more likely to be generalized to 

other plants.  

In this model, then, the context of the relation fluidly shifted the similarity structure within 

semantic knowledge. The shift altered inductive behaviour in such a way that the network’s 

behaviour seemed to be shaped by implicit conceptual theories. In fact, these theories 

consisted of statistical regularities learned in a given context. Rogers and McClelland’s 

model shows us that the computational principle of context-sensitivity expostulated here 

(arising from activation dynamics) scales to a larger and more complex connectionist 

network, altering the ‘meaning’ of semantic tokens. Having demonstrated this principle in 

inductive projection, we will now do the same in a model of metaphor comprehension. 

Metaphor comprehension is sensitive to context (e.g. Gibbs & Nagaoka, 1985; Inhoff, Lima, 

& Carroll, 1984), rendering it a particularly appropriate area to illustrate the computational 

principle under consideration. 

======== insert Figure 7 about here ========= 

 

2. Metaphor comprehension 

Thomas and Mareschal (2001) investigated the proposal that metaphor may be viewed as a 

form of categorization (Glucksberg & Keysar, 1990). That is, when I say my job is a jail, I 

am indicating that my job falls within the abstract category of jails, i.e., the category of 

constraining things. Thomas and Mareschal (2001; see also Purser et al., in press) used an 

autoassociative model of semantic memory to explore the hypothesis that metaphor 

comprehension may involve a form of strategic misclassification (see McClelland & 

Rumelhart, 1986, on the use of autoassociator networks as a model of semantic memory). It is 
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the process of classification that transfers certain attributes from the B term (e.g., constraining 

things) to the A term (my job). In order to test whether A is a member of B, A is transformed 

by B knowledge. If it is little changed, it is likely a member of B. Reproduction as a means of 

assessing category membership is a widely used mechanism in connectionist models of 

memory (see Mareschal & Thomas, 2007). 

======== insert Figure 8 about here ========= 

 

One version of this model is shown in Figure 8. The network has distributed representations 

at all layers. For an illustrative example, the model was given a restricted semantic 

knowledge base covering just three concepts: apples, balls, and forks. Training involved 

learning to reproduce the semantic features for individual exemplars of each category in the 

presence of the labels for that category (see Purser et al., in press). Once trained, a token is 

presented to the network, let us say an instance of a particular green apple. The system is now 

required to assess literal, metaphorical, or anomalous comparisons relating to this token. The 

sentence this apple is an apple would be viewed as a literal comparison; the sentence this 

apple is a ball would be viewed as a metaphorical comparison, perhaps emphasizing that this 

apple is particularly round and that you are more likely to hit, kick or throw it than eat it; and 

the sentence this apple is a fork would be viewed as an anomalous comparison. 

Each sentence is applied to the model in the following manner. The semantic features for the 

A term, the green apple, are applied to the input units across a semantic feature set, while the 

label for the B term (apple, ball, or fork) is also activated. The semantic output represents a 

version of the A term transformed by the comparison, while the activation of the output label 

tests membership of the category. Figure 9 shows the inputs and outputs for these 

comparisons over a set of semantic features. The literal comparison reproduces the apple 
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features accurately and indicates high confidence that the token is indeed an apple. The 

metaphorical comparison produces lower confidence that the apple is a member of the 

category ball, but produces a transformed representation of the apple that attenuates the 

‘eaten’ feature, and exaggerates both the ‘roundness’ of the apple and that it will be ‘kicked’ 

or ‘hit’. The anomalous comparison produces the lowest confidence that the apple is a 

member of the category fork, and imposes properties of the central features of the fork 

category on the transformed representation: ‘white’, ‘irregular’, and ‘large’.  

======== insert Figure 9 about here ========= 

 

The model functions by using the context of the label to alter the similarity structure of the 

internal representations. The similarity structure serves to apply a different transformation to 

the semantic feature input, in a way that partly depends on the identity of that input.  Figure 

10 depicts the similarity structure of the internal representations under four contexts: (a) with 

each training exemplar for apples, balls, and forks presented in the context of its correct 

category label; (b) each exemplar presented in the context of the apple label; (c) each 

exemplar presented in the context of the ball label; (d) each label presented in the context of 

the fork label. The figure indicates the extent to which the similarity structure is warped by 

each label. This model can also be viewed as exploiting the globality of knowledge 

characterized by Fodor (2000). For example, one may view the output labels as testing the 

respective simplicity of the theory that the A term is a member of the B category: here, the 

simplest theory is that the green apple is indeed a member of the category apple. And the 

semantic transformation caused by activating different labels may be seen as exaggerating the 

central features of the B category when they are present in the A term. The globality of 
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knowledge, in this case, is achieved by the full connectivity between features, internal 

representations, and labels. 

======== insert Figure 10 about here ========= 

 

The model constitutes the following theory of metaphor: all semantic knowledge is stored 

across a global representational system (as in Rogers and McClelland’s model). Language 

labels are used as part of a strategic mechanism to manipulate context, bringing to bear 

different knowledge in the processing of a given semantic token than would normally be 

available when that token is met (e.g., ball knowledge would not normally be brought to mind 

when presented with apple tokens). This altered context serves to exaggerate or attenuate 

particular features of the token (depending on whether they are covariant with those same 

features in the ‘ball’ knowledge base, in this example), in the service of facilitating a 

particular communicative goal appropriate to the current discourse context (e.g., that this 

token of an apple is markedly round, or it may be thrown). However, within this framework, 

there is no principled difference between literal, metaphorical, or anomalous comparisons: 

they are just different forms of contextual modulation of semantic knowledge (see Leech, 

Mareschal, & Cooper, 2008, for a related model applied to analogy).  

Discussion 

The aim of this article was to demonstrate a computational mechanism by which both 

metaphorical and literal comparisons can be achieved, showing that context-dependent 

cognitive flexibility can be implemented in a connectionist network. Implementation 

demonstrates the viability of the theoretical proposal contra, for example, arguments by 

Fodor that context-dependent processing in connectionist networks is not possible because 

the causal property that drives processing – the connectivity matrix – is itself not dependent 
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on context. This view is erroneous because it omits alterations in the effective thresholds of 

processing units. These change the computations that a layer of units can perform, even while 

the connectivity matrix is fixed. (It should be noted that Fodor has other reasons for not 

preferring connectionist architectures; see Fodor, 2000). Thus, context sensitivity may not be 

a mysterious aspect of cognition, since it can be instantiated with a simple computational 

principle.  

Implementation also clarifies the assumptions of a theoretical proposal. In this case, the 

assumptions are that: (1) categorisation behaviour nevertheless relies on feature-based 

representations that are meaningful to the task at hand (even if these features may in practice 

be sub-lexical; see Thomas & Mareschal, 2001). These features are flexibly combined in 

different ways according to context; and (2) globality, where it occurs, is achieved by 

multiple connectivity. In other words, all bits of information can in principle influence the 

processing of all other bits of information because their representations are physically 

connected (directly or indirectly). Furthermore, implementation demonstrates that the 

representations required for context-dependent categorisation are learnable – all three models 

considered acquired their processing properties via exposure to a training set. 

This computational principle was initially demonstrated using a simple five-unit 

connectionist network, affording a clear example. Following this, it was shown that the 

principle scaled up to larger and more complex models of semantic memory. In Rogers and 

McClelland’s (2004) model, context specified the ‘theory’ (i.e. the thing can or the thing is) 

that was brought to bear by the network in its inductive projection behaviour. Finally, a 

model of metaphor comprehension was outlined, in which the context of verbal labels served 

to alter the similarity structure of internal representations. 
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This last model demonstrated a new view of metaphor: namely that metaphorical statements 

are, at bottom, no different from literal ones. Each achieves its communicative purpose by 

strategically modulating context, in order to bring to bear particular information in the 

processing of a given semantic token. In the case of metaphor, this information would not 

normally be active in the current discourse context; if the statement is literal, this information 

would typically be active. If there is no meaningful difference between literal and nonliteral 

similarity, then metaphor may be said not to exist, because all comparisons are simply 

context-specific coalescences of particular semantic features and dimensions. It is worth 

pointing out that ‘nonliteral comparison’ is a potentially confusing notion: the features that 

are highlighted by a nonliteral (metaphorical) comparison literally are shared (e.g. “The apple 

is a ball”: the apple really is small, round and throwable). Of course, this reflects the central 

message of the current article: literal and nonliteral comparisons are really the same kind of 

thing; the literal version of a category is its similarity structure in the most commonly 

encountered context of usage. 

This theory of metaphor supports a particular view of the relation between language and 

thought, namely that language affords the strategic control of context on semantic knowledge, 

allowing information to be brought to bear that might otherwise not be available for 

processing. In other words, language is a strategic tool to manipulate the context of thought. 

Within this framework, the similarity structure of language representations is orthogonal to 

the function that they perform. Hence, in the models described in this article, language 

consists of atomic labels, whereas it is semantic features that have a similarity structure. In 

the absence of language, on this view, the availability of semantic knowledge would be 

situationally determined. One prediction that arises naturally from this hypothesis is that 



22 

 

animals that do not have language will be unable to bring to bear knowledge that is not 

determined by the current situation.  

In order to put this view of language in context, it is worth briefly describing two well-known 

alternatives. One is the Sapir-Whorf hypothesis (Sapir, 1929/1958; Whorf, 1940), the strong 

form of which states that our thinking is determined by language, and that linguistic form and 

meaning are inseparable. In contrast, the notion of ‘verbal report’ in psychology, which 

entails that language is (or, at least, can be) determined by thought. A more formal account is 

Karmiloff-Smith’s (1992) Representational Redescription model, which also holds that the 

language system can ‘read off’ mental representations (i.e. thoughts) in a direct manner. This 

view seems uncontroversial, in essence. We suggest that both language and thought influence 

each other: if we want to say that an apple is throwable, this thought of throwing might bring 

to mind the word ball, which, in turn, would influence the features of apple that were brought 

to mind. On this view, then, language allows us to control thought and this control is fluid, 

goal-directed and adaptive. In contrast, according to the Sapir-Whorf hypothesis, language 

influences thought through some deterministic inseparability of language and meaning; a 

critical difference between these conceptions, then, is that the similarity structure of language 

representations is not orthogonal to the function that they perform in the Sapir-Whorf view. 

If language affords the strategic control of thought, then something that is generally 

considered rather mysterious might ‘come for free’, namely creativity (at least according to 

some definitions): while some other, verbal, accounts of metaphor allude vaguely to notions 

of conceptual recombination and the like, the account of metaphor expounded here 

demonstrates how particular features or dimensions of a metaphor topic may be exaggerated 

and attenuated, depending on context, allowing concepts to be modified online. Thus, after 

comprehending “The apple is a ball”, one’s online concept of ball will have been modified in 
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such a way that the small, round and throwable aspects of the concept will have been 

exaggerated. Mareschal and colleagues have argued that human categorization behavior is 

often driven by partial representations, so that only some dimensions of knowledge are 

activated by a given situation, and different aspects of a category are activated by different 

situations (Mareschal et al., 2007; Mareschal & Tan, 2007). Synthesising Mareschal’s 

position with our view that metaphor is not principally different from the literal, we suggest 

that creativity is not some esoteric notion requiring esoteric mechanisms: it is just a 

consequence of how the mind works, because cognition is intrinsically context-dependent and 

therefore is creative to the extent that context changes (and can be manipulated). Creativity, 

then, may be considered a tool to manipulate the salience of different features of a given 

object or situation, where exaggerated features trigger associations or task schemas that were 

previously unnoticed.  

Murphy and Medin (1985) make the point that mental chemistry is a more apt metaphor for 

understanding concepts than mental composition, emphasising relations, operations and 

transformations, as opposed to viewing features as inert and independent entities.  John Stuart 

Mill (1843/1965) had the following to say on the matter:  

...when the seven prismatic colors are presented to the eye in rapid succession, the sensation produced is that of 

white. But in this last case it is correct to say that the seven colors when they rapidly follow one another 

generate white, but not that they actually are white; so it appears to me that the Complex Idea, formed by the 

blending together of several simpler ones, should, when it really appears simple, (that is when the separate 

elements are not consciously distinguishable in it) be said to result from, or be generated by the simple ideas, 

not to consist of them. . . . These are cases of mental chemistry: in which it is possible to say that the simple 

ideas generate, rather than that they compose, the complex ones. (p. 29) 

The idea of partial representations interacting to produce new concepts, then, is long-

established (see Barsalou, 1993; Chalmers et al., 1992; Mareschal et al., 2007; Smolensky, 
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1988; for interim development of the idea). To reiterate, the contribution of the current article 

is to demonstrate a mechanism by which this can be achieved. 

What exactly are categories, if they are not lists of features stored in long-term memory? 

Harnad (2005) has argued that “categorization is any systematic differential interaction 

between an autonomous, adaptive sensorimotor system and its world (p.21)”. In his view, 

categories only exist to the extent that we behave differently to different kinds of entities: a 

hard-line commitment to context-specificity and goal-direction. The other side of the coin of 

context-specific categories is incomplete content of definitions of those categories: it is 

almost always possible to think of additional ways of describing and defining a category, e.g. 

birds do not have fur, they tend to drink water, they are descended from dinosaurs. Linguistic 

descriptions may be recursive, or nested, such that any given level of description can be 

further explicated in terms of another. This potentially limitless aspect of description renders 

the possibility of complete content rather remote. Part of this problem of incomplete content 

stems from the difference between stored and inferred knowledge (Barsalou, 1993), because 

many of the linguistic descriptions that people offer for categories are likely to be formulated 

spontaneously rather than retrieved from long-term memory. Semioticians have used the 

problem of incomplete content to argue that linguistic labels (i.e. words) have no ultimate 

determinable meaning: Derrida (1976, 1978) coined the term ‘différance’ to allude to the way 

in which (in his view) meaning is endlessly deferred, a notion earlier offered by Peirce (1931-

1958): "The meaning of a representation can be nothing but a representation ... the 

interpretant is nothing but another representation ... and as representation, it has its 

interpretant again. Lo, another infinite series". However, the view that categories are context-

specific deftly avoids this problem: the meaning of a label is constrained by context and 

communicative intent. ‘Complete’ content, then, would be the integrated descriptions of a 



25 

 

category in every possible context. In neuroconstructivist terms, Sirois and colleagues (Sirois 

et al., 2008) suggest that “For a representation to become full, the individual must integrate 

the partial representations across the entire range of contexts in which the concept is used.” 

What is context? In the various models demonstrated, context took different guises, but in  

each case it represented an additional input to the model. One could therefore argue that 

“context-dependent processing” is an artefact of our definitions. We call one part of the input 

layer “The Input” and another part “The Context” and show how the activity of one part of 

the input layer influences computations carried out over another part of the input layer. But in 

reality, there is only a pattern of activation over an input layer. ‘Context’ is therefore just 

another form of knowledge. The response to this argument is simply to ask, what else could 

context be but another source of information? The challenge is to identify experimentally the 

information sources that drive contextual effects in human categorization. Of course, the 

division of input layers into Input and Context is, to some extent, arbitrary. In reality, all 

inputs serve as the context for all other inputs. This is an intrinsic property of connectionist 

networks, which makes them advantageous architectures for capturing the fluidity with which 

humans apply their knowledge to guiding their behaviour.  
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Tables 

Table 1: The XOR mapping problem. 

Pattern Input 1 Input 2 Output 

p1 0 0 0 

p2 1 0 1 
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p3 0 1 1 

p4 1 1 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: The Hexagon mapping problem. 

Pattern Input 1 Input 2 Output 

   Context A Context B 

p1 .25 0 0 0 
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p2 .75 0 1 0 

p3 1 .5 0 1 

p4 .75 1 0 0 

p5 .25 1 0 1 

p6 0 .5 1 0 

 

 

 

 

 

 

 

 

 

 

 

 

Figure Captions 

Figure 1: Geometric representation of the XOR input space and a sample hidden unit space 

for a network. 
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Figure 2: Exclusive-or (XOR) network. 

Figure 3: Input and sample hidden unit spaces for the Hexagon network, for categorizations 

in two different contexts. 

Figure 4: Hexagon network. 

Figure 5: Network solutions for XOR and Hexagon problems (numbers inside units show 

effective thresholds). 

Figure 6: Model of the development of semantic knowledge (Rogers & McClelland, 2004). 

Figure 7: Similarity structure of hidden unit representations in the upper layer using multi-

dimensional scaling, under two different ‘relational’ contexts. 

Figure 8: Model of metaphor comprehension (Thomas & Mareschal, 2001); labels of the B 

term in the metaphor ‘an A is a B’ serve as the context for reproducing the features of A. 

Figure 9: Transformations of the meaning of the A term (a particular token of apple) by 

comparison to three B domains for the metaphor an A is a B. Ellipses indicate semantic 

features showing particular modulation (see text). 

Figure 10: The similarity structure of the internal representations (1st and 2nd principal 

components) under four contexts: (a) semantic feature vectors accompanied by their correct 

label; (b) all vectors labelled as balls; (c) all vectors labelled as apples; (d) all vectors labelled 

as forks. 
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Figure 10 
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