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Abstract Dilatonic black hole dyon-like solutions in the
gravitational 4d model with a scalar field, two 2-forms, two
dilatonic coupling constants λi �= 0, i = 1, 2, obeying
λ1 �= −λ2 and the sign parameter ε = ±1 for scalar field
kinetic term are considered. Here ε = −1 corresponds to
a ghost scalar field. These solutions are defined up to solu-
tions of two master equations for two moduli functions, when
λ2
i �= 1/2 for ε = −1. Some physical parameters of the solu-

tions are obtained: gravitational mass, scalar charge, Hawk-
ing temperature, black hole area entropy and parametrized
post-Newtonian (PPN) parameters β and γ . The PPN param-
eters do not depend on the couplings λi and ε. A set of bounds
on the gravitational mass and scalar charge are found by using
a certain conjecture on the parameters of solutions, when
1 + 2λ2

i ε > 0, i = 1, 2.

1 Introduction

In this paper we extend our previous work [1] devoted to dila-
tonic dyon black hole solutions. We note that at present there
exists a certain interest in spherically symmetric solutions,
e.g. black hole and black brane ones, related to Lie alge-
bras and Toda chains; see [2–28] and the references therein.
These solutions appear in gravitational models with scalar
fields and antisymmetric forms.

Here we consider a subclass of dilatonic black hole solu-
tions with electric and magnetic charges Q1 and Q2, respec-
tively, in the 4d model with metric g, scalar field ϕ, two
2-forms F (1) and F (2), corresponding to two dilatonic cou-
pling constants λ1 and λ2, respectively. All fields are defined
on an oriented manifold M. Here we consider the dyon-like
configuration for fields of 2-forms

a e-mail: ivashchuk@mail.ru

F (1) = Q1e
2λ1ϕ ∗ τ, F (2) = Q2τ, (1.1)

where τ = vol[S2] is volume form on 2-dimensional sphere
and ∗ = ∗[g] is the Hodge operator corresponding to the
oriented manifold M with the metric g. We call this non-
composite configuration a dyon-like one in order to distin-
guish it from the true dyon configuration which is essen-
tially composite and may be chosen in our case either as: (i)
F (1) = Q1e2λ1ϕ ∗ τ + Q2τ , F (2) = 0, or (ii) F (1) = 0,
F (2) = Q1e2λ2ϕ ∗ τ + Q2τ . From a physical point of view
the ansatz (1.1) means that we deal here with a charged black
hole, which has two color charges: Q1 and Q2. The charge
Q1 is the electric one corresponding to the form F (1), while
the charge Q2 is the magnetic one corresponding to the form
F (2). For coinciding dilatonic couplings λ1 = λ2 = λ we
get a trivial noncomposite generalization of dilatonic dyon
black hole solutions in the model with one 2-form which was
considered in Ref. [1]; see also [4,10,11,14,23,28] and the
references therein.

The dilatonic scalar field may be either an ordinary one or
a phantom (or ghost) one. The phantom field appears in the
action with a kinetic term of the “wrong sign”, which implies
the violation of the null energy condition p ≥ −ρ. According
to Ref. [29], at the quantum level, such fields could form a
“ghost condensate”, which may be responsible for modified
gravity laws in the infra-red limit. The observational data do
not exclude this possibility [30].

Here we seek relations for the physical parameters of
dyonic-like black holes, e.g. bounds on the gravitational mass
M and the scalar charge Qϕ . As in our previous work [1] this
problem is solved here up to a conjecture, which states a one-
to-one (smooth) correspondence between the pair (Q2

1, Q
2
2),

where Q1 is the electric charge and Q2 is the magnetic
charge, and the pair of positive parameters (P1, P2), which
appear in decomposition of moduli functions at large dis-
tances. This conjecture is believed to be valid for all λi �= 0 in
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the case of an ordinary scalar field and for 0 < λ2
i < 1/2 for

the case of a phantom scalar field (in both cases the inequality
λ1 �= −λ2 is assumed).

2 Black hole dyon solutions

Let us consider a model governed by the action

S = 1

16πG

∫
d4x

√|g|
{
R[g] − εgμν∂μϕ∂νϕ

− 1

2
e2λ1ϕF (1)

μν F
(1)μν − 1

2
e2λ2ϕF (2)

μν F (2)μν

}
, (2.1)

where g = gμν(x)dxμ ⊗ dxν is the metric, ϕ is the scalar

field, F (i) = d A(i) = 1
2 F

(i)
μν dxμ ∧ dxν is the 2-form with

A(i) = A(i)
μ dxμ, i = 1, 2, ε = ±1, G is the gravitational

constant, λ1, λ2 �= 0 are coupling constants obeying λ1 �=
−λ2 and |g| = | det(gμν)|. Here we also put λ2

i �= 1/2,
i = 1, 2, for ε = −1. For λ1 = λ2 the Lagrangian (2.1)
appears in the gravitational model with a scalar field and
Yang–Mills field with a gauge group of rank 2 (say SU (3))
when an Abelian sector of the gauge field is considered.

We consider a family of dyonic-like black hole solutions
to the field equations corresponding to the action (2.1), which
are defined on the manifold

M = (2μ,+∞) × S2 × R, (2.2)

and have the following form:

ds2 = gμνdxμdxν = H
h1
1 H

h2
2

{
−H

−2h1
1 H

−2h2
2

(
1 − 2μ

R

)
dt2

(2.3)

+ dR2

1 − 2μ
R

+ R2d�2
2

}
,

exp(ϕ) = H
h1λ1ε
1 H

−h2λ2ε
2 , (2.4)

F(1) = Q1

R2 H−2
1 H

−A12
2 dt ∧ dR, (2.5)

F(2) = Q2τ. (2.6)

Here Q1 and Q2 are (colored) charges—electric and mag-
netic, respectively, μ > 0 is the extremality parameter,
d�2

2 = dθ2 + sin2 θdφ2 is the canonical metric on the unit
sphere S2 (0 < θ < π , 0 < φ < 2π ), τ = sin θdθ ∧ dφ is
the standard volume form on S2,

hi = K−1
i , Ki = 1

2
+ ελ2

i , (2.7)

i = 1, 2, and

A12 = (1 − 2λ1λ2ε)h2. (2.8)

The functions Hs > 0 obey the equations

R2 d

dR

⎛
⎝R2

(
1 − 2μ

R

)

Hs

dHs

dR

⎞
⎠ = −KsQ

2
s

∏
l=1,2

H−Asl
l , (2.9)

with the following boundary conditions imposed:

Hs → Hs0 > 0 (2.10)

for R → 2μ, and

Hs → 1 (2.11)

for R → +∞, s = 1, 2.
In (2.9) we denote

(Ass′) =
(

2 A12

A21 2

)
, (2.12)

where A12 is defined in (2.8) and

A21 = (1 − 2λ1λ2ε)h1. (2.13)

These solutions may be obtained just by using general for-
mulas for non-extremal (intersecting) black brane solutions
from [19–21] (for a review see [22]). The composite analogs
of the solutions with one 2-form and λ1 = λ2 were presented
in Ref. [1].

The first boundary condition (2.10) guarantees (up to a
possible additional requirement on the analyticity of Hs(R)

in the vicinity of R = 2μ) the existence of a (regular) horizon
at R = 2μ for the metric (2.3). The second condition (2.11)
ensures asymptotical (for R → +∞) flatness of the metric.

Remark 1 It should be noted that the main motivation for
considering this and more general 4D models governed by
the Lagrangian density L,

L/
√|g| = R[g] − habg

μν∂μϕa∂νϕ
b

− 1

2

m∑
i=1

exp(2λiaϕ
a)F (i)

μν F
(i)μν, (2.14)

where ϕ = (ϕa) is a set of l scalar fields, F (i) = dA(i)

are two forms and λi = (λia) are dilatonic coupling vec-
tors, i = 1, . . . ,m, is coming from dimensional reduction of
supergravity models; in this case the matrix (hab) is positive
definite. For example, one may consider a part of bosonic
sector of dimensionally reduced 11d supergravity [16] with
l dilatonic scalar fields and m 2-forms (either originating
from the 11d metric or coming from a 4-form) activated;
Chern–Simons terms vanish in this case. Certain uplifts (to
higher dimensions) of 4d black hole solutions corresponding
to (2.14) may lead to black brane solutions in dimensions
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D > 4, e.g. to dyonic ones; see [16,17,20,24,25] and the
references therein. The dimensional reduction from the 12-
dimensional model from Ref. [31] with phantom scalar field
and two forms of rank 4 and 5 will lead to the Lagrangian
density (2.14) with the matrix (hab) of pseudo-Euclidean
signature.

Equations (2.9) may be rewritten in the following form:

d

dz

[
(1 − z)

dys

dz

]
= −Ksq

2
s exp

⎛
⎝−

∑
l=1,2

Asl y
l

⎞
⎠ , (2.15)

s = 1, 2. Here and in the following we use the following
notations: ys = ln Hs , z = 2μ/R, qs = Qs/(2μ) and Ks =
h−1
s for s = 1, 2, respectively. We are seeking solutions to

Eqs. (2.15) for z ∈ (0, 1) obeying

ys(0) = 0, (2.16)

ys(1) = ys0, (2.17)

where ys0 = ln Hs0 are finite (real) numbers, s = 1, 2. Here
z = 0 (or, more precisely z = +0) corresponds to infinity
(R = +∞), while z = 1 (or, more rigorously, z = 1 − 0)
corresponds to the horizon (R = 2μ).

Equations (2.15) with conditions of the finiteness on
the horizon (2.17) imposed imply the following integral of
motion:

1

2
(1 − z)

∑
s,l=1,2

hs Asl
dys

dz

dyl

dz
+

∑
s=1,2

hs
dys

dz

−
∑
s=1,2

q2
s exp

⎛
⎝−

∑
l=1,2

Asl y
l

⎞
⎠ = 0. (2.18)

Equations (2.15) and (2.17) appear for special solutions to
the Toda-type equations [20–22]

d2zs

du2 = KsQ
2
s exp

⎛
⎝ ∑

l=1,2

Asl z
l

⎞
⎠ , (2.19)

for the functions

zs(u) = −ys − μbsu, (2.20)

s = 1, 2, depending on the harmonic radial variable u:
exp(−2μu) = 1− z, with the following asymptotical behav-
ior for u → +∞ (on the horizon) imposed:

zs(u) = −μbsu + zs0 + o(1), (2.21)

where zs0 are constants, s = 1, 2. Here and in the following
we denote

bs = 2
∑
l=1,2

Asl , (2.22)

where the inverse matrix (Asl) = (Asl)
−1 is well defined due

to λ1 �= −λ2. This follows from the relations

Asl = 2Bslhl , Bsl = 1

2
+ εχsχlλsλl , (2.23)

where χ1 = +1, χ2 = −1 and the invertibility of the matrix
(Bsl) for λ1 �= −λ2, due to the relation det(Bsl) = 1

2ε(λ1 +
λ2)

2.
The energy integral of motion for (2.19), which is com-

patible with the asymptotic conditions (2.21),

E = 1

4

∑
s,l=1,2

hs Asl
dzs

du

dzl

du

−1

2

∑
s=1,2

Q2
s exp

⎛
⎝ ∑

l=1,2

Asl z
l

⎞
⎠ = 1

2
μ2

∑
s=1,2

hsb
s,

(2.24)

leads to Eq. (2.18).

Remark 2 The derivation of the solutions (2.3)–(2.6), (2.9)–
(2.11) may be extracted from the relations of [19–21], where
the solutions with a horizon were obtained from general
spherically symmetric solutions governed by Toda-like equa-
tions. These Toda-like equations contain a non-trivial part
corresponding to a non-degenerate (quasi-Cartan) matrix A.
In our case these equations are given by (2.19) with the matrix
A from (2.23) and the condition detA �= 0 implies λ1 �= −λ2.
The master equations (2.9) are equivalent to these Toda-like
equations. Fortunately, for λ1 = −λ2 and ε = +1 the solu-
tion does exist. It obeys Eqs. (2.3)–(2.6) and (2.9)–(2.11)

with Hi = H

Q2
i

Q2
1+Q2

2 , i = 1, 2, where H = 1 + P
R and P > 0

satisfies P(P+2μ) = K1(Q2
1+Q2

2), K1 > 0. For λ1 = −λ2

the solution reads

ds2 = Hh1

{
−H−2h1

(
1 − 2μ

R

)
dt2 + dR2

1 − 2μ
R

+ R2d�2
2

}
,

exp(ϕ) = Hh1λ1ε, F(1) = Q1

R2 H−2dt ∧ dR, F(2) = Q2τ.

We have verified this solution by using MATHEMATICA. It
is also valid for ε = −1 and λ2

1 < 1
2 .
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3 Some integrable cases

Explicit analytical solutions to Eqs. (2.9), (2.10), (2.11) do
not exist. One may try to seek the solutions in the form

Hs = 1 +
∞∑
k=1

P(k)
s

(
1

R

)k

, (3.1)

where P(k)
s are constants, k = 1, 2, . . . , and s = 1, 2, but

only in few integrable cases the chain of equations for P(k)
s

is dropped.
For ε = +1, there exist at least four integrable configura-

tions related to the Lie algebras A1 + A1, A2, B2 = C2 and
G2.

3.1 (A1 + A1)-case

Let us consider the case ε = 1 and

(Ass′) =
(

2 0
0 2

)
. (3.2)

We obtain

λ1λ2 = 1

2
. (3.3)

For λ1 = λ2 we get a dilatonic coupling corresponding to
string induced model. The matrix (3.2) is the Cartan matrix
for the Lie algebra A1 + A1 (A1 = sl(2)). In this case

Hs = 1 + Ps
R

, (3.4)

where

Ps(Ps + 2μ) = KsQ
2
s , (3.5)

s = 1, 2. For positive roots of (3.5)

Ps = Ps+ = −μ +
√

μ2 + KsQ2
s , (3.6)

we are led to a well-defined solution for R > 2μ with asymp-
totically flat metric and horizon at R = 2μ. We note that in
the case λ1 = λ2 the (A1 + A1)-dyon solution has a compos-
ite analog which was considered earlier in [7,10]; see also
[15] for certain generalizations.

3.2 A2-case

Now we put ε = 1 and

(Ass′) =
(

2 −1
−1 2

)
. (3.7)

We get

λ1 = λ2 = λ, λ2 = 3/2. (3.8)

This value of dilatonic coupling constant appears after reduc-
tion to four dimensions of the 5d Kaluza–Klein model. We
get hs = 1/2 and (3.7) is the Cartan matrix for the Lie algebra
A2 = sl(3). In this case we obtain [20]

Hs = 1 + Ps
R

+ P(2)
s

R2 , (3.9)

where

2Q2
s = Ps(Ps + 2μ)(Ps + 4μ)

P1 + P2 + 4μ
, (3.10)

P(2)
s = Ps(Ps + 2μ)Ps̄

2(P1 + P2 + 4μ)
, (3.11)

s = 1, 2 (s̄ = 2, 1).
In the composite case [1] the Kaluza–Klein uplift to D =

5 gives us the well-known Gibbons–Wilthire solution [5],
which follows from the general spherically symmetric dyon
solution (related to A2 Toda chain) from Ref. [4].

3.3 C2 and G2 cases

If we put ε = 1 and

(Ass′) =
(

2 −1
−k 2

)
or (Ass′) =

(
2 −k
−1 2

)
, (3.12)

we also get integrable configurations for k = 2, 3, corre-
sponding to the Lie algebras B2 = C2 and G2, respectively,
with the degrees of polynomials (3, 4) and (6, 10). From
(2.8), (2.13) and (3.12) we get the following relations for the
dilatonic couplings:

1

2
+ λ2

2 = k

(
1

2
+ λ2

1

)
, 1 − 2λ1λ2 = −1

2
− λ2

2, (3.13)

or

1

2
+ λ2

1 = k

(
1

2
+ λ2

2

)
, 1 − 2λ1λ2 = −1

2
− λ2

1. (3.14)

Solving Eq. (3.13) we get (λ1, λ2) = ±(
√

2, 3√
2
) for k = 2

and (λ1, λ2) = ±
(

5√
6
, 3

√
3
2

)
for k = 3. The solution to

Eq. (3.14) is given by permutation of λ1 and λ2.
The exact black hole (dyonic-like) solutions for Lie alge-

bras B2 = C2 and G2 will be analyzed in detail in separate
publications. They do not exist for the case λ1 = λ2. We
note that for the B2 = C2 case (k = 2) the polynomials Hi ,
i = 1, 2, were calculated in [32].
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3.4 Special solution with two dependent charges

There exists also a special solution

Hs =
(

1 + P

R

)bs

, (3.15)

with P > 0 obeying

Ks

bs
Q2

s = P(P + 2μ), (3.16)

s = 1, 2. Here bs �= 0 is defined in (2.22). This solution is a
special case of more general “block orthogonal” black brane
solutions [33–35].

The calculations give us the following relations:

bs = 2λs̄

λ1 + λ2
Ks, (3.17)

Q2
s
(λ1 + λ2)

2λs̄
= P(P + 2μ) = 1

2
Q2, (3.18)

where s = 1, 2 and s̄ = 2, 1, respectively. Our solution is
well defined if λ1λ2 > 0, i.e. the two coupling constants have
the same sign.

For positive roots of (3.18)

P = P+ = −μ +
√

μ2 + 1

2
Q2 (3.19)

we get for R > 2μ a well-defined solution with asymptoti-
cally flat metric and horizon at R = 2μ. It should be noted
that this special solution is valid for both signs ε = ±1. We
have

ds2 = H2
{
−H−4

(
1 − 2μ

R

)
dt2 + dR2

1 − 2μ
R

+ R2d�2
2

}
,

(3.20)

ϕ = 0, (3.21)

F (1) = Q1

H2R2 dt ∧ dR, F (2) = Q2τ, (3.22)

where H = 1 + P
R with P from (3.19) and

Q2
1 = λ2

λ1 + λ2
Q2, Q2

2 = λ1

λ1 + λ2
Q2. (3.23)

By changing the radial variable, r = R + P , we get

ds2 = − f (r)dt2 + f (r)−1dr2 + r2d�2
2, (3.24)

F (1) = Q1

r2 dt ∧ dr, F (2) = Q2τ, ϕ = 0, (3.25)

where f (r) = 1 − 2GM
r + Q2

2r2 , Q2 = Q2
1 + Q2

2 and GM =
P + μ =

√
μ2 + 1

2 Q
2 > 1√

2
|Q|.

The metric in these variables is coinciding with the well-
known Reissner–Nordström metric governed by two param-
eters: GM > 0 and Q2 < 2(GM)2. We have two horizons in
this case. Electric and magnetic charges are not independent
but obey Eqs. (3.23).

3.5 The limiting A1-cases

In the following we will use two limiting solutions: an electric
one with Q1 = Q �= 0 and Q2 = 0,

H1 = 1 + P1

R
, H2 = 1, (3.26)

and a magnetic one with Q1 = 0 and Q2 = Q �= 0,

H1 = 1, H2 = 1 + P2

R
. (3.27)

In both cases Ps = −μ+√
μ2 + KsQ2. These solutions cor-

respond to the Lie algebra A1. In various notations the solu-
tion (3.26) appeared earlier in [2,6,7], and it was extended to
the multidimensional case in [6,7,12,13]. The special case
with λ2

1 = 1/2, ε = 1, was considered earlier in [3,8,9].

4 Physical parameters

Here we consider certain physical parameters corresponding
to the solutions under consideration.

4.1 Gravitational mass and scalar charge

For ADM gravitational mass we get from (2.3)

GM = μ + 1

2
(h1P1 + h2P2), (4.1)

where the parameters Ps = P(1)
s appear in Eq. (3.1) and G

is the gravitational constant.
The scalar charge just follows from (2.4):

Qϕ = ε(λ1h1P1 − λ2h2P2). (4.2)

For the special solution (3.15) with P > 0 we get

GM = μ + P =
√

μ2 + Q2, Qϕ = 0. (4.3)

For fixed charges Qs and the extremality parameter μ the
mass M and scalar charge Qϕ are not independent but obey

a certain constraint. Indeed, for fixed parameters Ps = P(1)
s

in (3.1) we get

ys = ln Hs = Ps
2μ

z + O(z2), (4.4)
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for z → +0, which after substitution into (2.18) gives (for
z = 0) the following identity:

1

2

∑
s,l=1,2

hs Asl Ps Pl + 2μ
∑
s=1,2

hs Ps =
∑
s=1,2

Q2
s . (4.5)

By using Eqs. (4.1) and (4.2) this identity may be rewritten
in the following form:

2(GM)2 + εQ2
ϕ = Q2

1 + Q2
2 + 2μ2. (4.6)

It is remarkable that this formula does not contain λ. We note
that in the extremal case μ = +0 this relation for ε = 1 was
obtained earlier in [14].

4.2 The Hawking temperature and entropy

The Hawking temperature corresponding to the solution is
found to be

TH = 1

8πμ
H−h1

10 H−h2
20 , (4.7)

where Hs0 are defined in (2.10). Here and in the following
we put c = h̄ = κ = 1.

For special solutions (3.15) with P > 0 we get

TH = 1

8πμ

(
1 + P

2μ

)−2

. (4.8)

In this case the Hawking temperature TH does not depend
upon λs and ε, when μ and P (or Q2) are fixed.

The Bekenstein–Hawking (area) entropy S = A/(4G),
corresponding to the horizon at R = 2μ, where A is the
horizon area, reads

SBH = 4πμ2

G
Hh1

10 H
h2
20 . (4.9)

It follows from (4.7) and (4.9) that the product

TH SBH = μ

2G
(4.10)

does not depend upon λs , ε and the charges Qs . This product
does not use an explicit form of the moduli functions Hs(R).

4.3 PPN parameters

Introducing a new radial variable ρ by the relation R =
ρ(1 + (μ/2ρ))2 (ρ > μ/2), we obtain the 3-dimensionally
conformally flat form of the metric (2.3)

g = U

{
−U1

(1 − (μ/2ρ))2

(1 + (μ/2ρ))2 dt ⊗ dt +
(

1 + μ

2ρ

)4

× δi jdx
i ⊗ dx j

}
, (4.11)

where ρ2 = |x |2 = δi j x i x j (i, j = 1, 2, 3) and

U =
∏
s=1,2

Hhs
s , U1 =

∏
s=1,2

H−2hs
s . (4.12)

The parametrized post-Newtonian (PPN) parameters β and
γ are defined by the following standard relations:

g00 = −(1 − 2V + 2βV 2) + O(V 3), (4.13)

gi j = δi j (1 + 2γ V ) + O(V 2), (4.14)

i, j = 1, 2, 3, where V = GM/ρ is Newton’s potential, G
is the gravitational constant and M is the gravitational mass
(for our case see (4.1)).

The calculations of PPN (or Eddington) parameters for
the metric (4.11) give the same result as in [23]:

β = 1 + 1

4(GM)2 (Q2
1 + Q2

2), γ = 1. (4.15)

These parameters do not depend upon λs and ε. They may
be calculated just without knowledge of the explicit relations
for the moduli functions Hs(R).

These parameters (at least formally) obey the observa-
tional restrictions for the solar system [36], when Qs/(2GM)

are small enough.

5 Bounds on mass and scalar charge

Here we outline the following hypothesis, which is supported
by certain numerical calculations [1,37]. For h1 = h2 this
conjecture was proposed in Ref. [1].

Conjecture. For any h1 > 0, h2 > 0, ε = ±1, Q1 �= 0,
Q2 �= 0 and μ > 0: (A) the moduli functions Hs(R), which
obey (2.9), (2.10) and (2.11), are uniquely defined and hence
the parameters P1, P2, the gravitational mass M and the scalar
charge Qϕ are uniquely defined too; (B) the parameters P1,
P2 are positive and the functions P1 = P1(Q2

1, Q
2
2), P2 =

P2(Q2
1, Q

2
2) define a diffeomorphism of R2+ (R+ = {x |x >

0}); (C) in the limiting case we have: (i) for Q2
2 → +0:

P1 → −μ +
√

μ2 + K1Q2
1, P2 → +0 and (ii) for Q2

1 →
+0: P1 → +0, P2 → −μ +

√
μ2 + K2Q2

2.
The conjecture could be readily verified for the case ε = 1,

λ1λ2 = 1/2. Another integrable case ε = 1, λ1 = λ2 = λ,
λ2 = 3/2 is more involved [37].

The conjecture implies the following proposition.
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Fig. 1 Graphical illustration of bounds on M and Qϕ for ε = 1, λ1 = 1/
√

2, μ = 1 and Q2
1 + Q2

2 = 2. The only difference between the two
diagrams is λ2 = 1/2 (left panel) and λ2 = −1/4 (right panel)

Fig. 2 Graphical illustration of bounds on M and Qϕ for ε = −1, λ1 = √
0.499, μ = 1 and Q2

1 + Q2
2 = 2. The only difference between the two

diagrams is λ2 = 1/2 (left panel) and λ2 = −1/4 (right panel)

Proposition 1 For hs > 0, Qs �= 0, λs �= 0 (s = 1, 2) and
λ1 + λ2 �= 0 we have the following bounds on the gravita-
tional mass M and the scalar charge Qϕ:

μ + hmin

2

(
−μ +

√
h−1

min(Q
2
1 + Q2

2) + μ2

)
< GM

≤
√

1

2
(Q2

1 + Q2
2) + μ2, (5.1)

|Qϕ | < |λ|maxhmin

(
−μ +

√
h−1

min(Q
2
1 + Q2

2) + μ2

)
,

(5.2)

for ε = +1 (0 < hs < 2) and

√
1

2
(Q2

1 + Q2
2) + μ2 ≤ GM < μ

+ hmax

2

(
−μ +

√
h−1

max(Q2
1 + Q2

2) + μ2

)
, (5.3)

|Qϕ | < |λ|maxhmax

(
−μ +

√
h−1

max(Q2
1 + Q2

2) + μ2

)
,

(5.4)

for ε = −1 (hs > 2). Here hmin = min(h1, h2), hmax =
max(h1, h2), and |λ|max = max(|λ|1, |λ|2); hmin = ( 1

2 +
|λ|2max)

−1 for ε = +1 and hmax = ( 1
2 − |λ|2max)

−1 for ε =
−1.

Here we illustrate the bounds on M and Qϕ graphically
by four figures, which represent a set of physical parameters
GM and Qϕ for Q2

1 + Q2
2 = Q2 = 2 and μ = 1.

The left panel of Fig. 1 corresponds to the case ε = +1,

λ1 =
√

1
2 and λ2 = 1/2, while the right panel of this figure

describes the case ε = +1, λ1 =
√

1
2 and λ2 = −1/4.

On Fig. 2 the left panel illustrates the case ε = −1, λ1 =√
0.499 and λ2 = 1/2, while the right panel represents the

case ε = −1, λ1 = √
0.499 and λ2 = −1/4.

Two arcs on the left panels of Figs. 1, 2 contain the points
with Qϕ = 0 corresponding to the special solution from Sect.
3.4.

In proving Proposition 1 we use the following lemma.

Lemma Let

f (μ, h; Q2) = μ + h

2

(
−μ +

√
h−1Q2 + μ2

)
, (5.5)

be a function of two variables μ > 0 and h > 0 with
fixed value of Q2 > 0. Then: (i) for fixed value of μ

the function f (μ, h; Q2) is monotonically increasing with
respect to h; (ii) for fixed value of h ∈ (0, 2) the function
f (μ, h; Q2) is monotonically increasing with respect to μ

and f (+0, h; Q2) = 1
2

√
hQ2 < f (μ, h; Q2).
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The proof of the lemma is trivial: item (i) just follows from
the identity

f (μ, h; Q2) = μ + Q2

2(μ + √
h−1Q2 + μ2)

, (5.6)

while item (ii) could be readily verified by using the relation

∂ f

∂μ
= 1 + h

2

(
−1 + μ√

h−1Q2 + μ2

)
> 0 (5.7)

for h ∈ (0, 2).

Proof of Proposition 1 Let us prove Eqs. (5.1), (5.2), (5.3)
and (5.4) using the conjecture. The right inequality (or equal-
ity) in (5.1) just follows from Eq. (4.6), while the left inequal-
ity (or equality) in (5.3) follows from (4.6) and M > 0, which
is valid due to Eq. (4.1), h > 0 and the inequalities P1 > 0,
P2 > 0 (due to the conjecture.).

Now let us verify the left inequality in (5.1). We fix the
charges by the relation Q2

1+Q2
2 = Q2, Q > 0, and put Q2

1 =
1
2 Q

2(1 + x), Q2
2 = 1

2 Q
2(1 − x), where −1 < x < 1. Due to

(4.6) and M > 0 we can use the following parametrization:

√
2GM = R cos ψ, Qϕ = R sin ψ, R =

√
Q2 + 2μ2,

(5.8)

where |ψ | < π/2. Due to the conjecture and Eqs. (4.1), (4.2)
we see that ψ = ψ(x) is a smooth function which obeys

ψ(1 − 0) = ψ1, ψ(−1 + 0) = ψ2. (5.9)

Here R cos ψi = √
2(μ + hi

2 Pi ) and R sin ψi = λi hi Piχi ,

where Pi = −μ + √
Ki Q2 + μ2, (Ki = h−1

i ) i = 1, 2, and
χ1 = 1, χ2 = −1.

We put λ1 > 0 without loss of generality. The limit x →
+1 − 0 corresponds to a pure electric black hole while the
limit x → −1 + 0 corresponds to a pure magnetic one.

To prove Eqs. (5.1) and (5.2) one should verify the inequal-
ity

ψ2 < ψ(x) < ψ1 (5.10)

for all x ∈ (−1, 1). Indeed, due to Eqs. (5.10) the points
(
√

2GM, Qϕ) describe an open arc in the circle (see Fig.
1). One of the endpoints of this arc with ψ = ψi0 , i0 =
1, 2, gives us the lower bound for GM and upper bound for
|Qϕ |. Due to the lemma this point corresponds to i0 obeying
hi0 = hmin = min(h1, h2), Pi0 = −μ + √

Ki0 Q
2 + μ2 and

Pī0 = 0.
Let us suppose that (5.10) is not valid. Without loss of gen-

erality we put ψ(x∗) ≥ ψ1 for some x∗. Then, using (5.9) and

the smoothness of the function ψ(x), we get for some x1 �=
x2: ψ(x1) = ψ(x2). This follows from the intermediate value
theorem which states that if f (x) is a continuous function on
the interval [a, b], then, for any d ∈ [ f (a), f (b)], there is a
point c ∈ [a, b] such that f (c) = d. (Here for f (a) > f (b),
[ f (a), f (b)] is meant to mean [ f (b), f (a)].) Hence for
two different sets (Q2

1, Q
2
2)1 �= (Q2

1, Q
2
2)2 we obtain the

same coinciding sets: (GM, Qϕ)1 = (GM, Qϕ)2 and hence
(P1, P2)1 = (P1, P2)2; see (4.1), (4.2) and λ1 �= −λ2. But
due to our conjecture the map (Q2

1, Q
2
2) → (P1, P2) is

bijective (i.e. it is one-to-one correspondence). This implies
(P1, P2)1 �= (P1, P2)2. We get a contradiction which proves
our proposition for ε = 1 and arbitrary Q2

1 + Q2
2 > 0.

The proofs of the right inequality in (5.3) and the bound
(5.4) for ε = −1 are quite similar to that for ε = 1. The only
difference here is the use of the parametrization

√
2GM = R cosh ψ, Qϕ = R sinh ψ, R =

√
Q2 + 2μ2,

(5.11)

instead of (5.8). Due to Eqs. (5.10) the points (
√

2GM, Qϕ)

describe an open arc in the hyperbola (see Fig. 2). One of the
endpoints of this arc with ψ = ψ j0 , j0 = 1, 2, gives us the
upper bound for GM and the upper bound for |Qϕ |. Due to
the lemma this point corresponds to j0 obeying h j0 = hmax =
max(h1, h2), Pj0 = −μ+

√
K j0 Q

2 + μ2 and Pj̄0 = 0. Thus,
Proposition 1 is proved.

Proposition 1 and the lemma imply the following propo-
sition.

Proposition 2 In the framework of the conditions of Propo-
sition 1, the following bounds on the mass and scalar charge
are valid for all μ > 0:

1

2

√
hmin(Q2

1 + Q2
2) < GM, (5.12)

|Qϕ | < |λ|max

√
hmin(Q2

1 + Q2
2), (5.13)

for ε = +1 (0 < hs < 2), and√
1

2
(Q2

1 + Q2
2) < GM, (5.14)

|Qϕ | < |λ|max

√
hmax(Q2

1 + Q2
2), (5.15)

for ε = −1 (hs > 2).

In proving (5.13) and (5.15) the following (obvious) rela-
tion was used:

h(−μ +
√
h−1Q2 + μ2) = Q2

μ + √
h−1Q2 + μ2

.

In Ref. [1] Propositions 1 and 2 were proved for the case
λ1 = λ2 (h1 = h2). In this case the bound (5.12) is coinciding
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(up to notations) with the bound (6.16) from Ref. [11] (BPS-
like inequality), which was proved there by using certain
spinor techniques.

Remark 3 When one of hs , say h1, is negative, the conjec-
ture is not valid. This may be verified just by analyzing the
solutions with small enough charge Q2.

We note that here we were dealing with a special class of
solutions with phantom scalar field (ε = −1). Even in the
limiting case Q2 = +0 and Q1 �= 0 there exist phantom
black hole solutions which are not covered by our analysis
[38] (see also [39].)

Remark 4 The inequalities on the mass (5.1) and (5.3) in
Proposition 1 can be refined when λ1λ2 < 0. For both cases
which are considered in Proposition 1, we get (see right pan-
els of Figs. 1, 2)

f (μ, hmin; Q2) < GM < f (μ, hmax; Q2), (5.16)

where Q2 = Q2
1 + Q2

2 and f (μ, h; Q2) is defined in (5.6).
The bounds on mass (5.16) are a specific feature of the model
with two different dilatonic couplings of opposite sign. For
λ1λ2 > 0, e.g. for λ1 = λ2, one should use Eqs. (5.1) and
(5.3). We also note that in the proof of Proposition 1 the
condition λ1 �= −λ2 was used. For the case λ1 = −λ2 the
arcs on the right panels of Figs. 1, 2 reduce to points and we
get GM = f (μ, h1; Q2).

6 Conclusions

In this paper a family of non-extremal black hole dyon-like
solutions in a 4d gravitational model with a scalar field and
two Abelian vector fields is presented. The scalar field is
either ordinary (ε = +1) or phantom (ε = −1). The model
contains two dilatonic coupling constants λs �= 0, s = 1, 2,
obeying λ1 �= −λ2.

The solutions are defined up to two moduli functions
H1(R) and H2(R), which obey two differential equations of
second order with boundary conditions imposed. For ε = +1
these equations are integrable for four cases, corresponding
to the Lie algebras A1 + A1, A2, B2 = C2 and G2. In the first
case (A1 + A1) we have λ1λ2 = 1/2, while in the second
one (A2) we get λ1 = λ2 = λ and λ2 = 3/2. Two other
solutions, corresponding to the Lie algebras B2 = C2 and
G2, will be considered in separate publications.

There is also a special solution with dependent electric
and magnetic charges: λ1Q2

1 = λ2Q2
2, which is defined for

all (admissible) λs and ε obeying λ1λ2 > 0.
Here we have also calculated some physical parameters of

the solutions: gravitational mass M , scalar charge Qϕ , Hawk-
ing temperature, black hole area entropy and post-Newtonian

parameters β, γ . The PPN parameters γ = 1 and β do not
depend upon λs and ε, if the values of M and Qϕ are fixed.

We have also obtained a formula, which relates M , Qϕ ,
the dyon charges Q1, Q2, and the extremality parameter μ

for all values of λs �= 0. Remarkably, this formula does not
contain λs and coincides with that of Ref. [1]. As in the case
λ1 = λ2, the product of the Hawking temperature and the
Bekenstein–Hawking entropy does not depend upon ε, λs
and the moduli functions Hs(R).

Here we have obtained lower bounds on the gravita-
tional mass and upper bounds on the scalar charge for
1 + 2λ2

s ε > 0, which are based on the conjecture (from
Sect. 5) on the parameters of solutions P1 = P1(Q2

1, Q
2
2),

P2 = P2(Q2
1, Q

2
2). In [1] we have presented several results

of numerical calculations which support our bounds for
λ1 = λ2. A rigorous proof of this conjecture may be the sub-
ject of a separate publication. For ε = +1 the lower bound
on the gravitational mass is in agreement for λ1 = λ2 with
that obtained earlier by Gibbons et al. [11] by using certain
spinor techniques.

It was noted in Sect. 3.3 that for λ1 �= λ2 there exist two
integrable cases corresponding to the Lie algebras C2 and
G2, which will be analyzed in separate papers. They do not
occur for λ1 = λ2.

An open question here is to find the conditions on the dila-
tonic coupling constants λs which guarantee the existence of
the second (hidden) horizon and the existence of the extremal
black hole in the limit μ = +0. For ε = +1, λ1 = λ2 this
problem was analyzed in Refs. [14,28]. This question can be
addressed to a separate publication.

Acknowledgements The authors acknowledge the support from the
Program of target financing of the Ministry of Education and Science
of the Republic of Kazakhstan Grant No. F.0755. The paper was also
funded by the Ministry of Education and Science of the Russian Feder-
ation in the Program to increase the competitiveness of Peoples Friend-
ship University (RUDN University) among the world’s leading research
and education centers in the years 2016–2020 and by the Russian Foun-
dation for Basic Research, Grant Nr. 16-02-00602.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

References

1. M.E. Abishev, K.A. Boshkayev, V.D. Dzhunushaliev, V.D.
Ivashchuk, Dilatonic dyon black hole solutions. Class. Quantum
Gravity 32(16), 165010 (2015)

2. K.A. Bronnikov, G.N. Shikin, On interacting fields in general rela-
tivity theory, Izvest. Vuzov (Fizika), 9, 25-30 (1977) [in Russian];
Russ. Phys. J. 20, 1138-1143 (1977)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


180 Page 10 of 10 Eur. Phys. J. C (2017) 77 :180

3. G.W. Gibbons, Antigravitating black hole solutions with scalar hair
in N = 4 supergravity. Nucl. Phys. B 207, 337–349 (1982)

4. S.-C. Lee, Kaluza–Klein dyons and the Toda lattice. Phys. Lett. B
149(1–3), 98–99 (1984)

5. G.W. Gibbons, D.L. Wiltshire, Spacetime as a membrane in higher
dimensions. Nucl. Phys. B 287, 717–742 (1987)

6. O. Heinrich, Charged black holes in compactified higher-
dimensional Einstein–Maxwell theory. Astron. Nachr. 309(4),
249–251 (1988)

7. G.W. Gibbons, K. Maeda, Black holes and membranes in higher-
dimensional theories with dilaton fields. Nucl. Phys. B 298, 741–
775 (1988)

8. D. Garfinkle, G. Horowitz, A. Strominger, Charged black holes in
string theory. Phys. Rev. D 43, 3140 (1991)

9. D. Garfinkle, G. Horowitz, A. Strominger, Charged black holes in
string theory. Phys. Rev. D 45, 3888 (1992). (E)

10. G.-J. Cheng, R.R. Hsu, W.-F. Lin, Dyonic black holes in string the-
ory. J. Math. Phys. 35, 4839–4847 (1994). arXiv:hep-th/9302065

11. G.W. Gibbons, D. Kastor, L.A.J. London, P.K. Townsend, J.
Traschen, Supersymmetric self-gravitating solitons. Nucl. Phys.
B 416, 850–880 (1994). arxiv:hep-th/9310118

12. U. Bleyer, K.A. Bronnikov, S.B. Fadeev, V.N. Melnikov, Black
hole stability in multidimensional gravity theory. Astron. Nachr.
315(4), 399–408 (1994). arXiv:gr-qc/9405021

13. U. Bleyer, V.D. Ivashchuk, Mass bounds for multidimensional
charged dilatonic black holes. Phys. Lett. B 332, 292–296 (1994).
arXiv:gr-qc/9405018

14. S.J. Poletti, J. Twamley, D.L. Wiltshire, Dyonic dilaton black holes.
Class. Quant. Grav. 12, 1753–1770 (1995). arXiv:hep-th/9502054.
[Erratum–ibid. 12, 2355 (1995)]

15. K.A. Bronnikov, On spherically symmetric solutions in D-
dimensional dilaton gravity. Gravit. Cosmol. 1, 67–78 (1995).
arXiv:gr-qc/9505020

16. H. Lü, C.N. Pope, p-brane solitons in maximal supergravities. Nucl.
Phys. B 465, 127–156 (1996). arXiv:hep-th/9512012

17. M.J. Duff, H. Lu, C.N. Pope, The black branes of M-theory. Phys.
Lett. B 382, 73–80 (1996). arXiv:hep-th/9604052

18. H. Lü, C.N. Pope, K.W. Xu, Liouville and Toda solitons
in M-theory. Mod. Phys. Lett. A 11, 1785–1796 (1996).
arXiv:hep-th/9604058

19. V.D. Ivashchuk, V.N. Melnikov, P-brane black holes for
general intersections. Gravit. Cosmol. 5(4), 313-318 (1999).
arXiv:gr-qc/0002085

20. V.D. Ivashchuk, V.N. Melnikov, Black hole p-brane solutions for
general intersection rules. Gravit. Cosmol. 6(1), 27–40 (2000).
arXiv:hep-th/9910041

21. V.D. Ivashchuk, V.N. Melnikov, Toda p-brane black holes and poly-
nomials related to Lie algebras. Class. Quantum Gravity 17, 2073-
2092 (2000). arXiv:math-ph/0002048

22. V.D. Ivashchuk, V.N. Melnikov, Exact solutions in multidimen-
sional gravity with antisymmetric forms, topical review. Class.
Quantum Gravity 18, R1–R66 (2001). arXiv:hep-th/0110274

23. S.B. Fadeev, V.D. Ivashchuk, V.N. Melnikov, L.G. Sinanyan, On
PPN parameters for dyonic black hole solutions. Gravit. Cosmol.
7(4), 343–344 (2001)

24. G. Clement, D. Gal’tsov, C. Leygnac, D. Orlov, Dyonic branes
and linear dilaton background. Phys. Rev. D 73, 045018 (2006).
arXiv:hep-th/0512013

25. D.V. Gal’tsov, D.G. Orlov, Liouville and Toda dyonic branes:
regularity and BPS limit. Gravit. Cosmol. 11, 235–243 (2005).
arXiv:hep-th/0512345

26. H. Lü, W. Yang, SL(n,R)-Toda black holes. arxiv:1307.2305
27. V.D. Ivashchuk, Black brane solutions governed by fluxbrane poly-

nomials. J. Geom. Phys. 86, 101–111 (2014). arxiv:1401.0215
28. D. Gal’tsov, M. Khramtsov, D. Orlov, “Triangular” extremal dila-

tonic dyons. Phys. Lett. B 743, 87–92 (2015). arXiv:1412.7709
29. N. Arkani-Hamed, H-Ch. Cheng, M.A. Luty, S. Mukoyama, Ghost

condensation and a consistent infrared modification of gravity.
JHEP 0405, 074 (2004). arxiv:hep-th/0312099

30. E. Komatsu et al., Seven-Year Wilkinson microwave anisotropy
probe (WMAP) observations: cosmological interpretation. Astro-
phys. J. Suppl. 192, 18 (2011). arxiv:1001.4538 [astro-ph]

31. N. Khviengia, Z. Khviengia, H. Lü, C.N. Pope, Towards a field
theory of F-theory. Class. Quantum Gravity 15, 759–773 (1998).
arxiv:hep-th/9703012

32. M.A. Grebeniuk, V.D. Ivashchuk, S.-W. Kim, Black-brane solu-
tions for C2 algebra. J. Math. Phys. 43, 6016–6023 (2002).
arxiv:hep-th/0111219

33. K.A. Bronnikov, Block-orthogonal Brane systems, black
holes and wormholes. Gravit. Cosmol. 4(1), 49 (1998).
arXiv:hep-th/9710207

34. V.D. Ivashchuk, V.N. Melnikov, Multidimensional cosmological
and spherically symmetric solutions with intersecting p-branes.
In: Lecture Notes in Physics, vol. 537. Mathematical and Quantum
Aspects of Relativity and Cosmology. Eds.: S. Cotsakis and G.
Gibbons. Springer, Berlin, 2000, pp. 214. arXiv:gr-qc/9901001

35. S. Cotsakis, V.D. Ivashchuk, V.N. Melnikov, P-branes black holes
and post-Newtonian approximation. Gravit. Cosmol. 5(1), (1999).
arXiv:gr-qc/9902148

36. C.M. Will, The Confrontation between general relativity and exper-
iment. Living Rev. Relat. 9, 3 (2006). http://www.livingreviews.
org/lrr-2006-3

37. M.E. Abishev, K.A. Boshkayev, V.D. Ivashchuk, A. Malybaev, (In
preparation)

38. G. Clement, J.C. Fabris, M. Rodriges, Phantom black holes
in Einstein–Maxwell–Dilaton theory. Phys. Rev. D 79, 064021
(2009). arxiv:0901.4543

39. M. Azreg-Aïnou, G. Clément, J.C. Fabris, M.E. Rodrigues, Phan-
tom black holes and sigma models. Phys. Rev. D 83, 124001 (2011)

123

http://arxiv.org/abs/hep-th/9302065
http://arxiv.org/abs/hep-th/9310118
http://arxiv.org/abs/gr-qc/9405021
http://arxiv.org/abs/gr-qc/9405018
http://arxiv.org/abs/hep-th/9502054
http://arxiv.org/abs/gr-qc/9505020
http://arxiv.org/abs/hep-th/9512012
http://arxiv.org/abs/hep-th/9604052
http://arxiv.org/abs/hep-th/9604058
http://arxiv.org/abs/gr-qc/0002085
http://arxiv.org/abs/hep-th/9910041
http://arxiv.org/abs/math-ph/0002048
http://arxiv.org/abs/hep-th/0110274
http://arxiv.org/abs/hep-th/0512013
http://arxiv.org/abs/hep-th/0512345
http://arxiv.org/abs/1307.2305
http://arxiv.org/abs/1401.0215
http://arxiv.org/abs/1412.7709
http://arxiv.org/abs/hep-th/0312099
http://arxiv.org/abs/1001.4538
http://arxiv.org/abs/hep-th/9703012
http://arxiv.org/abs/hep-th/0111219
http://arxiv.org/abs/hep-th/9710207
http://arxiv.org/abs/gr-qc/9901001
http://arxiv.org/abs/gr-qc/9902148
http://www.livingreviews.org/lrr-2006-3
http://www.livingreviews.org/lrr-2006-3
http://arxiv.org/abs/0901.4543

	Dilatonic dyon-like black hole solutions in the model with two Abelian gauge fields
	Abstract 
	1 Introduction
	2 Black hole dyon solutions
	3 Some integrable cases
	3.1 (A1 + A1)-case
	3.2 A2-case
	3.3 C2 and G2 cases
	3.4 Special solution with two dependent charges
	3.5 The limiting A1-cases

	4 Physical parameters
	4.1 Gravitational mass and scalar charge
	4.2 The Hawking temperature and entropy
	4.3 PPN parameters

	5 Bounds on mass and scalar charge
	6 Conclusions
	Acknowledgements
	References




