
Learning-Related Effects and Functional
Neuroimaging

Karl Magnus Petersson,1* Christina Elfgren,2 and Martin Ingvar1

1Cognitive Neurophysiology R2-01, Department of Clinical Neuroscience, Karolinska Institute,
Karolinska Hospital, Stockholm, Sweden

2Division of Psychiatry, Department of Clinical Neuroscience, University Hospital of Lund,
Lund, Sweden

r r

Abstract: A fundamental problem in the study of learning is that learning-related changes may be
confounded by nonspecific time effects. There are several strategies for handling this problem. This
problem may be of greater significance in functional magnetic resonance imaging (fMRI) compared to
positron emission tomography (PET). Using the general linear model, we describe, compare, and discuss
two approaches for separating learning-related from nonspecific time effects. The first approach makes
assumptions on the general behavior of nonspecific effects and explicitly models these effects, i.e.,
nonspecific time effects are incorporated as a linear or nonlinear confounding covariate in the statistical
model. The second strategy makes no a priori assumption concerning the form of nonspecific time effects,
but implicitly controls for nonspecific effects using an interaction approach, i.e., learning effects are
assessed with an interaction contrast. The two approaches depend on specific assumptions and have
specific limitations. With certain experimental designs, both approaches may be used and the results
compared, lending particular support to effects that are independent of the method used. A third and
perhaps better approach that sometimes may be practically unfeasible is to use a completely temporally
balanced experimental design. The choice of approach may be of particular importance when learning-
related effects are studied with fMRI. Hum. Brain Mapping 7:234–243, 1999. r 1999Wiley-Liss,Inc.
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INTRODUCTION

In general learning systems, encoding of informa-
tion, memory storage, and retrieval of stored informa-

tion for flexible problem solving make it possible for
learning systems to successfully adapt in a nonstation-
ary environment [Arbib, 1995; Gabriel and Moore,
1990; McClelland et al., 1995; Vapnik, 1995]. From a
parallel distributed processing perspective, learning in
a neural network is a dynamic consequence of informa-
tion processing and network plasticity [Amit, 1989;
Arbib, 1995; Haykin, 1994; Hertz et al., 1991; Rumel-
hart and McClelland, 1986]. By hypothesis, this is also
the case for the human brain [Petersson et al., 1997].
Learning and memory are fundamental brain func-
tions, and characterizing the functional role of differ-
ent brain regions involved in these processes is impor-
tant for the understanding of the brain as a cognitive
system [Fletcher et al., 1997; Nadel and Moscovitch,
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1997; Squire, 1992; Squire and Alvarez, 1995; Tulving
and Markowitsch, 1997].

A fundamental problem when studying the effects
of learning processes is that learning-related changes
may be confounded by nonspecific effects, i.e., time
effects not related to learning. This problem may be
greater in functional magnetic resonance imaging
(fMRI) studies compared to positron emission tomog-
raphy (PET) studies of learning, given the problems
with temporally correlated low-frequency noise, mo-
tion artifacts, and machine drifts using fMRI. There are
several standard strategies for handling the problem
with nonspecific time effects. Using the general linear
model, one approach for separating learning-related
effects from nonspecific time effects is to incorporate
an explicit model of the nonspecific effects in the
statistical model. Another strategy is to use an interac-
tion approach, in which learning effects are assessed
with an interaction contrast in the general linear
model. A third strategy, that sometimes may be imprac-
tical, is to use a completely temporally balanced
experimental design. Here we illustrate and compare
the first two approaches by reanalyzing a PET data set
of a previously reported learning study [Petersson et
al., 1998]. The results relating to the medial temporal
lobe (MTL) were reported in Petersson et al. [1997]. In
brief, the results indicate that automaticity develops as
a consequence of practice, and that this corresponds to
a decreased dependence on attentional and working
memory resources, as indicated by the practice-related
decreases in the prefrontal, anterior cingulate, and
posterior parietal regions. In addition, the results
indicate that the activity of the MTL during retrieval
decreases as a function of practice: in this case, re-
peated encoding and recall. This indicates an inverse
relation between the strength of encoding and the
activation of the MTL during retrieval [Mesulam,
1998]. Furthermore, the practice-related increases in
the auditory and the posterior insular-opercular re-
gions extending into the perisylvian supramarginal
region may indicate a lesser degree of attentional sup-
pression of task-irrelevant processing [Ghatan et al.,
1998; Haxby et al., 1994; Jenkins et al., 1994; Schulman
et al., 1997]. In addition, the practice-related increases
in the right mid-occipitotemporal region may reflect
aspects of more fully developed visual representations
of the abstract designs processed during retrieval.

MATERIALS AND METHODS

The experimental paradigm and the procedures are
described in detail in Petersson et al. [1997]. In brief, 12
right-handed, healthy male subjects (mean age, 24;

range, 22–29) were included in the study (one subject
was excluded in Petersson et al. [1997] because of
asymmetric/partially missing data in the left MTL,
and 6 1 2 scans were lost for technical reasons in 2
subjects, respectively). Each subject underwent 12 PET
scans. The experimental paradigm consisted of two
identical blocks (Fig. 1c). Within each block, scanning
was done in three different states: the reference state
(RS), novel recall (NR), and trained recall (TR). Each
block consisted of six scans, with at least 10 min
between scans in the order: RS1/NR/NR/training
period/TR/TR/RS2.

Figure 1.
a: Experimental PET scanner setup. 1, computer screen for
presentation of the abstract designs to be copied during encoding;
2, monitor for closed-circuit visual feedback of the hand; 3, camera
feeding into the monitor in the closed-circuit visual feedback. b:
Encoding-recall cycle. During encoding, each of the 15 abstract
designs was copied one time. Then a distracter text was read for
30 sec. Finally, during recall the designs were reproduced as
faithfully as possible. c: Scanning order of the 12 scans: 2 reference
state (RS), 2 novel recall (NR), and 2 trained recall (TR) scans in
each block (bold markings; s, scanning), plus the training period
(approximately 30 min) of 6 encoding-recall cycles in each block
(thin markings).
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In RS, the subjects filled in the contours of simple
predrawn designs. Following the first RS scan in each
block, the subject was engaged in the encoding-recall
cycle (Fig. 1b). During encoding, a list of 15 separate
abstract designs [Jones-Gotman, 1986] was shown for
15 sec each on a computer screen (Fig. 1a). In order to
prevent recency effects, the subject read a nonsense
text aloud for 30 sec after encoding [Baddeley, 1995].
After this, the retrieval was initiated and the PET
scanning started. The subject reproduced the designs
in any order. Two different lists of designs were used,
one for each block, balanced over subjects. During
each block there was a training period between the
second NR scan and the first TR scan (Fig. 1c). The
training period consisted of six encoding-recall cycles.
Altogether, each subject went through 10 encoding-
recall cycles and was scanned on the first two and last
two recall procedures in each block.

Data analysis

The PET images were realigned, stereotactically
normalized, and transformed into a common stereotac-
tic space, as defined by the SPM95 template (an
approximate Talairach space [Talairach and Tournoux,
1988]), 3D isotropic Gaussian-filtered (14 mm FWHM),
proportionally scaled to account for global confound-
ers, and analyzed with statistical parametric mapping
(SPM95) [Friston et al., 1995]. To test hypotheses,
estimates were compared using linear contrasts, and
the resulting set of voxel values for each contrast was
transformed into a Gaussianized t-field, i.e., a statistic
image SPM[Z]. To reduce the false-positive voxels in
activated clusters, the SPM[Z] was thresholded at 3.72
(or omnibus significance P # 0.0001).

Our experimental approach was based on the logic
described by Raichle et al. [1994], i.e., introducing
novel material of the same kind after the first learning
block causes reactivation of the regions that showed
practice-related effects in the first block. In order to
model nonspecific monotone time effects as a linear
confounding covariate, the PET paradigm of Raichle et
al. [1994] was modified and extended to include two
full repetitions of the basic experimental block.

The first approach for separating learning-related
effects from nonspecific time effects explicitly incorpo-
rates a model of the nonspecific time effects in the
statistical model, i.e., uses time as a linear or nonlinear
confounding covariate in the general linear model. To
the first order of approximation, it may be hypoth-
esized that the nonspecific time effects are monotone
and sufficiently well-approximated by a linear con-

found, or possibly nonlinear of low polynomial order.
In the present report, we use the scan order and block
repetition as confounding covariates in the general
linear model.

The second strategy for handling nonspecific time
effects uses an interaction approach, i.e., learning
effects are assessed with an interaction contrast in the
general linear model. This approach relies on the
assumption that nonspecific effects are sufficiently
similar in both the state of interest and the reference
state. Specifically, the interaction approach relates data
from a state of interest (in this case the recall state, i.e.,
NR and TR) to data from a reference state that is
collected in temporal proximity under the assumption
that both states are similarly influenced by nonspecific
time effects. To do this, the RS scans acquired before
the training period will be denoted RS1, and the RS
scans acquired after the training period will be de-
noted RS2. Since all NR and RS1 scans were acquired
before the training period and all TR and RS2 scans
were acquired after the training period, we related the
effects of interest in NR to RS1 and the effects of
interest in TR to RS2. Specifically, we tested for learning-
related effects using the contrast [NR-RS1] 2 [TR-RS2].
In contrast to the first approach, the interaction strat-
egy implicitly controls for nonspecific effects, given
that the underlying assumptions are sufficiently
accurate. As a variation on the interaction theme, we
also included block repetition as a confounding covari-
ate.

The Karolinska computerized brain atlas (CBA) of
Greitz et al. [1991] was used for the anatomical descrip-
tion of the activated regions described below. The
SPM[Z], thresholded at Z 5 3.72, was displayed in the
CBA. The anatomical database of the CBA makes it
possible to interactively determine the anatomical
structures and Brodmann areas (BA) encompassed by
an activated region. When a region is described to
include a Brodmann area, this is not in an inclusive
sense but only implies that parts of that BA are
included. The resulting activated regions were charac-
terized in terms of spatial extent and peak height of
local maxima. As in Petersson et al. [1997, 1998], only
regions of spatial extent that were significant (P # 0.1,
corrected) are described. Likewise, only local maxima
of significantly activated clusters are reported if the
local maxima are significant (P # 0.1, corrected). All
reported P values are corrected for multiple noninde-
pendent comparisons based on the theory of 3D
differentiable stationary Gaussian random fields [Ad-
ler, 1981; Friston et al., 1995; Worsley et al., 1992].
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RESULTS

Comparing NR and TR using time as a linear
confounding covariate

In what follows, we describe the significantly acti-
vated regions, including scan-order and block repeti-
tion, as confounding covariates in the general linear
model.

Increases in novel recall compared to trained recall

The increases in NR compared to TR constitute a
network of several activated regions (see Table Ia and
Fig. 2a).

The prefrontal activations included the bilateral middle
frontal/lateral orbitofrontal region (right P 5 0.03, and
left P 5 0.01, BA 10, 11) and the left middle frontal
region (P 5 0.004, BA 9, 46, P 5 0.05, BA 10). There
were also left frontal opercular/anterior insular
(P 5 0.06, BA 45/49, 14) and small bilateral superior-
middle frontal (right P 5 0.09, left P 5 0.08, BA 8 and
left BA 6) activations.

The left anterior cingulate (P 5 0.006) was activated in
the left BA 24 and 32.

The parieto-occipital activations (right P 5 0.003, left
P , 0.001) included the bilateral superior parietal
(left . right, BA 7) and the inferior parietal lobules (BA
19) extending into the superior parts of angular gyrus
(left . right, BA 39).

The temporo-occipital and inferotemporal activations
(right P 5 0.06, left P 5 0.009) included the left inferior
occipital gyrus (BA 37), and the bilateral middle-
inferior temporal gyrus (BA 37), extending into the left
middle temporal BA 21.

The medial temporal and anterior occipitotemporal activa-
tions (right P 5 0.009, left P 5 0.02) included the bilat-
eral BA 35 and 36, the right BA 34, the left BA 27, and
the left BA 28.

Increases in trained recall compared to novel recall

In TR-NR, several significantly regions were acti-
vated (see Table Ib and Fig. 2c).

The opercular, mid-posterior insular, and supramarginal
activations (right P , 0.001, left P , 0.001) included
the bilateral perisylvian parts of supramarginal BA
40, the temporoparietal opercular region (BA 43, 50),
the mid-posterior insular region (BA 13, 14), and the
posterior opercular region (BA 44) extending into the
superior temporal regions (BA 41/42/22).

The occipital activations included the right middle
lingual region (P 5 0.02, BA 19/37) and a small left

posterior occipital region (P 5 0.08, BA 18/19). In
addition, a left pre/postcentral region (P 5 0.06) was
activated.

Comparing NR and TR using the interaction
approach

Using the interaction approach, we included block
repetition as a confounding covariate. The results were
very similar when block repetition was not included.

Increases in novel recall compared to trained recall

In general, the results were similar to the results
described above (Table II and Fig. 2). In brief, the
prefrontal activations included the bilateral superior-
middle frontal (right P 5 0.005, left P , 0.001, and left
P 5 0.05, BA 10, 11, 46) and the left anterior cingulate
(BA 24, 32) regions. The parieto-occipital activations
(right P 5 0.02, and left P 5 0.003) included the left
superior parietal (BA 7) and the bilateral inferior
parietal (BA 39, 40, extending into right BA 19) lobules.
The temporo-occipital activations (left P 5 0.10, and
P 5 0.08) included the left middle-inferior temporal
gyrus (BA 37, extending into BA 21). The medial
temporal and anterior occipitotemporal activations
(right P 5 0.03) included the right BA 34 and the right
hippocampus proper, as well as the left BA 28 and 36
(P 5 0.08).

Increases in trained recall compared to novel recall

The opercular, mid-posterior insular, and supra-
marginal activations (Table IIb and Fig. 2d, right
P , 0.001, left P 5 0.006, and left P 5 0.008) included
the bilateral perisylvian parts of supramarginal BA
40, the temporoparietal opercular (BA 43, 50), the
mid-posterior insular (BA 13, 14), and the posterior
opercular (BA 44) region, extending into the superior
temporal regions (BA 41/42/22). In addition, there
was a right middle lingual activation (P 5 0.09, BA
19/37).

Comparing NR and TR with RS focusing
on the medial temporal lobe

In Petersson et al. [1997], one subject was excluded
from analysis because of asymmetric or partially miss-
ing data in the left MTL. When this subject was
excluded from the interaction analysis, the results in
the MTL became more symmetric. More specifically,
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comparing NR with TR using the interaction ap-
proach, there was a local maximum in the left parahip-
pocampal/hippocampal region (BA 28/34, [x, y,
z] 5 [226, 210, 228], Z 5 3.45), consistent with our
previous ROI analysis [Petersson et al., 1997].

In order to compare NR and TR with RS/RS1/RS2,
and to compare the results with those reported in
Petersson et al. [1997], we restricted the search volume
to z-coordinates between 18 and 228 in Talairach
space. We also excluded the MTL asymmetric subject

TABLE I. Local maxima in the NR compared to TR when nonspecific time effects are
explicitly modelled using scan order and block repetition as confounding covariates in

the general linear model

a. Activations in NR compared to TR

Region BA x, y, z Z-score
P

value

Prefrontal cortex
Superior/middle frontal g 6 dx 22, 4, 36 3.93 0.077

6 sin 226, 24, 44 3.94 0.075
10/11 dx 22, 40, 212 4.55 0.008
10 dx 24, 38, 0 3.96 0.071
10/11 sin 218, 44, 212 4.94 0.001

Middle frontal g 10 sin 234, 52, 20 4.09 0.045
9/45 sin 244, 22, 28 4.54 0.008
11 sin 218, 28, 220 4.08 0.046

Anterior insula 14 sina 228, 24, 16 4.09 0.045
Frontal operculum/inferior

frontal g
44 sin 232, 6, 32 4.06 0.051

Anterior cingulate cortex 24/32 sin 28, 20, 36 5.07 0.001
24/32 sin 214, 28, 20 4.31 0.020

Parieto-occipital cortex
Superior/inferior parietal l 7/40/19 dx 40, 266, 44 4.21 0.029

7/40/19 sin 238, 266, 40 5.23 0.000
Inferior parietal l 39/19 dx 36, 272, 28 4.79 0.003
Angular g 39 sin 236, 264, 36 5.23 0.000
Angular/middle temporal g 39 sin 230, 248, 28 4.98 0.001

Medial temporal cortex
Parahippocampal g 28/34 dx 20, 212, 228 5.26 0.000

36 dx 30, 228, 20 4.85 0.002
Parahippocampal/fusiform g 36 sin 234, 228, 220 5.15 0.001

Occipitotemporal/inferotemporal
cortex

Inferior temporal/fusiform g 37 dx 54, 248, 220 4.13 0.040
19/37 sin 254, 264, 216 4.33 0.018

Inferior temporal g 19/37 sin 246, 276, 220 4.14 0.037

b. Activations in TR compared to NR

Posterior insula/operculum 13/16/50a dx 238, 28, 12 5.82 0.000
13/16/50a sin 246, 24, 8 5.77 0.000

Superior parietal/postcentral 5/7 sin 216, 238, 56 4.35 0.017
Superior temporal g 41/42/22 dx 48, 218, 4 6.88 0.000

41/42/22 sin 252, 226, 16 5.68 0.000
Occipital cortex

Lingual ga 18/19 dx 10, 256, 212 4.56 0.007
Lingual g 18 sin 212, 288, 24 3.83 0.106

BA, Brodmann area; g, gyrus; 1, lobule. a CBA. Coordinates refer to an approximate Talairach space. All
P values are corrected for multiple non-independent comparisons.
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and used a similar statistical model as in the interac-
tion approach, with the order of scans within a given
state as a confounding covariate (as in Petersson et al.
[1997]; the results were similar if scan order was used
as a confounding covariate or if no confounding
covariate was used).

In NR compared to RS (5RS1 1 RS2, see Fig. 3),
there is a local maximum in the right parahippocampal

gyrus (BA 28/35/36, [x, y, z] 5 [28, 224, 224], Z 5 4.56,
P 5 0.003). The same local maximum MTL was also
observed in NR 2 RS1 (BA 28/35/36, [x, y, z] 5 [28,
224, 224], Z 5 4.04, P 5 0.055). There were sim-
ilar activations in the left MTL. The MTL was not
activated in TR compared to RS or RS2. Thus, the
results were similar to those reported in Petersson et al.
[1997].

Figure 2.
Maximum intensity projections of activated regions. All images are
thresholded at the omnibus significance level of P 5 0.0005
(Z 5 3.29). Activations in NR were compared to TR when (a)
nonspecific time effects were explicitly modelled using scan order
and block repetition as confounding covariates in the general linear

model, and (b) using the interaction approach, i.e., nonspecific time
effects were implicitly accounted for. Activations in TR were
compared to NR when (c) nonspecific time effects were explicitly
modelled, and (d) using the interaction approach.
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DISCUSSION

A fundamental problem when studying learning
processes is that learning-related changes may be
confounded by nonspecific effects, i.e., time or repeti-
tion effects not related to learning. There are several
standard strategies for handling this problem. In this
report, we described and compared two such ap-
proaches. Another fundamental problem in the study
of learning-related effects is the fact that learning or
practice has effects on the performance of a task. This
problem is not discussed in this paper (for a short
discussion see Petersson et al. [1999]).

Our experimental approach was based on the
logic described by Raichle et al. [1994], i.e., intro-

TABLE II. Local maxima when comparing NR with TR,
using the interaction approach

a. Activations in NR compared to TR

Region BA x, y, z Z-score
P

value

Superior/middle frontal g 10/46 dx 24, 40, 4 4.95 0.001
10/11 dx 16, 40, 212 4.57 0.007
10 sin 222, 46, 0 4.81 0.002
10/46 sin 234, 52, 20 4.14 0.037

Anterior cingulate cortex 24/32 sin 212, 20, 32 5.55 0.000
24/32 sin 214, 28, 20 5.53 0.000
24/32 sin 218, 24, 0 5.00 0.001

Parieto-occipital cortex
Superior/inferior parietal l 7/40 sin 238, 262, 28 3.96 0.068
Inferior parietal 1/angular g 39 dx 44, 270, 32 4.58 0.007

39 sin 238, 262, 28 4.71 0.004
Medial temporal cortex

Parahippocampal g 28/34 dx 20, 212, 228 4.93 0.001
36 sin 232, 226, 220 4.18 0.031

Occipitotemporal and inferotem-
poral cortex

Fusiform g 37 sin 256, 260, 216 3.97 0.064
Inferior temporal g 20/37 sin 256, 236, 212 3.86 0.094

b. Activations in TR compared to NR

Posterior insula/operculum 13/16/50a sin 238, 210, 12 5.04 0.001
13/16/50a sin 246, 24, 8 5.77 0.000

Superior temporal g 41/42/22 dx 48, 216, 4 6.22 0.000
22 dx 52, 236, 16 5.60 0.000
41/42/22 sin 252, 226, 16 5.33 0.000

Inferior parietal l 40 dx 46, 220, 40 3.97 0.065
40 sin 246, 230, 44 4.00 0.058

Lingual ga 18/19 dx 12, 258, 212 3.84 0.101

* BA, Brodmann area; g, gyrus; 1, lobule. Coordinates refer to an approximate Talairach space. All P
values are corrected for multiple nonindependent comparisons.
a CBA.

Figure 3.
Response patterns in the right and left MTL ([x, y, z] 5 [628, 224,
224]), plotted as the adjusted rCBF over the different states (RS1,
RS2, NR, TR).
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ducing novel material of the same kind after the
first learning block causes reactivation of the regions
that showed practice-related effects in the first
block. The PET paradigm of Raichle et al. [1994] was
modified and extended to include two full repe-
titions of the basic experimental block. This allowed
us to explicitly model nonspecific monotone time
effects and block repetition as confounding co-
variates, using the general linear model. In addition,
our experimental design allowed for an interaction
approach.

The first strategy for separating learning-related
from nonspecific effects uses time or scan order as a
linear or nonlinear confounding covariate. This ap-
proach depends on the assumption or hypothesis
of the general behavior of nonspecific time effects.
Specifically, nonspecific effects have to be explicitly
modelled. To the first order of approximation, it may
be hypothesized that nonspecific time effects are
monotone and sufficiently well-approximated by a
linear confound, or are possibly nonlinear of low
polynomial order. Since the major part of the results
were similar and independent of the method used,
this lends some support to this hypothesis. These
results are also consistent with a recently reported
analysis of task-independent effects of time on
regional cerebral blood flow (rCBF) [Rajah et al.,
1998], indicating that a major part of nonspecific time
or repetition effects are monotone. However, linear
covariates are most sensitive in picking up linear
trends and cannot be expected to pick up non-
linear effects sufficiently different from linear trends
if such effects are present. Hence, nonspecific time
effects may not always be well-represented as linear
trends.

The problem of nonspecific effects may be greater in
functional neuroimaging studies using fMRI com-
pared to PET, given the problems with temporally
autocorrelated low-frequency noise (e.g., arising from
different biorhythms), drifts relating to the physical
performance of the MR scanner, and motion artifacts.
Trying to account for nonspecific approximately linear
trends may not be enough in studying learning-related
changes with fMRI. In this context, the interaction
approach may be a fruitful alternative strategy, i.e.,
data from a state of interest are related to data from a
reference state that is collected in temporal proximity
to the state of interest.

The interaction approach assesses learning-related
effects with an interaction contrast in the general linear
model. This approach implicitly controls for nonspe-

cific effects by relating data from a state of interest to
data from a reference state that is collected in temporal
proximity to the state of interest. The interaction
approach makes no a priori assumption on the form
of nonspecific time effects. This implies that both
nonlinear and linear nonspecific effects will be picked
up. However, this approach relies on the assump-
tion that nonspecific effects influence both states
sufficiently equally. In general, this may not be the
case, e.g., the task of interest may be very much
less boring compared to a simple reference task.
Another limitation with this approach is that
learning effects of interest may be present in both the
state of interest and the reference state and will thus
not be detected, or only detected with reduced sensitiv-
ity.

Overall, the two approaches yielded similar results
with three notable exceptions. Using the linear con-
found approach there were practice-related effects
(NR-TR) in the frontal eye fields, the left anterior
insula/frontal operculum, and the bilateral inferotem-
poral/occipitotemporal regions. Using the interaction ap-
proach, these regions, except for the left inferotemporal/
occipitotemporal, did not show significant practice-
related effects. This may reflect nonlinear, nonspecific
time effects in these regions that are not sufficiently
well-modelled with the linear confound approach. On
the other hand, differentiating the reference state RS
into RS1 and RS2 may reduce signal-to-noise, making
this approach less sensitive. A third possibility is that
the interaction approach controls for some aspects of
procedural or other aspects of learning that are also
reflected in the reference state in addition to nonspe-
cific effects.

CONCLUSIONS

Since learning is correlated with time, partic-
ular care has to be taken so that learning-related
effects are not confounded with nonspecific time
effects. In the present paper, we illustrated and com-
pared two different standard approaches to the
analysis of learning-related effects. The two ap-
proaches described are based on the general
linear model and depend on specific assump-
tions and have specific limitations. With certain
experimental designs, both approaches can be
used and the results compared, lending particular
support to effects that are independent of the method
used.
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The first strategy explicitly models nonspecific time
or repetition effects as confounds, and the second
assesses learning-related effects with an interaction
contrast, implicitly controlling for nonspecific effects.
Overall, in the PET data analyzed here, the major
part of the observed learning-related effects were
independent of the method used. The results from the
interaction approach constituted a major subset of the
results from the linear confound approach. This may
perhaps indicate that the interaction approach is less
sensitive and more specific compared to the linear
confound approach. However, alternative explana-
tions are possible, and in general this may not be the
case. This indicates that there is a need for both
descriptive and inferential studies of learning-related
as well as nonspecific time effects in functional neuro-
imaging data. Recently, a study of task-independent
time effects was reported [Rajah et al., 1998], indicating
that a major part of the nonspecific time or repetition
effects are monotone, using a multivariate approach
to the analysis of monotone time effects. The interac-
tion approach, described here, makes no a priori
assumption on the form of nonspecific time effects.
This may be particularly valuable when learning-
related effects are studied with fMRI. However, it
should be emphasized that this approach is dependent
on the assumption that nonspecific time effects influ-
ence both the state of interest and the reference state
approximately equally, and that there are no learn-
ing effects of interest in the reference state. A third
and better approach, when practically feasible, is to
use a completely temporally balanced experimental
design. The choice of strategy for handling the poten-
tial confounding of learning-related and nonspecific
time effects may be of particular importance in fMRI
studies.
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