
A bi-logistic growth model for conference registration with an

early bird deadline

Trevor Fenner, Mark Levene, and George Loizou
Department of Computer Science and Information Systems

Birkbeck, University of London
London WC1E 7HX, U.K.

{mark,trevor,george}@dcs.bbk.ac.uk

Abstract

The recent interest in human dynamics has led researchers to investigate the pro-
cesses that explain human behaviour within different contexts. Here we are concerned
in modelling the human response to a deadline, and in particular we look at the process
of conference registration with an early bird deadline. We provide empirical evidence
from a six-year conference registration data set that the bi-logistic growth function, with
the interpretation as registration with an early bird deadline, can be viewed as a social
mechanism.
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1 Introduction

Recent interest in complex systems, such as social networks, the world-wide-web, email net-
works and mobile phone networks [Bar07], has led researchers to investigate the processes that
may explain the dynamics of human behaviour within these networks. For example, Barabási
[Bar05] suggested that the bursty nature of human behaviour, for example when measuring
the inter-event response time of email communication, is a result of a decision-based queueing
process. In particular, humans tend to prioritise actions, for example when deciding which
email to respond to, and therefore a priority queue model was proposed in [Bar05], leading
to a heavy-tailed, power-law distribution of inter-event times.

Of particular interest to us has been the formulation of a generative model, in the form
of a stochastic process, by which a complex system evolves and gives rise to a power-law or
other distribution [FLLR07, FLL12]. This builds on the early work of Simon [Sim55]. In the
context of human dynamics, the priority queue model [Bar05] mentioned above is a generative
model characterised by a heavy-tailed distribution.

In the bigger picture, one can view the goal of such research as being similar to that of
social mechanisms [HS98, HB09], i.e. looking into the processes, or mechanisms, that can
explain observed social phenomena. More precisely, a social mechanism provides an action-
based explanation of a social phenomenon. It consists of entities with their properties and
the activities they engage in that bring about an observed outcome that is to be explained.
According to Schelling [Sch98], a social mechanism can be viewed as an interpretation, in
terms of social behaviour (in our case human dynamics), of a mathematical model that
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reproduces the phenomenon that we are studying. The model on its own is not a social
mechanism, what it needs in addition is the interpretation or application of the model.

Schelling [Sch98] gave an example of a social mechanism based on the logistic growth model
[MMA96, MYA99], which we shall describe in Section 2. He suggests one such interpretation
of the model in the form of the growth of the sales of a book. Here the sales follow an
initially exponential growth curve, followed by a decline in sales until they more or less cease.
Of course, empirical evidence is needed to validate or invalidate the proposed mathematical
model underlying the social mechanism under consideration.

Here we study the problem of modelling human response to a deadline, which has been
investigated in the context of conference registration [AGP07, AGP09] or submission [Fla10].
It is not surprising that conference registration or submission may follow a logistic growth
pattern, and indeed Flandrin [Fla10] used a variation of the logistic function to model the
process of submissions to conferences. But there is a twist in the tale, which has not yet
been investigated, when considering the effect of an early bird registration deadline (EBD),
which encourages early registration with a discounted fee. Our starting point in the case of
an EBD is the logistic model, which gives rise to the ubiquitous S-shaped growth function.
However, the effect of an EBD is that it induces a second growth phase just before the early
bird deadline, and thus suggests a model based on a bi-logistic growth function [Mey94]. We
provide empirical evidence, using a data set spanning six years of an annual conference, that
an interpretation of the bi-logistic growth model for conference registration with an EBD can
be viewed as a social mechanism for the underlying conference registration process.

The rest of the paper is organised as follows. In Section 2 we introduce the logistic and
bi-logistic growth functions, and in Section 3 we present empirical evidence for modelling
conference registration with an EBD as a bi-logistic growth function. We give our concluding
remarks in Section 4.

2 A Model Based on Logistic Growth Functions

The logistic growth model describes population growth in terms of an S-shaped sigmoidal
curve [MMA96, MYA99]. The growth rate begins exponentially, but at the inflection point the
growth starts slowing down and decreases towards zero as the population size approaches its
upper limit. Logistic growth was initially studied in the context of population growth, but has
since been applied in many situations; for example, it is regularly employed in technological
forecasting [KD11].

Logistic growth can be formulated as a first-order differential equation as follows. Let
N(t) be the population at time t, κ be the limiting size (or capacity) of the population, and
α be a constant positive growth rate. Then, the logistic equation is the differential equation
[MYA99]

dN(t)

dt
= αN(t)

(
1− N(t)

κ

)
, (1)

where N(0) > 0 is the population size at time t = 0.

The solution to the differential equation in (1) is given by

N(t) =
κ

1 + exp(−α(t− β))
. (2)
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We note that the inflection point is at t = β, the time at which the population reaches
κ/2. The parameter β is the mean of the logistic distribution given by (2) with κ = 1, and α
is inversely proportional to its standard deviation [FEHP11].

In some cases, there may be multiple growth phases, each described by the logistic growth
function (2). When there are two phases, we have bi-logistic growth [Mey94], which is described
by the sum of two separate logistic growth functions as follows:

N(t) =
κ1

1 + exp(−α1(t− β1))
+

κ2
1 + exp(−α2(t− β2))

, (3)

where αi, βi and κi are the respective parameters of the two logistic phases, for i = 1, 2.

The bi-logistic growth model seems to appear in nature, as was shown by Sheehy et al.
[SMF04], who described how rice crops can be modelled by two phases of logistic growth:
vegetative growth, followed by reproductive growth. The two phases can be readily modelled
as superimposed-converging bi-logistic curves. (See Section 3 below for some explanation
of the taxonomy of bi-logistic curves [Mey94].) The model can also be used in a social
context, as was demonstrated by Ausloos [Aus12], who analysed the evolution of the number
of temples built by the Antionist community in Belgium during two non-overlapping periods.
Although Ausloos modelled the data in terms of two separate logistic phases, it could readily
be modelled in terms of a sequential-diverging bi-logistic curve.

3 Application to Conference Registration

Modelling the dynamic behaviour when there is a deadline for a response can be applied in
the context of conference registration and submission. The proposal in [AGP07, AGP09] is
based on the reasonable assumption that the probability of registration is inversely related
to the time remaining before the deadline. Flandrin [Fla10] remarked that this assumption,
made by Alfi et al. [AGP07, AGP09], is somewhat arbitrary, and proposed a new model for
submissions based on a variant of the logistic growth function, which proved to be effective
on the data set he used for his analysis.

Here we take into account a feature of conference registration not considered in [AGP07,
AGP09] (nor in [Fla10], who only considers submissions), which is the effect of an early bird
registration deadline (EBD) on the registration process. As in [Fla10], our starting point is
the logistic model. However, an EBD induces a second growth phase just before the early
bird deadline, and thus suggests a bi-logistic growth function, with the inflection point β2
of the second phase occurring just before the EBD, as our model for conference registration
with an EBD. A simple explanation of the model as the sum of two logistic functions is that
there are two types of registrants, “poor” for whom registration before the EBD is critical,
and “rich” registrants for whom the EBD is irrelevant.

To test the bi-logistic hypothesis, we made use of weekly registration data for the USENIX
LISA (Large Installation System Administration) conference from 2007 to 2012, obtained
from www.usenix.org/sites/default/files/lisa12_weeklyregcomp_final.pdf. In this
conference, an early bird registration discount is offered, with a deadline of three weeks prior
to the start of the conference.

Table 1 shows the percentage of attendees registering Before and During the week prior
to the EBD, the total percentage (End) registered by the EBD (i.e. the sum of Before
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and During), and κ, the total number of conference participants registered before the first
day of the conference. It can be seen that in all years, apart from 2012, the percentage
registering before the week prior to the EBD was less than 50% and that about a third of the
registrations occurred during the week prior to the EBD. We observe that the total percentage
of registrations before the EBD was relatively consistent, being in the range 73-85%, with a
standard deviation of 4.6%. Table 2 shows the number of weeks β until registration reached
half of the total number as measured before the first day of the conference, the length of
the registration period and the number of weeks prior to the EBD. We note that the lowest
number of registrations was in 2009, which had both the highest percentage of registrations
during the week prior to the EBD and the lowest percentage of registrations before that.

Year Before During End κ

2007 48.27 33.80 82.07 781.0
2008 46.35 34.20 80.55 766.0
2009 33.33 41.67 75.00 612.0
2010 37.47 39.37 76.84 734.0
2011 45.09 28.20 73.29 805.0
2012 53.56 31.77 85.33 702.0

Average 44.01 34.84 78.85 733.3

Table 1: Percentage of attendees registering before and during the week prior to the EBD

Year β Weeks EBD

2007 6.05 10 7
2008 7.11 11 8
2009 7.40 11 8
2010 7.32 11 8
2011 7.17 11 8
2012 6.66 11 8

Average 6.95 10.83 7.83

Table 2: Number of weeks β until registration reached half capacity

Table 3 shows the fitted parameters to the bi-logistic curve (3) for the LISA conference
data from 2007 to 2012, where κ̂ = κ1 + κ2 is the total estimated capacity, and R2 is the
coefficient of determination [Mot95], which on average was about 0.99. The curve fitting
was done in Matlab using non-linear least squares regression; the fitted curves are shown in
Figure 1.

We can characterise the fitted curves based on the taxonomy of bi-logistic curves proposed
in [Mey94]. Firstly, a bi-logistic curve is said to be sequential if the second phase only starts
after the first one ends, otherwise it is said to be superimposed. Secondly, the curve is said
to be converging if α1 < α2, otherwise it is said to be diverging. We make the reasonable
assumptions that the first phase starts at the beginning of the registration period and the
second one ends at the end of the registration period. It can then be readily deduced from
Table 3 that for the LISA conferences, apart from 2011, the curves could be categorised as
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superimposed-converging, while for 2011 as sequential-diverging (we discuss the statistics for
2011 in more detail below).

For all years (with the exception of 2010), the mid-point β1 of the first logistic growth
phase occurred well before the EBD, and the mid-point β2 of the second phase occurred
around half a week before the EBD, i.e. about three and a half weeks before the start of the
conference. By symmetry, it follows hat the second phase started around the end of week
four, except in 2007 when registration started a week later than in subsequent years. We
note that α1 < α2 in all years except 2011. The statistics for that year also show the highest
value for α1 and the lowest for α2, indicating particularly fast growth in the first phase. It
is also worth noting that in 2011, although the percentage registering during the week prior
to the EBD was the smallest, yet the final number of registrations was still the highest (see
Table 1).

The worst year during the period in terms of registrations was 2009, when there were at
least 90 registrations fewer than in any other year. We note that in this year the percentage
registering before the week prior to the EBD was the lowest (see Table 1), and κ1 was also
the lowest (see Table 3). So, for some reason, in 2009 people were slower to register than in
other years. Moreover, despite the percentage registering during the week prior to the EBD
being the largest (see Table 1), this did not make up for the loss of registration during the
first phase. The years 2010 and 2012 stand out in that the growth rate of the second phase is
about six times that of the first phase, having the smallest values for α1 and the highest for α2.
We note that the fitting procedure does not take into account the fact that the registration
process finished after 11 weeks (10 weeks in 2007); this essentially truncates the logistic curve
even though this might be showing an upward trend at the end of the registration period.
However, Table 3 does indicate that κ̂, the overall capacity of the fitted bi-logistic growth
function, is consistent with κ, the total number of registrations, as shown in Table 1.

Year α1 β1 κ1 α2 β2 κ2 R2 κ̂

2007 0.99 2.47 221.1 1.73 6.44 552.6 0.9969 773.7
2008 0.85 2.68 182.9 1.56 7.44 578.0 0.9961 760.9
2009 0.85 3.58 107.6 1.77 7.64 496.2 0.9939 603.8
2010 0.57 6.31 410.0 3.77 7.59 322.2 0.9889 732.2
2011 1.79 1.44 121.8 0.82 7.53 686.9 0.9890 808.7
2012 0.52 4.07 400.0 3.05 7.54 302.6 0.9960 702.6

Average 0.93 3.43 240.6 2.12 7.36 489.8 0.9935 730.3

Table 3: Bi-logistic fitted parameters for LISA registration data

Looking at the average values of the fitted parameters of the bi-logistic curve (the last
row in Table 3), we see that, on average, the first phase finishes in the middle of the seventh
week, while, as noted earlier, the second phase starts around the end of the fourth week; so
the two phases overlap for nearly three weeks. From the data and the high R2 values, it is
clearly a plausible hypothesis that the EBD induces bi-logistic growth.
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4 Concluding Remarks

We have provided empirical evidence that conference registration with an EBD can be mod-
elled with a bi-logistic growth function in order to capture the two growth phases in registra-
tion. Thus the bi-logistic growth function, with the interpretation as conference registration
with an EBD, can be viewed as a social mechanism. The process has two growth phases one,
whose inflection point generally occurs well before the EBD, and a second, whose inflection
point occurs about half a week before the EBD. This is, of course, a consequence of predictable
human behaviour, viz. a high number of registrations just before the EBD. In particular, in
the data set we analysed, about a third of the registrations occurred just before the EBD.

It would be useful to further test the bi-logistic growth model on other conference data sets,
and also to examine the effect of normalising the data using the total number of submissions,
as was done in [Fla10]. An interesting application of the model would be for forecasting
registration [MI95], which might be utilised for conference planning purposes.
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Figure 1: Bi-logistic curve fitting for LISA registration data from 2007 to 2012
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