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Abstract: The logistics and cost of environmental monitoring can represent challenges for 

heritage managers, partly because of the sheer number of environmental parameters to 

consider. There is a need for a system, capable of monitoring the holistic impact of the 

environment on cultural materials while remaining relatively easy to use and providing 

remote access. This paper describes a dosimetric system based on piezoelectric quartz 

crystal technology. The prototype sensing module consists of an array of piezoelectric 

quartz crystals (PQC) coated with different metals (Fe, Cu, Ni and Sn) and includes a 

temperature and relative humidity sensor. The communication module involves an 

802.15.4 low-power radio and a GPRS gateway which allows real time visualisation of the 

measurements online. An energy management protocol ensures that the system consumes 

very low power between measurements. The paper also describes the results and 

experiences from two heritage field deployments, at Apsley House in London, UK, and at 

the Royal Palaces of Abomey in Benin. Evaluation of PQC measurements, temperature, 

relative humidity and the rate of successful transmission over the communication systems 

are also reported. 
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1. Introduction 

Environmental monitoring is a key component of heritage management. Individual environmental 

parameters such as temperature, relative humidity and pollutants have been shown in laboratory 

experiments to cause damage to cultural materials. However, in the real environment, these parameters 

tend to act synergistically. For example, the synergistic action of heat and relative humidity and certain 

pollutants can cause or exacerbate loss of colour in photographic films, corrosion in metals and fading 

in textiles [1–3]. Most heritage sites systematically monitor temperature and relative humidity [4,5]. 

However, other environmental parameters such as pollutants, are harder to measure not only because 

the measurement cost of a single pollutant is generally higher than that of temperature and relative 

humidity combined but also because it is often necessary to measure multiple pollutants [5]. 

Conservators have long learned to holistically assess the impact of the environment on their objects 

and collections from simple visual inspections. In other terms, they use the actual materials as 

dosimetric sensors. This approach was previously tested using ―mock paintings‖ consisting of differently 

pigmented paint strips which provided information concerning the synergistic action of the  

micro-climates surrounding paintings [6]. The dosimetric approach which measures the synergistic and 

accumulative effects of different factors on a given material has led to the development of early 

warning systems such as the recent MEMORI dosimeter [7].  

Most current dosimeters typically consist of a single or a couple of materials known to be sensitive 

to a class of pollutants [8]. There is a need for more versatile systems which use an array of materials. 

Some dosimetric technologies are already capable of interfacing with several materials, more  

precisely metals [9]. However, a different device needs to be purchased for every metal of interest. 

There is therefore a need for dosimetric instrumentation to be able to flexibly interface different types 

of materials. 

It is required for any instrumentation deployed in heritage environments to be as non-intrusive as 

possible. Recent advances in information and communication technologies have led to the development 

of small, self-powered devices capable of internally saving data as well as transmitting them remotely 

by radio [10]. These devices provide other benefits beyond their low aesthetic impact. They can be 

deployed in large numbers to provide high resolution with little additional overhead due to the fact that 

data acquisition is done remotely [11]. They provide in situ and localised measurements as they can be 

deployed in confined areas and historic buildings [12,13]. 

The paper describes an environmental monitoring system based on a piezoelectric quartz crystal 

(PQC) dosimeter array. In previous work with PQC crystals two different coatings (organic and 

inorganic) were used for monitoring indoor environments [14–16]. These showed a differential 

response. The organic coating based on artists’ varnish responded to the oxidizing action of inorganic 

pollutants (NOx) and light. The inorganic coating (lead) responded to the presence of organic acids in 

display cases or microclimate frames for paintings. In this paper different metal coatings have been 
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chosen for their known differential action to pollutants. In addition diffusive passive sampling tubes 

were included in the field tests to calibrate the response of the coated PQC crystals. The environmental 

impact on the coated PQC crystals is assessed from measured shifts in the oscillation frequencies of the 

crystals. This paper also describes the communication system which allows the remote transmission and 

real-time visualisation of the measurements online. The issues encountered during the deployments at 

the two case study sites in London and Abomey, as well as the system characterisation and performance 

evaluation results are also reported.  

To the best of our knowledge, the innovations described in this paper are the following: (i) the 

dosimetric system is the first such unit capable of interfacing up to eight, not pre-determined, types of 

materials; (ii) the system makes it easier to remotely monitor several different environments that are 

representative of the actual intended use, including challenging environments such as outdoor and 

remote locations; (iii) the sensor responses (converted in percentages of coating mass increase) and the 

analysis of their correlation with environmental parameters, such as temperature, relative humidity and 

pollutant concentration, have helped characterise and compare the environments at two significant 

heritage sites in Europe and Africa. 

2. System Architecture 

In typical wireless sensor networks (WSN), little processing is done at the sensor node. Usually, the 

sensor node would be a single sensor whose sole task would be to transmit its measurements to a sink 

or gateway node. In this system a sensor array network approach was adopted in which data from an 

array of sensors, which includes temperature (T) and relative humidity (RH) sensor and coated PQC 

crystals, would be first aggregated at the sensor node before being transmitted to the gateway.  

Figure 1. System architecture. 

 

The main benefit of reducing radio communication in this way is to generate significant energy 

savings which would allow the system to operate autonomously over a long period. Indeed, radio 

communication is by far the most energy consuming component of WSN. For example, it could take 
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less energy for some microcontrollers to run 100 instructions than to transmit a single bit of data [17]. 

A drawback of this approach, however, is a higher data load at the sensor node and hence a higher risk 

of significant data loss, particularly in applications where a node would fail and cannot be recovered, 

such as in some very harsh environments [10]. 

The four main modules of the system architecture, sensing, processing and memory, communication 

systems and power management, are similar to traditional WSN architecture and are illustrated in 

Figure 1. They are described in detail in the following paragraphs. A photograph of the PQC sensor 

array prototype is shown in Figure 2. A smaller more integrated version is being developed to fit into 

confined spaces such as display frames. 

Figure 2. The PQC sensor array prototype. 

 

2.1. Sensing 

The sensing module is composed of a dosimeter array and a Sensirion SHT75 temperature and 

relative humidity sensor [18]. The dosimeter array consists of up to eight PQC crystals where each 

reference and coated crystal has its own oscillator driver circuit board custom-made by Quartz 

Technology Ltd [19]. The principle is that the environmental effect on the material will cause 

nanoscopic changes in its weight. For elastic materials, the frequency shifts of the coated PQC crystals 

can be related to the weight change of the coatings by the Sauerbrey equation [20]: 
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where f0: Resonant frequency (Hz); Δf: Frequency change (Hz); Δm: Mass change (g);  

A: Piezoelectrically active crystal area (gold coated area between electrodes, cm
2
); ρq: Density of 
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quartz (2.648 g/cm
3
) and µq: Shear modulus of quartz for AT-cut crystal (2.947 × 1011 g/cm·s

2
). The 

PQC array consisted of copper (Cu), iron (Fe), nickel (Ni) and tin (Sn) coated PQC crystals prepared 

with three different thicknesses. These four metals were selected because of their presence in the 

cultural objects and collections of our case study heritage sites. These metals were also selected 

because of previous work which demonstrated their different sensitivities to inorganic pollutants, 

temperature and relative humidity [21–23]. Thus, in the long term, it might be possible to characterise 

the presence of these pollutants from the PQC sensor array response. Finally, the selected metals form 

elastic films which are amenable for use with PQC crystals. The films were coated on both sides of the 

crystals using high purity metals deposited by thermal evaporation. During deposition, the film thickness 

levels were monitored using an Edwards FTM2 rate monitor connected to a commercial 6 MHz quartz 

crystal. The targeted thicknesses were 50, 100 and 150 nm. However, as discussed in Section 4.3, in 

practice the deposited thickness can vary greatly. 

2.2. Processing and Memory 

The sensing unit is connected to a Waspmote, which is a wireless sensor network platform 

developed by Libelium (Zaragoza, Spain) and based on the open source Arduino language [24]. It is 

embedded with an 8-MHz Atmega 1281 microcontroller [25] and an 802.15.4, 2.4 GHz Xbee low-power 

radio [26]. The microcontroller multiplexes the eight PQC sensor signals. The PQC sensor outputs a 

transistor-transistor logic (TTL) signal corresponding to the frequency difference between a reference 

uncoated and unexposed crystal and an exposed crystal coated with the material of interest. For each 

PQC sensor, the frequency difference between coated and reference crystals is calculated by counting 

the rising edges of the TTL output signal. The Waspmote platform is embedded with a real time clock 

and a Secure Digital (SD) card which are used to timestamp the temperature, humidity and PQC 

measurements. Respectively. and save them locally. 

2.3. Communication System 

The communication system is designed to enable remote operation and is described in Figure 3. The 

PQC, temperature and relative humidity measurements are aggregated with other data, such as the 

measurement id, the device id and the remaining battery level, into the 128-byte payload of  

a 802.15.4 radio packet. The embedded Xbee radio hardware uses a carrier sense media access control 

protocol to transmit the data to a gateway device located within its 100-mW range at the heritage site. 

The gateway is a mains powered Waspmote device which is continuously in receiver mode. The 

gateway is also equipped with a Simcom SIM900 General Packet Radio Service (GPRS)/Global 

System for Mobile Communications (GSM) module [27]. New measurements are appended to an 

internal file on the sensing device and transmitted to the gateway in an 802.15.4 radio packet. When 

the packet is received, the gateway stamps it with the current date and time and runs a file transfer 

protocol (FTP) over the GPRS connection to upload the measurements to a MySQL database on a 

Linux Apache MySQL PHP (LAMP) internet server. The FTP’s handshake and data transfer are 

executed with GPRS AT commands. The main reason for the choice of FTP, compared to other 

protocols such as Transmission Control Protocol (TCP), Simple Mail Transfer Protocol (SMTP) and 

Wi-Fi which could also be used to remotely retrieve the measurements over GPRS, is to ensure an 
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additional layer of backup of the data. Hence, the measurements are stored as files on the device and 

on the server and also as records on the database. PHP scripts are used to query the database and 

display the most recent measurements on the research project website in real time (Figure 3).  

Figure 3. The communication system. 

 

2.4. Power Management 

In order to enable long-term autonomous operation, a power management protocol has been 

implemented. It consists of putting the device in a ―hibernation‖ state in which all the hardware 

modules are switched off except the real time clock (RTC). The Waspmote is equipped with a lithium-ion 

battery 6600-mAh battery as well as a cell coin battery. In the hibernation state, the device is solely 

powered by the coin battery which provides a 0.7-μA current. The coin battery serves to power the  

32-kHz DS3231 RTC [28]. The DS3231 is an Inter-Integrated Circuit (I
2
C) RTC with an integrated 

temperature-compensated crystal oscillator (TCXO) and crystal. The RTC is programmed to generate 

an alarm interrupt to ―wake up‖ the device in time for the next series of measurement sampling. The 

measurement sampling rate which dictates the setting of the alarm clock can be varied from 8 s to 

minutes, hours and days. It is evident that the lower the sampling rates the lower the  

power consumption.  

3. Deployment 

3.1. Case Study Heritage Sites 

The system has been deployed at two heritage sites: Apsley House in London and the Royal Palaces 

of Abomey in Benin. Apsley House, now an English Heritage property, is known as Number One 

London and was home to the Duke of Wellington. Apsley House is home to a celebrated art collection, 

which includes paintings initially from the Spanish Royal Collection. It also contains diverse objects 

brought by the Duke of Wellington from his war campaigns, including porcelain plates and vases, and 

silver-gilt centrepieces. 

The Royal Palaces of Abomey are a UNESCO World Heritage site. The site consists of twelve 

palaces successively built by different sovereigns of the West African kingdom of Dahomey, from 

1625 to 1900, in their capital Abomey. The collection includes royal thrones, weapons, jewels, textiles 
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but also diverse objects imported from Europe. The site is perhaps most known for its rich set of  

bas-reliefs which report on events, beliefs and culture in Dahomey. 

3.2. Experimental Description and Practical Issues 

The system was initially deployed at Apsley House without the PQC sensors and the communication 

system. Figure 4 shows the temperature (T) and relative humidity (RH) data gathered in the  

first three months of deployment by the Sensirion SHT75 temperature and relative humidity sensor.  

The large variations in T and RH reflect the fact that the system was exposed outdoors. The Sensirion 

SHT75 is a commercially available sensor and its measurements have been validated outdoors against 

other climate monitoring instruments [29]. During the deployments, ozone (O3), nitrogen dioxide 

(NO2) and sulfur dioxide (SO2) levels were also measured with diffusion tubes. 

Figure 4. Outdoor hourly T and RH data from Apsley House from the end of June to early 

September 2012. 

 

 

Progressively, different features were added until the full system was in place. The full system 

consisted of two sensing devices and a gateway. The sensing devices each have a 6-PQC sensor array 

and all the features described in Section 2, including the communication system. The devices were 

housed in aluminum weather-proof boxes with a single opening covered by a polyethylene air particle 

filter. The chemical attenuation of the filter was measured to be 35%. It was calculated as the decrease 

in ozone concentration measured by diffusion tubes placed outside and inside the box. An hourly 

sampling rate was set. The same system was deployed at Abomey. 
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Different issues were encountered during the two deployments. At Apsley House, the key issue was 

the fact that the thickness of the walls made it difficult to find installation locations which allow for 

good radio communication between sensing devices and gateway on one hand as well as a good 3G 

coverage for the gateway on the other hand. At Abomey, frequent power outages interfered with the 

operation of the mains powered gateway. 

4. Results 

4.1. Laboratory Validation 

Following the exposure the coated PQC crystals were brought to the laboratory for measurement to 

test the accuracy of recorded values. From the system the crystal frequency outputs were read. These 

were already subtracted from the uncoated reference crystals. To check these values, measurements 

were also conducted using the laboratory frequency measuring system where individual crystal 

frequencies and reference crystals were measured and their values checked against those obtained from 

the system. The laboratory conditions were measured at 21 °C and 34% relative humidity. The 

laboratory instrument is the high-accuracy EIP model 578 source locking continuous wave microwave 

frequency counter with selective power measurement [30]. 

Accuracy is defined here as the percentage error between the PQC measurements of our dosimetric 

sensor array device and values recorded for the individual crystals when measured with the EIP 578 

frequency counter. The results of 69 measurements are reported in Figure 5. The average error is 1.5% 

(standard deviation 1.6). 

Figure 5. Frequency measurement errors (%) between the sensor array device and the  

EIP 578 instrument in laboratory conditions. 

 

Noise from the microcontroller’s 10-bit analog-to-digital converter (ADC) probably contributes to 

the observed error. The error is also likely due to the mechanical stress caused by the handling of the 

crystals during the test, even though great care was taken. Indeed, by the principle of piezo-electricity, 

mechanical stress will cause a voltage across the crystal which will conversely cause it to begin  

to vibrate.  
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4.2. Delivery Rate 

Delivery rate is defined as the percentage of radio packets received at the Internet server out of the 

total number of packets sent by a sensing device. It is straightforward to calculate since every 

measurement packet is incrementally numbered by the sensing device. 

Figure 6 shows the daily averaged delivery rates at Abomey and London over a week period. For 

Abomey, this period was the first week of deployment. During this period, we were able to record the 

time periods of power cuts and exclude them from the calculations. The figure shows that the 

communication system delivers over 85% of the measurements at both locations. A 100% daily 

delivery rate was achieved three times in a week at Abomey and four times in London. 

Figure 6. Daily averaged delivery rate of the communication system over a week. 

 

The fact that the delivery rate at Abomey is lower than London for four days a week is probably due 

to better mobile network coverage in London. However, it should be noted that the data for Abomey 

does not include power cut periods. The recorded accumulative power cut period over that week was 12 h. 

4.3. PQC Measurements 

More detailed analysis of the PQC data is ongoing and will be published in the future. Tables 1 and 2, 

however, show how it can be used to assess the impact of different environments on heritage materials. 

Our analysis here focuses on a comparison of the percentage of mass increase between the two 

locations and the relation between the coating thickness and the percentage of mass increase. 

Regarding the relation between the percentage of mass increase and the coating thickness, with two 

exceptions, the 50-nm sensors consistently show the highest mass increase. The two exceptions 

occured in Abomey with Cu and Sn, where, as previously mentioned, the corrosion rates of these two 

metals might be too low to be accurately measured with these thickness levels. Other dosimetric 

sensors have reported similar relation between sensor thickness and sensitivity [9]. The results also 

show that there is no clear difference in sensitivity for the highest thickness levels of 100 nm and  

150 nm. Indeed, in half of all the cases, 150 nm sensors have measured higher corrosion rate than  

100 nm sensors. 
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Table 1. Percentage of mass increase measured by PQC sensors in London (L) and 

Abomey (A) over 140 days between November 2012 and April 2013. 

Coating Thickness (nm) (A) Thickness (nm) (L) % Mass Increase (A) % Mass Increase (L) 

Cu 48 42 2.9 14.6 

Cu 98 94 4.0 2.4 

Cu 132 125 1.6 1.6 

Fe 63 53 18.3 25.2 

Fe 96 82 5.7 7.5 

Fe 138 143 6.7 16.4 

Ni 46 43 3.2 6.5 

Ni 86 87 0.9 2.7 

Ni 129 178 1.5 0.8 

Sn 36 39 1.9 12.8 

Sn 84 77 2.6 7.1 

Sn 104 109 3.4 1.0 

Table 2. Average temperature, relative humidity and pollution levels measured in London 

and Abomey over 140 days between November 2012 and April 2013. 

Location T (°C) RH (%) O3 (ppb) NO2 (ppb) SO2 (ppb) 

Abomey 27.4 67.5 43.2 4.1 1.0 

London 6.1 79.2 16.0 17.4 1.8 

We will therefore now focus on the more sensitive 50 nm sensors. As shown in Figure 7, they have 

all reported higher corrosion rates in London than Abomey. The results can be explained by the higher 

humidity and overall pollution levels (expressed in parts per billion or ppb) in London as shown in 

Table 2. Indeed, other than O3, which is higher in Abomey, RH and NO2 are all significantly higher in 

London while SO2 is negligible at both locations. The results confirm previous literature which has 

shown that these parameters are major factors in the corrosion of Cu, Fe, Ni and Sn [21–23]. The 

initial slower response of the Fe sensor in London (Figure 8) is probably explained by the lower 

temperature (6.1 °C average temp. November-April 2013) compared to Abomey (27.4 °C average 

temp. same period). Indeed, as with most chemical reactions, iron corrosion would proceed more 

rapidly in a warmer environment. 

Figure 8 illustrates that corrosion is non-linear and that the result of the comparative assessment of 

how corrosive two different environments are can vary over time. The 50-nm Fe percentage of mass 

increase was initially faster and higher in Abomey than Apsley House. However, after 27 days, the two 

plots cross and the corrosion rate progressively becomes higher in London and stable in Abomey. 

After 140 days, the sensor response is 10% higher in London. In contrast, for Cu, the corrosion rate 

was from the start higher in London than Abomey, as shown in Figure 9. After 140 days, the 50-nm Cu 

percentage of mass increase is five times higher in London.  

Temperature changes are known to cause frequency changes in crystals. Exposure under outdoor 

conditions, where temperature is variable, can cause rapid fluctuations in crystal frequency, as seen in 

Figures 8 and 9. Furthermore, the parameters of the Sauerbrey equation, such as the shear modulus of 



Sensors 2014, 14 8789 

 

 

quartz for AT-cut crystals, have been derived for relatively stable room temperature conditions. The 

accuracy of the system is therefore expected to be worse in outdoor conditions. As future work, we 

plan to address this problem by implementing a temperature compensation algorithm. 

Figure 7. Percentage of mass increase measured by 50 nm PQC sensors in London (L) and 

Abomey (A) over 140 days between November 2012 and April 2013. 

 

Figure 8. Daily averaged percentage of mass increase of 50-nm Fe sensors in Abomey and 

London during 140 days of exposure between November 2012 and April 2013 with standard 

deviations as error bars. 
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Figure 9. Daily averaged percentage of mass increaseof 50-nm Cu sensors in Abomey and 

London during a period of 140 days of exposure between November 2012 and April 2013 

with standard deviations as error bars. 

 

5. Discussion and Future Work 

The system described in this paper has the ability to assess both organic and inorganic materials. 

For example, varnish and mastic coated PQC crystals have already been successfully used in previous 

research to evaluate the corrosivity of the microclimates in the vicinity of paintings [6]. The fact that 

the same instrument can be used with an array of different materials and the coated PQC crystals can 

be exchanged makes it very versatile in comparison to existing dosimetric systems. In addition, the 

communication system and energy efficient performance allow autonomous operation and remote data 

logging, hence making the system suitable for different environments, indoor and outdoor. 

In future, collecting more PQC and environmental data should improve the interpretation of the 

system results by making it possible to compare the impacts of more environments on different 

materials. The PQC array responses could also be analysed against the environmental parameters 

expected to have a changing effect on the coated materials, such as temperature, humidity and 

pollutants. This could help derive, for example, whether a given environment is likely to have a higher 

concentration of certain pollutants.  

6. Conclusions/Outlook 

The paper describes an environmental monitoring prototype designed to assess the impact of the 

environment on cultural heritage. The prototype consists of an array of piezoelectric quartz crystals 

and a temperature and relative humidity sensor. The measurements can be both logged on the device or 

uploaded remotely to an internet server and visualised in real-time. 

The average percentage error of the system is shown to be 1.8% compared to a high precision 

laboratory analytical instrument. The system was deployed at Apsley House in London, a property of 

English Heritage and at the Royal Palaces of Abomey in Benin, a UNESCO World Heritage site. The 

system performance during these deployments is reported. The communication system is shown to 

deliver over 85% of the measurements both in Abomey and London.  
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The PQC measurements show that the impact of the environment on copper and iron materials is 

more damaging in Apsley House than Abomey. It was found that the thinnest PQC film (50 nm) is 

more sensitive and responds fastest to the environment. The results suggest that thinner sensors would 

be suitable for quick environment assessment applications while thicker sensors would be ideal for 

long-term environment monitoring applications.  

Key assets of the system include its great versatility. It can be used to assess up to eight different 

materials and is not designed for a particular material or type of materials. Its autonomous operation 

and remote data logging features make it suitable and adapted to different environments. Other 

applications of the system could exist outside heritage environment and material monitoring. For 

example, construction or oil and gas companies could be interested in an early warning systems which 

provide them with real-time remote testing of different materials. 
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