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Abstract The dry bulb mite, Aceria tulipae, is the most important pest of stored tulip

bulbs in The Netherlands. This tiny, eriophyoid mite hides in the narrow space between

scales in the interior of the bulb. To achieve biological control of this hidden pest, can-

didate predators small enough to move in between the bulb scales are required. Earlier

experiments have shown this potential for the phytoseiid mite, Neoseiulus cucumeris, but

only after the bulbs were exposed to ethylene, a plant hormone that causes a slight increase

in the distance between tulip bulb scales, just sufficient to allow this predator to reach the

interior part of the bulb. Applying ethylene, however, is not an option in practice because it

causes malformation of tulip flowers. In fact, to prevent this cosmetic damage, bulb

growers ventilate rooms where tulip bulbs are stored, thereby removing ethylene produced

by the bulbs (e.g. in response to mite or fungus infestation). Recently, studies on the role of

predatory mites in controlling another eriophyoid mite on coconuts led to the discovery of
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an exceptionally small phytoseiid mite, Neoseiulus paspalivorus. This predator is able to

move under the perianth of coconuts where coconut mites feed on meristematic tissue of

the fruit. This discovery prompted us to test N. paspalivorus for its ability to control A.

tulipae on tulip bulbs under storage conditions (ventilated rooms with bulbs in open boxes;

23 �C; storage period June–October). Using destructive sampling we monitored predator

and prey populations in two series of replicated experiments, one at a high initial level of

dry bulb mite infestation, late in the storage period, and another at a low initial dry bulb

mite infestation, halfway the storage period. The first and the second series involved

treatment with N. paspalivorus and a control experiment, but the second series had an

additional treatment in which the predator N. cucumeris was released. Taking the two

series of experiments together we found that N. paspalivorus controlled the populations of

dry bulb mites both on the outer scale of the bulbs as well as in the interior part of the

bulbs, whereas N. cucumeris significantly reduced the population of dry bulb mites on the

outer scale, but not in the interior part of the bulb. Moreover, N. paspalivorus was found

predominantly inside the bulb, whereas N. cucumeris was only found on the outer scale,

thereby confirming our hypothesis that the small size of N. paspalivorus facilitates access

to the interior of the bulbs. We argue that N. paspalivorus is a promising candidate for the

biological control of dry bulb mites on tulip bulbs under storage conditions in the

Netherlands.

Keywords Biological control � Tulip bulbs � Dry bulb mites � Eriophyidae �
Predatory mites � Phytoseiidae � Predator–prey interaction � Body size �
Prey refuge � Ethylene � Herbivore-induced plant response � New association

Introduction

Eriophyoid mites are among the smallest arthropods on Earth (Lindquist et al. 1996). Their

worm-like body has a cross-section diameter of c. 50 lm, much smaller than that of

phytoseiid mites, their most significant predators (Sabelis 1996). The minute size of eri-

ophyoid mites is the key to their ecological success, enabling them to reach places small

enough to be free of predators (Sabelis 1996; Sabelis and Bruin 1996). Moreover, it allows

them to develop a plant-parasitic lifestyle that is quite different from other herbivorous

arthropods (Lindquist et al. 1996). Many eriophyoids live in plant galls they induce, but the

one of interest in this article have a vagrant lifestyle, frequently changing feeding sites that

vary in food quality and in the degree of protection against predators. In agricultural crops,

such mites may reach pest status when natural enemies are absent. Chemical control is

often ineffective because most eriophyoid mites feed under protective structures of the

plant. Hence, biological control with natural enemies, such as predatory mites or acaro-

pathogens, may be the only solution (Sabelis et al. 2007, 2008).

In this article, we consider the eriophyid Aceria tulipae Keifer on tulip bulbs. This so-

called dry bulb mite is the most important pest in the tulip bulb industry in the Netherlands.

After harvest, tulip bulbs are stored for several months in rooms at temperatures (C23 �C)
that promote population growth of the dry bulb mites. In this period, they receive pesticide

treatments that reduce the pest and remove virtually all predators associated with bulbs in

the field. Thus, if pesticides are not applied well enough, favourable temperatures and

absence of predators cause the dry bulb mites to reach pest status whereby leaves, flowers,
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shoots and roots are malformed or do not even emerge from the bulb (Conijn et al. 1996;

Van Aartrijk 2000; Aratchige et al. 2004; Lesna et al. 2005). Due to this cosmetic damage

and the presumed role of dry bulb mites as a vector of Tulip Virus X (Asjes and Blom-

Barnhoorn 1998, de Kock et al. 2011, Lommen et al. 2012a) this pest is treated as a

quarantine organism in several important export-countries. Hence, a zero pest tolerance is

the general norm.

Chemical control is currently widely applied by tulip growers, as well as physical

treatments by organic farmers. Nevertheless, the dry bulb mite causes severe economic

losses each year. A key problem in effectively controlling dry bulb mites is that its minute

size enables a hidden life in the tulip bulb. Like onions, a tulip bulb consists of multiple

layers of concentric scales of increasing diameter, surrounding the center where the stem,

leaves and flower develop. The dry bulb mite is so tiny (cross-section diameter = c.

0.06 mm) that it can access the interior of the bulb by moving between its scales (Lesna

et al. 2005). Biological control may be the only solution (Sabelis et al. 2007, 2008),

provided that the control agents can access the interior of the bulbs as well.

Phytoseiid mites are the most significant predators of eriophyoid mites (Sabelis 1996),

and several species are known to feed and reproduce on dry bulb mites in the laboratory

(Lesna et al. 2005). In contrast to dry bulb mites, predatory mites are too big to move

between the scales of the bulb initially (Lesna et al. 2005). However, feeding by dry bulb

mites gradually induces the bulbs to modify their internal structure. The resulting changes

in distance between bulb scales (from 0.1 to 0.2 mm) are microscopic, yet allow the

phytoseiid predator Neoseiulus cucumeris (Oudemans) (with a somal width of 0.2 mm and

a somal height of 0.12 mm) to enter the interior bulb space (via the so-called ‘‘nose’’ of the

bulb). The consequence of this plant ‘behaviour’ is dramatic: predators eliminate most

eriophyid mites from the inside of the bulb, whereas the bulb would otherwise be eaten

from within. The crucial changes in bulb morphology enabling predator access are con-

trolled by ethylene, a plant hormone released (among others) upon herbivore attack (Lesna

et al. 2005). This plant hormone simultaneously induces the release of plant volatiles that

attract predatory mites (Aratchige et al. 2004; Aratchige 2007). Changes in bulb attrac-

tiveness and accessibility were demonstrated by combining chemical analysis (Aratchige

2007), olfactometry (Aratchige et al. 2004) and experiments on predator–prey dynamics in

which the effect of ethylene was either promoted or blocked by 1-methyl-cyclopropene, a

chemical occupying ethylene receptor sites (Lesna et al. manuscript in preparation). In

climate cabinets ventilated to remove ethylene, short, 2-weekly exposure of bulbs to

ethylene had major effects on the ability of the predatory mite N. cucumeris to control A.

tulipae in the interior of the bulb when compared to identical exposure to ethylene blockers

or ambient air. Exposure to ethylene and its blockers had no direct effect on dry bulb mites

and predatory mites and at the concentrations offered ethylene exposure had similar effects

on the morphology of healthy bulbs as exposure to (ethylene and other odours from)

infested tulip bulbs. Taken together, these results explain why earlier experiments yielded

successful biological control of dry bulb mites by N. cucumeris on tulip bulbs in closed

cardboard boxes with consequently higher ethylene concentrations, but were not successful

in open trays in ventilated climate rooms (Lesna et al. 2005; Sabelis et al. 2007, 2008,

2012).

However, ethylene exposure of tulip bulbs is not an option for the flower bulb industry.

In fact, in practice ethylene is continuously diluted and led away from the storage rooms by

ventilation, because of its adverse effects on flower development (de Munk 1973,

Kamerbeek and de Munk 1976, Gude and Dijkema 2005) and increased risks of bud

necrosis (Lommen et al. 2012b). Hence, there is a need to find predators that do not only

3

ht
tp

://
do

c.
re

ro
.c

h



feed on the dry bulb mite, but are also small enough to enter the inside of the bulb under

storage conditions in practice. Such a small phytoseiid predator has recently been found on

coconuts: Neoseiulus paspalivorus (De Leon) (Lawson-Balagbo et al. 2008; Negloh et al.

2011). The female soma of N. paspalivorus has a cross-section diameter that is only about

half of that of N. cucumeris (da Silva, personal observation). The predator lives mainly

under the perianth of the coconut and feeds on another eriophyid, the coconut mite, Aceria

guerreronis Keifer (Lawson-Balagbo et al. 2008). Because the climatic conditions in

coconut growing areas and the microhabitat under the coconut perianth are not too dif-

ferent from those in tulip bulbs under storage conditions, we decided to do biocontrol tests

with this predator in ventilated rooms at 23 �C. These experiments were done with the aim

to test (1) whether the predator is able to control dry bulb mites on and in tulip bulbs, and

(2) whether its small size facilitates access to the interior of tulip bulbs more than the size

of N. cucumeris. Two series of experiments were carried out, one with initially high levels

of infestation by dry bulb mites and another with initially low levels. Whereas the first

series may easily lead to such high pest densities that not only predation, but also intra-

specific food competition drive pest mortality, the second series decreases the role of

intraspecific competition and therefore puts the focus more on the role of predation.

Moreover, high densities of dry bulb mites may also lead to (undesirable) higher ethylene

levels despite ventilation. However, note that in the second series the role of ethylene in

making the bulb more accessible was minimized because apart from removal by ventilation

the herbivore-induced ethylene production was low as a consequence of the low density of

dry bulb mites.

Materials and methods

Mite origin and rearing

The predatory mite, N. paspalivorus, was collected in 2011 near Recife, Brazil, from

coconuts infested by A. guerreronis. After shipment to the University of Amsterdam, it was

reared on the eriophyid Aculops lycopersici (Massee) on tomato leaves in a climate room

(25–27 �C, 65 % RH). This eriophyid was the best available alternative prey to rearing on

A. guerreronis on cocunuts, which was not feasible in Amsterdam.

The predatory mite, N. cucumeris, was reared on fungivorous acarid mites and directly

provided by Koppert Biological Systems (Berkel en Rodenrijs, The Netherlands) in

numbers sufficient for our experiments in 2012.

In September 2011 dry bulb mites (A. tulipae) were collected from recently harvested

and infested tulip bulbs (cv ‘‘Leen van der Mark’’) in Lisse, and subsequently reared on

organic, unsprayed, garlic bulbs in the laboratory (25 �C, 65 % RH) at the University of

Amsterdam.

Plant material

We used two cultivars of tulip bulbs, known to be susceptible to dry bulb mites. For the

first experiment, we used untreated, mite-free bulbs cv ‘‘Leen van der Mark’’, harvested in

New Zealand in the second half of January 2012 and then shipped to The Netherlands.

They were stored in open trays of 500 bulbs in ventilated climate boxes (17–23 �C,
70 %RH) at the research station in Lisse.
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For the second experiment we used untreated, mite-free bulbs cv ‘‘Yokohama’’, har-

vested in July 2012 in The Netherlands, and stored in open trays of 500 bulbs in a

ventilated climate-room (20 �C, RH not regulated) in Lisse.

Biocontrol experiments

In 2012, two different biological control experiments were carried out, the details of which

are summarized in Table 1. Infestation of tulip bulbs was established in separate climate

boxes (23 �C; 70 % RH). After transfer of the tulip bulbs, we systematically distributed c.

50 garlic cloves heavily infested with dry bulb mites among c. 500 (initially mite-free)

bulbs. The garlic cloves were regularly redistributed between the bulbs, and new cloves

were added until the desired infection rate was obtained to start the experiments.

Experiments were carried out in a storage room at a constant temperature of 23 �C, as
commonly done in practice during tulip bulb storage. The ventilation rate in the storage

room was 2–3 times lower than in practice, but the density of tulip bulbs in the room (and

hence the emission of ethylene) was also much lower than in practice, making strong

ventilation less necessary. Each replicate experiment was carried out in a plastic bucket

filled with bulbs infested with dry bulb mites. To prevent mite migration between repli-

cates in the experiments, buckets were provided with double-sided sticky tape just below

the rim. In addition, each bucket was placed in a tray filled with water and detergent

decreasing water tension. The trays were placed next to each other at a distance of at least

5 cm, whereas the buckets in these trays were at a distance of 0.5 m.

The buckets were randomly assigned to treatments (treatments with different predator

species and control treatments without predators). Maximally 24 h before application of

the treatments, predatory mites were collected from their laboratory cultures using a pipette

connected to an aspirator. Per pipette, about 50 adult females were collected. Pipettes were

then closed with Parafilm on the narrow opening, and with fine mesh gauze (for ventila-

tion) at the other end. The fine mesh gauze was fixed into the pipette with a small piece of

plastic tube. Just before release, the pipettes were held vertically with the gauze-covered

opening down and they were gently tapped to make the predators fall down on the gauze.

Then, the pipette was disassembled and its parts (gauze, pipette, piece of tube) were

immediately deposited on the infested tulip bulbs in a bucket.

Starting from the date of the predator releases, each week four bulbs were collected per

bucket (replicate unit) and they were inspected under a binocular microscope for the

number of dry bulb mites (only mobile stages) and predatory mites (all stages, including

eggs) on the outer scale (directly under the dry bulb skin) and separately in the interior of

the bulbs. For the latter, the bulb was first cut in half and then the scales were sequentially

removed and inspected under the microscope. Because predatory mites are much more

agile than dry bulb mites, we were not able to separate predator densities at the outer scale

and in the interior of the bulb. Hence, we only determined total predator density per bulb.

All data from each of the four bulbs (dry bulb mite density per bulb inside, outside or

overall; overall predator density per bulb) were summed and divided by the number of

bulbs to obtain a mean number of mites per bulb in the sample. Only these mean numbers

per bulb per sample were included in the data set that was subjected to statistical analysis.

Experiment 1: high infestation, late in the storage period

The first experiment was carried out with tulip bulbs cv ‘‘Leen van der Mark’’ from New

Zealand. They were harvested in January 2012, transported to Lisse (The Netherlands) and
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kept in storage for 5 months (thus, late in the storage period) before use in the experiment.

On June 4, 2012 the experiment started and then the level of dry bulb mite infestation of

the bulbs was high (on average 1590 dry bulb mites per bulb). To test whether predatory

mites can suppress such high numbers of dry bulb mites, we released either no predators

(control treatment) or only N. paspalivorus (treatment). For each of these two treatments

three replicates were performed involving 3 buckets, with 34 bulbs each. Just after release,

the predator density was on average 5.9 per bulb. The experiment lasted 3 weeks since

predator release.

Experiment 2: low infestation halfway the storage period

The second experiment was carried out with tulip bulbs cv ‘‘Yokohama’’ from The

Netherlands. They were harvested in early July 2012 and kept in storage for 3 months

(thus, halfway the storage period) before use in the experiment. On September 17, 2012 the

experiment started and then the level of dry bulb mite infestation of the bulbs was low (on

average 16 dry bulb mites per bulb).

To test whether predatory mites can keep low numbers of dry bulb mites down, we

released no predators (control treatment), only N. paspalivorus or only N. cucumeris

(treatments). For each of these three treatments four replicates were performed involving

four buckets, with 80 bulbs each. Just after release, the predator density was on average 2.5

per bulb. The experiment lasted 5 weeks since predator release.

Statistical analysis

To analyze the longitudinal data series of dry bulb mite densities (actually means per bulb

from 4 bulbs, as explained above), we used a multivariate generalized linear mixed model

(glmm) with Markov chain Monte Carlo (MCMC) estimation (MCMCglmm; Hadfield

2010), which is available in the statistical package R version 2.14.2 (R Core Team 2011).

Densities of dry bulb mites in the interior and on the exterior part of the bulbs were

analysed separately for either of the two experiments. We used the log-transformed mean

number of dry bulb mites per bulb per replicate as the response variable. To compare the

changes in dry bulb mite density over weeks between treatments, models were constructed

with treatments (control, N. paspalivorus and, for experiment 2, additionally N. cucumeris)

and time (weeks after introduction of dry bulb mites) as well as their interactions as the

fixed factors, and with replicate within each week as a random factor. In the first series of

experiments, log-transformed dry bulb mite density and weeks showed a quadratic relation

in the control treatment. Therefore, we added the squared weeks and its interaction with

treatment as extra fixed effects for this analysis. We used a Gaussian error distribution for

the model and an inverse gamma prior (V = 1, nu = 0.002) in the G-matrix (random

effects) and the R-matrix (error structure). We applied default settings for other options in

MCMCglmm (starting value, etc.). We ran each analysis for 150,000 iterations with a

burn-in of 50,000 iterations and a thinning interval of 10. This generated 10,000 samples

from each chain. We then first checked whether autocorrelations between successive stored

iterations are\0.1, and checked the model by plotting the distribution of the coefficients

and the residual variances of the sampled posterior. Terms were considered statistically

significant when 95 % confidence intervals did not overlap and P-MCMC\ 0.05.

To analyze the longitudinal data on the predator densities in the second experiment, we

applied again an MCMCglmm. We used the log-transformed values of the mean number of

predators ? 1, per bulb per replicate. To compare the changes in the predator densities
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over weeks between N. paspalivorus and N. cucumeris, a model was constructed with

predator species (N. paspalivorus, N. cucumeris) and time (weeks after predator intro-

duction) as well as their interactions as fixed factors, and with replicate within each week

as a random factor. We then analysed these data in the same way using the same

parameters as applied in the analysis of dry bulb mite densities.

Results

General impact of predators

There was a significant difference in the change of total densities of dry bulb mites over

time between the treatment with N. paspalivorus and the control in either of the two

experiments (Tables 2, 3; Fig. 1, 2). This predator was able to reduce pest densities both

inside and on the outer scale of the bulbs. The second experiment, including treatments

with N. cucumeris, showed that N. cucumeris also suppressed the density of dry bulb mites

on the outer scale (Table 3b; Fig. 2). However, N. cucumeris did not significantly suppress

the density of dry bulb mites inside bulbs (Table 3a; Fig. 2).

Experiment 1: high infestation late in the storage period

In the first experiment, initial total densities of dry bulb mites averaged 1590 per bulb.

After three weeks, the average had decreased to 170 in control treatments and to 37 in

treatments with N. paspalivorus (Fig. 1a). Regardless of treatment, most dry bulb mites

were found on the outer scale of the bulbs (Fig. 1b vs. 1c). However, the development of

Table 2 Results of MCMCglmm for the Aceria tulipae densities (a) inside bulbs and (b) outside bulbs in
experiment 1 (initially high infestation, late in storage period, predator Neoseiulus paspalivorus)

Explanatory variable Posterior mean (CI) P-MCMCa

(a)

Intercept 5.72 (2.52 to 9.18) 0.002

Treatment (N. paspalivorus) 3.20 (-1.49 to 7.85) 0.15

Week 1.09 (-1.85 to 4.13) 0.46

I (Week2) -0.38 (-0.97 to 0.20) 0.20

Treatment (N. paspalivorus)*Week -3.53 (-7.76 to 0.73) 0.092

Treatment (N. paspalivorus)*I (Week2) 0.63 (-0.19 to 1.48) 0.12

(b)

Intercept 1.43 (-2.06 to 4.89) 0.40

Treatment (N. paspalivorus) 4.24 (-0.62 to 9.07) 0.080

Week 7.20 (3.96 to 10.42) <0.001

I (Week2) -1.80 (-2.47 to -1.22) <0.001

Treatment (N. paspalivorus)*Week -5.33 (-9.96 to -0.94) 0.025

Treatment (N. paspalivorus)*I (Week2) 1.10 (0.24 to 2.00) 0.018

CI = 95 % confidence interval
a The probability P that the parameter value is more than 0 or less than 0 calculated in MCMCglmm. Bold
type represents P\ 0.05
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the dry bulb mite populations differed dramatically between the treatments with N. pa-

spalivorus and the control (Fig. 1a; Table 2). Whereas the number of dry bulb mites first

increased in the control treatments, they did not in the predator treatments. Specifically, the

control treatments showed an increase of the total density of dry bulb mites during the first

week (1 replicate) or the first 2 weeks (2 replicates), followed by a strong decrease

(Fig. 1a). In contrast, the treatment with the predatory mite N. paspalivorus led to a

substantial decrease of the density of dry bulb mites in the first week (1 replicate) or in the

first 2 weeks (2 replicates), but not in the last week(s) (Fig. 1a). This pattern of decrease in

dry bulb mite density was manifested equally on the outer scale and in the interior of the

bulb (Fig. 1b, c). The differences in change of dry bulb mite densities over time were

significant for the outer scale of the bulb (Table 2b), but not in the interior of the bulb

(Table 2b).

Experiment 2: low infestation halfway the storage period

In the second experiment, the effects of predator treatments were visible up to the last week

of the experiment. The total density of dry bulb mites was initially 16 per bulb on average

(7 on the outer scale, 9 inside the bulb). Whereas the control experiments showed expo-

nential growth of the total population of dry bulb mites, treatments with the predatory mite

N. paspalivorus led to virtually no increase of dry bulb mite densities, and N. cucumeris

showed an intermediate level (Fig. 2a). The effect of N. paspalivorus was highly signifi-

cant, both on the outer bulb scale (P\ 0.001, Treatment (N. paspalivorus)*Day in

Table 3b; Fig. 2b) and in the interior of the bulbs [P\ 0.001, Treatment (N. paspalivo-

rus)*Day in Table 3a; Fig. 2c]. In contrast, treatment with the predatory mite N. cucumeris

had a significant impact on dry bulb mite density on the outer bulb scale [P\ 0.001,

Table 3 Results of MCMCglmm for the Aceria tulipae densities (a) inside bulbs and (b) outside bulbs in
experiment 2 (initially low infestation, halfway the storage period, predators Neoseiulus cucumeris or N.
paspalivorus)

Explanatory variable Posterior mean (CI) P-MCMCa

(a)

Intercept 1.37 (0.70 to 2.05) <0.001

Treatment (N. cucumeris) 0.16 (-0.81 to 1.11) 0.73

Treatment (N. paspalivorus) 0.11 (-0.87 to 1.04) 0.82

Week 0.75 (0.57 to 0.95) <0.001

Treatment (N. cucumeris)*Week -0.08 (-0.34 to 0.19) 0.54

Treatment (N. paspalivorus)*Week -0.66 (-0.93 to -0.39) <0.001

(b)

Intercept 1.29 (0.57 to 2.00) <0.001

Treatment (N. cucumeris) -0.31 (-1.31 to 0.69) 0.53

Treatment (N. paspalivorus) -0.06 (-1.08 to 0.95) 0.92

Day 1.06 (0.87 to 1.25) <0.001

Treatment (N. cucumeris)*Day -0.53 (-0.79 to -0.27) <0.001

Treatment (N. paspalivorus)*Day -0.77 (-1.04 to -0.51) <0.001

CI = 95 % confidence interval
a The probability P that the parameter value is more than 0 or less than 0 calculated in MCMCglmm. Bold
type represents P\ 0.05
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 Total no. of Aceria per bulb 

No. of  Aceria (outside) 

No.  of Aceria inside 

No. of Predators  

A

B

C

D

Fig. 1 Temporal dynamics of
Aceria tulipae (mean number per
bulb, i.e. mean of 4 bulbs): on
and in the bulb (total numbers)
(a), then separately for the outer
scale (b) and in the interior of the
bulb (c), in the control treatment
(drawn line) and in the treatment
with the predatory mite
Neoseiulus paspalivorus (dashed
line). In panel (d) the dynamics
of the predatory mites (mean
total per bulb, i.e. mean of 4
bulbs) is shown (dashed line).
Results are presented for each of
the three replicates separately
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Total no. of Aceria per bulb 

 No. of Aceria per bulb (outside) 

 No. of Aceria inside 

No. of Predators  

A

B

C

D

Fig. 2 Temporal dynamics of
Aceria tulipae (mean number per
bulb, i.e. mean of 4 bulbs): on
and in the bulb (total numbers)
(a), then separately for the outer
scale (b) and in the interior of the
bulb (c), in the control treatment
(drawn line), in the treatment
with the predatory mite
Neoseiulus paspalivorus (dashed
line) and in the treatment with the
predatory mite, N. cucumeris
(dotted line). In panel (d) the
dynamics of the predatory mites
(mean total per bulb, i.e. mean of
4 bulbs) is shown (N.
paspalivorus, dashed line; N.
cucumeris, dotted line). Results
are presented for each of the four
replicates separately
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Treatment (N. cucumeris)*Day in Table 3b; Fig. 2b], but not in the interior of the bulb.

Treatment with N. cucumeris could not curb exponential increase of dry bulb mites inside

the bulb. It gave rise to a lower but non-significantly different growth rate than in the

control experiments [P = 0.54, Treatment (N. cucumeris)*Day in Table 3a; Fig. 2c]. As a

result, not only the numbers of dry bulb mites differed between treatments at the end of the

experiment, but also their spatial distribution over the outer and inner bulb (Fig. 3). In

control treatments, 87 % of dry bulb mites were found inside the bulb. The predator N.

cucumeris could not prevent the total dry bulb mite population from growing, but reduced

the total numbers of dry bulb mites compared to the control, and 82 % of these remaining

dry bulb mites was found inside the bulb. In contrast, N. paspalivorus reduced total

numbers of dry bulb mites dramatically when compared to the control, and reversed the

pattern of spatial distribution: only 26 % of the remaining mites was found inside the bulbs

at the end of the experiment (Fig. 3).

Predator populations

Release of N. paspalivorus led to substantial population growth of this predator in each of

the two experiments (Fig. 1d and 2d; peaking on average at 48 and 28 predators respec-

tively), but release of N. cucumeris (only carried out in the second experiment), led to a

rather marginal increase in population size (Fig. 2d; peaking on average at 3 predators).

This difference in population growth of the two predators over time was highly significant

(P\ 0.01, Treatment (N. paspalivorus)*Week in Table 4). During sampling, we observed

N. paspalivorus on the outer scale, as well as in the interior of the bulbs in the first

experiment but mainly in the interior of the bulbs in the second experiment. However, N.

cucumeris was never found inside the bulbs.

Discussion

We conclude that the predatory mite N. paspalivorus can control dry bulb mites on tulip

bulbs in open buckets in ventilated rooms, representing conditions close (but not equal) to

Fig. 3 Spatial distribution of
Aceria tulipae on the bulbs. Bars
represent mean numbers of A.
tulipae per bulb for each
treatment on the outer scale of
the bulbs (black) and inside the
bulbs (grey), at the end (after
5 weeks) of experiment 2 with
initial low levels of infestation
(16 A. tulipae/bulb). Numbers
above bars indicate the fraction
of A. tulipae found inside the
bulbs
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those of tulip bulb storage in practice (Figs. 1a, 2a). This predator was much more effective

in controlling this pest than N. cucumeris (Figs. 2a, 3a). Moreover, it should be stressed

that ventilation removes most of the ethylene so that under the conditions of our experi-

ments there were no negative effects of flower malformation to be expected.

Predator-to-prey size and interior bulb structure as a key to biocontrol success

We argue that the success of N. paspalivorus is explained by its small size. We observed

that this predator managed to move into the interior part of the bulb, probably due to its

small size and elongated body shape, and possibly also by behavioural adaptations (F. da

Silva, personal observations; experiments in progress). In contrast, the larger N. cucumeris

was never found in the interior part of the tulip bulbs, which is likely to explain its failure

to control dry bulb mites inside the bulbs (Fig. 2c).

However, accessibility of the bulb interior is not only determined by predator size, but also

by environmental conditions altering the bulb structure. During storage in practice temper-

atures decrease gradually (from 23 to 17 �C) and bulbs desiccate very slowly, whereas in our
storage experiments the bulbs were kept at 23 �C and had already been stored at 20 �C for

more than 4 months, likely resulting in faster desiccation and better access. Ethylene levels

might also have differed in our experiments from those in storage rooms in practice, and

consequently affected accessibility, but it is hard to say in what way they differed. On the one

hand, they could have been higher in our experiments, and consequently facilitated access,

because our ventilation rates were 2–3 times lower than in practice, and initial dry bulb mite

densities were high in the first experiment (Lesna et al. 2005). On the other hand, the number

and density of bulbs in our experiments was nothing compared to what is usual in practice,

and the density of dry bulbmiteswas very low in the second experiment. How all these factors

together determine accessibility of the bulbs in our experiments compared to that in practice

is difficult to evaluate. Thus, whether N. paspalivoruswill be equally effective in practice as

in our experiments, still requires scrutiny by means of further biocontrol tests.

Predation and intra-specific competition as pest mortality factors

Pest mortality is not only due to predation, but possibly also to intraspecific competition for

food and a decreasing quality of bulbs as a food source. Especially, the control treatment of

experiment 1 shows evidence for the latter. This is because the initial density of dry bulb

mites was orders of magnitude higher than in experiment 2: on average 1590 per bulb in

experiment 1 versus 16 per bulb in experiment 2 (Figs. 1a, 2a). Moreover, in the control

Table 4 Results of MCMCglmm for the total predator densities in the in experiment 2 (initially low
infestation, halfway the storage period, predator Neoseiulus paspalivorus)

Explanatory variable Posterior mean (CI) P-MCMCa

Intercept 0.60 (0.09 to 1.19) 0.031

Treatment (N. paspalivorus) -0.18 (-0.98 to 0.55) 0.65

Week 0.0001 (-0.15 to 0.15) 0.99

Treatment (N. paspalivorus)*Week 0.41 (0.19 to 0.63) 0.001

CI = 95 % confidence interval
a The probability P that the parameter value is more than 0 or less than 0 calculated in MCMCglmm. Bold
type represents P\ 0.05

13

ht
tp

://
do

c.
re

ro
.c

h



treatment of experiment 1 the density of dry bulb mites increased during the first 1 or

2 weeks, but decreased during the last 1 or 2 weeks. This pattern is clearly in contrast with

the dynamics in the control of experiment 2, where the dry bulb mites showed exponential

growth over the full 5 weeks of the experiment (Fig. 2a). Thus, intraspecific competition is

more likely to play a role in experiment 1 than in experiment 2.

However, even though density-dependent mortality due to intraspecific competition and

bulb quality may play an important role in experiment 1, there is strong evidence that

predation acts in concert, also in this experiment. In the first week after predator release the

predator-treated replicates showed equal or decreasing total numbers of dry bulb mites,

whereas the control treatments showed a threefold increase in pest numbers in the same

period. In the next 2 weeks mortality factors other than predation are likely to be more

important and they may well reflect intraspecific competition for food, as a result of

increasing pest numbers and decreasing bulb quality. This pattern is commonly observed in

practice towards the end of the storage period.

Experiment 2 clearly indicates that N. paspalivorus has potential to control dry bulb

mites relatively early in the bulb storage period, when densities of dry bulb mites are still

low. We argue that the continued population decline of dry bulb mites in the predator

treatments can be attributed largely to predation and not to intra-specific competition for

food, because the control treatments show exponential increase of dry bulb mites

throughout the experiment (Fig. 2a).

Why no spontaneous emergence of predatory mites in storage rooms?

Because N. paspalivorus originates from coconuts in Brazil and is used in our experiments

in the Netherlands to control eriophyid mites on tulip bulbs, a completely different plant,

this predator and prey surely represent a novel association. This prompts the question

whether there are no suitable predatory mites in the Netherlands that spontaneously emerge

under storage conditions and control dry bulb mites. The climatic conditions under storage

conditions are not only ideal for the dry bulb mites, but also for predatory mites. This lack

of predators in practice is largely due to fumigation of bulbs with pirimiphos-methyl

(Actellic-50�) during bulb storage. This pesticide is lethal for most predatory mites, as

well as for dry bulb mites. Just after harvest from the field, the scales of the tulip bulbs are

so tightly fitting together that only dry bulb mites, but not predatory mites, might have a

chance to hide inside the bulb. Fumigation will kill most mites on the exterior part of the

bulb, but less so in the bulb interior. Thus, dry bulb mites have a relatively higher chance of

escaping from the effect of fumigation and, if so, they enter enemy-free space, once they

arrive with the bulbs in the storage room.

Thus, to detect potential predators for dry bulb mite control in The Netherlands, pre-

dators have to be collected from the field or from stored bulbs not receiving a pre-treatment

with pesticides. This has been done in bulb stocks stored in the laboratory in Amsterdam

and at the Flower bulb Research Centre in Lisse (currently known as PPO) (Lesna et al.

2005). The predatory mite species recorded were Cheyletus eruditus (Schrank), Lasioseius

fimetorum Karg, Blattisocius spp., N. cucumeris and N. barkeri Hughes (note that in

addition Lasioseius bispinosus Evans was found on infested tulip bulbs in Niigata, Japan;

Lesna, personal observation, 1992). Each of these predator species had the ability to

increase their population size when fed exclusively with dry bulb mites, but N. cucumeris

showed the highest capacity of population growth and managed to get access to interior of

the bulb, albeit only in bulbs stored in closed cardboard boxes (a method rarely used in

practice), where ethylene levels are higher and induce modifications in interior bulb
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structure that promote predator access (Lesna et al. 2005). Since none of the other pre-

dators found in The Netherlands, so far, showed an ability to reach the bulb’s inside under

storage conditions in practice, the only solution was to find predators that feed on eriophyid

mites and are small enough to cope with the narrow space inside a bulb. This is why the

impetus for the work presented in this article came from the discovery of N. paspalivorus, a

very small predatory mite feeding on eriophyid mites under the perianth of coconut fruits.

Moreover, climatic conditions in bulb storage are not too different from those in coconut-

growing areas of the world and dry bulb mites live in microhabitats that are structurally

similar to those under the perianth of coconuts. For all these reasons we opted for this

exotic predator instead of predators endemic in The Netherlands.

Perspectives for Neoseiulus paspalivorus in practice

To make biocontrol using this predator from coconuts available for application in practice

there are still several hurdles to overcome, as summarized during a workshop in Lisse

attended by representatives from all interested parties (Lommen et al. 2012c). The first is to

test the use of biological control with N. paspalivorus at a larger scale and under practical

conditions of bulb storage (e.g. more ventilation, decreasing temperatures over the course

of the storage period). The second is to remove the predatory mites from the bulbs before

export to countries with severe quarantine regulation. Last but not least there is a need to

develop a method of mass rearing of N. paspalivorus on other prey or other foods, to

bypass the expensive method of rearing them on eriophyid mites on host plants. Once these

hurdles are taken, application in practice will be attractive to organic farmers and, if in the

future the use of pesticides to treat bulbs becomes more restricted, it will be a major

alternative for traditional farmers as well.

Our experiments with N. paspalivorus represent a clear-cut example of successful

application of a predatory mite to control a different species of eriophyoid mite in

microhabitats that are similar in structure but otherwise part of a completely different

mircro- and macro-habitat. Hence, we consider this result as one that confirms the ‘new’

association hypothesis of Hokkanen and Pimentel (1989).
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