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The ‘39 steps’: an algorithm for performing
statistical analysis of data on energy intake

and expenditure

John R. Speakman’-?*, Quinn Fletcher' and Lobke Vaanholt'

The epidemics of obesity and diabetes have aroused great interest in the analysis of energy balance, with the use of
organisms ranging from nematode worms to humans. Although generating energy-intake or -expenditure data is relatively
straightforward, the most appropriate way to analyse the data has been an issue of contention for many decades. In the
last few years, a consensus has been reached regarding the best methods for analysing such data. To facilitate using
these best-practice methods, we present here an algorithm that provides a step-by-step guide for analysing energy-
intake or -expenditure data. The algorithm can be used to analyse data from either humans or experimental animals,
such as small mammals or invertebrates. It can be used in combination with any commercial statistics package; however,
to assist with analysis, we have included detailed instructions for performing each step for three popular statistics packages
(SPSS, MINITAB and R). We also provide interpretations of the results obtained at each step. We hope that this algorithm
will assist in the statistically appropriate analysis of such data, a field in which there has been much confusion and some

controversy.

Introduction

The twin epidemics of obesity and diabetes have placed a great
premium on understanding more about the regulation of energy
balance and how its dysregulation affects fat deposition and glucose
homeostasis. Research in this area is being carried out using many
organisms, including invertebrates such as Drosophila melanogaster
and Caenorhabditis elegans, small mammals such as mice and rats,
non-human primates, and humans. In particular, progress has been
greatly facilitated by the generation of genetically manipulated
animals (involving knockout, conditional knockout, knockdown,
transgenic overexpression or optogenetic manipulation of targeted
genes) in the last decade. Moreover, as our understanding of
systems regulating energy balance improves, an increasing number
of pharmaceutical and nutraceutical agents are being developed
that aim to normalise energy balance.

The diversity of experimental approaches and organisms used
to investigate energy balance calls for harmonisation in how data
are analysed. This will mean that data derived using different
approaches and organisms can be interpreted and compared with
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greater consistency. A particular concern in recent studies of small
mammals has been how to normalise intake or expenditure data
for differences in body mass or body composition of the animals
(Arch et al.,, 2006; Butler and Kozak, 2010; Kaiyala and Schwartz,
2011; Tschop et al., 2012). These issues are not new — the
discussion of the optimal methods by which to normalise for
body-mass effects began at least a century ago (Rubner, 1883;
Kleiber, 1932; Kleiber, 1961). However, a consensus on this issue
emerged in the 1990s in human studies. It was agreed that the
best way forward was not to perform simple ratio calculations
(e.g. expenditure divided by body mass, or lean body mass)
because these approaches do not adequately normalise for the
mass effect (Allison et al., 1995; Poehlman and Toth, 1995). Rather,
the optimal approach is to correct for mass effects using a
regression-based approach called analysis of covariance
(ANCOVA) or general linear modelling (GLM). More recently,
the same consensus has emerged among many researchers
studying energy balance in small mammals (Kaiyala and Schwartz,
2011; Tschop et al., 2012). Thus, a common framework for this
analysis is now widely agreed on by researchers from the entire
field, from those working with model organisms such as mice and
flies, to those studying humans.

Despite this agreement of what should be done to analyse
energy-balance data, researchers do not necessarily know how to
do it. Therefore, the aim of this paper is to provide an algorithm
as a step-by-step guide for performing this type of analysis. In an
ideal world, the data generated from energy-balance experiments
would be analysed with the help of a professional statistician. Our
aim is not to replace that gold standard; if professional help is at
hand then that will always be the best route for data analysis.
However, access to professional statistical expertise is not always
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available. Indeed, two recent papers (Butler and Kozak, 2010;
Tschop et al., 2012) show that, in most cases, analyses of energy-
balance data have been most frequently performed using
approaches that would not be advised by a trained statistician, and
that are at odds with the consensus that has been reached regarding
analysis methods. Thus, we believe that a standardized algorithm
that can be taken up by researchers throughout the field is of great
importance. Even if professional help is at hand, researchers might
find it useful to work through the analysis process before checking
the outputs with a qualified statistician so as to better understand
their own data.

The algorithm presented in this paper can be used in
combination with any commercial statistics package. To assist
with the analysis, we have provided the commands that should
be used for three popular statistics packages (SPSS, MINITAB
and R) in the supplementary material (supplementary material
Appendices I, II and III, respectively). To use these commands,
you simply go to the supplementary material Appendix for your
preferred program, find the step in the algorithm you are at, and
you will find details of the commands to use to run the analysis.
We also provide with each supplementary material Appendix
example outputs for the analysis, using example data we provide
(see later), as well as guidance on how to interpret the outputs.
Note that it is not possible to use this algorithm, or to correctly
analyse this type of data, using packages designed principally to
generate graphics or work as spreadsheets (such as
PRISMGRAPH or Microsoft Excel) unless you perform complex
programming to execute the appropriate tests. Because this
requires specialist knowledge of the calculations involved in the
statistical tests used, and how to program the packages, we
strongly urge researchers to invest in statistical software that
enables the analyses described. Note that, although we include
the names of the statistical tests that are applied to the data, we
do not detail the formulas on which the tests are based (beyond
the scope of this manuscript). The formulas underlying the
statistical tests used can be found in any advanced biostatistical
textbook (e.g. Sokal and Rohlf, 2012; Zar, 2009). We cannot
emphasise enough the importance of checking outputs with a
qualified statistician before progressing to publication.

The data analysed using this algorithm should be of good quality,
and involve a sufficiently large sample size. It is often assumed that
sample sizes of six to ten individuals are adequate for this type of
analysis, but studies based on such sample sizes are often
underpowered (see e.g. Speakman, 2010). No level of statistical
analysis can rescue poorly collected data or a dataset with a very
small number of observations. The problem of having a small
sample size is generally not resolved by combining the small sample
with an inappropriate statistical analysis! Consulting a statistician
before an experiment starts is useful for obtaining advice on a priori
power analysis and sufficient sample sizes. In addition, advice on
techniques and common pitfalls in available methods for
measurements of food intake, energy expenditure and body
composition can be found elsewhere (Lighton, 2008; Tschop et al.,
2012).

Preparing the data for analysis
Before using the algorithm, you should prepare the data and
familiarise yourself with the terminology we use. We assume that
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a typical experiment involves measurements of either food intake
[in grams or kg eaten, or kilojoules (kJ) or megajoules (MJ]) of
energy consumed in a given time period — usually a day] or energy
expenditure [this can be expressed as oxygen consumption (e.g.
ml of oxygen per minute or per hour), carbon dioxide production
(ml of CO, per minute or per hour) or energy burned per unit of
time (in watts, which are equivalent to joules per second, or
expenditure over some other relevant time period, e.g. MJ/day or
kJ/day)]. Note that mass does not feature in any of these units.
In a typical experiment, these measurements will have been
determined for several individuals, for which you will also have
additional data, such as body mass and potentially body
composition (e.g. fat mass, fat-free mass or even the masses of
individual organs).

It is important to note that each individual should only appear
in the dataset once in any given condition. It is not valid to include
multiple data points for a single individual. For example, you might
measure food intake every day for 10 days. The 10 separate days
of data for a given individual are not ‘independent’ samples. All of
the statistics mentioned in this algorithm assume the data being
used are independent. In this example, if all the individuals have
been measured in the same way, then you should use either the
accumulated food intake over the entire 10 days or the mean over
the 10 days — hence providing one independent data point per
individual.

It is also important to note that data points should not be
‘normalised’” by dividing by body mass or lean body mass.
Unfortunately, some of the equipment used to measure energy
expenditure of animals (such as the CLAMS system) automatically
makes this division before generating the final output data. To
avoid this problem, we advise entering a body mass of 1.0 instead
of the actual subject body mass when making measurements
with this type of equipment. Alternatively, you can multiply
output data from this type of equipment by body mass before
proceeding.

The individuals that have been measured in your experiment
can be divided into groups. This grouping reflects the treatment
being performed. For example, the ‘treatment’ group could be
animals deficient for a particular gene and the ‘control’ group
would be animals with a wild-type genotype. A given experiment
can have multiple treatments (e.g. multiple genotypes).
Treatments can also have different ‘levels. For example, the
animals could be exposed to a drug thought to affect energy
balance, and different animals could be given different doses of
the drug. When using the algorithm, it is important to separate
between different levels within a treatment, and different
treatments. Homozygote and heterozygote animals for a particular
gene should be treated as levels of a single treatment: they are
effectively allele dosages.

Once the data are prepared, you should enter them into a
statistical package to run the analysis. The three packages that we
provide detailed instructions for are similar to most statistical
packages in that all use a column-based operational structure. That
is, comparisons and relationships are made between columns rather
than between rows. For MINITAB and SPSS, data are entered into
columns within the statistics package itself. In contrast, for R,
datasets should be entered into a spreadsheet program (e.g.
Microsoft Excel) and saved as tab-delimited .txt files. For all three
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packages, we suggest the following structure for data entry to
analyse independent data:

Column 1: subject ID (any alphanumeric code).

Column 2: the data on food intake or energy expenditure. Recall
that this must be the raw data, and should not be manipulated by
dividing by mass or lean body mass.

Column 3: the subject body mass.

Column 4: the treatment group. Use a code such as C for control
and T for treatment or any other alphanumeric code.

Column 5: if appropriate, the different levels of the treatment.
You can use numerical data here if referring to doses, or use an
arbitrary alphanumerical code if levels are not doses.

Column 6: data on lean body mass (if available).
Column 7: data on fat mass (if available).

Columns 8 onwards: other relevant data, such as masses of
individual organs.

A typical dataset for this type of analysis is shown in Table 1. In
this example, there are 15 individual animals in which metabolism
and body mass were measured; animals were exposed to either a
treatment (1) or control (2). The treatment had two levels. Note
that the control is treated as a third level of the treatment in the
column labelled ‘Levels’

Table 1. Layout of data for a typical energy metabolism study
using independent measurements

ID Metabolism® Body mass Treatment® Levels Sex¢
1 1.65 219 1 1 0
2 1.67 223 1 1 0
3 1.77 23.9 1 1 0
4 1.81 23.7 1 1 1
5 1.64 24.8 1 1 1
6 1.34 24.5 1 2 0
7 1.49 254 1 2 0
8 1.26 22.8 1 2 0
9 1.34 229 1 2 1
10 1.41 23.8 1 2 1
1 0.63 219 2 3 0
12 1.00 23.1 2 3 0
13 1.00 24.6 2 3 0
14 1.10 23.2 2 3 1
15 1.15 23.5 2 3 1

2Units are ml O, per minute. ®1, treatment; 2, control. <0, male; 1 female.

When you are using a study design in which repeated
measurements are performed on the same individual under
different conditions (i.e. a paired or repeated measures design), the
data need to be organised as shown in Table 2. The example shows
a study in which the same 15 animals were measured under a
control and two treatment conditions.
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Table 2. Layout of data for a typical energy metabolism study with
arepeated measures design

Metabolism 1 Metabolism2 Metabolism3  Body
ID (control) (treatment 1) (treatment 2) mass Sex?
1 1.65 1.62 1.55 219 0
2 1.67 1.78 1.38 223 0
3 1.77 1.75 1.58 239 0
4 1.81 1.86 1.58 23.7 1
5 1.64 1.68 1.68 24.8 1
6 134 1.54 1.57 24.5 0
7 1.49 1.51 1.54 254 0
8 1.26 1.32 1.62 22.8 0
9 134 1.24 1.25 229 1
10 141 1.54 1.58 23.8 1
1 0.63 1.02 0.89 219 0
12 1.00 1.20 1.11 23.1 0
13 1.00 1.21 1.15 24.6 0
14 1.10 1.54 135 23.2 1
15 1.15 1.25 1.20 235 1

20, male; 1, female.

Formatting data for use with ‘R’

If using the statistics package R, note that it works in a slightly
different way than MINITAB and SPSS. In R, functions are entered
into a script editor and these functions are sent to the R terminal
to be processed. Scripts can be written using the built-in script
editors in R or via external script editors [e.g. Rstudio
(www.rstudio.org) or Tinn-R (www.sciviews.org/Tinn-R/)]. Scripts
can be saved and re-opened, thus allowing users to easily re-run
and edit the analyses they want to perform. In this article,
commands entered into the script editors are underlined and the
output is shown in the tables within the box (note that not all
commands result in an output).

Before importing data, the working directory must be specified
using the setwd() function (this path will be user-specific). The
working directory is the location where all data files are stored and
where all outputs from R (e.g. figures) will be saved. Tab-delimited
.txt files are imported into R using the read.table() function.
Imported data are called data frames (e.g. Tablel). Note that R is
a case-sensitive language. Names are assigned to data frames and
vectors using ‘<-’ Variables within a data frame are referred to using
the following syntax: dataframe$variable (e.g. Table1l$ID). Spaces
are not allowed in data frame or variable names. Spaces within
variable names in .txt files are replaced with periods when the .txt
files are imported. For help on all functions, enter, e.g.
‘help(read.table)

Before proceeding, all categorical variables (e.g. ID, treatment,
levels and sex) must be specified as factors using the as.factor()
function. Ensure that you also do this after importing the data
in Table 2. To ensure that the data has been imported correctly
and all variables are specified correctly, the summary() function
can be used. The dim() function can be used to ensure that the
data frame is the correct size (i.e. Table 1 is 15 rows by 6 columns).
The head() function can be used to see the first 6 rows of data.
If you want to see the entire data frame, or a variable within a
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setwd(“C:/Users/YourName/Documents/Metabolism/")
Table1 <- read.table(“Table1.txt’, header=TRUE)

Table1SID <- as.factor(Table1SID)
Table1STreatment <- as.factor(Table1S$Treatment)
Table1SLevels <- as.factor(Table1S$Levels)
Table1$Sex <- as.factor(Table1$Sex)
summary(Table1)

ID Metabolism Body.Mass [Treatment| Levels [ Sex
11 Min.  :0.630 | Min. :21.90 1:10 1:5 0:9
2:1 T1stQu. :1.125| 1stQu. :22.85 2:5 2:5 1:6
3:1 Median :1.340 | Median :23.50 3:5
4:1 Mean :1.351| Mean :23.49
5:1 3rd Qu. :1.645 | 3rd Qu. :24.20
6:1 Max. :1.810| Max. :25.40

(Other):9

dim(Table1)

(o [ s [ o]

head(Table1)

ID | Metabolism | Body.Mass | Treatment | Levels Sex

1 1 1.65 21.9 1 1 0
2 2 1.67 22.3 1 1 0
3 3 1.77 23.9 1 1 0
4 4 1.81 237 1 1 1
5 5 1.64 24.8 1 1 1
6 6 1.34 24.5 1 2 0

Table1S$Metabolism[2
m | e7 |

names(Table1)
[1] “ID" “Metabolism” | “Body.Mass” “Treatment”
[5] “Levels” “Sex”

length(Table1$Metabolism)

| m | 15 |

data frame, enter their names: e.g. Tablel or Tablel$Metabolism.
To refer to a specific value in a vector, for example the second
value in the Tablel$Metabolism, enter: Tablel$Metabolism|[2].
The names() function can be used to see all variable names within
a data frame. To determine the number of elements in a variable,
the length() function can be used (see Box 1 for an example).

The algorithm

Once the data have been entered into the statistics package of your
choice using the above format, you are ready to use the algorithm.
Beginning with step 1 below, work your way through the algorithm,
deciding where to go next according to the results of the analyses
at each step. In all steps, the statistical tests that should be used
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are indicated in bold capital letters. The analysis is finished when
you get to step 39: the ‘(END’ statement. A flowchart of the 39 steps
of the algorithm (Fig. 1) allows you to see where you are in the
overall analysis process at any stage.

Step 1. Are the data for the variables you are testing normally
distributed? Use, for example, the ANDERSON-DARLING,
SHAPIRO-WILKS or KOLMOGOROV-SMIRNOV test to
determine the distributions. You need to do this for the dependent
variable (food intake or energy expenditure) and the predictor
variables (body mass or body composition). If the data are not
normally distributed, go to step 2. If they are normally distributed,
go to step 4.

Step 2. Check that the lack of normality in the data are not due
to any mistyped data items etc. If it is due to typographical error,
correct this error and go back to 1. If data are OK, go to step 3.
NOTE: An easy way to check if there are typographical errors in
alarge data set is to plot the data as a histogram, or plot two columns
of continuous data against each other. Any outlying data points
will be immediately apparent, and you can then check whether they
were mistyped.

Step 3. Attempt to normalise the distribution by transforming
it. Applying the square root or log conversion will often normalise
skewed data. More sophisticated transformations involve the BOX-
COX procedure. After transformation, go back to step 1 to check
if the data are normalised. If this normalises the distribution, go
to step 4. If the distribution is still not normal, go to step 15.

Step 4. Do you want to analyse the whole animal data (go to step
5) or do you want to correct the data for differences in body size
(go to step 22)?

Step 5. How many treatments (e.g. diet, drug, temperature) do
you have? (Remember to distinguish separate treatments from levels
of the same treatment; i.e. different doses of the same drug are levels,
but different drugs are different treatments.) If you have just one
treatment, go to step 6. If more than one treatment, go to step 12.

Step 6. How many levels are there? If there are just two levels
(e.g. one treatment level and control) go to step 7. If there are more
than two levels go to step 8.

Step 7. Was each individual exposed to both treatment levels?
If no, analyse the data using TWO-SAMPLE T-TEST. If yes,
analyse data using PAIRED T-TEST. Was the test result significant
according to the accepted P-value of less than 0.05? If yes, go to
step 39: END. If no, go to step 11. NOTE: you should not mix the
design here. Either all of the individuals should appear just once
(i.e. either in control or treatment groups), or all individuals should
appear twice (i.e. in both treatment and control groups).

Step 8. Was each individual exposed to all the treatment levels?
If no, analyse the data using ONE-WAY ANALYSIS OF
VARIANCE (ANOVA) with treatment as a fixed factor. If yes,
analyse the data using REPEATED MEASURES ONE-WAY
ANOVA with treatment as the factor. (An alternative is to use ONE-
WAY ANOVA with individual as a random factor.) Go to step 9.

Step 9. Was the treatment effect significant? If yes, go to step
10. If no, go to step 11.

Step 10. If the treatment was significant, you can probe exactly
where the pair-wise differences are located in the data between
treatment levels using a post-hoc comparison test. There are many
to choose from, including TUKEY’S TEST or DUNCAN’S
MULTIPLE RANGE TEST. For repeated measures, analyse using
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ANOVA probe difference using PAIRED T-TESTS. Go to step 39:
END.

Step 11. Perform POWER ANALYSIS to evaluate power of the
test. A power of 80% or greater is generally considered sufficient to
malke a strong statement about the absence of an effect. Lower levels
of power mean the absence of an effect has a greater possibility of
being a type 2 error. A power below 20% indicates that a statement
that there is no effect is very dubious. Go to step 39: END.

Step 12. If you only have two treatments (e.g. diet and drug) or
two factors (e.g. diet and sex), go to step 13. Otherwise go to step
14.

Step 13. If each individual did not receive all treatments, analyse
the data using TWO-WAY ANOVA. If individuals received all
treatments, use REPEATED MEASURES TWO-WAY ANOVA
or GENERAL LINEAR MODEL with individual as a random
factor. If you have significant effects (i.e. if the P-value for any effect
is less than 0.05) go to step 10. If effects are not significant, go to
step 11.

Step 14. If you have more than two treatments, you can analyse
the data at this point using higher level ANOVAs (i.e. 3-WAY, 4-
WAY etc.); another option is to use the GENERAL LINEAR
MODEL. To start this part of the analysis, define each factor in
the model and all of the higher-level interactions. Run the analysis.
If higher-level interactions are not significant, remove them and
re-run the model. Note that you cannot remove a non-significant
primary treatment variable if it has a significant higher-level
interaction. Successive removal of non-significant interactions
yields the simplest significant model. Alternatively, different models
can be evaluated using the AKAIKE INFORMATION
CRITERION TEST (AIC TEST). If you have significant effects
go to step 10. If effects are not significant, go to step 11.

Step 15. You have reached this step because it seems your data
are not normally distributed. If you wish to analyse the whole animal
data without correcting for body size differences, then a series of
non-parametric statistical tests are available. However, if you want
to correct for body size differences, then non-parametric tests are
not readily available to do this. If the deviation from normal is not
large, you can probably proceed with the parametric tests. We
advise taking advice from a qualified statistician on whether your
data are appropriate for these analyses. Do you want to analyse the
whole animal data (go to step 16), or do you want to correct the
data for body size differences (go to step 22)?

Step 16. How many treatments do you have (ie. diet, drug,
temperature etc.)? Remember to distinguish separate treatments from
levels of the same treatment (i.e. different doses of the same drug are
levels, but different drugs are different treatments). If just one
treatment, go to step 17. If more than one treatment, go to step 19.

Step 17. How many levels are there? If just two levels (e.g. one
treatment and control) go to step 18. If more than two levels, go
to step 19.

Step 18. Was each individual exposed to both treatment levels?
If not, analyse data using MANN-WHITNEY U-TEST. If yes,
analyse data using WILCOXON MATCHED-PAIRS TEST. Was
the test result significant according to the accepted P-value of less
than 0.05? If yes, go to step 39: END. If no, go to step 11.

Step 19. Was each individual exposed to all of the treatments
and levels? If not, analyse data using KRUSKAL-WALLIS ANOVA
with treatment(s) as the factor(s). If yes, one option is to analyse
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the data using the REPEATED MEASURES FRIEDMAN TEST
(ANOVA) with treatment(s) as the factor(s). Go to step 20.

Step 20. Was the treatment effect significant? If yes, go to step
21. If not, go to step 11.

Step 21. If the treatment was significant, you can probe exactly
where the pairwise differences are located in the data between
treatment levels using a post-hoc comparison test (MANN-
WHITNEY U-TEST). For repeated measures, probe difference using
WILCOXON MATCHED-PAIRS TEST. Go to step 39: END.

Step 22. Do you have:

(a) measures of body size (e.g. length) or whole body mass? Go
to step 23.

(b) measures of lean and fat mass, e.g. from magnetic resonance
spectroscopy (MRS) or dual-energy X-ray absorptiometry (DXA)?
Go to step 32.

(c) measures of multiple organ masses? Go to step 37.

Step 23. Analyse the data using ANALYSIS OF COVARIANCE
(ANCOVA) or the GENERAL LINEAR MODEL. Enter the
treatment variable as a dependent or response factor. If the same
individuals were exposed to multiple treatment levels, or
treatments, then include individual into the model as a random
factor. Include the body size variable values as a covariate in the
analysis. Include also the covariate by treatment-factor interaction.
If the interaction is not significant, remove it and re-run the analysis.
Go to step 24.

Step 24. If the treatment, covariate and interaction effects are
all non-significant, go to step 11. Steps 25-31 detail how to interpret
all of the other potential outcomes from the analysis detailed in
step 23. Go to step 25.

Step 25. If the covariate effect is significant, but there are no
treatment or interaction effects (including a continued covariate
effect and no treatment effect after the interaction has been
removed), the results mean that a difference between the different
treatment levels that was picked up in an analysis of whole body
levels (i.e. in steps 1-21 above) is due only to the difference in size
between the different treatment groups. In other words, there is
no treatment effect on expenditure (or intake) above that caused
by the effects of treatment on body mass (or size). That is, the plot
of intake or expenditure against body mass looks like Fig. 2A (if
there are two treatment levels) or Fig. 2B (if there are multiple
treatment levels) (treatment levels are shown in red, green and
blue). If this was not your result, go to step 26. Otherwise go to
step 39: END.

A B

Intake or expenditure

Body mass

Fig. 2. Relationships between intake or expenditure and body mass when
there is a significant mass effect but no significant treatment effect.

Step 26. If the treatment effect is significant, but there are no
covariate or interaction effects (including a treatment effect and no
covariate effect after the interaction has been removed — as occurred
in step 24), this means that the effect of body mass on intake or
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expenditure is non-significant, but that there are significant
differences between treatment levels. That is, the plot of intake or
expenditure against body mass looks like Fig. 3A (if there are two
treatment levels) or Fig. 3B (if there are multiple treatment levels)
(treatment levels in red, green and blue). If you had multiple
treatment levels (e.g. as illustrated in Fig. 3B) and this was your result,
go to step 27. If this was not your result, go to step 28.

A B

Intake or expenditure

Body mass

Fig. 3. Relationships between intake or expenditure and body mass when
there is a significant treatment effect but no significant mass effect.

Step 27. To find out which treatment levels differ from each other
in the situation illustrated in Fig. 3B above, use a post-hoc multiple-
comparison test such as the TUKEY’S TEST or DUNCAN’S
MULTIPLE RANGE TEST. For example, in the case illustrated
in Fig. 3B, it could be that the intake or expenditure of the blue
group is significantly lower than the red and green groups, which
do not differ from each other. Go to step 39: END.

Step 28. If the treatment effect is significant and the covariate
is significant, but the interaction is not significant (and the
treatment and covariate effects remain when the interaction is
removed), this means that there is an effect of body weight on intake
or expenditure; on top of this, there is also a treatment effect. That
is, the plot of intake or expenditure against body mass looks like
Fig. 4A (if there are two treatment levels) or Fig. 4B (if there are
multiple treatment levels) (treatment levels are shown in red, green
and blue). If you had multiple treatment levels and your result was
as shown in Fig. 4B, go to step 29. If this was not your result, go

to step 30.
y //
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Intake or expenditure

Body mass

Fig. 4. Relationships between intake or expenditure and body mass when
there is a significant treatment effect and a significant mass effect.

Step 29. The key point about the result described in step 28 is
that there is no significant interaction effect. This means that the
lines in the plots shown in Fig. 4 all run parallel to each other. The
difference between the treatment levels is the same at all body sizes.
To find out which treatment levels differ from each other in the
situation illustrated in Fig. 4B above, use a post-hoc multiple-
comparison test such as the TUKEY’S TEST or DUNCAN’S
MULTIPLE RANGE TEST. In this case, the test needs to be
performed taking the body mass effect into account. Most statistical
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packages include this comparison option among the output options
for the general linear model or ANCOVA. Go to step 39: END.
Step 30. If the treatment effect is significant and the covariate
is significant, but the interaction is also significant, this means that
there is an effect of body mass on intake or expenditure. On top
of this, there is also a treatment effect, but that treatment effect
differs depending on the treatment level. That is, the plot of intake
or expenditure against body mass looks like Fig. 5A (if there are
two treatment levels) or Fig. 5B (if there are multiple treatment
levels) (treatment levels are shown in red, green and blue). If you
had multiple treatment levels and your result was as shown in
Fig. 5B, go to step 31. If this was not your result go to step 39: END.

A B

N =

Intake or expenditure

Body mass

Fig. 5. Relationships between intake or expenditure and body mass when
there is a significant treatment effect and a significant mass effect and a
significant interaction effect.

Step 31. The key point about the plots in Fig. 5 is that the lines
do not run parallel. This means that, at some point, the lines must
cross. The issue of testing for the treatment level effects, therefore,
boils down to determining the range of values on the x-axis between
which the lines are significantly separated. This test is called the
JOHNSON-NEYMAN TEST. This test only works for situations
like that shown in Fig. 5A, where there are two levels. To address
the situation shown in Fig. 5B, there is no single overall test; the
different levels need to be compared separately on a pair-wise basis.
Go to step 39: END.

For instructions on performing the JOHNSON-NEYMAN
TEST, see White (White, 2003). This test is not available as an
option in SPSS, MINITAB or R, and needs to be calculated
manually.

Step 32. If you have measures of lean and fat mass available (for
example, from MRS or DXA analyses), or data from a principal
components analysis (PCA) derived in step 38, analyse the data
using ANCOVA or the GENERAL LINEAR MODEL (for detailed
instructions see step 9 above). Enter the treatment variable as a
fixed factor. If the same individuals are exposed to multiple
treatment levels, or treatments, then include individual into the
model as a random factor. Include the fat mass and lean mass as
independent covariates in the analysis. The assumption of the test
is that the fat mass and lean mass are independent. This is often
not true and should be borne in mind when interpreting the data.
Include also all the covariate-by-treatment factor interactions. Once
the analysis has been run, check whether higher-level interactions
are non-significant; remove them from the model and then re-run
the analysis until the model is maximally simplified. Because there
are two covariates in this analysis, the outcomes are potentially
more complex. The extra covariate effect can be envisaged as a
third dimension in the output plots. If one of the covariates is non-
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significant, the interpretations resolve down to those with a single
covariate (go to step 24 and progress from there). If both of the
covariates are significant, the interpretations are as follows — go to
step 33. If the treatment and both covariates are non-significant,
go to step 11.

Step 33. Both of the covariates are significant, the treatment
effect is significant but there are no significant interactions. This
situation can be envisaged as two planes that are overlaid in parallel
with each other (Fig. 6).

T Intake or

expenditure
/v
— Lean mass
Fat mass

Fig. 6. 3D plot showing intake or expenditure (vertical axis) in relation to
both fat and lean body mass in a situation where there are significant
mass effects and a significant treatment effect but no interactions.

The key thing to note about Fig. 6 is that the planes lie a fixed
distance apart. This is the treatment effect. If there are only two
treatment levels and the treatment effect is significant, then you
can infer that the difference between the planes at all fat and lean
masses is significant. If there are multiple levels, then the next step
is to analyse which planes differ from each other using a post-hoc
multiple-comparison test (e.g. TUKEY’S TEST or DUNCAN’S
MULTIPLE RANGE TEST). Note that these tests need to be done
as an option within the GLM, rather than as separate tests. In this
way, the covariate effects are accounted for. If this was not your
result, go to step 34. Otherwise go to step 39: END.

Step 34. The treatment effect is significant, both covariates are
significant, one of the covariate-by-treatment interactions is also
significant, but there is no covariate-by-covariate interaction. This
result represents an effect that can be illustrated as shown in Fig. 7.
If the fat-by-treatment effect is significant, this means that the
gradient of the mass effect is different for the two treatment levels,
but that the planes are parallel along the lean mass axis because
there is no lean-by-treatment interaction.

Intake or
expenditure

PR

'\ //v
Fat mass Lean mass

Fig. 7. 3D plot showing intake or expenditure (vertical axis) in relation to
both fat and lean body mass in a situation where there are significant
mass effects and a significant treatment effect and a significant fat mass
by treatment interaction but no lean mass by treatment interaction or
covariate by covariate interaction.
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In this situation, the first step is to normalise the data for both
fat and lean mass, and then compare treatments using a post-hoc
multiple-comparison test (e.g. TUKEY’S TEST or DUNCAN’S
MULTIPLE RANGE TEST). This effectively only asks if the
treatment is significant at the average lean and fat mass — i.e. at
the central point of each plane indicated by blue and red dots in
Fig. 7. A more sophisticated analysis would be proceed in two
stages: (1) normalise the data for fat mass and perform the same
test and (2) go back to the original data and normalise for lean
mass, and then perform the JOHNSON-NEYMAN TEST to ask
at what fat masses the effect of treatment is significant. If both
covariate-by-treatment interactions are significant, go to step 35.
Otherwise go to step 39: END.

Step 35. When both the covariates and treatment are significant,
and both of the treatment-by-covariate interactions are significant,
but there is no covariate-by-covariate interaction, the effect can be
illustrated by the plot shown in Fig. 8. In this situation, the upper
plane is not parallel to the lower plane in either lean or fat
dimensions. In this situation, one can normalise the data for both
fat and lean mass, and then compare treatments using a post-hoc
multiple-comparison test (e.g. TUKEY’S TEST or DUNCAN’S
MULTIPLE RANGE TEST).

Intake or
expenditure

!

\ /
Fat mass Lean mass

Fig. 8. 3D plot showing intake or expenditure (vertical axis) in relation to
both fat and lean body mass in a situation where there are significant
mass and treatment effects and both a significant fat mass by treatment
interaction and a significant lean mass by treatment interaction but no
covariate by covariate interaction.

Again, this effectively only asks if the treatment is significant at
the average lean and fat mass — i.e. at the central point of each
plane. A more sophisticated analysis would be to again proceed in
two stages: (1) normalise the data for fat mass, and then perform
the JOHNSON-NEYMAN TEST to ask at what lean masses the
effect of treatment is significant and (2) go back to the original data
and normalise for lean mass and then perform the JOHNSON-
NEYMAN TEST to ask at what fat masses the effect of treatment
is significant. If the covariate-by-covariate interaction is also
significant, this is the most complex situation of all: go to step 36.
Otherwise, go to step 39: END.

Step 36. When the covariate-by-covariate interaction is
significant, the planes no longer remain flat. This is illustrated in
Fig. 9. In this instance, there is a strong positive effect of the
treatment on fat mass when lean mass is low, but a strong negative
effect when lean mass is high. In this situation, unless the sample
size of individuals is very high, the best way to proceed is to plot
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Intake or
expenditure

\/’
Fat mass Lean mass

Fig. 9. 3D plot showing intake or expenditure (vertical axis) in relation to
both fat and lean body mass in a situation where there are significant
mass and treatment effects as well as significant mass by treatment and
covariate by covariate interactions.

the actual data in a 3D plot, and to overlay theoretical planes from
the derived model parameters to illustrate how the planes interact.
Go to step 39: END.

Step 37. If you have multiple organ masses, then each organ mass
can be entered as a covariate in the GENERAL LINEAR MODEL
analysis described above for the situation where lean and fat mass
are known. This then becomes a multidimensional extension of
the situations illustrated in 32-36. Such an analysis is not possible
to represent graphically. It is important to recognise that the use
of multiple predictors assumes that the predictors are independent
of each other. The first step in this analysis is therefore to construct
a CORRELATION MATRIX showing the correlation coefficients
between all of the pair-wise organ masses. If the correlation matrix
indicates that the organ masses are largely independent of each
other, go to step 32 and enter the individual organs as independent
predictors in the GLM. If the correlation matrix indicates that there
are significant correlations between the organ masses across
individuals, go to step 38.

Step 38. An alternative approach if there are high numbers of
correlated predictor variables is to re-describe the variation using
a PRINCIPAL COMPONENTS ANALYSIS. This generates scores
for each individual along a number of uncorrelated predictor
variables from the original data matrix that can then be used as
predictors in the GENERAL LINEAR MODEL (see e.g. Selman
et al., 2005). The advantage of using this approach is that the
uncorrelated predictor variables are statistically independent and
hence this is a more valid statistical procedure. Unfortunately, the
principal components are sometimes difficult to interpret
biologically. You must therefore either proceed with the raw data,
as in step 37 (which is statistically suspect but generally biologically
easier to interpret) or carry out the procedure in this step (which
is statistically appropriate but difficult to interpret biologically).
Once you have generated scores on the principal component axis,
go to step 32 and enter these scores as independent predictors in
the GLM analysis.

Step 39. Remember to consult with a trained statistician before
publishing results generated by this algorithm. END.

Suggestions for publication of statistics

Following Tschop et al. (Tschop et al., 2012), we recommend that
the use of histograms to compare treatment groups should be
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avoided whenever possible, when preparing publications. Instead,
we recommend that the dependent variable is plotted against either
body mass or lean body mass.

Alongside this type of plot, the results of the ANCOVA should
be presented; these should include the F-values, degrees of freedom
and P-values for the treatment effect, each covariate (e.g. fat mass
and lean body mass), and the interactions.

Where it is claimed that there is no significant effect of a given
treatment, the results of a power analysis should be included, stating
the power of the particular analysis to detect a given effect size.
For example, “This analysis had a power of 40% to detect an effect
size of 10% between the treatment and control groups”.

Conclusion

Analysis of energy-intake and expenditure data is complex and
involves several key issues: notably, the problems of having sufficient
power to establish a treatment effect and how to overcome the
pervasive impact of individual differences in body mass. We hope
this step-by-step guide and the attached flowchart will assist readers
in carrying out the most appropriate statistical approaches for these
issues, and thereby avoid the common pitfalls of such analysis.
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