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The whole sequence of plasmid pENVA carrying the extended-spectrum ß-lactamase 

gene blaCTX-M-15 was determined. It has been identified from a series of clonally-related 

Klebsiella pneumoniae ST274 strains recovered from companion animals. This plasmid was 

253,984-bp in-size and harbored, in addition to blaCTX-M-15, a large array of genes encoding 

resistance to many antibiotic molecules including -lactams (blaTEM-1, blaDHA-1), 

aminoglycosides (aacA2, aadA1), tetracycline (tetA), quinolones (qnrB4), trimethoprim 

(dfrA15), and sulfonamides (two copies of sul1). In addition, genes encoding resistance to 

mercury, tellurium, nickel, and quaternary compounds were identified. In addition, it carried 

genes encoding for DNA damage protection and mutagenesis repair, and also a CRISPR 

system locus corresponding to a immune system protecting against bacteriophages and 

plasmids. Comparative analysis of the plasmid scaffold showed that it possessed a similar 

structure with only a single plasmid, being pNDM-MAR encoding the carbapenemase NDM-1 

and identified from human K. pneumoniae isolates. Both plasmids possessed two replicons, 

namely those of IncFIB-like and IncHIB-like plasmids, being significantly different from the 

previously characterized. The blaCTX-M-15 gene, together with the other antibiotic resistance 

genes, was part of a large module likely acquired through a transposition process. We 

characterized here a new plasmid type encompassing the blaCTX-M-15 gene identified in a K. 

pneumoniae of animal origin. It remains to determine to which extend this plasmid type may 
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spread efficiently, and possibly further enhance the dissemination of blaCTX-M-15 among animal 

and human isolates. 
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Introduction 

Antibiotic resistance within animal microbiomes (food-producing or companion animals) is 

now recognized as an emerging public health threat (1, 2). Resistance to broad-spectrum ß-lactams 

in Enterobacteriaceae is mainly caused by extended-spectrum -lactamases (ESBL) and plasmid-

encoded AmpC-type cephalosporinases (3). During the past decade, ESBLs of the CTX-M types 

have been recognized to be of growing importance worldwide, being frequently reported widely 

among enterobacterial isolates recovered from human specimens (4) either from the community 

(mainly Escherichia coli) or from hospitals (mainly Klebsiella pneumoniae). Furthermore, CTX-M-

producing E. coli were identified among a wide range of animal species, including pets (5), poultry 

(6), cattle (7, 8), and wild animals (9, 10), and even from retail meat (11, 12), In addition, some 

plasmid-encoded AmpC-type -lactamase genes, such as blaDHA and blaCMY, have been reported 

worldwide either from human and animal isolates (13, 14). Overall, these data raised some concerns 

about the transfer of ESBL and AmpC genes between human and animal bacterial strains. 

Plasmids are often involved in dissemination of broad-spectrum ß-lactamase encoding 

genes. Six main plasmid families have been shown to mediate antimicrobial resistance 

dissemination among enterobacterial species, namely IncF, IncA/C, IncL/M, IncN, IncI and IncHI2 
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(14-17).  

IncH-type plasmids are frequently involved in acquisition of antibiotic resistance both in 

human and animal bacterial isolates (5, 18). A large number of IncHI2 plasmids (usually with sizes 

larger than 250 kb) harboring blaCTX-M (with the exception of blaCTX-M-15), blaSHV, blaIMP, blaVIM, 

armA, qnrA1, qnrS1 and qnrB2 genes have been identified in many different enterobacterial species 

(5, 19). 

CTX-M-15 is currently the most commonly identified CTX-M variant worldwide in 

enterobacterial species from human origin. By contrast, the most prevalent acquired ESBL among 

animal isolates is CTX-M-1, CTX-M-15 being rarely identified from animal isolates (4, 20, 21). 

The blaCTX-M-15 gene has been identified onto plasmids belonging to unrelated incompatibility 

groups such as IncA/C, IncL/M, IncN, however the most frequently reported are IncI1 and IncF (14 

22). 

Recently, we identified phylogenetically-related CTX-M-15-producing K. pneumoniae 

isolates recovered from companion animals in France (23). In those isolates, the blaCTX-M-15 gene 

was located onto a plasmid of ca. 250 kb in-size, that could not be classified in any of the known 

incompatibility groups, and that was self-transferable by conjugation to E. coli (23). The aim of this 

study was to determine the entire sequence of this plasmid in order to better evaluate its genetic 

relationship with those plasmids known to disseminate blaCTX-M-15 among human isolates. 
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Material and Methods 

Susceptibility testing. Susceptibility testing was performed by disk diffusion assay (Sanofi-

Diagnostic Pasteur, Marnes-la-Coquette, France), and minimal inhibitory concentrations (MICs) 

were determined by Etest (bioMérieux) on Mueller-Hinton agar plates at 37°C and interpretated 

according to the CLSI guidelines (24). 

Sequencing, assembly and annotation of plasmid pENVA. A whole genome shotgun 

library was generated using 500 ng of plasmid DNA and sequenced on the Genome Sequencer FLX 

system (Roche Diagnostics, Mannheim, Germany) applying the Titanium chemistry in one quarter 

of a PicoTiterPlate. In the course of the Rapid Library preparation, according to the manufacturer’s 

protocol, the DNA was tagged with a multiplex identifier (GS Rapid Library MID Adaptors Kit). 

Prior to emulsion PCR (emPCR), the pENVA plasmid library was combined with other MID-tagged 

libraries and subsequently sequenced. Sequencing reads were sorted based on their MID-tags and 

assembled by means of the GS De novo Assembler version 2.6 applying defaults settings (Roche 

Diagnostics). Ordering of contigs was done as described previously (25, 26), using the reference 

plasmid pNDM-MAR (Genbank accession no. JN420336) for mapping (27) by means of the 

computer program r2cat (28). Subsequently, 68 contigs showing homology to the reference plasmid 

were extracted, ordered according to the mapping results and stored in a new project. Reads 

protruding contig ends were used to identify contigs that flank a certain source contig. Sequence 
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gaps between contigs were closed by primer walking on plasmid template DNA. Moreover, contig 

graph information calculated by the GS De Novo Assembler was exploited to verify joining of 

contigs. Sequence finishing and polishing was accomplished using the CONSED software package 

(29). The complete sequence of plasmid pENVA was annotated by means of the GenDB genome 

annotation system version 2.0 (30). After automatic annotation, sequence information was refined 

manually as described previously (25, 26, 31). The plasmid genome plot was drawn and labeled as 

described (31, 32).  

Phylogenetic analyses. For phylogenetic classification of plasmid pENVA, the replication 

initiation repA marker gene was used, since plasmids are commonly classified based on the amino 

acid sequence similarity of their replication initiator proteins (33). Nucleotide sequences of different 

related repA genes were extracted from corresponding database entries and aligned using the 

multiple sequence alignment program ClustalW (34). A phylogenetic tree was calculated by 

applying MEGA5 (35) applying the neighbor joining algorithm (36). A bootstrap analysis using 

1,000 repetitions was carried out. 

PCR-based replicon typing. PCR-based replicon typing aiming at identification of the main 

plasmid incompatibility groups reported for enterobacterial isolates was performed as described 

(37). 

Comparative genome analyses. To analyze the similarity of the sequenced plasmid pENVA 
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and the reference plasmid pNDM-MAR, a comparative analysis was performed as described (31, 

32, 38) by applying the tool M-GCAT (39). 

Results and Discussion 

Characterization of the plasmid bearing the blaCTX-M-15 gene. Fourteen ST274-type, 

clonally-related, and CTX-M-15-producing K. pneumoniae isolates harbored a ca. 250-kb 

untypeable plasmid carrying the blaCTX-M-15 gene. They had been recovered either from dogs, cats, 

sheep, and hedgehog (23). Once transferred by conjugation, this plasmid conferred resistance to 

broad-spectrum ß-lactams, tetracycline, gentamicin, sulfonamides, and trimethoprim, and reduced 

susceptibility to nalidixic acid to the E. coli recipient strain (23). Mating-out assays were performed 

with K. pneumoniae Kp15 recovered from urine of a cat, and the corresponding plasmid, named 

pENVA, was further studied. 

Sequencing and general features of the antibiotic resistance plasmid pENVA. Plasmid 

pENVA was fully sequenced, yielding 43,358 sequence reads that were assembled into 1,258 large 

(> 500 bp) and 354 small (< 500 bp) contigs. Reads and contigs representing chromosomal 

contamination of the host bacterium E. coli were discarded. After filtering, plasmid pENVA 

consisted of 108 contigs, that were finally assembled after a PCR-based polishing approach. The 

complete plasmid pENVA has a size of 253,984 bp with an average GC content of 46.8%. The 
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plasmid sequence revealed 300 predicted coding sequences that could be assigned to 16 different 

functional modules (Fig. 1). 

Backbone and accessory functions of plasmid pENVA backbone. Plasmid pENVA 

encoded two different replicon types, one belonging to the IncFIB family and the second 

corresponding to an IncHIB-type module. The first RepA protein (IncFIB-like) shared 40% with the 

canonical RepA of IncFIB (Genbank n°YP_788007.1). The second RepA (IncHIB-like) shared less 

than 60% amino acid identity with other reported IncHIB-type replication initiation proteins. 

However it shared a perfect identity with a recently identified replicase which gene was identified 

onto plasmid pNDM-MAR recovered from a clinical K. pneumoniae human isolate, harboring the 

blaNDM-1, blaCTX-M-15, and qnrB1 antibiotic resistance genes (27). Hence, plasmid pENVA repA 

sequences are only distantly related to corresponding sequences from reference plasmids, 

explaining the lack of amplification when using the PBRT primers. Therefore, plasmid pENVA 

appeared to be an hybrid between two plasmid scaffolds, retaining their replication modules. 

Plasmid pENVA harbored an umuC-umuD locus known to code for a mutagenesis repair 

system conferring resistance to UV light and related DNA damages (Fig. 2, panel A). A locus of five 

genes encoding a putative type III CRISPR-like system was also identified. Interestingly, CRISPR 

systems (clustered regularly interspaced short palindromic repeats) were shown to correspond to 

primitive immune systems involved in protection of host bacteria against bacteriophages and 
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plasmids (40). Plasmid pENVA harbored a functional partitioning system (parA/parB) and an higB-

type toxin/antotoxin system. It also encoded a flaC-like gene, predicted to play a role in 

biosynthesis of flagella and therefore likely constituting a virulence factor. 

Plasmid pENVA harbors a large multidrug resistance module comprising thirteen 

resistance genes encoding resistance to six different antibiotic classes. Nine antibiotic resistance 

genes were identified onto plasmid pENVA, namely aacC2, aadA1 (resistance to aminoglycosides, 

including kanamycin, netilmicin, gentamicin, and tobramycin), blaTEM-1 (resistance to penicillins), 

blaCTX-M-15, blaDHA-1 (resistance to broad-spectrum ß-lactams), tetA (resistance to tetracycline), sul1 

(two copies) (resistance to sulfonamides), qnrB4 (resistance to quinolones), and dfrA15 (resistance 

to trimethoprim). In addition, genes encoding resistance to mercury, tellurium, nickel, and 

quaternary ammonium compounds were identified. This array of genes encoding multidrug 

resistance was located in a large module, that was bracketed by two copies of insertion sequence 

IS4321 (IS110 family) inserted in opposite orientations to each other. Direct repeats representing 

possible transposition signatures were neither identified at the extremities of each of these IS4321 

elements nor at the extremities of the potential composite transposon formed by the two copies of 

IS4321 flanking the multidrug resistance locus. This is in accordance with what has been observed 

for other members of the IS110 family that do not generate target site duplications upon 

transposition (41). However, it may be speculated that the two copies of IS4321 indeed form a 
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composite transposon carrying a large ca. 50-kb array of resistance genes. The latter putative 

composite transposon includes an internal resistance module bracketed by two IS26 elements, and 

encompassing the ISEcp1-made transposon (Tn2012) at the origin of blaCTX-M-15 acquisition (Fig. 

2A). As expected, a 5-bp target site duplication (TATGA) was identified at each extremity of 

Tn2012, as described (42, 43). The module flanked by IS26 elements also harbored the tetR and 

tetA genes encoding inducible resistance to tetracycline (Fig. 2B), together with the AmpC ß-

lactamase gene blaDHA-1 that was associated to the LysR-type regulatory gene ampR (Fig. 2B). 

Moreover, the qnrB4 gene was identified in association with genes encoding five putative phage-

related shock proteins. This gene arrangement was similar to a gene cluster identified on plasmid 

pKP048 from China (44). Noteworthy, the promoter sequences (-35 [TTGGAC] and -10 

[TACCAT]) upstream of the qnrB4 gene were not part of the phage-related structures. The lexA-

binding site, which was shown to be involved in regulation of a SOS response, was found in the 

vicinity of the qnrB4 start codon, as previously described (45).  

Plasmid pENVA harbors heavy metal resistance genes. Plasmid pENVA possessed two 

loci corresponding to putative heavy metal resistance genes. The first one was a complete mercuric 

resistance operon (merD,A,C,P,T,R) encoding a system known to transport mercuric-derivative 

compounds out of the bacterial cell (46). The second operon encoded resistance to tellurite-

derivative compounds. The corresponding ter-type genes are marker characteristics of all IncHI2-
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type plasmids (except for R476b). This operon has also been shown to be responsible for the control 

of resistance to infection by various bacteriophages (known as phage inhibition), and the resistance 

to pore-forming colicins (47). 

Plasmid pENVA harbors additional insertion sequences. Among the different mobile 

elements identified within plasmid pENVA, insertion sequence ISKpn21 was identified. It belongs 

to the ISNCY family, and has recently been identified on different K. pneumoniae plasmids 

encoding the NDM-1 carbapenemase, including the IncH-type plasmid pNDM-MAR (27, 48). The 

recently-identified ISKpn20 element belonging to the IS3 family was also identified. It was flanked 

by a 4-bp direct repeat (ACTT) being the likely signature of the insertion event. ISKpn20 was 

recently identified on a plasmid encoding the KPC-2 carbapenemase in Greece (49). A novel IS, 

that is related to ISRaq1 (50) identified in Rahnella aquatilis (OrfB transposase sharing 90% amino 

acid identity) and therefore belongs to the IS3 family was also identified with a target site 

duplication of 4 bp (GAAT) on each extremity. Considering that those IS were likely inserted as 

single elements, and therefore not associated to other mobilized DNA sequences, it is likely that 

they had minor impact on the evolution of plasmid pENVA. 

Plasmid pENVA is related to the IncH-type blaNDM-1-positive plasmid pNDM-MAR 

identified in K. pneumoniae. To estimate the genetic relationship of plasmid pENVA with other 

plasmids, a phylogenetic tree based on the repA marker gene was computed applying the tool 
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MEGA5 (35). The Neighbor-Joining algorithm (36, 51) was used comprising selected reference 

sequences (Table S1). This approach resulted in a phylogenetic tree which is divided into four 

different groups. Plasmid pENVA clusters together with the sequence originating from the IncH-

type plasmid pNDM-MAR encoding NDM-1 from K. pneumoniae (27). Not only the repA gene 

products of both plasmids were identical, as mentionned above, but comparative analysis of both 

plasmids revealed that large regions of plasmid pENVA were nearly identical to those of pNDM-

MAR (Fig. S1). Alignment of the homologous regions indicated that there were only 2.6% 

nucleotide mismatches over a length of 211,770 bp. In comparison to plasmid pNDM-MAR, 

pENVA harbored additional modules accounting for a total of 42,214 bp. Differences were mostly 

identified in the antibiotic resistance regions of both plasmids (Figure S1). 

Regarding the resistance genes, the blaCTX-M-15 gene was the sole gene identified on both 

plasmids, whereas all other antibiotic resistance genes were specific to each plasmid. Differences in 

the resistance modules of the plasmids resulted from insertions of different mobile genetic elements 

such as insertion sequences and transposons harboring antibiotic resistance genes. However, it is 

noteworthy that both plasmids harbored distinct resistance modules respectively flanked by IS4321 

and IS26 elements, therefore highlighting the involvement of those IS elements in the genetic 

plasticity of that plasmid scaffold. 

Apart from these resistance modules that contain different accessory genes, both plasmids 
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possessed very similar backbone modules and other accessory genes. However, one large segment 

encompassing the tra locus (conjugative transfer) and also the mercury and tellurite resistance loci 

was found to be in opposite orientations between the two plasmids, as highlighted in Figure 2B. 

Concluding remarks. Plasmid pENVA encompassing two replicons and a large set of 

antibiotic resistance genes was identified from an animal isolate. Interestingly, a similar plasmid 

backbone has been recently identified from a K. pneumoniae clinical isolate recovered in Morocco 

(27, 52). In that latter case, the plasmid also harbored a series of clinically-relevant resistance genes, 

and in particular the blaNDM-1 carbapenemase gene. It remains to evaluate whether this plasmid type 

might therefore play a significant role in dissemination of the blaCTX-M-15 gene. Primers FIB-M FW 

and FIB-M RV which sequences have been reported by Villa et al. (27) are adequate for such 

screening approaches. 

Plasmid pENVA additionally harbored genes encoding resistance to other clinically-relevant 

antibiotics, which are prescribed either in human and verterinary medicines. These antibiotics are 

quinolones, trimethoprim, aminoglycosides, sulfonamides, and tetracycline. It is noteworthy that 

this plasmid identified in animal isolates might have been selected from the environment taking in 

account the high number of heavy metal resistance genes. This hypothesis is reinforced by the fact 

that the plasmid harbors genes encoding resistance to heavy-metal derivatives such as mercury or 

tellurite compounds, but also to UV radiation.  
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Nucleotide sequence accession number. The annotated nucleotide sequence of plasmid 

pENVA was submitted to the GenBank database and is accessible under the accession no 

HG918041. 
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Figure 1. Genetic map of the fully sequenced plasmid pENVA. The circles represent (from inner to outer most): (i) GC skew; (ii)
GC content; (iii) annotated coding sequences as arrows; (iv) plasmid modules. These modules are colored depending on their
functional assignments as shown by labelling.
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Figure 2.
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Figure 2. A. Major structural features of pENVA and comparison with the reference plasmid pNDM-MAR. White boxes indicate
plasmid backbone regions that commonly occur in plasmids. The Tra locus (conjugative transfer) is indicated by white boxes with
capital letters indicating the respective tra genes. Resistance genes are indicated by orange boxes, except for the -lactamase genes,
which are indicated by red boxes Transposon-specific genes (tnpA tnpR tnpM) insertion sequences and class 1 integrase genes arewhich are indicated by red boxes. Transposon-specific genes (tnpA, tnpR, tnpM), insertion sequences and class 1 integrase genes are
indicated by green and dark grey boxes, respectively. Other genes are indicated by coloured boxes as follows: violet, replicase genes;
light grey, partitioning systems and DNA methylase genes; blue, heavy metal resistance clusters.

B. Schematic representation of the multidrug resistance module of plasmid pENVA. The genes and their annotations
are indicated by arrows and colored according to their functions.
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