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Abstract

Background: The relationship between fish health and muscle growth is critical for continued expansion of the
aquaculture industry. The effect of immune stimulation on the expression of genes related to the energy balance of
fish is poorly understood. In mammals immune stimulation results in major transcriptional changes in muscle,
potentially to allow a reallocation of amino acids for use in the immune response and energy homeostasis. The aim
of this study was to investigate the effects of immune stimulation on fish muscle gene expression.

Results: Atlantic salmon (Salmo salar) primary muscle cell cultures were stimulated with recombinant (r)IL-1β, a
major proinflammatory cytokine, for 24 h in order to simulate an acute immune response. The transcriptomic
response was determined by RNA hybridization to a 4 × 44 K Agilent Atlantic salmon microarray platform. The
rIL-1β stimulation induced the expression of genes related to both the innate and adaptive immune systems. In
addition there were highly significant changes in the expression of genes related to regulation of the cell cycle,
growth/structural proteins, proteolysis and lipid metabolism. Of interest were a number of IGF binding proteins that
were differentially expressed, which may demonstrate cross talk between the growth and immune systems.

Conclusion: We show rIL-1β modulates the expression of not only immune related genes, but also that of genes
involved in processes related to growth and metabolism. Co-stimulation of muscle cells with both rIGF-I and rIL-1β
demonstrates cross talk between these pathways providing potential avenues for further research. This study
highlights the potential negative effects of inflammation on muscle protein deposition and growth in fish and
extends our understanding of energy allocation in ectothermic animals.

Keywords: Transcriptomics, Atlantic salmon (Salmo salar), Muscle cell culture, Inflammation, Catabolism, Cell cycle,
IGF binding proteins
Background
Muscle growth involves a tightly controlled balance
between protein synthesis and degradation [1]. Protein
synthesis is driven by the growth hormone (GH)/Insulin
like growth factor (IGF)/mammalian target of rapamycin
(mTOR) pathway [2-5], whereas protein degradation
occurs via a number of pathways including ubiquitin
proteasome [6-8], lysosomal [9], apoptotic [10] and the
calcium dependant calpains [11]. These processes and the
pathways underlying their regulation have been examined
in Atlantic salmon (Salmo salar) [12], rainbow trout
(Oncorhynchus mykiss) [13-16] and other fish [17,18].
The anabolic effects of the GH/IGF system have also
* Correspondence: sam.martin@abdn.ac.uk
1Institute of Biological and Environmental Sciences, University of Aberdeen,
Tillydrone Avenue, Aberdeen AB24 2TZ, UK
Full list of author information is available at the end of the article

© 2013 Pooley et al.; licensee BioMed Central
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
been studied in ectothermic animals including Atlantic
salmon [12,19,20], rainbow trout [21,22] and other teleosts
[23]. The GH/IGF system has been seen to activate the
mTOR pathway thus directing protein synthesis, and is
highly conserved in teleosts [2-4].
In mammals the key signals involved in stimulating

anabolic activity are free amino acids, GH and IGF [24],
whereas catabolic signals include nutrient depletion,
hormones such as cortisol and transcription factors such
as forkhead box O (FOXOs) [25]. The actions of many
of these key signals have been seen to be conserved in
salmonid fish [2,12,22]. Despite being initiated by different
signals, catabolism and anabolism share many aspects of
downstream signalling machinery, providing the possibility
of intracellular cross talk between these two processes [26].
In mammals undergoing acute inflammatory responses,
muscle tissue goes into immediate catabolic state [27,28]
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where muscle fibres are broken down releasing free amino
acids, likely to be used for liver protein synthesis of acute
phase serum proteins. As skeletal muscle is the principal
body store of proteins, this tissue is the main target for
catabolism and release of free amino acids [29]. In
mammals the inflammatory response leads to a loss
of skeletal muscle mass in both acute and chronic inflam-
matory situations [30]. The current consensus in higher
vertebrates is that this increase in muscle atrophy can
be mediated by proinflammatory cytokines such as
interleukin-1β (IL-1β) [26,31], IL-6 [27,32,33] and tumor
necrosis factor-α (TNF-α) [26,27,32]. Several different
processes have been identified by which proinflammatory
cytokines can negatively affect muscle mass. IL-1β and
TNFα receptors, on the surface of the cells, signal via
conserved signal transduction pathways and alter gene
expression, which in muscle tissue normally induces genes
involved in protein degradation resulting in the release of
free amino acids [28,31,34-36]. In parallel this cytokine
signalling competes with and decreases the effects of IGF-I
signalling, specifically during downstream signal transduc-
tion, hence reducing the anabolic hormone effect. Such
intracellular receptor crosstalk between cytokines and ana-
bolic hormones can lead to a state of endocrine resistance
whereby no increase in the amount of ligand present will
increase the hormonal effects [26,37,38]. This cytokine
induced hormone resistance can result in a condition
known as cachexia, one aspect of which is a chronic
increase in proinflammatory cytokines such as TNFα and
IL-1β [39,40]. The effects of cachexia are a loss of body
mass, especially skeletal muscle protein, and it is thought
that the ability of cytokines to cause hormone resistance is
one of the primary mediators of cachexia. This condition
differs from simple weight loss since the loss of body mass
will continue despite feeding [26,39].
Transcriptional responses to various triggers of protein

catabolism have been examined in salmonid fish, including
starvation [41], starvation and refeeding [42], or following
extensive anorexic migrations [18] and vitellogenesis [14,43].
However to date only a limited number of investigations
have addressed the effects of infection or immune
stimulation on muscle growth in fish [44,45]. Previously a
cachexia model in rainbow trout was developed by
chronic stimulation with lipopolysaccharides (LPS) [44],
mimicking sepsis and chronic background infection. In
these fish, muscle protein content was decreased, but
levels of MyoD and myosin were unaffected indicating
that while muscle accretion was altered, the mechanisms
may be different to those known in mammals. In general
the response was much less dramatic than is observed in
mammals, probably reflecting the different control of
amino acid reallocation in ectothermic fish.
Proinflammatory cytokines, which include IL-1β, are

the primary mediators of the innate immune system [46]
and show a rapid response at the transcriptional level
following recognition of pathogens including bacterial
and viral products [47]. IL-1β is secreted as the mature
form following cleavage of the precursor molecule by
interleukin 1 converting enzyme (ICE). The mature
soluble protein binds to the IL-1 receptor 1 (IL-1R1)
receptor which then recruits the IL-1 receptor accessory
protein (IL-1RAcP) and initiates the signal cascade [47,48].
The signalling cascade activates pathways that positively
regulate the activity of transcription factor nuclear
factor-κβ (NFκB) and the mitogen activated protein
kinases p38 (MAPK p38) and c-Jun N-terminal kinases
(JNK) [26,48,49]. It is through the activation of these
pathways that IL-1β is thought to negatively affect anabol-
ism while stimulating catabolism [26,34,37]. Whilst there is
some controversy as to how IL-1β is processed in fish
[50-52], nevertheless a functional mature peptide has been
produced in several species [53] and the receptor genes
have been cloned [54,55].
This paper investigates the effects of acute proinflamma-

tory stimulation on the transcriptome of Atlantic salmon
primary myocyte cells. We hypothesise that the inflamma-
tory stimuli will cause significant changes in the expression
of genes related to immune function, protein metabolism
and other cellular processes. Further to this, we hypothesize
that co-incubation of cell cultures with IGF-I as well
as rIL-1β will lead to an attenuation of the metabolic
actions of inflammation.

Results
Cell culture and stimulation
Primary muscle cell cultures were assessed for differ-
entiation and purity by light microscopy at 4× and 10×
magnification (Data not shown). Nine grams of white
skeletal muscle pooled from six fish provided sufficient
cells to reach confluence when evenly split between two
6 well plates. Prior to performing the microarray analysis,
confirmation that the cells responded to rIL-1β was carried
out by real time PCR using IL-1β itself as a marker gene
since it is known to increase in expression in response to
rIL-1β stimulation. IL-1β expression was significantly
increased (541 fold) in the stimulated samples compared
to the control samples.

Microarray analysis
Following filtering and quality control 27458 probes
were retained for statistical analysis. Of these 7649 were
significantly altered in expression at P < 0.05 following
correction for multiple tests. We further filtered this set
of genes by retaining those with a fold change of >2 leaving
a differentially regulated set of 2504 genes for analysis
(Table 1, full list of genes Additional file 1: Table S1).
Within the gene set 1209 features were increased and 1295
features decreased in expression. The gene with the highest



Table 1 Microarray analysis showing the numbers of transcripts found to be differentially expressed following
stimulation of primary muscle cells by rIL-1β compared to unstimulated cells with various P value
(corrected by Benjamini Hochberg FDR) and Fold change (FC) cutoffs

P all P < 0.05 P < 0.02 P < 0.01 P < 0.005 P < 0.001

FC all 27458 7649 3945 1912 591 0

FC > 1.1 21039 7592 3938 1910 591 0

FC > 1.5 7430 4752 3039 1630 554 0

FC > 2.0 3205 2504 1884 1167 455 0

FC > 3.0 1275 1131 956 695 317 0

Expected by chance 382 78 19 2 0
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up-regulation is the cytokine TNFα2 with a 216 fold
increase, whilst aquaporin 1 was the most decreased
in expression with a 125 fold reduction in expression.
Confirmation of microarray expression was conducted
using seven key genes analysed with realtime PCR
(Additional file 2: Figure S1) where a highly significant
correlation (r2 = 0.8763 & P < 0.001) between qPCR and
microarray data was found.
In order to better understand the changes in whole

cell transcriptomic output, gene ontology analysis was
used to indicate the biological processes that were
modulated by the IL-1β stimulation. From the 2504
features retained for analysis, 2196 (88%) were annotated
to a functional protein and 1945 (78%) were assigned at
least one gene ontology (GO) identifier for biological
process, enabling further assessment of biological function.
These proportions reflect the annotation of all features on
the microarray slide. Statistical analysis for enrichment for
biological processes resulted in 1195 biological process
GO terms being identified. The nature of GO analysis
means that many of these are overlapping and only
the non-redundant major groupings are presented (Figure 1).
Observation of both the GO analysis and manual
assignment identification of functions was used to
assign genes to functional groups. The differentially
expressed genes could be defined as belonging to a
number of distinct functional classes, especially immune
response, proteolysis, growth regulation and structural
proteins, cell cycle and lipid metabolism. The directional
expression changes indicated how these processes were
being affected, with a general increase in the expression
of immune related and protein metabolism genes, whereas
growth, structural proteins and cell cycle showed a negative
trend, with a majority of genes being down regulated in
expression. A complex response was found for genes
encoding lipid metabolism proteins, indicting major
transcriptional changes relating to lipid mobilisation.

Immune response genes
There was a clear increase in genes related to immune
function (Table 2) most notably in the high increase of
expression of mRNAs encoding proinflammatory cytokines
such as IL-1β and TNFα (1/2) as well as chemokines such
as IL-8. Transcription factors involved in IL-1β signalling
were also increased in expression with subunits of NFκB
and its inhibitor, MAP kinase-interacting serine/threonine
kinase 2, MAPK activated jun-B and CCAAT/enhancer
binding protein all being up regulated. Components of the
IL-1β receptor machinery were also increased including
IL-1 receptor accessory protein, IL-1 receptor kinase
and an IL-1 receptor antagonist protein mRNA
(Table 2). Other innate immune related genes were
also increased including complement components, C-type
lectins and the antimicrobial proteins hepcidin and ferritin.
Both these latter two genes have roles in iron binding.
Several negative regulators of inflammation were also
found to be increased including two suppressors of
cytokine signalling (SOCS) genes, SOCS 1 and 3, the
anti-inflammatory cytokine IL-10, and as mentioned
earlier an IL-1 antagonist (nIL-1 F).

Proteolysis
Genes related to protein metabolism were modulated by
the IL-1β stimulation including those involved in both
synthesis and degradation (Table 3). The largest group
of protein metabolism genes found to be increased in
expression were those related to proteolysis, specifically
the ubiquitin proteasome pathway (UBP). Several E3
ubiquitin ligases, ubiquitin like proteins and four 20S
proteasome subunits all increased in expression. Other
genes encoding proteolytic proteins found to be increased
in expression included collagenase 3 and a cytosolic dipep-
tidase. A number of proteases were decreased in expression
including a subunit of calpain 1, serine protease htra1 and
35, cystatin B and ubiquitin-conjugating enzyme E2 T.

Growth regulation and structural proteins
An interesting group of genes that can be regarded as
controllers of anabolic signalling were also modulated.
Most notable were the IGF binding proteins (IGFBPs),
where IGFBP-6 was found increased in expression
following the inflammatory stimulus whereas IGFBPs -4,
5 and rP1 decreased in expression (Table 4). Genes
controlling muscle cell differentiation were also changed
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Figure 1 Bar chart showing the 15 Gene ontologies found to be most highly statistically enriched in response to rIL-1β stimulation of
muscle cells in vitro. Gene ontology enrichment carried out using GOEAST, GOslimming of the subsequent list performed with REVIGO.
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in expression including the transcriptional repressor
yin-yang 1 (YY1) which showed an up regulation and
myogenic regulatory factor 5 (MyF5) which was down
regulated (Table 4). Structural protein encoding mRNAs
showed a marked tendency to be down regulated, as
seen with the collagens and the myosins, β-actin, and
troponin (Table 4).

Cell cycle and DNA metabolism
The expression of genes regulating the cell cycle was
clearly altered, with the majority of them being reduced
in expression (Table 5). Five cyclins (A2, B1/2, E1/2),
two cyclin dependent kinases, and several cell division
cycle proteins were all reduced in expression. However,
two cyclins (D1 and G2) were increased in expression.
DNA metabolism genes were also generally decreased in
expression, including several minichromosome maintenance
complex components, DNA replication complex and
DNA replication licensing factor mcm2.

Lipid and sterol metabolism
Finally, stimulation with rIL-1β caused changes in the
expression of genes involved in lipid metabolism (Table 6).
These included the increase in expression of several
cholesterol transport proteins such as apolipoprotein
(Apo) L3 and lipoprotein lipase. However there was
also a down regulation in other similar genes such as
Apo A1 binding protein and Apo B and a down regulation
of proteins involved in sterol synthesis.

Temporal response and interaction of IGF and IL-1β
To assess the effect of time of rIL-1β stimulation on
primary myocytes on gene expression, rIL-1β stimulation
was performed at 6, 24 and 48 h and four key marker
genes from the microarray analysis (IL-1β, TNFα, MyF5
and IGFBP-6) were examined by real time PCR (Figure 2).
IL-1β was highly increased in expression at all-time points
but it was at 48 h that the highest increase in expression
was found. TNFα also showed the greatest fold increase at
48 h however this was more due to a reduction in the
control expression seen at 48 h, than an increase in the
stimulated cells. MyF5 was consistently down regulated at
all time points with no increase in effect seen after 6 h.
Finally IGFBP-6 was increased at all 3 times, but with a
maximum fold increase at 24 h and 48 h.
To assess the interaction between rIL-1β and rIGF-I

primary myocyte cultures were stimulated with rIL-1β
(25 ng/ml), rIGF-I (100nM), rIL-1β (25 ng/ml) + rIGF-I
(100nM) or maintained as control. These stimulations
were carried out for both 6 h and 24 h to determine if
rIL-1β interfered with early effects that IGF-I may
have on the cell cultures. The genes analysed were
chosen to represent the immune response (IL-1β,
TNFα and hepcidin) and protein metabolism/growth
(atrogin-1, MyF5, IGFBPs-4, 5 & 6).
At 6 h co-stimulation of cells there was an up regulation

of IL-1β and TNFα expression in response to rIL-1β
stimulation, and this was not significantly altered by
co-incubation with rIL-1 β + rIGF-I (Figure 3). Hepcidin
was also found to be up regulated in response to rIL-1β
(5.8 fold), with co-incubation with rIL-1β + rIGF-I re-
ducing the magnitude of this increase ~30% (Figure 3).
Regarding the expression of the IGFBPs, there was no
effect of any treatment on the expression of IGFBP-5.
IGFBP-6 was up regulated in response to rIL-1β (13.0 fold)
and this effect was not altered by co-incubation with



Table 2 Differential expression of genes related to the immune response

Gene ID1 Annotation2 Mean fold change± SE3 Identity4

Ssa#S24188435 AY929386 216.3 ± 58.8 TNFα 2

Omy#gi185133433 NM_001124347 197.9 ± 79.1 IL-1B

Ssa#STIR00083_4 AY929385 99.2 ± 17.9 TNFα 1

Omy#gi13235345 AJ279069 93.3 ± 15.4 IL-8

Ssa#S34822137 AM397592 29.7 ± 5.1 Complement c3

Ssa#STIR04816 BT047247 25.5 ± 13.1 Hepcidin

Omy#S37211068 EF175381 20.7 ± 1.1 Prostaglandin G/H synthase 2b

Ssa#STIR08688 TC65065 17.9 ± 4.9 Ferritin

Ssa#S21512941 AY572832 16.1 ± 0.2 C type lectin receptor A

Ssa#STIR35259 NM_001124618 13.8 ± 0.9 Complement protein component c7-1

Ssa#STIR23928 NM_001124410.1 13.3 ± 10.8 Complement factor H precursor

Ssa#S43134841_S NM_001123611 9.5 ± 2.5 CD4-like protein

Ssa#STIR00084_4 DW569632 8.5 ± 0.3 NF-kappa-b inhibitor alpha

Ssa#S18892257 AJ505008 3.9 ± 0.3 IL-1 receptor accessory protein

Ssa#STIR14647 TC73172 3.9 ± 0.0 MAP kinase-interacting serine/threonine kinase 2

Ssa#S30276405 DW563373 3.9 ± 0.2 Suppressor of cytokine signaling 1

Ssa#S35660755 EG895473 3.4 ± 0.3 NF-kappa-B p100 subunit

Ssa#S35667643 EG902361 3.4 ± 0.2 Complement c1q-like protein 4

Ssa#S31992293 DY720890 3.2 ± 0.2 IL-10 receptor beta chain precursor

Omy#gi197927463 NM_001124396 3.0 ± 0.2 IL-1 receptor antagonist

Ssa#KSS392 NM_001141766 2.9 ± 0.3 IL-1 receptor-associated kinase 4

Ssa#CB516003 CB516003 2.8 ± 0.3 NF-kappa-B 1 p105 subunit

Ssa#KSS3660 BT059477 2.8 ± 0.3 NF-kappa-B inhibitor epsilon

Ssa#STIR08793 TC65192 2.8 ± 0.1 Suppressor of cytokine signaling 3

Ssa#STIR00087_4 DW555246 2.7 ± 0.2 IL-10

Ssa#STIR12117 TC69580 2.3 ± 0.1 Transcription factor jun-B

Omy#S18157537 BX883008 2.1 ± 0.1 Interleukin-6 receptor subunit alpha precursor

Ssa#DW006091 DW006091 2.1 ± 0.2 MHC class i antigen

Ssa#TC106540 TC106540 −2.4 ± 0.1 TNF receptor-associated factor 6

Ssa#STIR08822 TC65229 −2.6 ± 0.1 IL-15

Ssa#S18849636_S BT071912.1 −2.6 ± 0.2 Complement C4-1

Ssa#S35693513 EG928231 −3.3 ± 0.8 Complement component 6 precursor

Ssa#S35687715 EG922433 −22.7 ± 8.3 Complement factor D precursor

List of selected mRNAs associated with the immune response found to be increased or decreased in expression in response to rIL-1β stimulation. Genes were
assigned to the table based upon both their GO identifier and previous knowledge of their functions. Genes with greatest fold differences in expression are presented,
the genes that are lower in expression are denoted by (-) value. The genes shown were significant at p < 0.05 following t- tests with Benjamini-Hochberg FDR and
greater than 2-fold change. 1Indicates the unique code for the feature on the microarray, 2Accession number of the cDNA sequence, accession numbers beginning with
TC are for oligos from the TIGR Atlantic Salmon Gene Index. 3Fold change, in the case of oligos that featured multiple times in the gene list the one with the highest fold
change is reported. 4Identity of the probe target as determined by BLASTX and BLASTN searches.
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rIGF-I. However, stimulation with just rIGF-I led to a
significant reduction in the expression of IGFBP-6
(Figure 3). Curiously IGFBP-4 was found to be signifi-
cantly down regulated in response to co-incubation
with rIL-1β + rIGF-I (-2.4 fold) but not by either
treatment alone. MyF5 was found to be down regulated
in response to rIL-1β (-7.8 fold) and this effect was
not significantly altered by co-incubation (-10.7 fold)
(Figure 3). Lastly, atrogin-1 was found to be significantly
down regulated in response to stimulation with rIGF-I
(-4.9 fold) but unaltered by rIL-1β treatment (Figure 3).
Co-incubation with rIL-1β + rIGF-I however ablated
the rIGF-I effect.
At 24 h co-stimulation of cells with rIL-1β + rIGF-I

significantly reduced the expression of IL-1β relative to
cells only stimulated with rIL-1β, from 654 fold to 427



Table 3 Differential expression of genes related to proteolysis

Gene ID1 Annotation2 Mean fold change± SE3 Identity4

Ssa#CL13Contig1 CL13Contig1 10.0 ± 1.8 Collagenase 3

Ssa#S30266930 DW553898 8.3 ± 0.4 Angiotensinogen

Ssa#CK884742 CK884742 3.4 ± 0.5 Cytosolic non-specific dipeptidase

Ssa#S35528810 EG815188 3.2 ± 0.1 Ubiquitin-like protein 1

Ssa#S18890005 CB515535 2.8 ± 0.2 E3 ubiquitin-protein ligase RNF144A-A

Ssa#DW564916 DW564916 2.7 ± 0.4 Ubr5 protein

Ssa#CL300Ctg1 CL300Contig1 2.4 ± 0.1 Proteasome subunit beta type-6 precursor

Ssa#KSS4965 KSS4965 2.3 ± 0.1 Proteasome subunit beta type 7b

Ssa#STIR04015 BT048053 2.2 ± 0.1 Proteasomebeta type 8

Ssa#S30295323 DW582287 2.2 ± 0.1 Proteasome subunit alpha type-6

Ssa#S35509463 EG795841 2.0 ± 0.0 E3 ubiquitin-protein ligase CHFR

Ssa#S35533557 EG819935 −2.1 ± 0.1 Ubiquitin-conjugating enzyme E2 T

Ssa#S35507555 EG793933 −2.1 ± 0.2 Calpain small subunit 1

Ssa#S35530808 EG817186 −2.1 ± 0.1 Cystatin-B

Ssa#S31992074 DY720671 −3.8 ± 0.2 Ubiquitin- containing phd and ring finger 1

Ssa#S30242447 NM_001141717 −3.9 ± 0.2 Serine protease htra1

Ssa#S35564994 EG851372 −16.2 ± 0.9 Protease, serine, 35

List of selected mRNAs related to proteolysis found to be increased or decreased in expression in response to rIL-1β stimulation. Genes were assigned to the table
based upon both their GO identifier and previous knowledge of their functions. Genes with greatest fold differences in expression are presented, the genes that
are lower in expression are denoted by (-) value. The genes shown were significant at p < 0.05 following t- tests with Benjamini-Hochberg FDR and greater than
2-fold change. 1Indicates the unique code for the feature on the microarray, 2 Accession number of the cDNA sequence, accession numbers beginning with TC are
for oligos from the TIGR Atlantic Salmon Gene Index. 3Fold change, in the case of oligos that featured multiple times in the gene list the one with the highest fold
change is reported. 4Identity of the probe target as determined by BLASTX and BLASTN searches.

Pooley et al. BMC Genomics 2013, 14:747 Page 6 of 20
http://www.biomedcentral.com/1471-2164/14/747
fold (Figure 4). No significant effect of co-incubation of
rIL-1β + rIGF-I was found on the expression of TNFα or
hepcidin (Figure 4). Additionally co-incubation did not
alter the expression of MyF5 or any of the IGFBPs.
While rIL-1β alone significantly increased the expression
of atrogin-1 (2.8 fold) this increase was not found in cells
co-incubated with rIL-1β + rIGF-I (Figure 4). However the
co-incubated cells had significantly increased expression of
atrogin-1 compared to cells stimulated with just rIGF-I.
rIGF-I alone also significantly reduced the expression of
hepcidin (-1.9 fold) but had no effect on the other genes.
All the genes tested that were also hybridised with
sufficient intensity on the microarray showed the
same direction and similar magnitude of response in
this cell culture experiment.

Discussion
Regulation of muscle mass is under the control of a
multitude of regulators related to both anabolic and
catabolic processes. We hypothesised that the muscle
cells would respond to the inflammatory stimulus by
signalling the induction of inflammatory responsive
genes in addition to other pathways related to protein
metabolism for release of free amino acids as occurs
during the acute phase response [56], or for gluconeo-
genesis and energy reallocation. Our approach of using
primary cells to examine the transcriptomic responses of
muscle cells stimulated with IL-1β avoids complex
host and cell type responses observed during in vivo
experiments. The response to the recombinant cytokine
resulted in a large panel of genes that were significantly
modulated being both increased and decreased in
expression. Using gene ontology enrichment analysis for
biological processes five key enriched processes were
revealed: immune function, protein catabolism, IGF and
growth regulation, cell cycle and lipid metabolism.

Immune response
The immune genes up regulated included several proin-
flammatory cytokines such as TNF-α, IL-1β and IL-8,
indicating that stimulated myocytes are capable of
synthesising these cytokines and are undergoing a
proinflammatory response. The response to IL-1β is
extremely rapid in other cell types in fish [57,58] and
it is likely that within 24 h these molecules will have
been secreted into the medium. Several genes in the
inflammatory signalling cascade were induced including
NFκB subunits p100 and p105, and the NFκb inhibitor
(IκB), as seen during inflammation in other cell types [58].
Under normal conditions IκB binds to NFκB to inactivate
it but IκB is phosphorylated by IκB kinase (IKK) and
subsequently ubiquitinated and destroyed by the proteasome



Table 4 Differential expression of genes for growth regulation & structural proteins

Gene ID1 Annotation2 Mean fold change± SE3 Identity4

Ssa#S30261281 DW548249 17.2 ± 2.5 IGF binding protein 6

Ssa#S22669043 AY462105 4.6 ± 0.2 Growth hormone receptor isoform 1 precursor

Ssa#S35518234 EG804612 2.9 ± 0.2 CCAAT/enhancer binding protein delta

Ssa#DW566454 DW566454 2.6 ± 0.4 Signal transducer and activator of transcription 2

Ssa#STIR16259 TC75448 2.3 ± 0.1 YY1 transcription factor

Ssa#STIR03019 BT049051 −2.1 ± 0.0 Regulator of g-protein signaling 18

SsaHomCont3_080 SsaHomContl3 −2.2 ± 0.3 Beta-actin

Ssa#S30278631 DW565599 −2.2 ± 0.1 Collagen alpha 2 type VI

Omy#TC165689 TC165689 −2.4 ± 0.2 Collagen alpha 2 type V preproprotein

Ssa#S18891260 CB515159 −2.4 ± 0.4 Type I collagen alpha 2 chain

Ssa#S26643985 DQ163908 −2.5 ± 0.2 Growth hormone receptor isoform 2 precursor

Ssa#S35580189 EG866567 −2.5 ± 0.0 Collagen alpha 1 type II isoform 1 precursor

Ssa#STIR17006 TC76573 −2.6 ± 0.2 Growth arrest-specific 1

Ssa#CA041082 CA041082 −2.8 ± 0.2 Transforming growth factor, beta receptor III

Ssa#S35580645 EG867023 −2.8 ± 0.2 Vascular endothelial growth factor D

Ssa#CA037592 CA037592 −2.8 ± 0.2 Myosin IB

Ssa#S31998683 DY727280 −2.8 ± 0.2 Laminin, beta 1

Ssa#S35563089 EG849467 −2.9 ± 0.3 Collagen alpha 1 type V

Ssa#S31977813 DY706603 −3.1 ± 0.1 Myosin phosphatase-Rho interacting protein isoform 1

Ssa#STIR25506 TC89337 −3.1 ± 0.1 Type i keratin s8

Ssa#S46924879 EU861009.1 −3.4 ± 0.1 IGF binding protein 5

Ssa#S32004569 DY733166 −3.5 ± 0.5 Corticotropin releasing factor precursor

Ssa#STIR05529 BT046528 −3.5 ± 0.2 Collagen triple helix repeat containing 1

Ssa#TC91867 TC91867 −4.2 ± 0.3 Collagen alpha 1 type XI isoform A preproprotein

Ssa#S35504964 EG791342 −4.6 ± 0.5 Troponin I, slow skeletal muscle

Ssa#STIR00115_3 BT045917 −4.8 ± 0.6 Tropomyosin-1 alpha chain

Ssa#STIR11900 TC69277 −5.2 ± 0.4 Myosin ic

Ssa#S37580916 EF432866 −5.4 ± 0.7 IGF binding 7 precursor

Ssa#S37580919 EF432861 −7.9 ± 0.4 IGF binding protein 4

Ssa#S35582593 EG868971 −10.9 ± 5.3 Collagen alpha 1 type X precursor

Ssa#STIR30922 TC97553 −27.9 ± 2.7 Myf5 protein

List of selected mRNAs related to growth regulation & structural proteins found to be increased or decreased in expression in response to rIL-1β stimulation.
Genes were assigned to the table based upon both their GO identifier and previous knowledge of their functions. Genes with greatest fold differences in
expression are presented, the genes that are lower in expression are denoted by (-) value. The genes shown were significant at p < 0.05 following t- tests with
Benjamini-Hochberg FDR and greater than 2-fold change. 1Indicates the unique code for the feature on the microarray, 2 Accession number of the cDNA
sequence, accession numbers beginning with TC are for oligos from the TIGR Atlantic Salmon Gene Index. 3Fold change, in the case of oligos that featured
multiple times in the gene list the one with the highest fold change is reported. 4Identity of the probe target as determined by BLASTX and BLASTN searches.
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[59,60]. A related key signalling molecule up regulated was
MAP kinase-interacting serine/threonine kinase 2, central to
the MAPK pathways involved in IL-1β signalling [61], and
with additional roles in the regulation of IGF signalling [26].
Another important transcription factor up regulated was the
MAPK activated jun-B which increases transcription
of IL-1β responsive genes generally at AP-1 responsive sites
[62]. Interestingly, although jun-B may be associated with
inflammatory signalling, it also has a role in maintaining
muscle mass and its over expression in mammals can
induce hypertrophy [63], indicting complex regulation of
transcriptional machinery. In parallel to this, several genes
encoding proteins that have roles as anti-inflammatory
factors were activated; these include two suppressors of
cytokine signalling (SOCS 1 and 3), IL-10 and an IL-10
receptor chain. SOCS proteins are often co-regulated
during inflammation to prevent cellular damage and are
negative regulators of cytokine signalling and function that
interferes with signal transduction from cytokine receptors.
The SOCS genes have been characterised in salmonid fish



Table 5 Differential expression of genes related to the cell cycle & DNA replication

Gene ID1 Annotation2 Mean fold change± SE3 Identity4

Ssa#S30294618 DW581582 2.4 ± 0.3 Cyclin D1

Ssa#S31971283 DY700073 2.4 ± 0.2 Cell division cycle associated 4 isoform 14

Ssa#S35549130 EG835508 2.2 ± 0.1 Cyclin G2

Ssa#S30291070 DW578034 −2.0 ± 0.1 Cyclin-dependent kinase 2 isoform 1

Ssa#STIR18340 TC78544 −2.1 ± 0.1 Cyclin B1

Omy#S19711047 CR367942 −2.1 ± 0.2 Cyclin B2

Ssa#S35661746 EG896464 −2.2 ± 0.2 Cell cycle progression 1 isoform 2

Ssa#S35547210 EG833588 −2.2 ± 0.1 Mediator of RNA polymerase II transcription subunit 22

Ssa#TC109012 TC109012 −2.6 ± 0.2 Cyclin E1 isoform 1

Ssa#KSS3754 NM_001173741 −2.8 ± 0.2 Minichromosome maintenance complex component 4

Ssa#STIR12008 TC69433 −3.0 ± 0.1 Cell division control protein 2

Ssa#TC103697_S TC103697 −3.0 ± 0.1 DNA replication licensing factor mcm2

Ssa#S30290620 DW577584 −3.2 ± 0.1 Cyclin-dependent kinase 4

Ssa#S35659383 EG894101 −3.3 ± 0.1 Cyclin A2

Ssa#S18888540 CB514505 −4.2 ± 0.3 Minichromosome maintenance complex component 2

Ssa#S35699881 EG934599 −4.4 ± 0.1 Minichromosome maintenance complex component 3

Ssa#S35664683 EG899401 −4.8 ± 0.4 DNA replication complex GINS protein PSF1

Ssa#S30295467 DW582431 −5.1 ± 0.6 Spindle pole body component 24 homolog

Ssa#STIR15543 TC74419 −5.3 ± 0.5 Minichromosome maintenance complex component 7

Ssa#S18890448 CB516667 −6.7 ± 0.6 Minichromosome maintenance complex component 5

Ssa#S30277130 DW564098 −10.6 ± 0.4 Cell division cycle associated 7 isoform 1

Omy#S19711255 CR367985 −14.7 ± 8.7 Cyclin E2

Omy#S34311297 CU069027 −15.1 ± 2.8 Cell division cycle 6 protein

List of selected mRNAs related to the cell cycle & DNA replication found to be increased or decreased in expression in response to rIL-1β stimulation. Genes were
assigned to the table based upon both their GO identifier and previous knowledge of their functions. Genes with greatest fold differences in expression are presented,
the genes that are lower in expression are denoted by (-) value. The genes shown were significant at p < 0.05 following t- tests with Benjamini-Hochberg FDR and
greater than 2-fold change. 1Indicates the unique code for the feature on the microarray, 2Accession number of the cDNA sequence, accession numbers beginning with
TC are for oligos from the TIGR Atlantic Salmon Gene Index. 3Fold change, in the case of oligos that featured multiple times in the gene list the one with the highest fold
change is reported. 4Identity of the probe target as determined by BLASTX and BLASTN searches.
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[64] and are increased in expression following stimulation
with several different cytokines including IL-1β, TNFα and
IL-6. Other immune related genes such as hepcidin, ferritin,
C type lectin and the complement system were also signifi-
cantly increased in expression. Both hepcidin and ferritin
control iron availability and have antimicrobial actions with
ferritin sequestering iron to reduce availability to microbes
[65], whereas hepcidin also has direct antimicrobial proper-
ties and is often described as an antimicrobial peptide
[66-68]. C-type lectins recognise carbohydrate moieties and
are often induced by proinflammatory signals [58,69], to
regulate a variety of immune processes including the com-
plement system [70-72]. There was also activation of some
genes that are components of the adaptive immune system,
such as major histocompatibility complex (MHC) class I
and CD4-like protein, but at the time point we examined
the predominant immune gene response was by molecules
of the innate defences.
Protein catabolic processes
A major proteolytic pathway in muscle is the ubiquitin
proteasome pathway, which in mammals is believed
to be responsible for the majority of muscle protein
degradation initiated by a number of different stimuli
including inflammation in mammals [30]. This pathway
has also been seen to be activated in salmonid fish during
muscle atrophy induced by food deprivation [45,73,74],
hormonal changes [75], with some evidence of several
components being modulated during immune responses
[45,76]. The end product of proteolysis is the release of
free amino acids for de novo protein synthesis or for
the oxidation of the amino acids and gluconeogenesis.
Following the inflammatory stimulus, several components
of the UBP were increased in expression in myocytes.
Several ubiquitin E3 ligases, which initiate the target-
ing of proteins for degradation and a number of prote-
asome subunits from the catalytic core of the proteasome



Table 6 Differential expression of genes related to lipid and sterol metabolism

Gene ID1 Annotation2 Mean fold change± SE3 Identity4

Ssa#S18890165 CB515874 23.2 ± 2.2 Creatine kinase, ubiquitous mitochondrial precursor

Ssa#STIR00012_4 AY848944 13.3 ± 1.1 Prostaglandin-endoperoxide synthase 2

Ssa#S30259776 DW546744 8.7 ± 0.3 Sphingomyelin synthase 1

Ssa#STIR22551 TC84899 6.3 ± 0.2 Lipoprotein lipase

Ssa#TC105353 TC105353 5.5 ± 1.0 Mecr protein

Ssa#STIR12701 TC70393 3.6 ± 0.1 Retinol dehydrogenase 3

Ssa#STIR31819 TC98944 3.5 ± 0.3 Glucose-6-phosphate-1-dehydrogenase

Ssa#S48420588 NM_001173773 3.2 ± 0.7 Myotubularin

Ssa#S31962884 DY691674 2.9 ± 0.1 Cytochrome c oxidase subunit 5B, mitochondrial

Ssa#S31963491 DY692281 2.8 ± 0.1 PPAR-alpha interacting complex protein 285 isoform 1

Ssa#KSS1976 KSS1976 2.8 ± 0.2 78 kDa glucose-regulated protein

Ssa#S35587721 EG874099 2.7 ± 0.2 Apolipoprotein-L3

Ssa#S30242761 DW538822 2.6 ± 0.2 Glycolipid transfer protein

Ssa#S32012431 DY741028 2.3 ± 0.1 StAR-related lipid transfer domain containing 3

Ssa#CL50Contig2 CL50Contig2 2.3 ± 0.1 Fructose-bisphosphate aldolase A

Ssa#S32007249 DY735846 2.1 ± 0.2 Adipose differentiation-related protein

Ssa#STIR13627 TC71700 −2.0 ± 0.2 Cox18 cytochrome c oxidase assembly homolog

Ssa#CA043659 CA043659 −2.1 ± 0.2 Apolipoprotein B precursor

Ssa#DW564686 DW564686 −2.1 ± 0.1 Mitochondrial uncoupling protein 2

Ssa#STIR21893 TC83911 −2.2 ± 0.1 Creatine kinase b-type

Ssa#S35679641 EG914359 −2.5 ± 0.1 Lipid phosphate phosphohydrolase 1

Ssa#STIR22405 TC84675 −2.6 ± 0.1 Lipase a

Ssa#S30285553 DW572521 −2.6 ± 0.1 Lipid phosphate phosphohydrolase 2

Ssa#S30246050 DW542111 −2.9 ± 0.3 Glyceraldehyde-3-phosphate dehydrogenase-2

Ssa#TC108704 TC108704 −3.8 ± 0.2 Lipocalin precursor

Ssa#STIR21285 TC82989 −4.9 ± 0.3 Glutamine synthetase

Ssa#S35523399 EG809777 −5.2 ± 0.5 Cholesteryl ester transfer protein, plasma

Ssa#STIR22650 TC85053 −5.2 ± 1.4 Apolipoprotein a-i binding protein

List of selected mRNAs related to the lipid & sterol metabolism found to be increased or decreased in expression in response to rIL-1β stimulation. Genes were
assigned to the table based upon both their GO identifier and previous knowledge of their functions. Genes with greatest fold differences in expression are pre-
sented, the genes that are lower in expression are denoted by (-) value. The genes shown were significant at p < 0.05 following t- tests with Benjamini-Hochberg
FDR and greater than 2-fold change. 1Indicates the unique code for the feature on the microarray, 2Accession number of the cDNA sequence, accession numbers
beginning with TC are for oligos from the TIGR Atlantic Salmon Gene Index. 3Fold change, in the case of oligos that featured multiple times in the gene list the
one with the highest fold change is reported. 4Identity of the probe target as determined by BLASTX and BLASTN searches.
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(β subunits 6, 7 and 8 and α subunit 6), were increased in
expression. We hypothesise that these changes would result
in increased protein degradation and reduced muscle
growth releasing free amino acids, which in vivo would be
reallocated to other organs, such as the liver as occurs in
mammals [77,78]. Although the predominant proteolytic
genes modulated were related to the UBP system, cystatin
B, an inhibitor of the acidic lysosomal cathepsins was down
regulated, possibly indicating an increase in cathepsin
bioavailability and activity [79]. In addition the calcium
dependant protease calpain subunit 1 was down regulated
following the IL-1β stimulation. This protease has
roles in positive regulation of myofusion inhibiting the
differentiation of myocyte cells [80,81] and this may
indicate a reduction of muscle cell differentiation.
Other proteases observed to be increased included

collagenase 3, that is increased in expression in NFkB
mediated inflammation in mammals [82-84] and during
vitellogenesis induced muscle atrophy in salmonids [43].
Angiotensinogen, the precursor of both angiotensin I & II,
was also increased in expression, and is known to interfere
with the actions and production of IGF-I, which in
mammals is mediated by the NFκB pathway in collaboration
with protein kinase C [85,86].
In general there was a clear effect of rIL-1β on the

expression of genes related to catabolism as evidenced



Figure 2 Graph showing the fold effects of rIL-1β stimulation compared to control on the expression of genes involved in the immune
response and growth after 6, 24 and 48 h stimulation. Statistics were carried out using a one way ANOVA. Time points that do not share a
letter are statistically different from each other. All mRNAs examined here were significantly altered in expression at all time points relative to the
unstimulated control.
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by a transcriptomic shift towards muscle catabolism by
the increase in mRNAs related to protein degradation
and the down regulation of protein degradation related
genes that have positive effects on growth.

IGFBPs
The IGF system is instrumental in the control of protein
synthesis and growth in both mammals and fish [87]. The
activity of IGF is under tight control, often by a family of
IGF binding proteins (IGFBPs), which have recently been
characterised in salmonid fish [88]. They function by
either stabilising the IGF or by competitively binding the
IGF to prevent attachment to the IGF receptor [87] and
thus reducing the anabolic effects of IGF on the cells.
We found several IGFBP encoding mRNAs were modu-

lated by the proinflammatory stimulus. IGFBP-6 is thought
to have a binding preference for IGF-II but also binds IGF-I
[89]. These direct effects on the activity of both IGFs might
drive the cells away from high levels of protein synthesis
and anabolism towards a state of catabolism [90,91].
Previous studies indicate IGFBP-6 expression is associated
with the inhibition of cell proliferation in both fish [12]
and mammals [89,92]. Additionally IGFBP-6 expression is
reduced during resumption of growth following starvation
[20,93]. These findings tend to indicate that IGFBP-6
expression has a negative relationship with growth due to
the ability of IGFBP-6 to act as a negative regulator
of IGF-I & II activity, thus making an increase in the
expression of IGFBP-6 a potential marker of inflammation
induced catabolism in salmon muscle.
Other IGFBPs 4, 5 and rP1 were all decreased in

expression following the inflammatory stimulus. In salmo-
nids IGFBP-4 expression in muscle is increased by anabolic
stimuli such as refeeding after starvation [20,93] and is posi-
tively related to the expression of the promyogenic tran-
scription factors MyoD and MyF5 in vitro [12]. IGFBP-5
can potentiate the effects of IGF-I especially with regard to
bone [94] and muscle differentiation [90]. In rainbow trout
IGFBP-5 increased in expression in muscle during refeeding
after starvation [93] and, in Atlantic salmon primary
myocytes, the expression of IGFBP-5 decreased during
cell proliferation suggesting this protein is associated
with entry to cell cycle [12]. Together these results
suggest the IGFBPs are responding in a coordinated
fashion to reduce IGF signalling and altering the balance
between anabolic and catabolic pathways.

Growth regulation and structural proteins
Many transcription factors involved in growth regulation
were altered. CCAAT/enhancer binding protein delta
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(See figure on previous page.)
Figure 3 Fold change of genes involved in both the immune response and growth in response to 6 h stimulation with either rIL-1β
(25 ng/ml), rIL-1β (25 ng/ml) + rIGF(100nM), or rIGF(100nM). * represents a significant difference from control, bars which share a letter are
not significantly different. All fold changes were calculated compared to unstimulated control samples. Comparative gene expression was
measured with qPCR.
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was increased, and is a transcription factor with multiple
functions, that is positively related to myostatin expression
in mammals [95]. In rainbow trout muscle it is increased
during energy reallocation caused by vitellogenesis
[43] indicating a blocking of muscle growth. A second
key transcription factor, NFκB, is often associated solely
with immune function but also negatively regulates
myogenesis via the transcriptional repressor YY1 [34,96].
Both of these molecules were increased in this experiment
by IL-1β. YY1 is likely to be a mediator of NFκB induced
muscle growth inhibition, achieving this by silencing
myofibrillar promoters in myoblasts [34,96]. MyF5, a
muscle specific transcription factor, regulates muscle
cell differentiation [3,97] and a reduction in its expression
level in this experiment fits with our anticipated reduction
of muscle growth markers in response to rIL-1β stimula-
tion. Additionally we found a general decrease in expres-
sion of mRNAs coding for muscle structural proteins such
as collagens, myosins, actin and keratin, consistent with the
hypothesis that the muscle cells are undergoing a reduction
in growth in response to immune stimulation, as previously
shown in mammals [98].
Cell cycle
The cell cycle is largely mediated through the actions of
cyclin/cyclin dependent kinase complexes [99]. In the
salmon myocytes multiple cyclins were modulated by
IL-1β stimulation strongly suggesting cell cycle activity
is being altered. For example, cyclin D1 expression was
increased and functions in combination with cyclin
dependent kinases to initiate and progress through the
G1 phase of the cell cycle [99,100]. The increase of cyclin
D1 may be related to NFκB mediated arrest of muscle
growth by preventing myocyte differentiation [101]. Cyclin
G2 was also increased and may inhibit entry into the cell
cycle [102,103].
The remaining cyclins A2, B (1 and 2) and E (1 and 2)

were all decreased in expression. Cyclin A2 is a rate
limiting factor during S-phase and DNA synthesis and
entry to mitosis [104], whereas cyclins E1 and E2 are
responsible for the transition from G1 to S phases and
initiation of DNA replication [105]. Cyclins B1 & B2
have roles during the S-phase and the M-phase and are
crucial for maintenance of the mitotic state [106]. Several
other cyclin related kinases, cell division proteins and
minichromosome maintenance complex components
were generally down regulated indicating a major reduc-
tion in cell cycle activity and DNA metabolism in these
primary muscle cells under an inflammatory stimulus.
Lipid and sterol metabolism
A final group of genes found to be altered were those
related to lipid and sterol metabolism, here several
cholesterol transport proteins were increased in expres-
sion including Apo L3, glycolipid transfer protein and
lipoprotein lipase. Apo-L3 is known to be a TNF-α
inducible protein and its expression is known to be
involved in the activation of the NFκB signalling pathway
activated by cytokines in mammals [107]. The increase in
the lipoprotein lipase could reflect an increased breakdown
of lipoproteins for immune or cellular processes; this gene
is under the control of many different signals in mammals
including insulin, nutritional state and cytokines [108].
Prostaglandin-endoperoxide synthase 2, a gene known in
mammals to be inducible by a variety of inflammatory
substances [109], was also increased as a result of the
rIL-1β stimulation. Apo A1 binding protein and Apo B
were reduced in expression as well as several other sterol
synthesis proteins. These results indicate that lipid
metabolism is being actively changed in these myocytes
under the inflammatory stimulus, resulting in complex
changes in transcription of their mRNAs. Many of these
changes could be mediated through intracellular crosstalk
with the IGF/insulin pathway(s) [26,110].
Interaction between IGF-I and IL-1β
Results from the microarray clearly indicated genes
involved in the IGF regulation were being modulated by
IL-1β, especially a number IGF binding proteins. We
performed additional experiments to address if transcripts
altered by inflammation would be modulated by IGF-1, a
hormone which drives cells towards an anabolic status.
Atrogin -1 a key gene involved in protein degradation was
reduced in expression by incubation of cells with rIGF-1
as previously reported, conversely it is increased following
incubation with IL-1β as occurs in mammals [31]. When
cells were co-incubation with rIL-1β and rIGF-I an almost
total inhibition of the atrogin-1 down regulation was
found, suggesting the proinflammatory signal is blocking
the anabolic effect of IGF-1. IL-1β alone results in an
increase in atrogin -1 expression at 24 h as found in
mammalian cells stimulated by proinflammatory cytokines
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Figure 4 Fold change of genes involved in both the immune response and growth in response to 24 h stimulation with either rIL-1β
(25 ng/ml), rIL-1β (25 ng/ml) + rIGF(100nM), or rIGF(100nM). * represents a significant difference from control, bars which share a letter are
not significantly different. All fold changes were calculated compared to unstimulated control samples. Comparative gene expression was
measured with qPCR.
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[111]. The co-stimulation also decreased the magnitude
of the response of the antimicrobial peptide hepcidin,
highlighting an alternative allocation of resources depending
on the signalling the muscle cells are receiving. Together
these results show how anabolic signals may attenuate
transcription of immune defence molecules and that
proinflammatory signals can increase catabolic effects
in the cells.

Conclusions
Muscle tissue is a complex and dynamic organ and is
generally the only protein storage organ in the body;
hence it needs to be able to control the synthesis of
proteins and release of amino acids via degradation
under a variety of environmental and physiological
conditions. Muscle does respond to immune insults
in fish, [45,76] but to date these responses have not been
examined in an in vitro system removing the mileu of
cytokines and hormones. Here we show a direct effect of a
proinflammatory cytokine on primary muscle cells that
induces not only immune genes, but also alters the
wider transcriptome indicating increased catabolism,
lipid mobilization and decreased cell proliferation with a
large role potentially for the IGFBPs (Figure 5). Subsequent
experiments demonstrate that both IL-1β and IGF-1 exert
disparate effects on mechanisms that regulate growth and
other physiological responses as highlighted by their
interaction of expression on atrogin-1. These findings
will direct future research into the control of muscle
mass in ectothermic animals, particularly in relation
to health and nutrition.

Methods
Myosatellite isolation and stimulation
Atlantic salmon (mean weight of 25 g and mean length
of 12 cm) were used for skeletal muscle myosatellite cell
extraction, as previously described [112-114]. For each
muscle extraction 6 fish were used (~1.5 g tissue from
each fish), this was to remove any individual fish effects.
No experimental procedures were carried out on the fish
and fish maintenance was in line with national ethical
guidelines in an experimental facility at University of
Aberdeen, UK. Fish were maintained in freshwater and
fed a commercial diet at 1.5% body weight per day. Fish
were killed using a schedule one method and muscle
tissue from above the mid line of the fish was removed
sterilely with scalpel and forceps. This pooled muscle
(approx 9 g) was placed into a pre-weighed flask
containing 30 ml of Leibovitz L15 medium (Gibco) +
penicillin/streptomycin 1% (Pen/Strep, Gibco, Penicillin
10,000 units/ml, streptomycin 10,000 μg/ml) (L15 + P/S).
The muscle was diced into small blocks (2 mm3) using
sterile procedures and the diced muscle then centrifuged
(300 g, 5 min) and the supernatant removed. The tissue
was digested in collagenase (0.2%) at 11°C for 1 h. Following
digestion the cell suspension was centrifuged (300 g, 5 min)
and washed before being centrifuged again (300 g, 5 min).
This pellet was digested in trypsin (0.1%) at 11°C for
30 min. The cell suspension was again centrifuged
(300 g, 40 sec) and the remaining supernatant was
added to L15 + P/S plus 10% foetal calf serum (FCS, Sigma)
before being passed through a 200 μm nylon mesh. The
suspension was centrifuged (300 g, 15 min), the super-
natant was removed and 12 ml of L15 + P/S + 10% FCS
were added. Finally the contents of this tube were added to
two 6 well plates. Prior to plating laminin (mouse laminin,
Sigma-Aldrich) was applied to the well surfaces 24 h before
the cells were plated out, at a concentration of 1 mg/ml.
Cell cultures were then left for 1 h for microsatellite cells to
bind to the surface before the medium was first changed
and cells allowed to differentiate at 22°C, with the medium
being changed every 2 days.

Stimulation of cells
Cells were cultured for 4 days to allow cellular differenti-
ation, this was observed using light microscopy. Morph-
ology typical of satellite cells and time taken to reach
confluence in our system was approximately 6 days. The
cells were found to exhibit the typical growth pattern pre-
viously observed for muscle satellite cells as described in
Bower & Johnston (2010) [12]. Initially cells were mono-
nucleic before beginning to proliferate and differentiate
into spindle shaped cells, a small number of which were
beginning to fuse together by day 4. For the microarray
experiment stimulations, the medium was removed and
1 ml of new medium (with 0.5% FCS) containing either
10 μl recombinant trout IL-1β protein (rIL-1β) to achieve
a concentration of 25 ng/ml or a non-stimulated control
with 10 μl PBS. The concentration of IL-1β has previously
been determined to be optimal in salmonid cell lines [58].
The cells were then stimulated for 24 h before RNA
extraction was carried out.
Subsequent experiments were carried out to further

investigate the effects of rIL-1β at different time points and
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show a negative effect. A sample of genes related to each aspect of physiology is shown in either red (up regulation) or green (down regulation).
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to investigating the effects of the anabolic hormone IGF-I
on rIL-1β actions. For these experiments the same
procedure was carried out with the only alterations
being the length of time the cells were stimulated and in
some cases the addition of 100nM of recombinant human
IGF-I (rIGF-I) (Sigma). For these experiments the cells
were cultured in the stimulant for either 6, 24 or 48 h as
specified.

Study design and sample replicates
Cells cultures were generated from six individual fish,
this allowed purification of sufficient cells for two six
well plates. For the microarray four of these wells were
used as biological replicates and stimulated with rIL1β
and the remaining four were mock stimulated as de-
scribed above. RNA extractions were performed and the
stimulated samples were kept separate whereas the
control unstimulated samples were pooled to have a single
common reference prior to mRNA amplification and
labelling (Figure 6).
RNA extraction
For microarray experiments RNA was isolated using the
RNAeasy extraction kit (Qiagen) as per the manufacturer’s
instructions. For all other samples RNA was isolated using
Trizol (Sigma) as per the manufacturer’s instructions. In
both cases the RNA was resuspended in 50 μl of nuclease
free water and concentration measured by Nanodrop
ND1000 (LabTech). The quality of the RNA was assessed
using an Agilent Bioanalyzer RNA 6000 Nano Kit as per
the manufacturer’s instructions.

Microarray hybridization and analysis
Microarray analysis of the samples was carried out
using a custom-designed Agilent microarray platform
with 4 × 44 K probes per slide (Salar_2; Agilent Design
ID:025520) as previously described [115]. The microarray
platform design is available at array express accession
number A-MEXP-2065.
To produce labelled template for hybridisations aRNA

was generated using a MessageAMP II aRNA Amplification



Figure 6 The experimental design carried out for the microarray experiment. Cells were genereated from six individual fish, these cells
were pooled and plated onto six well plates. RNA extracted from four biological replicates stimulated with rIL-1β stimulation were kept separate.
For control wells, RNA was pooled to generate a common reference RNA sample.
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Kit (Ambion) as per the manufacturer’s instructions. Briefly
1 μg of total RNA was reverse transcribed to create first
strand cDNA. This was then used in the synthesis of
second strand cDNA and this product was purified using
the supplied reagents and columns. Finally the in vitro
transcription to synthesise amino allyl modified aRNA was
carried out to incorporate amino allyl dUTP in to the
aRNA after a 14 h incubation at 37°C and the product
purified using the supplied reagents and columns.
For incorporation of flouresence dye 3 μg of aRNA in a

volume of 10 μl was denatured at 70°C for 2 min, and to
this was added 3 μl of NaHCO3 and 2 μl Cy dye (Cy3 or
Cy5 mono-reactive dye pack, Amersham, resuspended in
DMSO). The dye was allowed to incorporate for 1 h in the
dark before excess dye was removed using a DyeEx spin
column purification kit (Qiagen). Confirmation of dye
incorporation and aRNA recovery was by nanodrop
spectrometry. Agilent microarrays were hybridised accord-
ing to the manufacturer’s instructions as described by
[115]. Briefly 825 ng cDNA of each labelled template was
fragmented in the dark and made up to a final volume of
20 μl with nuclease free dH2O. After fragmentation, 57 μl
of 2XGEx hybridisation buffer (Agilent) was added to each
sample which was then briefly mixed and spun down
before being stored on ice in preparation for loading 103 μl
onto each microarray. Four biological replicates of rIL-1β
stimulated cells aRNA were labelled with Cy3 dye and a
control consisting of four biological replicates of control cells
aRNA was labelled with Cy5 dye. Each rIL-1β stimulated
aRNA was hybridised against the control. Hybridisations
were carried out in a microarray hybridisation oven (Agilent)
overnight (18 h) at 65°C. Following hybridisation the slides
were washed in the gene expression wash buffers 1 and 2
(Agilent) following the manufacturer’s instructions. The
slides were scanned using a GenePix personal 4100A scanner
(axon Instruments) at a resolution of 5 μm. Files saved as *.
TIF files were extracted using feature extraction soft-
ware v9.5.3 (Agilent) and background correction and
normalization were carried out within this program. Statis-
tical analysis was performed using the Genespring GX ana-
lysis platform (version 9.5, Agilent Technologies). Significant
differences between IL-1β stimulated cells and control cells
were established by t-test analysis (P < 0.05) followed by
correction for multiple tests (Benjamini Hochberg FDR post
hoc test). Further filtering was carried out to maintain only
those genes that showed a ≥2 fold difference in expression as
a result of the stimulation. The raw hybridisations data have
been deposited at ArrayExpress under accession number
(http://www.ebi.ac.uk/arrayexpres, E-MTAB-1692).
Gene ontology (GO) enrichment was carried out on all

features with associated GO identifiers using GOEAST
software [116]. Fishers exact test was used within the

http://www.ebi.ac.uk/arrayexpres
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GOEAST program to determine if the GO identifiers
occurred significantly more often in a group than would
be expected by chance. The output from GOEAST was
entered into the software REVIGO [117] to remove
redundant GOs.

Gene expression analysis by real time PCR
For cDNA synthesis total RNA (500 ng) was added to
1 μl of oligo-dT17 (500 ng μl-1) and RNase/DNase free
water (Sigma-Aldrich) up to a volume of 11 μl, then
denatured for 3 min at 70°C and cooled on ice. To each
of these denatured RNA samples was added 1 μl of Bioscript
reverse transcriptase enzyme (10000U μl, Bioline), 5 μl
of 5x reaction buffer, 1 μl of deoxynucleoside triphosphate
mix (12.5 mM each, Bioline) and 7 μl of RNase/DNase free
water (Sigma-Aldrich) and the mix incubated at 42°C for
1.5 h in a final volume of 25 μl. The cDNA was
diluted 4-fold to 100 μl in 1x TE. (Sigma-Aldrich).
qPCR amplifications were performed using 3 μl cDNA,
2x Sybr Green PCR master mix (Biorad) and gene
specific primers (Table 7) at 10 μM, with a final reaction
Table 7 Primers used for qPCR

Name1 Accession2

EF-1α AF498320.1 F

R

RPL1 CB516726 F

R

HPRT1 EG866745 F

R

IL-1β AJ223954.1 F

R

Hepcidin NM_001140849.1 F

R

IGFBP-6 DQ190459.2 F

R

TNFα1 NM_001123589.1 F

R

IGFBP-4 EU861007 F

R

IGFBP-5.2 EU861009 F

R

Myf5 TC97553 F

R

High choriolytic enzyme TC63579 F

R

Atrogin-1 GU456729.1 F

R

List of primers used in qPCR, all primers were checked to ensure that they had an e
confirmation of the microarray.1Identity of the gene, 2 Accession number of the cD
volume of 20 μl in 96 well plates in an Opticon real time
PCR machine. A typical qPCR cycle used was an initial
denaturation for 5 min at 95°C followed by 30-40 cycles of
30 sec at 94°C, 30 sec at 55°C, 30 sec at 72°C, and a final
5 sec at 80°C in which the machine read the plate. The
number of cycles used was varied depending upon the
expression level of the gene under study. The annealing
and measuring temperature was also varied depending
upon the primers being used. To calculate the relative
quantities of the gene of interest in each sample the
standard curve method of relative quantification was
used. A dilution series of cDNA diluted 1, 10, 100 and
1000 times was run in each plate to provide a standard
curve which was used to calculate primer efficiency to
ensure efficiency between 1.8 and 2. Next a linear regres-
sion was applied to the standard curve with the subsequent
formulas being used to interpolate the relative amount of
the gene of interest in the samples [118]. Negative control
PCRs were run on all plates. For normalization three
“house keeping genes” previously found to be stable
during immune reactions in fish, namely elongation
Sequence 5′ to 3′ bp3

CAAGGATATCCGTCGTGGCA 327

ACAGCGAAACGACCAAGAGG

ACTATGGCTGTCGAGAAGGTGCT 118

TGTACTCGAACAGTCGTGGGTCA

CCGCCTCAAGAGCTACTGTAAT 255

GTCTGGAACCTCAAACCCTATG

GCTGGAGAGTGCTGTGGAAGAACATATAG 179

CCTGGAGCATCATGGCGTG

CATTGAAAATCGTGCATTGG 150

AGGCCTTCATTCTCGGTTTT

GCTCAATAGTGTTCTGCGTGG 118

CTTGGAGGAACGACACTGCTT

TGTGTGGCGTCCTCTTAGTAGCAGCTT 101

CTCCATTTTGTCCTGCATCGTTGC

TGTCGTGCTGAGCTGCAGAG 129

TGGCTGGCACTGCTTGGCAT

TTCTCCAGAGGAAGCTATGTTAG 170

TCAAGGCTGCTGACAGAGTG

CGCATACCGCTTTTACTTCC 245

TGATCATGAGAAACGTGAAGC

ATCAATGGGGCTCATCTCAG 239

ATGAGCAAACACGCAGTGAC

CGAGTGCTTCCAGGAGAATCTG 384

GTCTGAAGGAGCTCCTTGATGG

fficiency of between 1.8 & 2.0. All except for Atrogin 1 were used for qPCR
NA sequence, 3Size of PCR product produced by the primers.
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factor 1α, hypoxanthine-guanine phosphoribosyl transferase
(HPRT1) and RNA polymerase 1 (RPL1) were used. The
arbitrary units of each individual house keeping gene were
normalized to give an average value of 100 to account for
different expression levels of the genes, a geometric mean
of the arbiatry units of the three housekeeping genes was
taken and used for normalization of genes of interest. None
of these three genes were found to show any difference in
expression over the experiment. For the comparison
between microarray expression and qPCR one way T-tests
were used to establish if a difference between stimulated
and control samples was significant at P ≤ 0.05. For
the subsequent qPCR experiments significant differences
were established using one way ANOVAs with a Fishers
post hoc test to control for multiple testing. Statistics were
performed on log transformed arbitrary units. Fold was
calculated by division of experimental sample arbitrary
units by the average of the control. In the case of negative
fold changes below 1, the number was inverted to give a
negative fold change.

Availability of supporting data:
The microarray data is submitted to Array express public
archive (E-MTAB-1692). Other supporting data is as
supplementary files attached to this paper.
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Additional file 1: Table S1. The genes shown were significant at
p < 0.05 following t- tests & Benjamini–Hochberg FDR and greater than
2-fold change. 1Indicates the unique code for the feature on the microarray,
2Accession number of the cDNA sequence. 3Fold-change for genes higher
or lower expressed in cells stimulated with rIL-1β compared to control.
4Regulation of fold change. 5Identity of the probe target as determined by
BLASTX & BLASTN search.

Additional file 2: Figure S1. Scatter plot showing comparative
expression of genes from the microarray (n = 4) and qPCR (n = 4). The mean
value was used in situations where a gene appeared multiple times on the
microarray. Regression analysis found the expression levels for these 8 genes
were significantly correlated between microarray and qPCR (p = 0.001).
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