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Summary Introduction 1

SUMMARY INTRODUCTION

In my PhD thesis I unveil somewhat controversial trading practices and conflicts

of interests in mutual fund industry and brokerage business. I aim to provide

empirical evidence of premature information diffusion in capital markets. The

novel data and identification approach of the study allows answering the questions

so far not answered in the literature. The thesis consists of two chapters: Chapter

1 "Tippers and Tippees: Brokers’ Pre-release of Price-sensitive information to

their VIP clients" and Chapter 2 "Predation versus Cooperation in Mutual Fund

Families".

Chapter 1 Tippers and Tippees: Brokers’ Pre-release of Price-sensitive

information to their VIP clients

In Chapter I of my thesis, I study a pre-release of research information by broker-

age houses to their important clients. I explore whether this activity is empirically

detectable. Using high-frequency trading data from Abel Noser Solutions (AN-

cerno), I investigate trading of individual institutions ahead of recommendation

release. First, I find that large institutions and frequent traders trade in the

direction of the Strong Buy and Buy initiations in the 5-day period before the

announcement. This evidence supports the informed trading taking place in the

pre-announcement period. This study shows that specific groups of institutional

investors are informed. I further document that brokers’ best clients are more

likely to trade in advance of the recommendation issue.

According to several research studies, Regulation Fair Disclosure and Global Re-

search Analyst Settlement (GRAS) was effective in decreasing selective disclosure

by companies and cutting analysts’ access to investment banking information. I

provide empirical evidence that tipping of best clients by broekrs increased after

the regulation, suggesting that brokers started to look for other means to attract

clients. The findings resist to several controls: manager characteristics, stock

characteristics and potential news releases.
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Some recent empirical studies provided evidence suggestive of brokers tipping their

clients with price-sensitive information. Chemmanur et al. (2009) find that institu-

tions use private information in trading before and after a seasoned equity offering.

The fact that stock recommendations move stock prices is well documented in the

academic literature (see, e.g., Womack (1996)). This makes recommendations a

valuable information for investors and represents a good opportunity for breeding

client relationship. Christophe et al. (2010) detect abnormal short-selling volume

in the 3 days before the recommendation downgrade, and Juergens and Lindsey

(2009) find abnormal trading volume at the recommending brokerage firm 2 days

before analysts recommendation downgrade (the volume is of the same direction

as the recommendation). This evidence is quite suggestive of institutions front

running the recommendation issue. In their seminal paper Irvine, Lipson and

Puckett (2007) suggest positive abnormal trading volume ahead of analyst buy

and strong buy recommendation initiations as the evidence of tipping by brokers.

However, the data used in the studies does not allow studying the identity and

characteristics of the advantaged investors. Furthermore, the observed increase

in the trading volume might happen because analysts often time the release of

their research output. Thus, the issue of a recommendation could be the result

of investor interest in a stock. Contrary to the existing studies I use trading data

with the breakdown into investor-level trades. I analyze information leakage of

financial analyst recommendations to their privileged clients, as well as character-

istics of the institutional investors receiving such advance knowledge. I provide

evidence supportive of the hypothesis that big institutional clients and clients en-

joying privileged relationship with their broker receive and use the pre-released

research information in their trades.

This study might be of interest for the financial markets regulatory authorities (e.g.

Securities and Exchange Commission) dealing with detection of insider trading.

Chapter 2 Predation versus Cooperation in Mutual Fund Families (with

Alexander Eisele and Gianpaolo Parise)

In Chapter 2, prepared in collaboration with Alexander Eisele and Gianpaolo

Paise, I investigate private information flows and trading practices inside mutual
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fund families when one of the funds in the family experiences a severe distress

due to investor redemptions. In particular, we examine whether funds predate or

cooperate with their distressed counterparts. The main academic contribution of

the research paper is the empirical evidence in support of a family-coordinated

predation of the distressed funds inside investment fund families.

To provide the evidence, we analyze the performance of distressed funds and non-

distressed funds inside the fund complexes. We find that non-distressed funds

inside families having a distressed member see their performance increasing. At the

same time, the results show that the distressed funds in large families experience

a substantially lower performance, than do their peers from small families. The

paper finds that high-fee funds benefit more from the distress of a family member.

This finding is supportive of the performance shifting resulting from a strategy

coordinated on the level of a fund complex.

We use 2004 SEC regulation is response to the "late trading scandal" as an exoge-

nous shock, and find that predating behavior inside fund families weakens after the

regulation came in vigor. This result is suggestive that the regulation was effective

in decreasing the controversial trading practices inside mutual fund families.

We further exploit trading data from ANcerno to shed light on the channel of

the performance shifting among funds in the families. We construct a proxy for

the cross trades from the data and provide empirical evidence that cross trading

activity is the main channel of performance transfer from the distressed funds to

other funds in the family: we observe a negative effect of the level of cross-trading

activity for the distressed funds and positive effect for the non-distressed siblings.

We further show that distressed funds are often used as "waste bins": they buy

poor-performing and less liquid positions from their siblings and sell them good

and well-performing stocks. Thereafter, we explore pricing of cross trades. We find

that sell transactions making part of cross trades bear higher trading costs for the

families with at least one distressed member. The cross trading activity shows a

discernible time series pattern. It drops significantly around the regulatory change

in 2004.
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From the practical standpoint, the results of this research work may be useful for

mutual fund investors to be better informed on the eventual risks for their in-

vestments coming from the incentives distortions inside fund families. The study

questions the role of managing companies in providing "better care to their in-

vestors" and may bring implications for stronger regulation of the information

flows inside mutual fund families.



Chapter 1

Tippers and Tippees: Brokers’

Pre-release of Price-sensitive

Information to their VIP Clients

1.1 Summary

Using proprietary high-frequency trading data, I analyze information leakage of

financial analyst recommendations to their elite clients, as well as characteristics

of the institutional investors receiving such advance knowledge. I find that in-

vestment managers, who have an established relationship with their brokers, on

average buy more than other investors in the 5-day period before positive analyst

coverage initiations. My results suggest that clients, who enjoy a privileged re-

lationship with their broker receive and use the pre-released information in their

trades.

5
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1.2 Introduction

In 2007 Roberto Casoni, equity analyst from Citigroup, was sued by the UK Fi-

nancial Services Authority (FSA) for unveiling his upcoming strong buy coverage

initiation to select fund managers before making the research report public. Later

in 2010 fund managers at Shroders, Oddo Asset Management and Dexia Asset

Management, as well as fund manager Guillaume Rambourg from Gartmore, were

fined by the Italian regulator Consob1 for front running based on the informa-

tion received from Mr. Casoni. The case marked a clear legal borderline for the

anticipated research dissemination in Europe.

Five years later, in April 2012, US Securities and Exchange Commission (SEC)

charged a $22 million dollar fine against Goldman, Sachs & Co. for not having

suitable policies in place to prevent stock research tips being released to a select

group of top clients during weekly trading "huddles"2. "Despite being on notice

from the SEC about the importance of such controls, Goldman failed to implement

policies and procedures that adequately controlled the risk that research analysts

could preview upcoming ratings changes with select traders and clients", said

Robert S. Khuzami, Director of the Commission’s Division of Enforcement. Back

to 2007, Goldman started the Asymmetric Service Initiative (ASI) under which

analysts tipped select clients with information from trading huddles. Critics of the

practice have complained that it hurt other clients who were not given a possibility

to trade on the information. Many clients of Goldman were unaware of the trading

"huddles" practice and were later deceived by discovering they were "at the end

of the food chain".

Media cites other cases of private information leakage in brokerage business. Bro-

kers have a clear incentive to engage in such practices in chase of trading commis-

sions and good relationship with their key clients. This study considers a special

case of private information flow, which is a pre-release of research information

by brokerage houses to their important clients. I explore whether this activity is

statistically detectable.
1Commissione nazionale per la società e la Borsa
2SEC, 2012, SEC charges Goldman, Sachs & Co. Lacked adequate policies and procedures for research

"huddles", Press Release 2012-61.
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Using high-frequency trading data from Abel Noser Solutions (ANcerno), I investi-

gate trading of individual institutions ahead of analyst coverage initiations. First,

I find that large institutions and frequent traders trade in the direction of the

recommendation in the 5-day period before the announcement more than small

institutions and institutions trading less actively. This evidence supports the in-

formed trading taking place in the pre-announcement period. This result is quite

intuitive per se, some existing papers report abnormal institutional volume ahead

of major events. However, this paper is the first to show that there is a particular

type of institutional investors who are informed. I further document that, more

specifically, brokers’ best clients are more likely to trade in advance of the recom-

mendation issue. According to several research studies, Regulation Fair Disclosure

and Global Research Analyst Settlement (GRAS) managed to reduce selective dis-

closure by companies and cut analysts’ access to investment banking information.

I provide empirical evidence of the change in aggregate pre-recommendation trad-

ing and trading by brokers’ VIP-clients after GRAS. My findings suggest that

brokers started looking for other means of attracting clients and raised tips dis-

semination to select clientele in after-regulation period. My findings are robust

to controls: manager characteristics, stock characteristics and potential news re-

leases. Further, I provide evidence that initiations by analysts from large brokers

and All-star analysts are associated with increased pre-event buying by brokers’

"best clients".

To my knowledge, this study is the first attempt to design a straight-forward em-

pirical strategy to study the role of investor-broker relationship for tipping and

characteristics of tipped institutions. The main novelty of this paper compared to

the existing studies exploiting ANcerno data, is the use of manager identification

files. It allowed this study to explore trading behavior of individual institutions

and to distinguish among their characteristics. Identification files of trading insti-

tutions were provided by ANcerno in 2010 for a limited period of time. Respecting

the non-disclosure agreement with the data provider, this study does not reveal

any names of the institutions. Being in possession of the manager and broker iden-

tification files enabled me to match them through several databases and construct

characteristics of the trading institutions and follow them through time.
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This paper relates to several strands of the existing literature. Some recent em-

pirical studies provided evidence suggestive of brokers tipping their clients with

price-sensitive information. Kim, Lin, and Slovin (1997) refer to pre-release of

analyst’s stock recommendation to important clients as a common practice in bro-

kerage business. In their seminal paper Irvine, Lipson, and Puckett (2007) report

positive abnormal trading volume ahead of analyst buy and strong buy recom-

mendation initiations. Their evidence is strongly suggestive of tipping activity by

brokers. Christophe, Ferri, and Hsieh (2010) detect abnormal short-selling volume

in the 3 days before the recommendation downgrade, and Juergens and Lindsey

(2009) find abnormal trading volume at the recommending brokerage firm 2 days

before analysts recommendation downgrade (the volume is of the same direction

as the recommendation). Anderson and Martinez (2009) analyze brokers’ daily

transactions from the Stockholm Stock Exchange and find that trades through

recommending brokers around recommendation upgrades are profitable. The ev-

idence provided by these studies is consistent with institutions front-running the

recommendation issue. However, the data and research design used in the studies

does not allow to study the identity and characteristics of the advantaged investors.

Furthermore, the observed increase in the trading volume might be due to the fact

that analysts are often timing the release of their research output. Thus the issue

of a recommendation (or initiation) could be a result of investor interest in a stock.

In my study I overcome this concern by using trading data with the break-down

into investor-level trades.

This paper also adds to the academic literature analyzing the information content

and investment value of analyst recommendations. There is a heated debate in

the current literature on whether analysts’ research output is informative. I show

that analysts recommendations (this study examines coverage initiations) benefit

a group of brokers’ privileged clients. Womack (1996) reports significant initial

price and volume reactions to both buy and sell recommendations and documents

the presence of the post-recommendation stock price drift over 6 months for sell

recommendations (much shorter for buy recommendations). Francis and Soffer

(1997) find that analyst recommendation revisions have incremental value to the
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earnings forecast revisions. Barber, Lehavy, McNichols, and Trueman (2001) pro-

pose portfolio strategies based on consensus analyst recommendations producing

abnormal gross returns. The returns however vanish after taking into account

transaction costs. Ivković and Jegadeesh (2004) find that positive forecast revi-

sions and recommendation upgrades have a superior information content in the

week before earnings announcement, than shortly after. This does not hold for

negative forecast revisions and recommendation downgrades. Chang and Chan

(2008) show that market-adjusted stock returns are correlated with the direction

of financial analysts’ recommendation revisions, with recommendation downgrades

being more informative for investors. On the one hand, it makes recommendations

a valuable information for investors, and on the other hand, it represents a good

opportunity for breeding client relationship and constitutes the main motivation

point for the tipping activity. Kim, Lin, and Slovin (1997) find that initial buy

recommendations have an average excess return of about 4% and 7% (for NY-

SE/AMEX and NASDAQ stocks respectively). Furthermore, they document that

profit opportunities related to the coverage initiation disappear in the first fifteen

minutes after the public news release and most of the information about the an-

alyst recommendation is included in the opening price. Green (2006) documents

the presence of positive short-term (about two hours) profit opportunities after

pre-market release of analyst recommendation changes for the issuing broker’s

clients before the news is published through the news wire. Both studies con-

clude that mostly informed investors (important broker’s clients) should be able

to take advantage of the information contained in the recommendations. Recent

studies arrive to the opposite conclusions depending on whether they focus on av-

erage effects or individual analyst recommendations. Altinkilic and Hansen (2009)

provide evidence that on average there is no economically significant reaction to

recommendation changes after controlling for confounding firm news. At the same

time, Loh and Stulz (2011) study the effect of individual recommendations and

find that analysts produce influential recommendations as an outcome of a mix-

ture of skills and circumstances. Similarly, Hess, Kreutzmann, and Pucker (2012)

report that more skillful analysts provide more profitable recommendations yield-

ing significant excess returns to investors. Therefore, advance knowledge of the

research report content can have an investment value. This study concentrates
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on the impact of individual recommendations. I exploit the feature of certain

individual recommendations to provoke a market reaction and examine whether

this quality produces an incentive for brokerage houses to please their important

clients by unveiling recommendations to them before the rest of the clientele and

public.

Finally, this paper contributes to the academic knowledge on informed trading.

Several studies conclude that institutions are informed traders (see, for example

Barclay and Warner (1993), Chakravarty (2001) or recently Hendershott, Livdan,

and Schürhoff (2011)). The evidence I provide is in line with these findings. I com-

plement the existing research by showing that institutions with specific character-

istics are more informed. I also provide evidence that this superior information is

partly driven by preferential access to information offered by information-providers

(brokers).

The paper is organized as follows. Section 1.3 outlines and provides discussion of

the research hypotheses. Section 1.4 describes the data and the construction of

the broker-investor relationship proxy. Section 1.5 discusses the empirical findings.

Section 1.6 studies the relation of broker and analyst characteristics and pre-release

trading. Section 1.7 examines the robustness of the results. Finally, section 1.8

discusses regulation related to tipping and section 1.9 concludes.

1.3 Hypotheses development and related literature

In this section I provide a set of testable hypotheses and describe their empiri-

cal predictions in relation to institutional investors’ trading behavior in the pre-

recommendation period.

It is often argued that institutional investors are informed traders, and they possess

superior information due to better access to information and/or more sophisticated

information processing skills (Hendershott, Livdan, and Schürhoff (2011)). How-

ever, the empirical evidence of information-driven trading by institutions remains

mixed. Existing studies use, to a large extent, low-frequency data (13F quarterly

holdings of institutions) or high-frequency trading data. Publicly available US
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data of institutional flows are quarterly institutional holdings (SEC’s 13F filings).

It is quite hard to imply from quarterly data whether institutions induce stock

price movements or respond to them.

Other datasets used by academics to analyze trading by institutions are TAQ,

CAUD (NYSE Consolidated Equity Audit Trail Data), NASDAQ PostData, Plexus

Group and ANcerno/Abel Noser (used in this study). TAQ database, for example,

does not provide any characteristic of the trader and does not classify trades as

buys or sells. Research studies analyzing these data apply an algorithm to assign

the side of the trade depending whether the trade price is closer to bid or ask.

To proxy for an investor type, researchers commonly use trades cutoffs by dollar

size (see Lee and Radhakrishna (2000)), block trades (see Kraus and Stoll (1972),

more recently Bozcuk and Lasfer (2005)), or a more sophisticated daily trades and

quarterly holdings mapping procedure as proposed by Campbell, Ramadorai, and

Schwartz (2009).

Using different data sources (CRSP returns for NYSE tender offer targets and

TORQ data respectively), Barclay and Warner (1993) and Chakravarty (2001)

provide empirical evidence of institutions splitting their trades into medium-sized

trades, so called "stealth trading". The authors conclude that in such a way

informed investors trade on their private information. The studies do not relate

their analysis to any type of information event by selecting stocks with a significant

price increase in a sample period. Chakravarty (2001) uses the TORQ dataset

(sample of the CAUD data) containing information about individual orders of 144

firms over a very short time period: three-months (63 trading days) during 1990-

91 (for electronically routed (SuperDot) orders at the NYSE). TORQ allows to

distinguish between the two types of investors: individual and institutional.

Institutional investors are not a homogeneous group. Commonly used high-frequency

datasets (including earlier releases of ANcerno) do not allow to distinguish among

separate institutions, and for this reason, previous studies refer to the whole group

of institutions as informed traders. By the very nature of private information, it

is accessible only to a limited number of players. Therefore, being able to iden-

tify the trading party is crucial to driving conclusions about which investors are
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informed. ANcerno database represents a number of advantages over the other

databases used in the existing studies: it clearly categorizes trades into buys and

sells and in 2010 it has provided identification of trading institutions (subject to

non-disclosure agreement) covering the preceding historical data period since 1998.

The file maps the trade to the name of the trading institution. Managercode allows

to trace institutions across time. To my knowledge, this is the first study in the

finance literature making use of investor identity.

Hence, I classify single institutions in ANcerno by their size and trading frequency

and formulate my first hypothesis:

H1: Informed trading ahead of analyst recommendations

- Big investment managers trade in the direction of the recommendation in the

pre-recommendation period

- Frequent traders are more likely to trade in the direction of the recommendation

before the recommendation issue

The two predictions would be consistent with investors being informed about the

content of the analyst research report, but they do not give a clear indication of the

channel by which trading institutions obtained the information. First, institutions

may receive information from their broker. Both, large institutions and frequent

traders, have it all to become first line clients for brokers, as they are the source of

lucrative trading commissions. Preferential disclosure of recommendations could

be a part of soft dollar arrangements between a broker and its client.

Another possibility is that important investors get news directly from the compa-

nies. Before the Regulation Fair Disclosure (Reg FD) was proclaimed in August

2000, both brokers and important institutions were in the first line to get news

from companies early before they become public. After Reg FD, this practice

became illegal and firms must disclose all the material information to all investors

simultaneously. Therefore, even though some anecdotal cases of selective disclo-

sure may still happen, they presumably should no more be detectable on a large

scale.
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And finally, it can further be argued that both, large institutional investors and

brokers, are getting their information from legitimate sources (e.g.,public news

wire). As a result, large institutions, generally believed to possess superior information-

processing capacity, respond to the news faster than other market participants and

more rapidly than a broker analyst issues a research recommendation. Although I

use several filters and control variables to mitigate the effects of confounding news

(I delete observations coinciding with the dates of companies’ earnings guidance

and earnings announcements and control for pre-event period returns), this, how-

ever, may not be enough to dissipate concerns of the most severe skeptics. For

this reason in my next hypothesis the relationship between brokers and institutions

comes under closer scrutiny.

H2: Brokers "tip" their best clients with research report content

- Net trades by important clients of the recommending broker are in the direction of

the recommendation in the time window preceding the recommendation announce-

ment

Some recent papers aim to explore private information flows ahead of major cor-

porate events. Griffin, Shu, and Topaloglu (2012) use broker-level trading data

to analyze trading inside "connected" brokerage houses ahead of takeover and

earnings announcements for NASDAQ-traded firms. The authors test whether

brokers connected to firms through investment banking relationship (IPO or SEO

advising), lending relationship or superior past trading profitability in the stock

are better informed ahead of takeovers. Overall, the authors find no evidence of

elevated trading on inside information at the connected brokerage firms, neither

by brokers themselves, nor on behalf of their clients. Yet, Jegadeesh and Tang

(2010) find that institutions, whose main broker served as a target advisor, are

net buyers before the takeover announcement and their trades are significantly

profitable. Their finding corroborates the key prediction of this paper: a group

of investors may take advantage of the inside information, while inside trading

activity may or may not be detectable on average.
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Given the differential research design, the results obtained by the authors of the

cited papers are not mutually exclusive. Both papers find that trades of insti-

tutions ahead of takeover announcements are not profitable on average. Griffin,

Shu, and Topaloglu (2012) look at aggregated trades at a broker-level. Institutions

are nevertheless unlikely to concentrate all their trades with one broker. Also the

chances are low that institutions informed by their broker ahead of a major event

concentrate all the trades related to the private information at the involved bro-

kerage house. In this light the findings of Griffin, Shu, and Topaloglu (2012) are

not surprising. At the same time, they do not question the existence of profitable

strategies of selected groups of investors based on private information flows.

Analyst recommendation issue is a broker-specific information, which makes it a

convenient way to study information flows from brokers to their clients. Irvine,

Lipson, and Puckett (2007), Juergens and Lindsey (2009) and Christophe, Ferri,

and Hsieh (2010) provide some evidence suggestive of front-running trading activ-

ity related to analyst recommendations. Hence, I use recommendation initiations

in my research design to explore whether selected broker’s clients benefit from

advance knowledge of research reports.

I construct a measure of broker-client relationship as a percentage of deals in

which an institutional investor received shares from the total number of IPO deals

underwritten by a broker in three years preceding the recommendation issue. I

proxy IPO allocations by closest IPO holdings according to the SEC 13(f) filings.

I provide a detailed discussion of the validity of this approach in section 2.4.3.

The analysis of client-broker connections in the setting of private information flows

is one of the key distinguishing features of this study from the existing research.

The recent (2010) release of the ANcerno data enables me to map individual

institutions and their tick-by-tick trades. Elevated buying by best clients ahead of

broker recommendations would be indicative of the clients being informed about

the content of the research report.

In my third hypothesis I refer to Regulation Fair Disclosure and Global Research

Analyst Settlement which shaped the relationship between brokers and their in-

stitutional clients. Juergens and Lindsey (2009) suggest that after Regulation FD
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and Global Analyst Settlement (GRAS), analysts might have stronger incentives

to give preferential access to research output to compensate for the censored ac-

cess to investment banking information and selective disclosure from companies.

Later, in April 2012, famous New York Times reporter Ms. Susanne Craig (Craig

(2012))3 linked Goldman’s trading "huddles" to the 2003 settlement which put up

firewalls between research and investment banking and prohibited the use of bank-

ing revenue to subsidize research. According to Ms. Craig, this incited Goldman’s

executives to search for new opportunities for attracting clients and generating

trading commissions and precipitated the emergence of trading huddles. I formu-

late and test a hypothesis H3 related to the prediction:

H3: Post-GRAS favored access to research for the preferred clients

- Stronger pre-announcement net buying of important clients of the recommending

broker in the period after GRAS

Finding that established clients are net buyers ahead of positive recommendation

initiations in the post-GRAS period would be consistent with analysts using re-

search output as the means of tipping a privileged circle of their clients. Hence,

I would expect a coefficient on the "Best Client" variables to be stronger in the

post-GRAS period.

1.4 Data and methodology

In this part I give a detailed explanation of the data sources and identification I

used in this study. I employ the following datasets for my analysis: US transaction

data from ANcerno, 13f institutional holdings from Thomson Reuters, I/B/E/S

financial analysts’ stock recommendations, IPO data from Thomson One (SDC

Spectrum), earnings guidance data from First Call database and stock prices from

CRSP. Section 1.4.1 describes the ANcerno trading data. Section 1.4.2 gives the

details of the identification of managing companies and brokers. Section 1.4.3
3Ms.Susanne Craig has covered Wall Street for more than 15 years and prior to joining NYT in 2010,

she worked as a reporter for The Wall Street Journal
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discusses the construction of the broker-client relationship measure. Finally, sec-

tion 1.4.4 provides the description of the sample selection procedure and summary

statistics.

1.4.1 Trading data

I use institutional trading data from ANcerno (Abel Noser Solutions) for the avail-

able period 1999-20104.

As described on the company’s website (www.ancerno.com) "Abel Noser Solutions,

Ltd. provides trade cost analysis to institutional investors, advisors, hedge funds,

consultants and brokers. Our product suite includes pre-trade, real-time and post-

trade tools that enable users to assess trading costs throughout the order lifecycle".

ANcerno provides trade by trade data for money managers, pension fund spon-

sors and (less frequently) for brokers. Each client of ANcerno is given a unique

numerical identifier clientcode. Clienttype variable allows to differentiate among

pension fund sponsors (clienttype=1), money managers (clienttype=2) and bro-

kers (clienttype=3). The data provider does not reveal the identity of the client

sending data, however the identity of the trading institution is known thanks to

provided identification files. Unique identifier managercode allows to study insti-

tutional trading both in cross-section and through time. I keep in my sample only

clients who are money managers.

An individual fund is identified by clientcode and clientmgrcode. The latter may

sometimes change from one data batch to another. Received data batches are

identified by the lognumber.

The main variables of interest for the study aremanagercode, brokercode, clientcode,

clientmgrcode, clientbkrcode, cusip, tradedate, Side, Price and V olume. This

variables allow us to identify a single trade in the data. Cusip is a stock identifier,

Side defines the side of the trade ("1" for a buy, "-1" for a sell), Price is the

execution price of a trade, V olume is a number of shares traded in a transaction.

4first record in ANcerno date to 1997, but iclude relatively small amount of observations for the first
two years
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Table 1.2 gives detailed description of ANcerno database for the sample period.

The data includes the total of 260,039,064 transactions for the 1999-2009 sample

period. The total number of distinct institutions (managercodes) in the database

is 860, from which 330 are money managers. The table reports aggregated daily

statistics for money managers and all institutions in the sample (Panel A and

B). It further includes statistics per manager-day, again for money managers only

(Panel C) and all institutions (Panel D).

1.4.2 Identification of managing companies and brokers

ANcerno clientcode and clientmgrcode enables me to map the trades to the unique

managercode and names of the trading managing companies. I further manually

match ANcerno managing companies to the institutions from Thomson Reuters

13f database. In the same way I link the brokercode of the executing broker

to ANcerno trades using clientcode and clientbkrcode and create a linking table

across three databases: ANcerno, I/B/E/S analyst recommendation files and bro-

kers from IPO underwriting syndicate from Thomson One Banker, by manually

merging brokers by their names.

1.4.3 Measuring broker-client relationship

It is a well-established fact that IPO shares are reserved by brokers for their best

clients. Reuter (2006) finds that allocations of underpriced IPOs to institutional

investors is related to the brokerage business assigned to the lead underwriter. In

other words, this result suggests that the access to underpriced IPOs by a fund

family is determined by the strength of business relationship between the family

and the lead underwriter. There exist earlier empirical studies. Binay, Gatchev,

and Pirinsky (2007) document that brokers privilege investors with whom they

have an established relationship by offering them more underpriced IPOs. The

authors use prior participation in IPO distributions as a measure of the strength

of investor-broker relationship. Goldstein, Irvine, and Puckett (2011) show that

stable investors, regularly paying commissions to their broker, are rewarded with
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IPO allocations. This evidence supports the vision of IPO allocations to be a

suitable metric for broker-investor relationship.

I draw on the existing evidence to construct the measure of broker-client connec-

tion for my analysis. I compute it as a percentage of number deals in which an

institutional investor received shares from the total number of IPO deals under-

written by a broker. Because IPO allocations are not publicly available, I use the

first post-IPO reported institutional holdings from Thomson Reuters 13(f) filings

database as a proxy for IPO allocations to institutions. The reporting is quarterly,

therefore I obtain holdings data corresponding to the quarter of the IPO.

Several studies use investors’ holdings as a proxy for IPO allocations: see, for

example, Reuter (2006), Ritter and Zhang (2007), Binay, Gatchev, and Pirinsky

(2007) and Goyal and Tam (2009). Ritter and Zhang (2007) provide a discus-

sion and conclude that closest IPO stock holdings represent a valid proxy for IPO

allocations. The main argument in support of this view is the minimum posi-

tion requirement of institutional investors’ holding of an IPO discussed by Zhang

(2004) and Ritter and Zhang (2007). The requirement implies that if institu-

tional investors do not receive an allocation, they are unlikely to buy shares in the

early aftermarket. Ritter and Zhang (2007) examine actual IPO allocations of the

sample of 11 IPOs with the corresponding reported holdings in Thomson Reuters

Mutual Fund holdings database (s12) and find that although reported holdings

tend to understate actual IPO allocations, there is a positive correlation between

the actual allocations and reported holdings. This further confirms earlier finding

by Hanley and Wilhelm (1995) of high correlation between 13(f) reported holdings

and actual IPO allocations. Smaller institutions and investors are not included in

my calculations, as they do not have to report their holdings to the SEC. As a

result, they do not appear in the Thomson Financial 13(f) database. With this

information in hand, I use quarterly holdings as a proxy of IPO allocations.

Hence, I construct the measure of broker-client connection as follows. I define

an institution m as the "best client" for the broker b at the time period t (for 3

rolling years) whenever the IPO participation ratio is greater or equal to 0.25 (the

threshold roughly corresponds to the 10th percentile of the distribution):
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IPO participation ratiom,b,t =
IPO allocationsm,b,t

IPO issuesb,t
,

where IPO allocationsm,b,t is the number of IPO allocations received by the insti-

tution m three years prior the event year t proxied by 13f stock holdings from

Thomson Reuters; IPO issuesb,t is the number of new equity issues underwritten

by the broker b over the same time span t (for the 3 years preceding the recom-

mendation issue) calculated using the Thomson One (SDC Spectrum) database.

In Panel A of Table 1.3 I present statistics of initial public offerings from Thomson

One Banker (SDC Spectrum): the total number of IPOs in the period from 1995

to 2009, the period on which I compute the 3-year rolling IPO participation ratio,

and annual number of IPOs. Panel B describes the statistics for the IPO partic-

ipation ratio and its components. An average broker in my final sample serves

as an underwriter in 72 IPOs in a 3-year period (with a minimum of 1 and a

maximum of 187 for bulge brokers). An institutional investor on average receives

allocations in 4.5 IPOs on a 3-year basis, with the range going from 1 to 104.

Finally, the participation ratio has an average of 0.107, telling us that on average

an institution gets allocations in 10.7% of IPO deals from the total amount of

IPOs underwritten by each broker. The ratio ranges from 0.005 to 1. The 10th

top percentile represents 25% from the total broker deals and is the threshold I am

using to define an institution as a broker’s best client.5. To ensure the robustness

of my results, I compute the IPO participation ratio including and excluding the

event year and run my tests for both measures (unreported results). Table 1.3

shows statistics for both measures.

1.4.4 Sample selection and descriptive statistics

Analyst recommendations

5The results are robust for alternative tresholds
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Analyst recommendations data comes from Institutional Brokers Estimate System

I/B/E/S from Thomson Reuters. The sample includes individual analyst stock

recommendations issued in the period 1999-2009. The period corresponds to the

available trading data sample from ANcerno. I exclude recommendations from

anonymous analysts since it is not possible to compute recommendation revisions

and characteristics for such analysts. I recode all I/B/E/S recommendation codes

to make the interpretations of the results more intuitive, with “5" meaning “Strong

Buy" and “1" - “Sell". I filter the sample of initiations following Irvine, Lipson,

and Puckett (2007). I detect the first recommendation in I/B/E/S provided by a

broker and analyst. I keep recommendation initiations only if they were issued by

an analyst for the first time on a particular stock. I make sure that the broker and

analyst were present in the I/B/E/S database for at least 6 months before an initi-

ation. I then omit all initiations for companies that went public in the six-months

period before the initiation. I remove all the recommendations for which another

analyst initiated coverage in the 11-day window around the observation. Once

again following Irvine, Lipson, and Puckett (2007), I keep only initiations with

“Strong Buy" and “Buy" to make sure that the initiation represents a clear invest-

ment signal for the investors. In order to separate the effect of contemporaneous

release of firm-specific news and analyst recommendations I apply several filters to

the sample. To disentangle the effect of earnings announcement and stock recom-

mendation issue as suggested by Loh and Stulz (2011), I remove recommendations

which occur in the three days around quarterly earnings announcements. I delete

recommendation dates which coincide with earnings guidance communicated by

companies (Chen et al.,2005). I take quarterly and annually earnings guidance

dates from First Call Earnings Guidelines database. I delete stocks with a price

less than $5.

Table 1.4 reports the statistics of recommendation initiations by year and type

of initiation. In the whole sample period "Strong Buy" initiations correspond to

about 28.3% of the total amount of initiations, "Buy" - 32.6%, "Hold" - 34.8%,

with "Underperform" and "Sell" making only 2.9% and 1.4% respectively. I re-

strict my sample to "Strong Buy" and "Buy" initiations as they represent an

unambiguous investment signal.
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Sample description

Table 1.5 shows sample summary statistics for the whole sample and separately

for the group of best clients and investors not belonging to this category (Panel

B and C). It is worth noting again that the relationship is broker-specific. Hence,

the same investor maybe the best client for one broker and not for the other. I

exclude from my analysis institutions which never participated in IPO allocations,

to avoid potential selection bias.

The final matched sample contains 47,727 initiation events, 381 unique brokers

matched across ANcerno, SDC Spectrum and I/B/E/S; 85 distinct managing

companies from ANcerno merged with Thomson Reuters 13(f); and 5,138 ana-

lysts providing reports for 4,044 different stocks matched in ANcerno and CRSP.

We can see from the table that select clients on average trade more ahead of rec-

ommendations: $344,491 versus $79,123 (9,873 and 3,798 respectively in shares).

The difference remains substantial also for the normalized net volume: 0.18 and

0.03 for best clients and the rest of the sample respectively. Best clients are also

more frequently net buyers in the event period (68% versus 55%). The sample

statistics show that best clients in are more often classified as frequent traders:

54% of cases versus only 35% for a other investors. Statistics for control variables

do not differ much between the two groups.

1.5 Empirical Tests and Results

1.5.1 Characteristics of informed investors

At the first step of my empirical analysis, I investigate institutional trading be-

fore analyst coverage initiations. I focus on institutional trading in the period

of 5 trading days before the initiation (hereafter "event period"). This period is

defined empirically by Irvine, Lipson, and Puckett (2007) and is associated with

an increase in institutional trading/buying ahead of analyst coverage initiations.

This time frame is further validated by the detailed example of the research tips

passed by Goldman Sachs to first-line clients provided in the Wall Street Journal
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article by Craig (2009). According to the internal document of Goldman, research

tips were released to a select group of clients 3 trading days before the recommen-

dation upgrade for Janus Capital Group. I compute net dollar trading volume

(Net Trades) in the 5-day event period in the recommended stocks for each invest-

ment manager in the ANcerno database for the entire sample period from 1999 to

2009. I normalize the Net Trades by the average dollar volume in the non-event

period [-36;-6] days before the event, cumulated over five days. The results remain

qualitatively the same when I normalize trading volume by shares outstanding.

I also define a dummy variable Net Buyer, which equals 1 if the manager’s net

directional trading volume in the 5-day period before the initiation is positive, and

equals 0 otherwise. As suggested by hypothesis H1 in section 1.3, certain groups

of investors, like frequent traders and large investment managers, may be better

informed about broker coverage initiations. If my prediction is true, we should see

elevated buying by frequent traders and/or large managers during the event pe-

riod. I test this hypothesis using two model specifications, OLS regression model

1.1 and probit model 1.2 separately including Frequent Trader and Manager Size

variables:

NetTradesm,i,t = a+ βXm,i,t + Controlsm,i,t + εm,i,t, (1.1)

and

P (NetBuyerm,i,t = 1) = Φ(a+ βXm,i,t + Controlsm,i,t) + εm,i,t, (1.2)

where Xm,i,t denotes for investment manager m trading stock i at time t, depend-

ing on the specification: either Frequent Trader, which is a dummy variable which

equals 1 if the manager was in the top 1st decile by their trading frequency in

ANcerno, 0 otherwise; or Manager Size variable, the log of the manager’s stock

holdings as reported in 13(f) filings in the quarter preceding a recommendation.

Table 1.6 documents both univariate and multivariate results of the tests. Coef-

ficients on the Frequent Trader variable in columns (1) and (2) of the table are

positive and significant at 1%. They indicate that a manager trading frequently

has more chances to be a net buyer in the recommendation pre-announcement
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period. I report marginal effects for the probit model in square brackets. The

marginal effect for a Frequent Trader tells us that the probability for a manager to

be a net buyer in the recommended stock increases by 0.008 for a frequent trader,

holding all other covariates at their means. The result weakens in columns (3)

and (4) when I include as the dependent variable Net Trades, however, coefficients

keep the positive sign. Columns (5-8) of the Table 1.6 show positive and signifi-

cant effect of the size of the managing company on the pre-release trading. The

coefficients of the probit model (column 5 and 6) show that the probability for a

manager to be a net buyer increases with the size of the manager. Marginal effects

at means/average marginal effects of the continuous variable Manager Size on the

probability for a manager being a net buyer is of 0.021 and 0.020 respectively. I

include control variables that might have an impact on the trading volume: market

capitalization of a stock, analyst coverage, event-day returns and 3-day cumulative

return. I also account for the effect of eventual recommendation issues by other

brokers happening during the event period or 3 days before the event window

by inserting in the specification dummy variables Upgrade and Downgrade. The

detailed description of the variables is provided in Table 1.1. T-statistics based

on robust standard errors clustered at the stock-level are reported in parentheses.

Following Petersen (2009), I computed standard errors using several other tech-

niques: bootstrap, GLS regression. None of the techniques significantly changed

the standard errors. Monthly time effects are included in all specifications.

In sum, the the estimates of the Table 1.6 support the prediction in Hypothesis

1 that pre-recommendation trading may be clustered in specific groups of insti-

tutional investors susceptible to be informed: big money managers and frequent

traders.

1.5.2 Trading by privileged clients

To measure whether broker’s select clients have an informational advantage over

other investors (Hypothesis 2), I estimate the models described by equations 1.3

and 1.4:



Chapter 1. Tippers and Tippees: Brokers’ Pre-release of Price-sensitive Information to
their VIP Clients 24

NetTradesm,i,t = a+ βBest Clientm,b(i),t + Controlsm,i,t + εm,i,t, (1.3)

P (NetBuyerm,i,t = 1) = Φ(a+ βBest Clientm,b(i),t + Controlsm,i,t) + εm,i,t, (1.4)

where the explanatory variable Best Clientm,b(i),t is a dummy equal one if an in-

vestment manager m received at least 25% of IPOs from the IPOs underwritten

by the broker b in the 3-year period t preceding the recommendation initiation for

the stock i by the same broker. The dependent variables are Net Trades and Net

Buyer as defined in the previous section. I include control variables and monthly

time effects as in Table 1.6. Table 1.7 reports both OLS and probit regression esti-

mates. The coefficients on Best Client are positive in all specifications. Consistent

with Hypothesis 2, the results indicate that brokers’ select clients trade more than

other institutions in the five days before the coverage initiation. The baseline pre-

dicted probability for the manager to be a net buyer before a positive initiation

equals 57.14%.The marginal effects in column (1) and (2) show the probability for

a manager of being a net buyer in the pre-announcement period is increased by

7.7% (9.5% in univariate identification). The β coefficients reported for Frequent

Trader dummy in Table 1.6 increase by the order of magnitude for both probit and

OLS regressions (all statistically significant at 1% level): for example, β for Best

Client in column (4) is 0.077, while it is only 0.008 and insignificant for Frequent

Trader. This result strongly supports my Hypothesis 2 and illustrates the role a

broker-client relationship plays in research tips dissemination. In Tables 1.8 and

1.11, I rerun model 1.3 separately for "Strong Buy" and "Buy" initiations and for

three market capitalization groups and conclude that "Strong Buy"’ initiations

and initiations issued for small-capitalization stocks are associated with stronger

net buying by best clients of brokers. This provides further evidence in support of

Hypothesis 2.
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1.5.3 The change in pre-recommendation trading after Global Re-

search Analyst Settlement

In section 1.3 I provided discussion on possible effects of Global Research Analyst

Settlement (GRAS) on pre-recommendation period trading and tipping practice

in particular. First, I examine the impact of GRAS on institutional trading ahead

of recommendation initiations with the help of models 1.5 and 1.6:

NetTradesm,i,t = a+ βpost-GRAS + Controlsm,i,t + εm,i,t, (1.5)

P (NetBuyerm,i,t = 1) = Φ(a+ βpost-GRAS + Controlsm,i,t) + εm,i,t, (1.6)

The results from estimating equations 1.5 and 1.6 are reported in Table 1.9. The

explanatory variable post-GRAS denotes a dummy which equals one whenever

an observation dates after year 2003 and 0 otherwise. Negative and significant β

coefficients on the post-GRAS dummy testifies a strong reduction in net buying

in the pre-release period. A possible explanation of this finding is the reduction

of information flows from companies to institutional investors and brokers and

speaks in favor of the coupled effectiveness of the Reg FD and GRAS regulations.

Next, based on the discussion of the Hypothesis 3 in section 1.3, I test for the

possible side effects of the regulation. The testing strategy is described by the

equation 1.3. I run the tests separately for the periods before and after GRAS. The

results are reported in Table 1.10. The regression results indicate elevated buying

volumes privileged clients of brokers in the period after GRAS. The estimated

coefficient on the Best Client explanatory variable in the post-GRAS period is

0.11, which is twice as large compared to the pre-regulatory period. These findings

support Hypothesis 3 and suggest that pre-release of research tips by brokers to

their reserved clients has increased since the adoption of Reg FD and GRAS.
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1.6 Large brokers, All-star analysts and pre-release trading

1.6.1 The broker size effect

In this section I study how characteristics of the recommending brokers and ana-

lysts are related to pre-release trading by investors, in particular by brokers’ best

clients.

We know from the existing literature that the size of a broker predicts the forecast

accuracy (see, for example ?or ?). According to ?, a short-term price reaction to

a recommendation is related to a broker size (among other characteristics). This

superior ability and investor reaction may be due to the fact that large brokers have

better tools for processing public information, because they employ more skillful

analysts, because of their access to private information and/or simply because

their research output is more visible to investors. Hence, there is an additional

incentive for investors to trade ahead of recommendations of large brokers provided

they have advance knowledge about the upcoming initiation.

Table 1.12 describes pre-announcement trading by all Ancerno institutions ahead

of initiations issued by analysts from large brokerage houses. Following the existing

literature, I proxy the size of a broker institution by the number of analysts it

employs. The variable of interest in this specification is Large Broker, a dummy

equal to one whenever a broker employs more than 30 analysts in a given year

(the number1Âğ corresponds to the median number of analysts). I obtain the

information from I/B/E/S recommendation files. I specify equations 1.7 and 1.8:

P{NetBuyerm,i,t = 1} = Φ(a+ βBroker Sizeb,t + Controlsm,i,t) + εm,i,t (1.7)

NetTradesm,i,t = a+ βBroker Sizeb,t + Controlsm,i,t + εm,i,t, (1.8)

where the explanatory variable Broker Sizeb,t is a dummy variable equal to 1 if

the broker employs more than 30 analysts in a given year and 0 otherwise. The
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dependent variables are Net Trades and Net Buyer as defined in the previous

section. I include control variables and monthly time effects in all specifications.

Table 1.12 includes trades of all Ancerno investors. We observe that the coef-

ficients on Large Broker are positive and significant, suggesting that more pre-

release trading is associated with the coverage initiation by large brokers. The

economic magnitude of the coefficients however remains modest: while the base-

line probability for an Ancerno investor to be a net buyer before the coverage

initiation is 56.8%, it increases only by 0.8% when the issuer is a large broker. In

Table 1.13 I run the models 1.3 and 1.4 separately for large and small brokers.

Best Client is the explanatory variable. The coefficients in columns (1) to (4) are

all significant, suggesting that recommendations by large brokers are associated

with stronger buying by brokers’ first-line clients. In column (2) the coefficient

on the Best Client is 0.246, with the baseline probability for the client to be a

net buyer in the recommended stock equal to 20%, this probability increases by

9.2% whenever the trading investor is the "best client". Multivariate regressions

include past 7-day returns as a proxy for the eventual news effects. The results

are not significant for small brokers (columns (5) - (8)). Small brokers presum-

ably have less impact and consequently they are less prone to tip. At the same

time, investors might anticipate a lower market reaction to recommendations is-

sued by analysts from smaller brokerage houses. The results are consistent with

my tip-based trading hypothesis 2.

1.6.2 Initiations by All-star analysts

? find a significant positive relation between analyst reputation (measured by

Institutional Investor All-American Research rankings) and analyst recommenda-

tions. Later, ? study the quality of analyst earnings forecasts and conclude that

analyst reputation plays a role of a disciplinary mechanism against conflict of in-

terests in research: they find that All-star analysts provide less biased earnings

forecasts.

In this part of the paper I aim to verify whether initiations by All-star analysts

are associated with pre-initiation buying and thus may be subject to potential
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conflict of interest or, on the contrary, analysts’ reputation plays a disciplinary

role on tipping behavior. If no information about subsequent recommendation

release by the All-star analyst is passed to broker’s investors, I would expect the

coefficient on the Best Client dummy to be insignificant. If however the coefficient

would be positive, than this would indicate an eventual presence of information

flow from analyst (or their employing brokers) to the select group of clients. I

match Institutional investor All-star rankings with the I/B/E/S analyst codes by

analyst names 6.

I estimate the following equations to test my predictions:

P{NetBuyerm,i,t = 1} = Φ(a+ βAll-stara,t + Controlsm,i,t) + εm,i,t (1.9)

NetTradesm,i,t = a+ βAll-stara,t + Controlsm,i,t + εm,i,t, (1.10)

where the explanatory variable All-stara,t is a dummy variable equal to 1 if the

analyst is ranked by the II magazine All-American Research ranking in a given

year and 0 otherwise. The dependent variables are Net Trades and Net Buyer

as defined in the previous section. I include control variables and monthly time

effects in all specifications.

In Table 1.14 I test the relation of pre-announcement trading and initiations by

All-star analysts. The coefficients are insignificant in all settings. The results

provided in this table support the conclusion by ? about disciplinary effect of

reputation. However, the picture changes completely when I put the relationship

variable Best Client into my regressions. Coverage initiations by All-star analysts

seem to have a strong positive effect on pre-event trading by good clients of the

recommending broker: the coefficient on the Best Client dummy is 0.18 in OLS

specification and 0.4 in probit setting. The predicted probability for an investor

to be a net buyer when the issuing analyst is All-star ranked is 20.7%, it increases

by 15.6% when the investor is a "best client". The results from this section

suggest that All-star analysts and their employing broker do not seem to pass on
6I acknowledge collaboration of my colleague Vassilis Barmpoutis in this time-consuming process.

I also thank my colleague Hien Vu who joined the project at a final stage, but whose help was much
welcomed
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price-sensitive information to an average investor, in the meanwhile the empirical

evidence I provide suggests that they might be using this as a means of maintaining

a good relationship with their select clients.

1.7 Robustness Checks

In this section I describe some of the robustness checks I performed to ensure the

validity of my findings.

I experiment with different thresholds for my explanatory variables: Best Client,

Frequent Trader and Manager Size. The results remain qualitatively the same in

all identifications. For example, the increase in IPO participation threshold for

the Best Client dummy, increases the size of the coefficient and indicates larger

net buying for the clients ahead of coverage initiation. I rerun my regressions for

separate sub-samples: my results hold, although the net trading by select clients

is significantly lower in pre-GRAS time period. I discussed this result in section

1.5.3. I further normalize the dependent variable Net Trades by shares outstand-

ing instead of non-event dollar volume and get qualitatively similar results.

If institutional clients’ trade in the reaction of the research tips from their broker,

their trading volume should be higher for "Strong Buy" than for "Buy" initiations,

because the "Strong Buy" should represent a stronger signal for investors. There-

fore, in Table 1.8, I rerun the regressions for the equations 1.3 and 1.4 separately

for the two types of the initiations. The coefficients support my prediction in both

specifications: the β coefficients on the Best Client variable are larger for "Strong

Buy" initiations: 0.108 versus 0.064 for "Buys" in OLS regression setting, and

0.239 versus 0.184 respectively for probit estimates.

In the table 1.11 I examine the trading by best clients in three groups of stocks:

small-cap, mid-cap and large-cap. My prediction here is that select clients are

more likely to trade in small stocks, as those are the stocks for which analyst

recommendation has the strongest impact. The results of the table show that this

is indeed the case: the coefficients for the Best Client dummy is much higher for

small-cap stocks: 0.18 (significant at 5%). It is a tiny 0.08 for large-cap stocks

(significant at 5%) and only 0.05 and insignificant for mid-cap stocks.
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1.8 Discussion

Although this study does not have the aim of discussing global harm or benefit

of tipping activity, it can nevertheless nourish the debate on regulation of this

practice, and may have regulatory implications for brokers and investors in several

aspects. Analysts’ research reports can often cause a stock to rise or fall. Hence,

until the research report is made public, any information about its content is ma-

terial and non-public. As revealed Roberto Casoni’s case, British law is very strict

with both, analysts disclosing material nonpublic information and with investors

trading while in possession of such information. The US SEC enforcement scheme

however is argued to contain gray areas in the matter of insider trading (trading

based on research tips is denounced by CorpWatch7 as a "sophisticated and barely

legal version of insider trading"). Tipping activity may still fall under the juris-

diction of the 10b5-1 SEC rule, promulgated under Securities and Exchange act

of 1934, that prohibits the purchase or sale of a security on the basis of material

non public information. Yet, SEC has to prove that the investor was aware of

the material non public information at the time of the trade. According to my

knowledge, no investor has been so far prosecuted by SEC for trading on research

tips.

Furthermore, securities laws oblige firms to engage in "fair dealing of customers"

and put in place necessary internal regulations and procedures to ensure it is

respected. Research tips to select clients breaches the AIMR Code of Ethics and

the principle of equal treatment of clients, unless the tipping practice is disclosed

to all broker’s clients. This clearly was not the case during Goldman’s trading

"huddles".

There is a need for financial regulatory authorities to look for the means to level

the playing field. There are two ways to do this: one is to regulate and punish

and the other is to enhance disclosure and investor knowledge. The mixture of the

two is however also possible.
7Non-profit organization doing investigate research and journalism
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1.9 Conclusion

This paper brings new insights on the information flows among financial market

participants. I study trading practices of institutional money managers in ad-

vance of stock coverage initiation by brokers. I test my hypotheses on proprietary

transaction-level data and find that the relation between broker and investment

manager explains an important amount of pre-initiation buying. Furthermore,

the precise identification of investors allows me to link investor trading behavior

to their characteristics. I find that large institutions and frequent traders trade

ahead analyst initiations.

I show empirically that besides decreasing firms’ selective disclosure and building

"Chinese walls" between analysts and investment banking departments, Reg FD

and GRAS were followed by the increase in research tipping by brokers.

My further analysis will concentrate on studying the profitability of pre-recommendation

trading.
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Table 1.1: Variables Description

NetBuyer equals 1 if the manager’s net directional trading dollar vol-
ume in the 5-day period before the initiation is positive, and
equals 0 otherwise

NetTrades is the net directional dollar volume in the recommended
stock 5-day period before the upgrade scaled by the aver-
age trading volume by manager-stock in non-event period
[-36;-6] days

Best Client denotes manager who was allocated shares in at least 25% of
IPO deals underwritten by the broker in the 3 years preced-
ing the initiation. The threshold correspons to the top 10th
percentile of the distribution

Manager Size the log of the manager’s stock holdings as reported in 13f
filings in the quarter preceding a recommendation

Frequent Trader a dummy variable equal to 1 if the manager was in the top
1st decile by their trading frequency in ANcerno

Market Cap the log of market capitalization of the recommended stock 1
month before the event

Analyst Coverage the number of analysts covering the stock
Upgrade/Downgrade a dummy equal to 1 if there was an upgrade/downgrade by

another broker in the 3-day window before and during the
event period, and 0 otherwise

Event-day Return the net of the market return for the stock i (value-weighted
CRSP stocks) on the recommendation day

7-day Cumulative Return the cumulative net of the market return (value-weighted
CRSP stocks) in the 7-day window before the event period

post-GRAS a dummy variable equal to one if the initiation took place
after Global Research Analyst Settlement (after 2003)

Large Broker a dummy variable equal to 1 if the broker employs more than
30 analysts in a given year and 0 otherwise

Allstar a dummy variable equal to 1 if the recommending analyst is
an All-star analyst defined by II rankings and 0 otherwise
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Table 1.2: Daily summary statistics of ANcerno institutional trading data

The table presents daily summary statistics for the ANcerno institutional trading data for the period
1999 to 2009 (share volumes are in millions of shares, dollar volumes are in millions of USD).

Panel A: daily statistics - only mutual funds
n Mean S.D. Min p25 Median p75 Max

Number of managers 330
Number of trades 3,023 68,391 49,154 4 28,613 53,894 98,465 332,407
Share Volume 3,020 400 163 2 287 401 492 2,484
Dollar Volume 3,020 11,881 4,605 47 8,681 11,183 14,499 88,465
Share Volume (Buys) 3,023 200 81 0 142 201 249 1,142
Dollar Volume (Buys) 3,023 5,927 2,247 0 4,340 5,596 7,286 41,257
Share Volume (Sells) 3,023 199 86 0 140 198 245 1,342
Dollar Volume (Sells) 3,023 5,942 2,484 0 4,268 5,589 7,249 47,208

Panel B: daily statistics - all institutions

Number of managers 860
Number of trades 3,031 97,306 68,414 1 44,564 87,431 132,508 1,711,960
Share Volume 3,028 519 204 .000095 391 521 625 2,997
Dollar Volume 3,028 15,371 6,098 .00065 11,538 14,657 18,576 125,428
Share Volume (Buys) 3,031 259 102 0 194 260 316 1,492
Dollar Volume (Buys) 3,031 7,655 3,026 0 5,736 7,252 9,281 62,877
Share Volume (Sells) 3,031 259 108 0 193 258 314 1,650
Dollar Volume (Sells) 3,031 7,700 3,274 0 5,694 7,284 9,315 62,551

Panel C: manager-day statistics - only mutual funds

Number of trades 247,110 852 3,852 1 14 107 589 228,971
Share Volume 247,107 5 17 1.0e-06 .1 .62 2.7 2,171
Dollar Volume 247,107 147 550 2.2e-06 2.7 16 76 78,857
Share Volume (Buys) 247,110 2.5 8.7 0 .036 .28 1.3 977
Dollar Volume (Buys) 247,110 74 270 0 .96 7.5 37 36,288
Share Volume (Sells) 247,110 2.5 9.1 0 .03 .27 1.3 1,194
Dollar Volume (Sells) 247,110 74 290 0 .82 7.3 38 42,569

Panel D: manager-day statistics - all institutions

Number of trades 831,947 366 3,465 1 4 14 71 1,580,073
Share Volume 831,920 1.9 11 1.0e-06 .015 .073 .39 2,488
Dollar Volume 831,920 57 368 1.0e-07 .38 1.9 11 106,842
Share Volume (Buys) 831,947 .96 5.7 0 .0041 .03 .19 1,251
Dollar Volume (Buys) 831,947 28 182 0 .1 .8 5.2 54,186
Share Volume (Sells) 831,947 .96 6.1 0 .0033 .029 .18 1,461
Dollar Volume (Sells) 831,947 29 196 0 .082 .77 5.1 52,657
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Table 1.3: IPO data statistics

This table reports summary statistics of IPO data from Thomson One Banker (SDC Spectrum) for
the period 1995-2009

Panel A: Annual IPO statistics
Year Number of IPOs
1995 382
1996 577
1997 420
1998 276
1999 419
2000 304
2001 81
2002 94
2003 88
2004 219
2005 202
2006 178
2007 220
2008 31
2009 37
Total 3,598

Panel B: Statistics aggregated for 3 rolling years, * event year not included
Obs Mean SD Min Max

(a) IPOs per broker 79,259 72 49 1 187
(b) IPOs per broker * 77,506 66 47 1 187
(c) IPOs per manager-broker 79,259 4.5 6.7 1 104
(d) IPOs per manager-broker * 41,845 6.1 8.2 1 104
(e) IPO participation ratio (a/c) 79,259 0.107 0.151 0.005 1
(f) IPO participation ratio (b/d) * 41,844 0.099 0.114 0.005 1
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Table 1.4: Recommendation initiations statistics

This table reports summary statistics of recommendations data from I/B/E/S for the period 1999-2009

Sell Underperform Hold Buy Strong Buy Total

1999 36 32 1,347 2,532 2,024 5,971

2000 16 31 1,134 2,415 1,932 5,528

2001 30 38 1,555 2,213 1,474 5,310

2002 80 284 2,411 2,124 1,496 6,395

2003 119 255 2,194 1,299 1,194 5,061

2004 129 169 2,519 1,323 1,417 5,557

2005 94 213 2,251 1,368 1,252 5,178

2006 117 237 2,320 1,426 1,237 5,337

2007 101 198 2,153 1,473 1,320 5,245

2008 125 332 2,295 1,148 1,241 5,141

2009 124 304 2,210 1,152 1,344 5,134

Total 1,104 2,307 28,025 26,289 22,809 80,534
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Table 1.5: Sample summary statistics

The table presents sample summary statistics for the period 1999 to 2009

Panel A: sample statistics (in dollar volume (DV) in millions USD, share volume in millions of shares
Variable n Mean SD Min .25 Median .75 Max
Number of managers 85
Number of brokers 381
Number of analysts 5,138
Number of stocks 4,044
Number of initiations 17,534
Net Trades DV 47,727 .11 15 -689 -.14 .013 .29 568
Average DV [-36;-6] (AvgDV) 47,727 4.3 12 3.7e-06 .14 .74 3.2 881
Net Trades V 47,727 .0044 .43 -19 -.0046 .0005 .0095 13
Average V[-36;-6] (AvgV) 47,727 .13 .37 1.0e-06 .0052 .024 .096 18
Net Trades DV/AvgDV 47,727 .045 1.7 -4.4 -.31 .029 .48 4.3
Net Buyer 47,727 .57 .5 0 0 1 1 1
Best Client 47,727 .1 .3 0 0 0 0 1
Market Cap 47,727 18,904 45,607 3 1,183 3,584 14,478 546,842
Analyst Coverage 47,727 12 6.7 1 7 11 16 45
Frequent Trader 47727 0.37 0.48 0.00 0.00 0.00 1.00 1.00
Upgrade 47,727 .12 .33 0 0 0 0 1
Downgrade 47,727 .21 .41 0 0 0 0 1

Panel B: Best Client = 0
Net Trades DV 42,871 79,123 1.5e+07 -6.9e+08 -153,675 9,531 279,956 5.7e+08
Average DV [-36;-6] (AvgDV) 42,871 4.3e+06 1.2e+07 3.7 133,509 721,684 3.2e+06 8.8e+08
Net Trades V 42,871 3,798 435,827 -1.9e+07 -5,198 325 9,500 1.3e+07
Average V[-36;-6] (AvgV) 42,871 124,778 373,011 1 4,962 24,105 96,682 1.8e+07
Net Trades DV/AvgDV 42,871 .03 1.8 -4.4 -.35 .022 .48 4.3
Net Buyer 42,871 .55 .5 0 0 1 1 1
Best Client 42,871 0 0 0 0 0 0 0
Market Cap 42,871 1.9e+10 4.6e+10 3.0e+06 1.2e+09 3.6e+09 1.5e+10 5.5e+11
Analyst Coverage 42,871 12 6.8 1 7 11 16 45
Frequent Trader 42,871 .35 .48 0 0 0 1 1
Upgrade 42,871 .12 .33 0 0 0 0 1
Downgrade 42,871 .21 .41 0 0 0 0 1

Panel B: Best Client = 1
Net Trades DV 4,856 344,491 1.3e+07 -2.1e+08 -31,142 50,637 321,712 2.7e+08
Average DV [-36;-6] (AvgDV) 4,856 4.8e+06 1.4e+07 554 210,068 872,394 3.3e+06 3.5e+08
Net Trades V 4,856 9,873 346,318 -7.5e+06 -1,034 1,700 9,778 7.5e+06
Average V[-36;-6] (AvgV) 4,856 130,341 378,380 9.5 7,179 26,179 94,305 9.8e+06
Net Trades DV/AvgDV 4,856 .18 1.5 -4.4 -.065 .091 .46 4.3
Net Buyer 4,856 .68 .47 0 0 1 1 1
Best Client 4,856 1 0 1 1 1 1 1
Market Cap 4,856 1.5e+10 4.0e+10 4.3e+07 1.2e+09 3.3e+09 1.1e+10 5.2e+11
Analyst Coverage 4,856 11 6.2 1 7 10 14 43
Frequent Trader 4,856 .54 .5 0 0 1 1 1
Upgrade 4,856 .12 .32 0 0 0 0 1
Downgrade 4,856 .2 .4 0 0 0 0 1
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Table 1.7: Do best clients buy before analyst coverage initiation?

This table reports OLS estimates of the equation of the equation 1.3: NetTradesm,i,t = a +
βBest Clientm,b(i),t+Controlsm,i,t+εm,i,t, and probit model estimates 1.4: P{NetBuyerm,i,t = 1} =
Φ(a + βBest Clientm,b(i),t + Controlsm,i,t) + εm,i,t, for a given investment manager m in the 5-day
period before analyst coverage initiation for the stock i. Unit of analysis is manager-recommendation.
The dependent variable NetBuyer equals 1 if the manager’s net directional trading volume (in shares)
in the 5-day period before the initiation is positive, and equals 0 otherwise. The dependent variable
NetTrades is the net directional dollar volume in the recommended stock 5-day period before the
event, scaled by the average trading volume for the manager in non-event period [-36;-6] days. Best
Client denotes manager who was allocated shares in at least 25% of IPO deals underwritten by the
broker in the 3 years preceding the initiation. The following controls are included: Manager Size - the
log of the manager’s stock holdings as reported in 13f filings in the quarter preceding a recommenda-
tion; Frequent Trader is a dummy variable equal to 1 if the manager was in the top 1st decile by their
trading frequency in ANcerno and 0 otherwise; Market Cap - the log of the market capitalization of
the recommended stock 1 month before the event; Analyst Coverage - number of analysts covering the
stock; Upgrade/Downgrade - dummy equal to 1 if there was an upgrade/downgrade by another broker
in the 3-day window before and during the event period, and 0 otherwise; Event-day Return - the net
of the market return for the stock i (value-weighted CRSP stocks) on the recommendation day; 7-day
Cumulative Return - the cumulative net of the market return (value-weighted CRSP stocks) in the
7-day window before the event period. The sample includes only "Strong Buy" and "Buy" initiations.
Robust standard errors clustered on a stock-level are reported in parentheses. Monthly time effects are
included. The sample period is January 1999 to December 2009. Marginal effects at means/average

marginal effects are reported in square brackets.

(1) (2) (3) (4)
NetBuyer NetBuyer NetTrades NetTrades

Best Client 0.238∗∗∗ 0.200∗∗∗ 0.095∗∗∗ 0.077∗∗∗
(12.16) (10.00) (4.11) (3.26)

[0.093/0.090] [0.078/0.075]
Manager Size 0.049∗∗∗ 0.025∗∗∗

(12.09) (4.58)

Frequent Trader -0.001 -0.002
(-0.20) (-0.42)

Market Cap -0.032∗∗∗ -0.019∗∗∗
(-8.16) (-3.42)

Upgrade 0.052∗∗ 0.048
(2.46) (1.59)

Downgrade -0.030∗ -0.034
(-1.77) (-1.38)

Event-day Return 0.132 0.030
(0.88) (0.15)

7-day Cumulative Return 0.086 0.216∗∗
(1.23) (2.02)

Constant 0.141 -0.393∗∗ 0.206 0.018
(1.16) (-2.11) (1.38) (0.07)

Observations 47686 47684 47686 47684
pseudo R2 0.029 0.034
R2 0.008 0.009
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01



Chapter 1. Tippers and Tippees: Brokers’ Pre-release of Price-sensitive Information to
their VIP Clients 39

Table 1.8: Is tipping stronger for Strong Buy initiations?

This table reports probit model estimates of the equation 1.3: NetTradesm,i,t = a +
βBest Clientm,b(i),t + Controlsm,i,t + εm,i,t, and OLS estimates of the equation 1.4 :
P{NetBuyerm,i,t = 1} = Φ(a + βBest Clientm,b(i),t + Controlsm,i,t) + εm,i,t, for a given invest-
ment manager m in the 5-day period before analyst coverage initiation for the stock i separately for
"Strong Buy" and "Buy" initiations.Unit of analysis is manager-recommendation.The dependent vari-
able NetBuyer equals 1 if the manager’s net directional trading dollar volume in the 5-day period
before the initiation is positive, and equals 0 otherwise. The dependent variable NetTrades is the
net directional dollar volume in the recommended stock 5-day period before the initiation scaled by
the average trading volume by for the manager in non-event period [-36;-6] days. Best Client denotes
manager who was allocated shares in at least 25% of IPO deals underwritten by the broker in the
3 years preceding the initiation. The following controls are included: Manager Size - the log of the
manager’s stock holdings as reported in 13f filings in the quarter preceding a recommendation; Fre-
quent Trader is a dummy variable equal to 1 if the manager was in the top 1st decile by their trading
frequency in ANcerno and 0 otherwise; Market Cap - the log of market capitalization of the recom-
mended stock 1 month before the event; Analyst Coverage - number of analysts covering the stock;
Upgrade/Downgrade - dummy equal to 1 if there was an upgrade/downgrade by another broker in
the 3-day window before and during the event period, and 0 otherwise; Event-day Return - the net
of the market return for the stock i (value-weighted CRSP stocks) on the recommendation day; 7-day
Cumulative Return - the cumulative net of the market return (value-weighted CRSP stocks) in the
7-day window before the event period. Robust standard errors clustered on a stock-level are reported
in parentheses. Monthly time effects are included. The sample period is January 1999 to December

2009. Marginal effects at means/average marginal effects are reported in square brackets.

Strong Buy Buy
(1) (2) (3) (4)

NetBuyer NetTrades NetBuyer NetTrades

Best Client 0.240∗∗∗ 0.108∗∗∗ 0.187∗∗∗ 0.067∗∗
(6.86) (2.64) (7.32) (2.24)

[0.094/0.090] [0.072/0.070]

Manager Size 0.052∗∗∗ 0.027∗∗∗ 0.047∗∗∗ 0.022∗∗∗
(9.12) (3.43) (8.78) (3.10)

Frequent Trader -0.005 -0.003 0.003 -0.002
(-0.97) (-0.32) (0.57) (-0.28)

logMcap -0.032∗∗∗ -0.026∗∗∗ -0.032∗∗∗ -0.013∗
(-5.65) (-3.22) (-5.82) (-1.86)

Upgrade 0.003 0.015 0.092∗∗∗ 0.074∗
(0.08) (0.35) (3.13) (1.81)

Downgrade -0.011 -0.025 -0.040∗ -0.039
(-0.41) (-0.69) (-1.83) (-1.15)

Event-day Return 0.011 -0.185 0.222 0.184
(0.05) (-0.60) (1.13) (0.69)

7-day Cumulative Return 0.139 0.317∗∗ 0.126
(1.32) (2.07) (0.88)

[1em] Constant -0.402 0.224 -0.399 -0.125
(-1.47) (0.66) (-1.64) (-0.38)

Observations 22028 22028 25656 25656
pseudo R2 0.038 0.036
R2 0.013 0.013
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 1.9: Has pre-announcement trading changed after Global Research
Analyst Settlement (GRAS)?

This table reports probit model estimates of equation 1.5: NetTradem,i,t = a + βpost-GRAS +
Controlsm,i,t + εm,i,t,and OLS estimates of equation 1.6: P{NetBuyerm,i,t = 1} = Φ(a +
βpost-GRAS + Controlsm,i,t) + εm,i,t, for a given investment manager in the 5-day period before
analyst coverage initiation. The dependent variable NetBuyer equals 1 if the manager’s net direc-
tional trading dollar volume in the 5-day period before the initiation is positive, and equals 0 otherwise.
The dependent variable NetTrades is the net directional dollar volume in the recommended stock 5-
day period before the initiation scaled by the average trading volume by for the manager in non-event
period [-36;-6] days. post-GRAS is a dummy variable equal to 1 if the initiation took place after Global
Research Analyst Settlement (after 2003) The following controls are included:Manager Size - the log
of the manager’s stock holdings as reported in 13f filings in the quarter preceding a recommendation;
Market Cap - the log of market capitalization of the recommended stock 1 month before the event;
Analyst Coverage - number of analysts covering the stock; Upgrade/Downgrade - dummy equal to
1 if there was an upgrade/downgrade by another broker in the 3-day window before and during the
event period, and 0 otherwise; Event-day Return - the net of the market return for the stock i (value-
weighted CRSP stocks) on the recommendation day; 7-day Cumulative Return - the cumulative net of
the market return (value-weighted CRSP stocks) in the 7-day window before the event period. Unit of
analysis is manager-recommendation. Robust standard errors clustered on a stock-level are reported in
parentheses. The sample period is January 1999 to December 2009. Marginal effects at means/average

marginal effects are reported in square brackets.

(1) (2)
NetBuyer NetTrades

post-GRAS -0.295∗∗∗ -0.127∗∗∗
(-21.73) (-6.98)

[-0.12/-0.12]

Manager Size 0.041∗∗∗ 0.020∗∗∗
(11.18) (4.05)

Frequent Trader 0.014∗∗∗ 0.007
(3.71) (1.30)

logMcap -0.034∗∗∗ -0.021∗∗∗
(-8.78) (-3.85)

Unaffiliated Upgrade 0.051∗∗ 0.045
(2.35) (1.48)

Unaffiliated Downgrade -0.022 -0.027
(-1.33) (-1.10)

Event-day Return 0.084 -0.022
(0.57) (-0.11)

7-day Cumulative Return 0.115∗ 0.246∗∗
(1.66) (2.29)

Constant -0.050 0.018
(-0.38) (0.10)

Observations 47684 47684
pseudo R2 0.019
R2 0.003
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 1.10: Has tipping increased since Global Research Analyst Settlement
(GRAS)?

This table reports OLS regression estimates of the equation 1.3: NetTradesm,i,t = a +
βBest Clientm,b(i),t + Controlsm,i,t + εm,i,t, separately for the periods before and after GRAS, for
a given investment manager m in the 5-day period before analyst coverage initiation for the stock i.
Unit of analysis is manager-recommendation. The dependent variable NetTrades is the net directional
dollar volume in the recommended stock 5-day period before the event, scaled by the average trading
volume for the manager in non-event period [-36;-6] days. Best Client denotes manager who was al-
located shares in at least 25% of IPO deals underwritten by the broker in the 3 years preceding the
initiation. The following controls are included: Manager Size - the log of the manager’s stock holdings
as reported in 13f filings in the quarter preceding a recommendation;Frequent Trader is a dummy
variable equal to 1 if the manager was in the top 1st decile by their trading frequency in ANcerno and
0 otherwise; Market Cap - the log of the market capitalization of the recommended stock 1 month
before the event; Analyst Coverage - number of analysts covering the stock; Upgrade/Downgrade -
dummy equal to 1 if there was an upgrade/downgrade by another broker in the 3-day window before
and during the event period, and 0 otherwise; Event-day Return - the net of the market return for
the stock i (value-weighted CRSP stocks) on the recommendation day; 7-day Cumulative Return - the
cumulative net of the market return (value-weighted CRSP stocks) in the 7-day window before the
event period. The sample includes only "Strong Buy" and "Buy" initiations. Robust standard errors
clustered on a stock-level are reported in parentheses. Monthly time effects are included. The sample

period is January 1999 to December 2009.

(1) (2)
After GRAS Before GRAS

Best Client 0.111∗∗∗ 0.052∗
(2.86) (1.74)

Manager Size 0.026∗∗∗ 0.020∗∗
(4.50) (2.08)

logMcap 0.000 -0.023∗∗
(0.06) (-2.16)

Analyst Coverage -0.054∗∗ -0.033
(-2.44) (-1.31)

Upgrade 0.039 0.067
(0.93) (1.56)

Downgrade -0.020 -0.029
(-0.58) (-0.81)

Event-day Return 0.038 0.025
(0.11) (0.10)

3-day Cumulative Return 0.389 0.086
(1.39) (0.45)

Constant -0.346 0.309
(-1.42) (0.82)

Observations 27074 20651
R2 0.008 0.007
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 1.11: Trades in recommended stocks by market capitalization groups

This table reports OLS estimates of the equation 1.3:
NetTradesm,i,t = a+ βBest Clientm,b(i),t + Controlsm,i,t + εm,i,t

for three market capitalization groups of recommended stocks. Unit of analysis is manager-
recommendation. The dependent variable NetTrades is the net directional dollar volume in the
recommended stock 5-day period before the initiation scaled by the average trading volume by for
the manager in non-event period [-36;-6] days. Best Client denotes manager who was allocated shares
in at least 25% of IPO deals underwritten by the broker in the 3 years preceding the initiation. The fol-
lowing controls are included: Manager Size - the log of the manager’s stock holdings as reported in 13f
filings in the quarter preceding a recommendation; Market Cap - the log of the market capitalization
of the recommended stock 1 month before the event; Analyst Coverage - number of analysts covering
the stock; Upgrade/Downgrade - dummy equal to 1 if there was an upgrade/downgrade by another
broker in the 3-day window before and during the event period, and 0 otherwise; Event-day Return -
the net of the market return for the stock i (value-weighted CRSP stocks) on the recommendation day;
7-day Cumulative Return - the cumulative net of the market return (value-weighted CRSP stocks) in
the 7-day window before the event period. Unit of analysis is manager-recommendation. The sample
includes only "Strong Buy" and "Buy" initiations. Robust standard errors clustered on a stock-level
are reported in parentheses. Monthly time effects are included. The sample period is January 1999 to

December 2009.

Dependent variable: NetTrades
SMALL-CAP MID-CAP LARGE-CAP

Best Client 0.182∗∗ 0.048 0.083∗∗

(2.45) (1.27) (2.48)

Manager Size 0.082∗∗∗ 0.031∗∗∗ 0.010
(5.17) (3.16) (1.62)

Analyst Coverage -0.024 -0.067∗∗∗ -0.023
(-0.63) (-2.70) (-0.83)

Upgrade 0.045 -0.014 0.083∗∗

(0.43) (-0.25) (2.21)

Downgrade -0.149∗ -0.001 -0.019
(-1.66) (-0.03) (-0.62)

Event-day Return -0.414 -0.177 0.413
(-1.02) (-0.59) (1.20)

7-day Cumulative Return 0.251 0.406∗ -0.021
(0.67) (1.67) (-0.08)

Constant -2.548∗∗∗ -0.679∗ 0.150
(-4.36) (-1.79) (0.57)

Observations 6384 15431 25912
R2 0.041 0.019 0.010

t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 1.12: Broker size and pre-announcement trading

This table reports probit model estimates of the equation 1.8: NetTradesm,i,t = a+βLarge Brokerb,t+
Controlsm,i,t + εm,i,t, and OLS estimates of the equation 1.7: P{NetBuyerm,i,t = 1} = Φ(a +
βLarge Brokerb,t + Controlsm,i,t) + εm,i,t, for a given investment manager m in the 5-day period
before analyst coverage initiation for the stock i.Unit of analysis is manager-recommendation.The
dependent variable NetBuyer equals 1 if the manager’s net directional trading dollar volume in the 5-
day period before the initiation is positive, and equals 0 otherwise. The dependent variable NetTrades
is the net directional dollar volume in the recommended stock 5-day period before the initiation scaled
by the average trading volume by for the manager in non-event period [-36;-6] days. The explanatory
variable Large Broker is a dummy variable equal to 1 if the broker employs more than 30 analysts
in a given year and 0 otherwise. The following controls are included: Manager Size - the log of
the manager’s stock holdings as reported in 13f filings in the quarter preceding a recommendation;
Frequent Trader is a dummy variable equal to 1 if the manager was in the top 1st decile by their
trading frequency in ANcerno and 0 otherwise; Market Cap - the log of market capitalization of the
recommended stock 1 month before the event; Analyst Coverage - number of analysts covering the
stock; Upgrade/Downgrade - dummy equal to 1 if there was an upgrade/downgrade by another broker
in the 3-day window before and during the event period, and 0 otherwise; Event-day Return - the net
of the market return for the stock i (value-weighted CRSP stocks) on the recommendation day; 7-day
Cumulative Return - the cumulative net of the market return (value-weighted CRSP stocks) in the
7-day window before the event period. Robust standard errors clustered on a stock-level are reported
in parentheses. Monthly time effects are included. The sample period is January 1999 to December

2009. Marginal effects at means/average marginal effects are reported in square brackets.

(1) (2) (3) (4)
NetBuyer NetBuyer NetTrades NetTrades

Large Broker 0.022∗ 0.031∗∗ 0.041∗∗ 0.045∗∗
(1.66) (2.37) (2.32) (2.53)

[0.008/0.008] [0.012/0.012]
Manager Size 0.047∗∗∗ 0.021∗∗∗

(11.31) (3.73)

Frequent Trader 0.004 0.000
(0.96) (0.03)

logMcap -0.037∗∗∗ -0.019∗∗∗
(-8.16) (-2.91)

Upgrade 0.051∗∗ 0.047
(2.31) (1.51)

Downgrade -0.031∗ -0.027
(-1.77) (-1.05)

Event-day Return 0.166 0.150
(1.01) (0.72)

7-day Cumulative Return 0.075 0.227∗∗
(0.99) (2.05)

Constant 0.178 -0.231 0.233 0.127
(1.45) (-1.17) (1.48) (0.49)

Observations 43194 43193 43194 43193
pseudo R2 0.027 0.033
R2 0.008 0.009
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 1.14: Initiations by All-star analysts and pre-announcement trading

This table reports probit model estimates of the equation 1.10: NetTradesm,i,t = a+ βAll-Stara,t +
Controlsm,i,t + εm,i,t, and OLS estimates of the equation 1.9: P{NetBuyerm,i,t = 1} = Φ(a +
βAll-stara,t + Controlsm,i,t) + εm,i,t, for a given investment manager m in the 5-day period before
analyst coverage initiation for the stock i.Unit of analysis is manager-recommendation.The dependent
variable NetBuyer equals 1 if the manager’s net directional trading dollar volume in the 5-day period
before the initiation is positive, and equals 0 otherwise. The dependent variable NetTrades is the
net directional dollar volume in the recommended stock 5-day period before the initiation scaled by
the average trading volume by for the manager in non-event period [-36;-6] days. The explanatory
variable Allstar is a dummy variable equal to 1 if the recommending analyst is an All-star analyst
defined by II rankings, and 0 otherwise. The following controls are included: Manager Size - the log
of the manager’s stock holdings as reported in 13f filings in the quarter preceding a recommendation;
Frequent Trader is a dummy variable equal to 1 if the manager was in the top 1st decile by their
trading frequency in ANcerno and 0 otherwise; Market Cap - the log of market capitalization of the
recommended stock 1 month before the event; Analyst Coverage - number of analysts covering the
stock; Upgrade/Downgrade - dummy equal to 1 if there was an upgrade/downgrade by another broker
in the 3-day window before and during the event period, and 0 otherwise; Event-day Return - the net
of the market return for the stock i (value-weighted CRSP stocks) on the recommendation day; 3-day
Cumulative Return - the cumulative net of the market return (value-weighted CRSP stocks) in the
3-day window before the event period. Robust standard errors clustered on a stock-level are reported
in parentheses. Monthly time effects are included. The sample period is January 1999 to December

2009. Marginal effects at means/average marginal effects are reported in square brackets.

(1) (2) (3) (4)
NetBuyer NetBuyer NetTrades NetTrades

All-star -0.004 0.008 0.037 0.042
(-0.16) (0.37) (1.24) (1.37)

Manager Size 0.047∗∗∗ 0.021∗∗∗
(11.30) (3.73)

Frequent Trader 0.004 0.000
(0.96) (0.03)

logMcap -0.036∗∗∗ -0.018∗∗∗
(-8.05) (-2.82)

Upgrade 0.051∗∗ 0.047
(2.32) (1.52)

Downgrade -0.031∗ -0.027
(-1.79) (-1.08)

Event-day Return 0.170 0.148
(1.04) (0.70)

7-day Cumulative Return 0.078 0.228∗∗
(1.02) (2.06)

Constant 0.193 -0.226 0.252 0.135
(1.57) (-1.15) (1.61) (0.52)

Observations 43194 43193 43194 43193
pseudo R2 0.027 0.032
R2 0.008 0.009
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Chapter 2

Predation versus cooperation in
mutual fund families

in collaboration with Alexander Eisele and Gianpaolo Parise 1

2.1 Summary

This paper asks how funds belonging to the same fund family (siblings) trade when

another affiliated fund enters into a distress situation caused by severe investors’

redemptions. We test two alternative hypotheses: funds cooperate easing the cost

of distress or siblings predate the out-of-favor fund to their own advantage. Our

results indicate that in large fund families performance is shifted from distressed

funds to the most valuable siblings. Conversely, we do not find any evidence of

strategic interaction in small fund families. To provide a better identification, we

also use the introduction of new compliance regulation in 2004 as an exogenous

shock. Finally, using proprietary trading data, we find cross-trades to be the main

source of performance redistribution.

1Eisele is at University of Lugano. Parise is at Swiss Finance Institute and University of Lugano.

47



Chapter 2. Predation versus cooperation in mutual fund families 48

2.2 Introduction

Delegated portfolio management creates a principal-agent problem because the

fund investor (principal) can only imperfectly monitor the fund manager (agent),

and their incentives are not necessarily aligned2. This conflict of interest can be

enhanced when a fund is not a standalone entity, but belongs to a mutual fund

family. In particular, affiliation with a mutual fund family implies that a portfolio

manager is first of all working for the family and not for the fund’s investors.

In this paper we study how the tension between fund interests, family interests and

shareholder interests impacts a fund family’s performance distribution when one

fund in the family faces severe financial distress in the form of investor redemptions.

A fund who falls out of favor with investors often experiences large capital outflows

forcing it to engage in asset sales with significant price impact. When a fund’s

distress affects other members of the family, siblings (i.e., non-distressed funds in

the same fund family) may, on the one hand, cooperate with the distressed fund

to reduce the price impact of its trades. Thus, the mutual fund family smooths

performance across its funds. On the other hand, siblings may exploit the forced

sales to their own advantage and harm the distressed fund. Hence, the mutual

fund family can allow or encourage performance shifting from the distressed fund

to other funds in the family. This paper examines the empirical relevance of these

two different possibilities and asks whether siblings cooperate with or predate the

distressed fund.

In our analysis we differentiate between small and large families. Internal mar-

kets of large fund families provide the necessary environment (several funds with

similar holdings and strategies) and incentives to promote strategic interaction

between funds. Furthermore, the previous literature suggests that in the biggest

families strategic behaviors in order to achieve higher performance are common

(see, e.g., Kempf and Ruenzi (2008), Nanda, Wang, and Zheng (2004)). Finally,

stock holdings of funds belonging to large families are usually more concentrated

(Pollet and Wilson (2008)). This suggests that potential spillover-effects due to
2See, for example, the literature on “window dressing” (e.g., Lakonishok, Shleifer, Thaler, and Vishny

(1991)).
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distress-induced sales are more relevant because of a lesser degree of portfolio’s

diversification. In contrast, we do not expect much strategic interaction to take

place in small families.

We start our empirical analysis by comparing the performance of distressed funds

in large versus small mutual fund families. Our empirical findings indicate that

distressed funds belonging to large complexes suffer more than distressed funds in

small ones3. Conditional on having quarterly outflows below the 10th percentile of

the sample distribution we estimate a more than 1% lower (risk-adjusted) quarterly

return for funds belonging to a large family compared to funds belonging to a small

one after controlling for fund size and other fund characteristics. Relying on this

result, we reject the “cooperation” hypothesis. If other funds help the distressed

siblings, the performance of a distressed fund belonging to a large family should be

relatively higher. However, this result may be due some other differences between

large and small families that we are not taking into account. In order to ensure

that our results are not endogenous or driven by an omitted variable bias and to

better understand the channels underlying this relationship, we conduct several

further tests.

First, we exploit an exogenous shock. At the beginning of 2004, the U.S. Securities

and Exchange Commission (SEC) made several amendments to industry regula-

tions, as a response to the “late trading scandal”. Among the new requirements,

fund families were asked to employ a compliance officer and to enforce compliance

policies. We hypothesize that the presence of a compliance officer dampened any

unlawful behavior inside the fund families. Thus, if siblings of a distressed fund

take unfair advantage of a distressed fund, this effect would be weaker after 2003

(on the contrary, if siblings were helping the distressed funds the cost of distress

will be higher from 2004). We find that the negative effect of belonging to a large

family conditional on experiencing quarterly outflows below the 10th percentile of

the sample distribution drops from around -1.6% quarterly before 2004 to -0.6%

afterward, suggesting that the new regulation had a major effect in protecting

distressed funds.
3Chen, Hong, Huan, and Kubik (2004) show that belonging to a large family is beneficial for the

performance of a fund. We find that this is true on average, however this relation reverts when a fund
enters into distress.
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Second, we study the effect of mutual fund distress on the performance of the

siblings. If performance is transferred from the distressed funds, we would expect

other funds in the family to benefit. And indeed, we find that mutual funds in large

families outperform their peers on average by 0.26% per quarter, when there is at

least one family member in distress. We furthermore find a clustering of this extra

performance among the non-distressed funds charging the highest fees inside the

family. We interpret this result as evidence for strategy coordination at the family

level. High-fee funds are the most valuable funds in the family and enhancing

their performance brings the highest benefit to the fund complex. Conversely, we

do not find any performance transferred to index and less valuable funds.

Third, we use high-frequency trading data provided by ANcerno. Using this data

allows us to distinguish between the channels used by the fund family to shift

performance among the funds. We propose two channels a fund family can use to

shift performance from the distressed member. First, the fund family can allow

or encourage front-running as presented in the seminal paper of Brunnermeier

and Pedersen (2005). Thus, family members with an overlap in their holdings

with the distressed fund are granted preferential and illegal access to information

concerning the amount and timing of forced sales of the distressed fund. Using

this information the non-distressed family members can liquidate their positions

before the distressed fund to avoid the negative performance impact of the forced

liquidations. Second, drawing on the idea of Gaspar, Massa, and Matos (2006),

fund families can engage in cross-trading activities. Specifically, the family can

force the distressed fund to absorb the poor performing positions of the siblings

and to sell them the best performing ones. Additionally, the price of the cross

trades can be set at a disadvantage for the distressed funds.

Although we are at a significant advantage using the high-frequency dataset, a

direct test of the front-running channel is not possible using our data. We are

however able to test the second channel directly. Our empirical strategy is therefore

to construct a proxy for the second channel and to examine whether it can fully

explain the inferior performance of distressed funds in large families. As a first

glance on our results, Figure 1 plots the time series of cross-trading activity inside

large mutual fund families defined as the dollar amount of cross-trades divided
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by the total net assets of a mutual fund family. We can observe that the average

cross-trading activity was reduced significantly around the regulatory change in

2004. Specifically, we observe three significant drops: corresponding to the first

SEC inquiries (Q3, 2003); the introduction of the new regulations (Q1, 2004), and

in the quarter after the deadline for fund families to be compliant was reached (Q1,

2005). After 2004 the amount of cross trading activity fell to less than 0.5% of the

total assets under management, before partially recovering during the financial

crisis. Since all our results are economically and statistically stronger when cross-

trading activity is high, our main candidate to explain the performance shifting is

cross-trading4 among funds in the same family.

And indeed, we estimate a negative impact of the amount of cross-trading activity

inside a family on the performance of distressed funds and a positive effect on

the returns of the siblings. After controlling for the effect of cross-trading, the

negative impact of belonging to a large family on the performance of the distressed

fund becomes insignificant. Hence, the front-running channel appears to be less

relevant. Additional results suggest that distressed funds act as “waste bins”,

buying from the siblings poor-performing and less liquid positions and selling to

them well-performing liquid ones. Furthermore, cross trades in large distressed

families are settled at a discount to the buy-side on the value weighted average

price (VWAP) of the day. This evidence is consistent with siblings profiting from

unfair pricing of the trades in which distressed funds are the counter parties. This

result holds after controlling for trade and stock characteristics.

Overall, our findings suggest that funds take advantage of their distressed siblings

and this strategy is coordinated at the family level. Moreover, our evidence points

towards cross-trading as the main channel of performance redistribution. But what

is the rationale for this strategy? There are three main motives that influence a

fund family to pursue such a strategy. First, families may want to improve the

performance of the best funds in order to attract new inflows. Nanda, Wang, and

Zheng (2004) show empirically that a star fund (i.e., a fund within the 5% top
4This strategy is sometimes dubbed “parasite-trading” by professionals, especially when cross-trades

are used to enhance the performance of a fund at the disadvantage of another. Cross trading is permitted
by the law under some conditions (see below). However, it is forbidden when one side of the transaction
is negatively affected at the advantage of the other. Yet in the last twenty years there has been a number
of major enforcement actions involving cross-trading activity (see Casavecchia and Tiwari (2013)).
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funds in a month for average return) attracts disproportional inflows to all funds

in the family. However, there is no impact of a bad-performing fund on the flows to

the other funds in the family. Second, a large fund family has an incentive to fire

low performing managers to increase its credibility (Gervais, Lynch, and Musto

(2005)). Coherent with this prediction, we find significantly higher probability for

a fund manager to be replaced after severe investors’ outflows when she is working

for a large family. Hence, it is economically convenient to leave the distressed fund

with less valuable positions that the new manager will liquidate anyway (Jin and

Scherbina (2011)). Third, directing flows into funds generating high-fees increase

the overall profit of the family. According to Chevalier and Ellison (1997), the

shape of the flow-performance relationship serves as an implicit incentive contract

for mutual funds. Mutual funds earn their fees based on their assets under man-

agement and this creates incentives for them to attract new assets to manage. In

the same vain mutual fund complexes desire to attract flows to the family to collect

more fees. Increasing returns of sibling funds at the expense of a distressed fund

is optimal if we take into account the findings of Sirri and Tufano (1998) showing

that an improvement in the return of a good fund disproportionally attracts new

inflows, while on the contrary, the outflows of the worst performing funds are less

affected by a further drop in performance.

Our results contribute to an increasing amount of literature studying the strategic

interactions inside mutual fund families. In their seminal paper Gaspar, Massa,

and Matos (2006) find that performance is shifted from low-fee funds to high-

fee funds within the same family. We find performance shifting from distressed

funds (irrespectively of their fees) to non-distressed high-fee funds in large families.

Moreover, we find that high-fee funds outperform only when there is at least one

distressed fund in the same family and we find that the returns of low-fee siblings

are neither improved nor worsened by the cross-trading activity. In line with

Gaspar, Massa, and Matos (2006) we find cross-trading to be the main channel

of performance shifting. However, we complement their result by studying cross-

trades using high frequency data which allow for a more precise identification of

cross-trading activity. Our results are consistent with the incentive structure of

large fund families that benefit from “winner picking”.
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The evidence on mutual fund family support for distressed funds is mixed. On the

one hand, drawing on Gaspar, Massa, and Matos (2006) the support of distressed

funds seems unlikely. On the other hand, Bhattacharya, Lee, and Pool (2012)

show that funds of funds provide liquidity to distressed funds by increasing their

share in the affiliated distressed funds. However, our findings are not necessarily

inconsistent with theirs. In particular, Bhattacharya, Lee, and Pool (2012) argue

that funds of funds help only in situations of temporary liquidity needs, while we

look at the most severe distress situations. Our results suggest that other funds

in the family, beyond providing no support, predate the distressed funds.

Finally, our work contributes to a series of papers showing that families increase

the performance of their most strategic funds, but do not provide clear answers

concerning the channels of performance redistribution, e.g., Guedj and Papastaik-

oudi (2005) and Evans (2010). Using high frequency data, we suggest that cross

trading activity among sibling funds is the most relevant channel and we study

how it allows to boost fund performance.

The rest of the paper proceeds as follows. Section 2 presents data and summary

statistics; Section 3 shows and discusses empirical results obtained using return

data at the fund level; Section 4 provides results using transaction level data;

Section 5 rules out alternative explanations and Section 6 concludes.

2.3 Data

2.3.1 CRSP Mutual Fund Data

For our empirical analysis we merge mutual fund data from the CRSP Sur-

vivor Bias Free US Mutual Fund Database with mutual fund holdings data from

CDA/Spectrum. Our sample period spans from 1990 to 2010. We focus on the

time after 1990 when the number of merged funds increases significantly. From the

CRSP mutual fund database we obtain data on monthly returns, the fund family

name and several characteristics commonly used in the literature like fund size

and expense ratio. All our analysis is done on a quarterly frequency. Therefore,

we cumulate the returns in CRSP to get quarterly returns. The CDA/Spectrum
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database provides us with mutual fund stock holdings on a quarterly reporting

frequency. After merging the two databases we apply several filters to the data.

First, holdings in the CDA/Spectrum database are most complete for domestic

open-end equity mutual funds. Therefore, following the literature we only include

funds with investment objectives “Aggressive Growth", “Growth", “Growth & In-

come" or missing in the Spectrum Database. Second, the CRSP mutual fund

database often includes several share classes of one fund. All the share classes

however are managed by the same manager and the same portfolio is underlying

them. To avoid double counting we eliminate duplicates and aggregate the fund-

level variables across different share classes. Third, the focus of our analysis is

on mutual fund families. Hence, we require that a fund reports its management

company. Furthermore, we exclude families with less than three family members.

The last filter we impose concerns the number of return observations. In our em-

pirical analysis our dependent variables are raw returns as well as risk-adjusted

returns. For the risk adjustment we have to run time-series regressions at the fund

level. To ensure reliable estimates we require a fund to have at least 3-year return

history.

Table 1 shows the descriptive statistics of our final dataset. Panel A shows sum-

mary statistics by year and Panel B for the pooled sample. Panel A focuses on the

number and size of funds and families over time whereas Panel B provides informa-

tion concerning quarterly net return, alphas, size, siblings, flows, family size and

fees. In 1990 our sample spans 648 funds belonging to 140 distinct families. The

peak concerning the number of funds is reached in 2000 with 2142 funds belonging

to 317 families. The average mutual fund in our sample has USD 1.13 billion total

net assets (TNA). The size distribution is however significantly skewed with the

median of the distribution being just USD 156.8 million. Consistent with previous

literature the average and median mutual fund underperform their benchmark.

When returns are adjusted for exposures to the three Fama and French (1993)

factors and the Carhart (1997) momentum factor, the mutual funds generated an

average (median) alpha of -0.115% (-0.169%) quarterly. Row 5 of Table 1 reports

quarterly mutual funds. We follow the literature (e.g. Coval and Stafford (2007))

and compute flows as
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FLOWit =
TNAit − (1 + retit)TNAit−1

TNAit−1

,

where TNA are the total net assets and ret is the quarterly return of fund i in

quarter t. To mitigate the influence of outliers, we follow Coval and Stafford (2007)

and exclude observation with FLOWit > 2 and FLOWit < −0.7. The FLOWit

variable is important in our analysis because we use it to define a fund in distress.

The mean quarterly flow in our sample period is 3.6% and the median is 0.0078%.

2.3.2 ANcerno Data

We obtain trade-level data from Abel Noser Solutions/ANcerno, a consulting firm

that works with institutional investors to monitor their equity trading costs. This

database contains a detailed record of all executed trades since the client started

reporting5. Previous research has showed that ANcerno institutional clients consti-

tute approximately 8% of total CRSP daily dollar volume (Anand, Irvine, Puckett,

and Venkataraman (2012)) and that there is no survivorship or backfill bias (see,

e.g, Puckett and Yan (2011)).

Potential selection biases are due to the fact that clients reporting to ANcerno

are on average bigger than average institution reporting to 13F filings. Moreover,

since reporting is discretionary we would expect the database to understate the real

amount of “controversial” trades if any ex-ante selection is happening. However,

given that ANcerno data is not used for any regulatory purpose, and from now

on the identity of the trading institution is not provided to third parties, it is not

clear whether a fund family has an incentive to misreport or not to buy ANcerno

services if any wrongdoings are happening.

The data is collected at the trade level and contains several variables useful for our

investigation: stock identifier (cusip), tradedate, execution price, volume traded,

side of the trade (i.e., buy or sell). Importantly, thanks to manager identification

files provided by ANcerno, we could map the trades to the trading fund family.
5Examples of other empirical studies using ANcerno include Chemmanur, He, and Hu (2009), Anand,

Irvine, Puckett, and Venkataraman (2012).
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The managercode variable was shortly made available by ANcerno and recently

was scrubbed and back-cleaned. Hence, we have an edge in analyzing the trading

behavior around a fund’s distress over previous or contemporaneous research that

either use quarterly snapshots (e.g., Schmidt and Goncalves-Pinto (2012) and

Gaspar, Massa, and Matos (2006)) or cannot rely on the family identification.

In particular, we hand-match fund families from ANcerno to 13f/S12 by name6.

Once we have the link between our main database and ANcerno, we can rely on our

previous identification of large and distressed families (see previous section). Our

matched database spans the time interval from 1999 to 2010 and covers roughly

15% of the initial database. Unfortunately, we were not provided by ANcerno

of unique fund identifiers. Hence, all our trade-level analysis is conducted at the

family level.

Our main variable of interest computed from ANcerno is cross− trades. Cross−

trades are computed as a dollar amount of positions cross-traded by family f in

quarter q over the total dollar equity holdings of family f at the end of quarter

q − 1 where the prices are lagged to overcome endogeneity. We define as a cross-

trade the minimum of total dollar purchases and total dollar sales requiring that

i) the trades occur in the same stock, ii) the trades occur within the same family,

iii) the trades occurs during the same day7. This identification solves the main

concern about the cross-trade definition used in other papers based on quarterly

snapshots. Using our approach, opposite trades recorded in the same quarter but

occurring in different days are not considered cross-trades8.

Summary statistics of cross trades are presented in Table 2. Our matched sample

includes 192 mutual fund families, for a total of roughly 45 million mutual fund

trades, out of which we identify less than 2% of them to be cross-trades (802,087).
6There are few papers which use our same management company identifier provided by ANcerno see,

e.g., Franzoni and Plazzi (2012), Jame (2012) and Nefedova (2012).
7ANcerno provides also time-stamps indicating the time at which the trade was executed. However,

this variable is not always precise and the execution time of several trades is randomly assigned either
at the beginning or at the end of the trade day. Hence, we do not use this variable in our main analysis.
However, as robustness we computed a proxy of cross-trades requiring also that the execution time of
the buy side trade is the same as the sell side trade. This variable has a 70% correlation with our main
variable.

8There is mounting evidence that mutual funds intra-quarter trading activity is positively correlated
with performance (Puckett and Yan (2011), Kacperczyk, Sialm, and Zheng (2008)). Hence, the choice
to assume that mutual funds trade only once per quarter seems overly-simplistic and inaccurate.
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To analyze pricing of the identified cross trades, we construct the dependent vari-

able Trading Cost as the difference between execution price of a trade and the

daily VWAP of a stock as a % of VWAP (volume-weighted average value across

manager-stock-day). Table 2 shows sample summary statistics for the trading

costs and associated control variables. The mean trading cost for sell transactions

in the sample equals 0.032%, it amounts to 0.04% for buy transactions.

2.4 Evidence at the fund level

2.4.1 Predation versus cooperation

Are severe liquidity shocks of one fund in a mutual fund family absorbed by other

fund members? Or do other funds in the family take advantage of the forced liqui-

dations of other funds in the family? In this section we test the cooperation against

the predation hypotheses by examining the performance of distressed funds.

The cooperation hypothesis suggests that liquidity shocks of one fund are absorbed

by other funds in the family and the capability to absorb liquidity shocks increases

with the number of siblings in the fund family. A higher number of siblings

increases the size of the internal capital market and decreases the cost of providing

liquidity for a single fund as the costs are split among more parties. Hence, the

cooperation hypothesis predicts that the performance of a distressed fund in a

large fund family is better than the performance of a distressed fund in a small

family keeping all else equal. On the contrary, the predation hypothesis predicts

that the performance of distressed funds in large families is worse than in a small

family.

The first step in our analysis is to define whether a fund is in distress and whether

it belongs to a large or a small family. These definitions are clearly arbitrary

to some extent. To make our results the least susceptible to data mining we

follow the previous literature and replicate our results using different cut-off points.

Similar to Bhattacharya, Lee, and Pool (2012) we classify a fund as “distressed"

when its flows are below the 10th percentile of the distribution of quarterly flows9

9The results stay qualitatively the same using more severe thresholds.
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which is around −8.9% in our sample. Similar to Kempf and Ruenzi (2008) we

classify a mutual fund family as Large when it has more than 20 members, which

corresponds to roughly the 75th percentile of the distribution of the number of

funds per family. However, using the mean, the median, or simply the number of

siblings per quarter-family do not alter our results.

Using our definition of distress we only keep distressed funds10 in our sample

and run the following Fama and MacBeth (1973) cross-sectional regressions of

(risk-adjusted) returns on the dummy Large and other control variables as in the

equation below 2.1:

Returni,t = a+ βLarge+ controls+ εi,t, (2.1)

where the control variables are lagged size, fees, lagged flows and lagged returns

of a fund. The dependent variable in our regressions are either raw returns or

risk-adjusted returns11. To compute risk-adjusted returns we run every month a

time-series regression of mutual fund excess returns on the three Fama and French

(1993) factors and the Carhart (1997) momentum factor. The risk-adjusted return

in month t is then defined as the constant of the time-series regression plus the

residual.

Columns 1 to 4 of Table 3 suggest a significant and negative impact of family size

on the (risk-adjusted) performance of the distressed fund. Belonging to a large

family on average decreases the (risk-adjusted) returns during the distress quarter

by (1.1%) 1%. This result is in stark contrast with the cooperation hypothesis12.

However, a concern with the results presented in Table 3 is that since funds in

large families are on average larger, their sales are bigger and have higher price

impact that would justify a higher cost of distress. The inclusion of fund size
10Note that keeping only the distressed funds or using the full sample and including a dummy equal to

1 when a fund is in distress yields the same result. Restricting the sample to distressed funds is however
more convenient in terms of interpreting the results.

11Using other risk-adjustments like 1 factor or 3 factor model does not change the results.
12Additionally, in the Appendix we test what is the probability for a fund manager to be replaced in

the quarter after the distress. Schmidt and Goncalves-Pinto (2012) conjecture that other fund managers
co-insure the distress manager so that he will reciprocate in case they will need liquidity in the future.
However, we find that consistent with Gervais, Lynch, and Musto (2005) fund managers are likely to be
replaced in the quarter after the distress and that this firing/substitution policy is significantly stronger
in large families.
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as a control addresses this problem. If the relation between size and returns is

however not linear, this control will not be enough. In the Appendix we divide

all funds in four bins according to their size and we rerun our regression for each

bin in order to compare funds in large families only with funds in small families

that have similar size. Interestingly, our result holds true for each bin, but it is

statistically and economically stronger for funds in the second and third bins, i.e.,

for the medium size distressed funds, suggesting that the negative effect due to

belonging to a large family is somehow weaker for the largest funds in our sample.

Hence, we rule out the possibility that higher cost of distress for funds in large

families is due to a larger fund size.

The results in Table 3 are particularly interesting because the literature suggests

a positive relation between FamilySize due to for example increasing returns

to scale in research and administrative tasks (see Chen, Hong, Huan, and Kubik

(2004) and Nanda, Wang, and Zheng (2004)). However, we show that this relation

completely reverts when a fund enters into distress. Columns 5 to 8 of Table 2

replicate the analysis including as independent variable FamilySize in place of

Large. The number of siblings and the AUM (assets under management) at the

mutual fund family level are highly correlated. Therefore using Large or the

AUM of the fund family should yield similar results. And indeed, the effect of

FamilySize on returns is negative and significant in all specifications. Therefore,

despite advantages of belonging to a large family, a higher number of siblings seem

to hurt severely the performance of a fund when it enters into a distress situation.

We interpret results in Table 3 as evidence against the hypothesis of cooperation

in large fund families, since distressed funds do not have any advantage in having

several siblings13. Moreover, since we conjecture that the main reason to provide

liquidity to a distressed fund is to avoid negative spillover effects, we construct a

variable that captures the intersection between stocks sold by the distressed fund

in quarter q and the stocks held by the siblings at the beginning of the same

quarter. We would expect that, if siblings intervene to dampen the effect of the

price pressure of the forced sales that could damage their own portfolios, this
13In unreported results we also look at the performance of high-fee distressed funds to see if they are

helped or enjoy some advantage when in distress compared to the low-fee distressed funds. However, we
find that this is not the case.



Chapter 2. Predation versus cooperation in mutual fund families 60

“overlap” variable will be positively correlated with the returns of the distressed

fund. On the contrary, we find that in large families portfolio similarity with the

siblings hurt severely the returns of the distressed fund which is consistent with

the predation hypothesis but not with cooperation (see Appendix).

2.4.2 Changes in compliance rules of investment companies

Concerns regarding our results are reverse causality and omitted variable bias. Al-

though we control for a host of characteristics there can be unobserved systematic

differences between large and small fund families leading to an omitted variable

bias. The reverse causality concern when using contemporaneous flows as a right

hand variable in mutual fund return regressions is carefully discussed in Edelen

(1999). It emerges in our empirical design because flows are measured at a low

(quarterly) frequency. Specifically, returns in the earlier part of the quarter can

cause flows in the later part of the quarter. If belonging to a large family does not

have an effect on the flow performance relationship, the reverse causality problem

will not impact our results. For a given performance in the earlier part of the

sample funds in large and small families experience similar outflows, which should

ceteris paribus have a similar impact on the performance in the rest of the quarter

assuming the effect of family size is zero. The empirical results of Huang, Wei, and

Yan (2007) however suggest that funds in larger fund families have higher inflows

for a given performance. Hence, for a flow below our threshold of -8.9% in the

later part of the quarter a fund in a large family needs to have significantly lower

performance in the earlier part of the quarter.

To address the aforementioned concerns, in this section we conduct a quasi-natural

experiment. In the second half of 2003, several large fund families were involved

in the so called “Late Trading Scandal14”. The accused mutual fund families al-

lowed special clients to trade mutual fund shares after 4pm at which time the

closing price of mutual fund shares is determined. Hence, the favored clients were

allowed to profit from new information arriving in the markets. Late trading not

only benefited the favored clients, but also harmed other mutual fund investors
14From 2003 to 2006, 25 fund families settled allegations of illegal trading that included market timing

and late trading (See McCabe (2009) and Zitzewitz (2006)).
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as it implied excessive trading. As a reaction to the scandal, the Securities and

Exchange Commission (SEC) amended the Investment Company Act and the In-

vestment Advisers Act significantly to guarantee a better protection of mutual

fund shareholders. Mutual fund families were required to “adopt and implement

written policies and procedures reasonably designed to prevent violation of the

federal securities laws” and to appoint a chief compliance officer independent by

the fund management15. These new rules were intended to force mutual fund fam-

ilies to implement effective compliance policies in order to prevent fund managers

from engaging in controversial practices. Hence, under the new regulatory frame-

work, we would expect any illegal or improper trading activity to weaken due to

improved internal monitoring.

On the one hand, the cooperation hypothesis predicts a stronger negative effect of

flows on mutual fund returns after 2003 as the internal capital market is less effec-

tive. On the other hand, the predation hypothesis predicts a weaker effect of flows

on mutual fund returns as any controversial performance shifting practices are less

likely to occur due to more intense internal monitoring. The results in Table 4

are obtained using Fama-MacBeth regressions as it is the empirical approach most

commonly used in the mutual fund literature (e.g., Bhattacharya, Lee, and Pool

(2012) and Chen, Hong, Jiang, and Kubik (2013)). To estimate the effect of the

regulatory change we have to employ however pooled OLS regressions (since our

regulatory change dummy would be collinear with the constant if we run separate

cross-sectional regressions for each quarter). For robustness, column 1 and 2 of

Table 4 repeats our baseline results using pooled OLS regressions with time-fixed

effects and standard errors clustered at the fund level. The results suggests that

changing the empirical methodology leaves the results unchanged. In column 3 we

include a Post2003 dummy and an interaction term between between the Large

dummy and the Post2003 dummy. The Post2003 dummy is equal to one begin-

ning in January 2004. Officially the amendments to the Investment Company Act

were introduced February 2004 and mutual fund companies had to comply from

the beginning of October 2004. Although not legally binding we argue that mu-

tual funds probably reacted immediately to the changes due to the intense pressure
15See rule 38a-1 under the Investment Company Act of 1940, rule 206(4)-7 under the Investment

Advisers Act of 1940, and amendments to rule 204-2 under the Advisers Act.
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from the SEC on mutual funds during this time16. Results in Table 4 show that

the coefficients of Large × Post2003 are positive and significant at the 1% level

(coefficients range from 0.83% to 1%). Hence, distressed funds in large families

benefited significantly from the new regulation. However, the marginal effect of

belonging to a large family is still negative and survives after 2003, even though

statistically and economically reduced (to less than -0.60% quarterly).

We interpret these results as evidence for controversial trading practices which

were dampened through a successful intervention by the regulatory body. The

evidence is inconsistent with the cooperation hypothesis and consistent with the

hypothesis of families taking advantage of funds hit by severe outflows. One can

argue the Post2003 is picking up other events or a trend. We control however for

time-fixed effect which should alleviate these concerns17. In the next section we

study the performance of the funds affiliated with the distressed fund. Any reverse

causality concerns are not present for this group of funds.

2.4.3 Performance redistribution

The predation hypothesis predicts a positive effect of at least one distressed fund

in the family on non-distressed funds. If performance is redistributed from the

distressed funds to the siblings, we will expect the siblings to generate superior

returns. To examine the relation between a distress situation in the family and the

performance of affiliated funds we run the following Fama and MacBeth (1973)

regression after excluding the distressed funds from the sample18:

Returni,t = a+ βDistress_Family× Large+ controls+ εi,t, (2.2)

where the control variables are the lagged size, lagged family size, lagged flows

and the lagged returns of a fund. Results in Table 5 show that siblings in large

families on average outperform other non-distressed funds of a 0.24% per quarter

when there is at least a distressed fund in the same family. To better isolate the
16Anyway using a post-2004 dummy yields similar results.
17Moreover, evidence in Figure 1 is consistent with our explanation.
18We show that this does not affect the result in the Section 5.
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effect of having a distressed fund in the family, the analysis is replicated using

propensity score matching. The results are reported in Table 11 Section 5 and

look qualitatively similar.

Our empirical results confirm that, consistent with the predation hypothesis, per-

formance is redistributed in large fund families and this creates value for non-

distressed funds. However, this evidence does not tell us whether performance is

redistributed equally to all healthy siblings or fund families “play favorites”. An

optimal strategy from a family’s perspective would be to boost the performance

of the most valuable funds, e.g., those that charge higher fees19 as suggested by

Gaspar, Massa, and Matos (2006).

Results in Table 6 display the effect of the interaction between siblings (DistressFamily

dummy) and funds with fees above the median of the family (HighFees dummy)

for small (columns 1 and 2) and large families (columns 3 and 4). In large families

the most valuable funds outperform when there is at least a fund in distress. High-

fee siblings in large families display a quarterly (risk-adjusted) return of (0.58%)

0.62% when there is at least a distressed fund in the family. Moreover, consis-

tent with predation happening only in large families, in small families excess and

abnormal returns are not statistically different from zero. Hence, the predatory

behavior does not happen randomly or because of geographical proximity of fund

managers. On the contrary, it is consistent with a rational strategy at the family

level with the objective to boost the performance of the funds that are more prof-

itable from a family perspective20. Conversely, in small families high-fee funds do

not outperform when a fund in the same family enters into a distressed situation.

The last four columns (5 to 8) of Table 6 include also the interaction between Index-

funds and DistressFamily. In this case our time-series is shorter since the index

fund identifier is available in CRSP only since 1999. However, the corresponding

coefficients are negative and never statistically significant. Hence, coherent with
19We do not look whether large funds enjoy the same artificially inflated performance because, despite

being clearly important to the family, it is far more difficult to boost their performance especially when
the distressed fund is small.

20The largest majority of the mutual fund industry charges fixed fees or fees based on the assets
under management and not performance based fees (see, e.g., Haslem (2010)). Hence, we would expect
funds that charge higher commissions to be the most valuable for fund families when their performance
attracts new assets.
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a predatory strategy that aims at maximizing the overall profit from fees, per-

formance is not shifted to Index funds which are usually considered non-strategic

funds. Conversely, the coefficients of the interaction between DistressFamily and

HighFees stay positive and significant.

Figure 2 plots quarterly four-factor alpha for distressed funds, low-fee siblings

and high-fee siblings in large families around the distress quarter. The pattern

we observe clearly indicates that high-fee siblings’ performance is boosted only

during the distress of another fund in the family. Afterward, the performance of

distressed funds, low-fee siblings and high-fee siblings becomes indistinguishable.

This suggests that a fund is predated only when investors are already leaving. In

fact, predatory behaviors unfairly hit the returns of a fund manager. This strategy

may be however optimal if a fund manager is going to be replaced anyway (see re-

sults in the Appendix) and the underperformance has no negative spillover effects.

In particular, our results suggest that most of the performance redistribution does

not occur between low-fee funds and high-fee funds but between distressed funds

(irrespectively of their fees) and non-distressed high-fee funds. In fact, Figure

2 and Table 6 show clearly that non-distressed low-fee funds are completely un-

affected from the performance shifting that is happening within their own fund

family.

Concluding, evidence in this section shows that headquarters or management in

large fund families shift performance in an internal mutual fund market. In this

way, a fund family can arbitrarily pick “winners” and “losers”. Consistent with a

rational strategy that maximizes profit from the fees paid by the investors, the

returns of high-fee funds are boosted while those of distressed funds are worsened.

2.5 Evidence from fund trades

The previous sections suggest a reallocation of performance from distressed funds

to other funds in the family. In particular the most valuable non distressed-funds

profit from the distress of other funds in the family. However, the channel of per-

formance shifting is so far unclear. In this section we examine the intra-family

trading during periods when at least one of the funds in the family is in distress.
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Using high-frequency data provided by ANcerno we are able to differentiate be-

tween two alternative channels available to the family to shift performance among

the funds.

The first channel is front-running. In the seminal paper of Brunnermeier and

Pedersen (2005) informed traders liquidate positions ahead of forced asset sales

by distressed traders. Thus, they avoid the negative performance impact resulting

from the price pressure of the fire sales and they are able to buy back the assets at a

discount after the distressed trader finished its liquidations. Information concern-

ing the asset sales of a distressed fund is inside information and therefore illegal.

Nevertheless, empirical results (see, e.g., Massa and Rehman (2008)) suggest that

there are significant amounts of potentially illegal information flows inside finan-

cial conglomerates. We therefore conjecture that fund families can allow their

most valuable to exit common positions before the distressed fund. Through this

behavior the performance of the valuable fund is protected or even enhanced when

it profits from buying back the position at a discount at a later point.

The second channel is cross-trading. Gaspar, Massa, and Matos (2006) find ev-

idence consistent with performance shifting from low-value funds to high-value

funds in the family using quarterly holdings data. We conjecture and test whether

fund families transfer performance through cross-trades from funds facing large

outflows to well-performing funds. We would expect that a distressed fund, being

anyway forced to trade due to the outflows, sells for example its well-performing

positions at a discount to other funds in the family.

Although the high frequency data gives us an advantage compared to previous

literature, we cannot construct proxies for both mentioned channels. The reason

is that we are not able to identify distressed funds inside the family, which is

crucial to conduct direct tests for the front-running hypothesis. We are however

able to identify with high precision the cross-trades inside the family. Hence,

our empirical strategy is to study the effect of cross-trading on the performance

of the distressed fund and to examine whether controlling for cross-trades fully

explains the underperformance of distressed funds in large families compared to

small families.
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2.5.1 Cross trading activity and fund performance

Cross-trades are trades where the buyer and the seller are both funds belonging

to the same family21. They are permitted under rule 17a-7 of the U.S. Investment

Company Act provided that i) transactions involve securities for which market

quotations are readily available, ii) transactions are effected at the independent

current market prices of the securities, and iii) the “current market price” for

certain securities22 is calculated by averaging the highest and lowest current in-

dependent bid and offer price determined on the basis of a reasonable inquiry.

Despite strict regulation on cross-trades however, fund managers may use some

discretion in setting the price.23

The sharp decrease in cross trading activity in large families after the regulatory

change in 2004 plotted in Figure 1 suggests that such activity may play a major

role in explaining the underperformance of distressed funds in large families and

the weakening of the effect after 2004. We formally test this hypothesis including

the amount of cross-trading inside the fund family in a multivariate regression.

Table 5 reports results from pooled OLS regressions of (risk-adjusted) returns on

the amount of cross-trading, Large, an interaction term between the amount of

cross-trading and Large as well as other controls used in the previous results. We

run regressions for both distressed funds (columns (1) to (4)) as well as siblings

(columns (5) to (8)). All specifications include time fixed effects and errors are

clustered at the fund level. In this part of the paper we use OLS instead of

Fama-Macbeth regressions since our sample is smaller and distressed situations

are sparse over time. In fact, we include in our sample only observations obtained

from the intersection of CRSP, 13F, and ANcerno.

Our results indicate that the amount of cross-trades negatively (positively) af-

fects the returns of distressed funds (siblings). Moreover, the coefficient of Large

for distressed funds turns positive and non-significant. This suggests that the
21Cross trades computation is defined in Section 3.
22E.g., municipal securities.
23From our talks with compliance officers and professionals in large fund families, we understand that

the pricing of such trades is considered one of the most relevant and critical compliance issues. Yet these
trades are usually checked only with a delay and a cross trade is considered “suspicious” only if the price
deviates significantly, far more than the bid-ask spread, from the current market price.
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whole underperformance of distressed funds in large families is explained by cross-

trading activity. Similarly, the whole siblings’ outperformance in large families is

explained by the interaction of Large and CT . Hence, the performance shifting

we documented in the previous sections seems to be entirely due to cross-trading

activity. Front-running activity, if happening, does not significantly affect fund

performance on a large scale. Consistent with our previous results, we do not find

cross-trading to significantly improve or worsen the performance of funds in small

families.

This result is to the best of our knowledge the most direct empirical evidence that

cross-trading is shifting performance between funds.

2.5.2 Cross-trades under the magnifying glass

In this section we take a closer look at the cross-trades inside mutual fund families

and examine two ways through which cross-trades reallocate performance across

funds. First, distressed funds can buy the positions the siblings want to sell and

sell them what they want to buy. Second, distressed funds can sell these positions

at a discount. Both of these strategies artificially increase the performance of the

funds trading with the distressed fund.

Since we cannot identify distressed funds from ANcerno, we use S12 snapshots to

see for which positions distressed funds belonging to family f , during quarter t

are net buyers or net sellers24. Once we have identified which stocks the distressed

fund is trading, we compute cross-trades from ANcerno that involve those stocks.

For instance, if fund j in family f is a net seller of IBM in quarter 1, we consider

all cross-trades in in family f and quarter 1 in which one party is selling IBM

(and symmetrically the other party is buying IBM in the same day). Therefore,

we can disentangle in which cross-trades distressed funds are more likely selling or

buying25.
24Since we do not have fund identifiers, we cannot infer distressed funds’ trades directly from ANcerno.

However, it is unlikely that distressed funds execute many round-trip trades during the distress quarter.
25It is of course possible that the distressed fund is selling IBM but does not participate to the family

cross-trade for which IBM is on the sell-side simply because it is another fund that is selling. However,
we find cross-trading to disproportionally increase in the stocks concentrated in the portfolios of the
distressed funds when a family is in distress.
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In unreported results we find that distressed funds are more likely to be on the sell

side than on the buy side of a cross-trade. This is however intuitive as distressed

funds are forced to sell due to severe outflows. Hence, we run probit regressions to

estimate the probability that the distressed fund is on the buy side of the transac-

tion on the basis of stock characteristics (only cross-trades are included). Results

in Table 8 suggest that distressed funds in large families are more likely to be on

the buy side of a cross-trade for relatively illiquid and underperforming positions,

i.e., distressed funds are more likely to buy from the siblings “bad stocks” and more

likely to sell to the siblings “good stocks”. Conversely, stock characteristics do not

influence whether a distressed fund buys or sells in small families. This evidence

suggests that distressed funds in large families act as “waste bins” absorbing the

underperforming positions that other funds want to sell. At the same time they

sell well-performing liquid positions to the siblings.

Since trading is a zero-sum game, it is not surprising that one party is losing

because of the transaction while the other is gaining from it. However, the fact

that distressed funds systematically take the wrong side of the transaction with the

siblings suggests that this may be one of the key explanations of our results. Such

a pattern could also be explained by the lack of skills of distressed fund managers

that are systematically outguessed by their colleagues. However, we do not find

a similar result to hold for distressed fund managers in small families. Therefore,

this result would be also consistent with the (unlikely) scenario of distressed fund

managers in large families to be more unskilled than distressed fund managers in

small families.

As a second step, we examine the pricing of cross-trades. Since on a daily basis

we are not able to distinguish whether distressed funds are selling or buying, we

assume that distressed funds are on the sell side of the cross-trade and siblings are

on the buy side. This is of course a simplification, since we know that distressed

funds may be net buyers for some positions. However, we believe it is a reasonable

assumption since distressed funds are forced to sell by heavy investors’ redemp-

tions. Hence, we expect them to be on average more often on the sell side of the

cross-trades compared to the siblings.
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We construct the trading cost measure (Trading Cost) as a dollar volume-weighted

average of the execution prices across all prices for the same stock, day and trading

manager with respect to the volume-weighted average price (VWAP) for the same

stock and day. We calculate our measure as a percentage of the VWAP. VWAP

benchmark is often used by both academics and professionals for evaluating trading

performance (for example, see Puckett and Yan (2011)). This measure shows how

well the trade is performed with respect to the market. We compute trading costs

of sell transactions. For more intuitive interpretation of the results we multiply

the measure by -1. Positive trading cost means the trade performed worse than

the market on that particular day.

Our empirical prediction related to the pricing of the cross trades is as follows.

Given that distressed funds are expected to take mostly sell side of cross trade

transactions, then the trading cost measure for the sell side of the cross trades

should capture the cost borne by distressed funds. Therefore, we expect a positive

coefficient on our Distress Family dummy for sell-side transactions.

We test our empirical prediction using the following OLS regression model:

TradingCostm,s,t = a+ βDistress Familym,q + Controlsm,s,t + εm,s,t, (2.3)

where Trading Costm,s,t is the trading cost for the manager m, stock s and trade

t. Explanatory variable Distress Familym,q dummy is defined for each manager

m and quarter q. Table 9 presents results from OLS regressions of the Trading

Cost variable on the Distress Family. Following the existing literature (see, e.g.,

Keim and Madhavan (1997)) we include stock and trade characteristics. Only

transactions identified as cross trades are included in the analysis. Time fixed ef-

fects are included and observations are clustered at the stock level. The coefficient

on the Distress Family for the group of large families is positive and significant

(0.03%). This result is consistent with funds in large (distressed) families buying

the positions from funds in the same family at a (daily) discount. In small families

the coefficient is insignificant. Overall, our results suggest that distressed funds
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transfer value to other members in the family both because they sell at a discount

to their siblings and because they take the “wrong” side in the cross-trades.

2.6 Alternative explanations and Robustness checks

In this section we discuss and address other possible explanations for our results

and presents additionally robustness tests.

2.6.1 Truncated return distributions

One potential concern with the results in Table 5 is due to the choice of excluding

distressed funds from our siblings sample. It can be argued that by excluding dis-

tressed funds we are truncating the mutual fund returns’ distribution only for dis-

tressed families (even though the cut-off threshold is the the same for all families,

i.e., around -9%). As an effect we are artificially shifting up the average perfor-

mance of the affiliated funds only in families where there is at least a fund in dis-

tress. In this case the positive and significant coefficient of the Distress_Family

dummy only captures the mechanical effect of truncating the return distribution

for some families.

To rule out this explanation we run again our regressions leaving in the sample only

funds which have positive flows (see Table 10). In this way we tilt the distribution

of the returns upward in the same way for distressed and not distressed families.

We find that running the regression from Table 5 using only funds with posi-

tive flows makes our result stronger. Hence, inflow funds from distressed families

are performing better than inflow funds that are not connected with a distressed

fund. Therefore, we can exclude this type of mechanical relation between the

Distress_Family dummy and mutual fund returns.

2.6.2 Dispersion of investment strategies in large mutual fund families

An alternative explanation for our results is that a larger return dispersion inside

large mutual fund families is generating extreme funds’ performance. Nanda,
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Wang, and Zheng (2004) suggest that it can be rational for a fund family to

choose a strategy that yield returns with zero or even negative correlation between

funds. In this way the family maximizes the odds that one of their funds is

reporting very high returns. Under this scenario the significant relation between

Distress_Family and returns would be driven by the choice to minimize similar

portfolio holdings.

To address this concern we first replicate our results including the variable cs_σ,

which is the average cross-sectional standard deviation of fund alphas within the

same family using the previous 12 months of data. If larger dispersion in invest-

ment styles or contrarian strategies are the drivers of our result, we should expect

the variables Distress_Family or Distress_Family&Large to be subsumed by

cs_σ. We see that this is not the case (results are showed in the Appendix).

2.6.3 Propensity score matching

In addition we replicate our analysis of siblings’ returns constructing a matched

sample in which we match siblings to other funds on selected fund and family

characteristics, i.e., the size of the fund, the size of the family, and the investment

style. After that we compare returns in the “treatment” and “control” samples.

Results look qualitatively similar to Table 5, suggesting that the result is not

driven by potential selection bias.

Further tests and tables are included in the Appendix

2.7 Conclusions

The strategic interactions inside mutual fund families have recently attracted the

attention of a growing stream of literature. This paper rigorously studies such

strategic interactions when one of the funds in the same family is in financial

distress due to significant investor redemptions. Our results suggest that the

performance of distressed funds in large families is economically and statistically

lower when a fund belongs to a large fund family where strategic interaction is more

likely to occur. Corroborating the results for the distressed funds, we furthermore
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find an increase of the performance of the non-distressed funds inside the family

which is particularly pronounced among the most valuable funds. We interpret

these results as evidence that mutual fund families strategically shift performance

in order to maximize the value to the family but not the value for the individual

funds’ investors.

Our documented evidence calls into action regulatory bodies. And indeed, al-

though for different reasons the regulatory body intervened in the aftermath of

the late trading scandal by enforcing stricter compliance rules for mutual fund

companies. In line with our argumentation, we report a positive effect of the reg-

ulatory intervention on the performance of distressed funds in large mutual fund

families. To the best of our knowledge our paper is the first to document the effect

of the new compliance rules on the performance of mutual funds.

To explore the channels of performance shifting, we use trade level data from

ANcerno. Our results indicate that cross-trading activity within large families

decreases the performance of the distressed funds and pumps up the returns of

the siblings. This happens because i) distressed funds systematically take the

wrong side of the cross-trades and ii) because cross-trades look improperly priced.

Conversely, cross-trading does not shift performance in small families.

Our results appear particularly striking because within-family fund performance

is on average strongly correlated, since affiliated funds have access to the same

research analysis and many families have a prescribed investment style (Elton,

Gruber, and Green (2007)). However, we show that cross-trading increases fund

returns’ variability producing artificially “star” and “dog” funds. The economic

implications of such a result are many. First, we show that the organizational

structure in large fund families produce an incentives distortion, magnified by

the additional level of (family) interests besides those of the fund manager and

the investor. Conversely, this agency problem does not occur when a few funds

are organized in small fund families. Second, since investors buy outperformers

(Nanda, Wang, and Zheng (2004), Frazzini and Lamont (2008)) the predation

strategy leads to sub-optimal investors’ money allocation. Families artificially

pump up the returns of high-fee funds, as a consequence dumb money will flow to
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Figure 2.1: Amount of cross-trading over time. Cross trading is computed as the dollar
amount of cross traded positions for family f in quarter q, scaled by dollar holdings at the be-
ginning of the quarter. SEC rules 38a-1 and 206(4)-7 (introduction of chief compliance officer
independent from fund management) and the amendments to rule 204-2 (advisers must main-
tain copies of their compliance policies and procedures and copies of any records documenting
the adviser’s annual review of those policies) became effective on February 5, 2004 (see red
line), while the designated compliance date was October 5, 2004 (fourth quarter 2004). Only

large families are included. Observations have quarterly frequency.

unskilled fund managers. This result has a similar effect to other window dressing

policies common in the money management industry (e.g., Ben-David, Franzoni,

Landier, and Moussawi (2013)). Third, investors holding shares of distressed funds

in large families will pay an additional cost of distress, besides the one due to poor

fund selection, because of predatory practices. Fourth, we show that the regulatory

change in 2004 was effective in, at least, mitigating the negative effects of incentives

distortion.
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Figure 2.2: Abnormal returns around the distress of a fund. Distressed funds are funds for
which the quarterly flows are below the 10th percentile of the flow distribution in the distress
quarter. High-Fee Siblings are non-distressed funds that charge above median fees and belong
to families with at least a distressed fund during the distress quarter. Low-Fee Siblings are
non-distressed funds that charge below median fees and belong to families with at least a
distressed fund during the distress quarter. The graph shows abnormal (non-cumulative)
returns computed using 4-factor alpha from 3 quarters before to 3 quarters after the distress

quarter. Only large families are included.
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Table 2.1: Summary Statistics CRSP Mutual Fund Database

This table presents summary statistics for our sample of US domestic equity mutual funds.
Panel A shows summary statistics by year and Panel B presents pooled summary statistics.
In Panel A No. of funds is the number of unique funds in the sample; No. of families is the
number of unique families; Fund TNA are total net assets under management reported by
CRSP survivorship-bias-free mutual fund database; Family TNA are the total net assets of all
US domestic equity mutual funds inside a family. In Panel B Return is the quarterly excess
return in %; Alpha is the quarterly 4 factor alpha in %; Size is Fund TNA in million USD;
Siblings is the number of funds per family; Flow is quarterly flow in % and Fees are the total

fees (expense ratio+1/7 of the front load fees)

Panel A: Summary Statistic by Year

Year No. Funds No. Families Fund TNA (mln USD) Family TNA (mln USD)
Mean Median Mean Median

1990 648 140 333 86.4 5489.2 1249.6
1991 708 151 370.3 91 6538.9 1283.7
1992 850 174 445.6 98 8339.22 1331.9
1993 1076 203 500.8 96 10901.9 1483.3
1994 1273 229 520.1 94.6 12967.2 1697.6
1995 1439 251 558.1 95.8 15101.4 1873.1
1996 1628 276 669.8 104.4 19277.4 2239.1
1997 1838 295 770.4 107 23769.4 2524.5
1998 2032 317 873.2 108.2 28700.7 2966.6
1999 2125 317 964.6 97.3 35492.9 3289.8
2000 2142 317 1148.6 121.4 41877.6 4148.8
2001 2029 304 1011.6 121 35569.9 3835.3
2002 1948 292 908.9 116.9 31562 3486.8
2003 1849 281 926.2 123 31702.5 3436
2004 1730 270 1221.5 170.2 41055 4243.5
2005 1648 257 1417 189.5 46383.6 4557.1
2006 1548 249 1600.2 209 51680 4910.7
2007 1464 237 1882.2 237.2 59403 5565.2
2008 1385 226 1648.4 199.2 51588.1 4630.8
2009 1310 220 1252.6 160.1 37122.8 3656
2010 1223 209 1553.1 215.9 45384.5 5582.3

Panel B: Pooled Summary Statistics
Mean Stdev 25th Pct. Median 75th Pct.

Return 1.292 10.06 -3.210 1.534 6.301
Alpha -0.112 4.067 -1.876 -0.169 1.525
Size 1130 4480 40.14 156.8 615

Siblings 18.12 23.40 5 11 19
Flow 3.631 18.86 -3.482 0.00780 5.386

Familysize 37296 99782 1172 4345 16025
Fees 1.366 0.672 0.930 1.339 1.816
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Table 2.2: Cross-trades summary statistics

This table presents summary statistics for our cross-trades data computed using ANcerno
database. The data covers the period 1999-2010.

Number of families 192
Number of manager-quarters 74,611
Number of cross-trades 802,087

Mean S.D. 25th Median 75th

Trading Cost (Sells) .00032 .0093 -.0026 .00019 .0033
Trading Cost (Buys) .00040 .0096 -.0028 .00019 .0034
Sell Volume mgr-stock-day 62,803 240,009 700 4,310 30,900
Sell Volume (% of shrout) .00021 .0013 0.000 .000011 .000084
Buy Volume mgr-stock-day 57,622 218,921 600 3,600 26,828
Buy Volume (% of shrout) .00019 .0013 0.000 0.000 .000076
Market Cap (in billions) 37 61 4.2 14 39
Amihud ratio .0068 .087 .00039 .00096 .0028
Big .34 .47 0 0 1
1/P .042 .23 .015 .023 .038
Past 7-day return .0012 .063 -.026 -.00013 .028
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Table 2.4: How did the regulatory change influence predatory behaviors?

This table reports results for OLS regressions of excess and 4-factor abnormal fund returns
on fund characteristics and controls. Only distressed funds are included. The independent
variables are: Post2003, a dummy which takes the value of one for years after 2003 and,
and zero otherwise; Large, a dummy which takes the value of one if a fund belongs to a
family constituted by more than 20 equity funds, and zero otherwise; FamilySize, the natural
log of the lagged assets under management of the family; FundSize, the natural log of the
lagged fund’s total assets under management; Fees, the expense ratio plus 1/7th of the front
load; PastF lows, quarterly fund flows in the previous quarter; PastReturns, quarterly fund
returns in the previous quarter. Time fixed effects are included in all specifications and errors
are clustered at the fund level. The frequency of the observations is quarterly. The sample

goes from 1990 to 2010.

(1) (2) (3) (4) (5) (6)
Ex. returns 4-fctr alpha Excess returns 4-factor alpha

Post2003 0.0150 0.0150 0.0014 0.0044
(0.79) (0.78) (0.07) (0.24)

Post2003×Large 0.0100*** 0.0098*** 0.0085*** 0.0083***
(3.03) (2.94) (3.09) (2.99)

Large -0.0119*** -0.0089*** -0.0163*** -0.0159*** -0.0127*** -0.0123***
(-6.02) (-5.23) (-6.09) (-5.75) (-5.42) (-5.21)

Fund Size -0.0009* -0.0003 -0.0009* -0.0003
(-1.87) (-0.87) (-1.90) (-0.89)

Fees -0.2553* -0.2981*** -0.2144 -0.2634**
(-1.83) (-2.80) (-1.52) (-2.47)

Past Flows -0.0175*** -0.0100*** -0.0173*** -0.0098***
(-3.84) (-2.99) (-3.77) (-2.92)

Past Returns 0.1009*** 0.0377*** 0.1009*** 0.0376***
(4.97) (2.81) (4.98) (2.81)

Constant 0.0141*** -0.0021 0.0441** 0.0456** -0.0119 -0.0119
(4.06) (-0.82) (2.38) (2.36) (-0.66) (-0.64)

Observations 7,714 7,714 7,832 7,714 7,832 7,714
R-squared 0.672 0.087 0.666 0.672 0.083 0.089

Robust t-statistics in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 2.5: Are siblings outperforming during the distress quarter?

table presents results for Fama-MacBeth cross-sectional regressions of excess and 4-
factor abnormal fund returns on fund characteristics and controls. Distressed funds are
not included. The independent variables are: DistressFamily, a dummy which takes
the value of one if a fund belongs to a family with at least one fund in distress (a fund
with quarter flows below the 10th percentile), and zero otherwise; Large, a dummy
which takes the value of one if a fund belongs to a family constituted by more than
20 equity funds, and zero otherwise; FamilySize, the natural log of the lagged assets
under management of the family; FundSize, the natural log of the lagged fund’s total
assets under management; PastF lows, quarterly fund flows in the previous quarter;
PastReturns, quarterly fund returns in the previous quarter. The frequency of the

observations is quarterly. The sample goes from 1990 to 2010.

(1) (2) (3) (4)
Excess returns 4-factor alpha

DistressFamily×Large 0.0045** 0.0038*** 0.0035*** 0.0024**
(2.38) (2.65) (2.80) (2.19)

Large 0.0012 -0.0014 0.0015** -0.0001
(1.04) (-1.22) (2.10) (-0.12)

DistressFamily 0.0006 0.0005 0.0004 0.0004
(0.75) (0.68) (0.89) (0.87)

Fund Size -0.0007** -0.0004**
(-2.30) (-2.53)

Family Size 0.0008*** 0.0007***
(4.46) (4.88)

Past Flows 0.0042 0.0053***
(1.29) (3.14)

Past Returns 0.0890* 0.0677***
(1.81) (3.00)

Constant 0.0145 0.0059 -0.0004 -0.0069***
(1.55) (0.70) (-0.38) (-3.57)

Observations 74,739 73,394 74,739 73,394
R-squared 0.013 0.157 0.011 0.079

t-statistics in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 2.8: Are distressed funds used as “waste bins”?

This table presents results for probit regressions. The dependent variable is equal to one
when a distressed fund is a net buyer for stock i in quarter q, and zero if it is a net seller
(this identification comes from S12). Only cross trades AND distressed families are included.
Qtr.ExcessReturns are quarterly (contemporaneous) stock returns in excess of the risk-free;
4− factor− alpha are quarterly (contemporaneous) stock returns adjusted using the 4-factor
model proposed in Carhart (1997). Amihud′sIlliquidity is stock illiquidity in quarter q − 1;
StockV olatility is intra-quarter daily return volatility computed in quarter q − 1. Columns
1 and 2 include only cross-trades happening in small families (less than 20 equity funds).
Columns 3 and 4 include only cross-trades happening in large families (more than 20 equity
funds). Observation frequency is daily. Time fixed effects are included in all specifications and

errors are clustered at the stock level. The sample goes from 1999 to 2010.

Large Family Small Family
(1) (2) (3) (4)

Qtr. Excess Returns -0.1449** -0.0793
(-2.02) (-0.63)

4-factor alpha -0.1507* -0.0538
(-1.69) (-0.35)

Amihud’s Illiquidity 3.5802*** 3.5179** 0.3931 0.3855 *
(3.88) (3.82) (0.70) (0.68)

Stock Volatility 0.1656 0.1570 0.3087 0.2710
(1.07) (1.01) (0.99) (0.83)

Constant -0.0677 -0.0800 -0.4364*** -0.4413***
(-0.48) (-0.57) (-3.95) (-3.97)

Observations 7,734 7,734 3,962 3,962
Robust z-statistics in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 2.9: Trading cost of cross trades in distress

This table reports OLS estimates of the equation 2.3: TradingCostm,s,t = a+βDistressFamilym,q +
Controlsm,s,t +εm,s,t, for a given investment manager m, stock s and trade t. The dependent variable
Trading Costm,s,t is the difference between execution price of a trade and the daily VWAP of a
stock as a % of VWAP (we compute the volume-weighted average value across manager-stock-day).
Explanatory variable Distress Familym,q is a dummy equal 1 whenever a family m has at least one
distressed fund in a given quarter q. The following controls are included: Trade Volume is the volume
of the transaction normalized by shares outstanding; 1/P is the ratio of 1 over price of the traded stock
from the previous day; Amihud ratio is the Amihud illiquidity ratio for the traded stock in the previous
month; Mkt Cap - the log of market capitalization of the traded stock 1 month before the event; 7-day
Cumulative Return - the cumulative net of the market return (value-weighted CRSP stocks) for the
stock in the 7-day window before the trading day. The sample includes only cross trades. Robust
standard errors clustered on a stock-level are reported in parentheses. Year time effects are included.

The sample period is from January 1999 to December 2010.

Large Family Small Family
(1) (2) (3) (4)

Distress Family 0.00031∗∗∗ 0.00031∗∗∗ 0.00003 0.00003
(2.72) (2.66) (0.97) (0.86)

Trade Volume -0.01360 0.02069
(-0.82) (0.90)

1/P -0.00005 -0.00024
(-0.10) (-1.58)

Amihud ratio 0.00043∗ 0.00015
(1.88) (0.92)

Mkt Cap -0.00002 -0.00010∗∗∗
(-1.08) (-9.54)

7-day Cum Return 0.00044 0.00070
(0.81) (0.98)

Constant 0.00050 0.00087∗ 0.00047∗∗∗ 0.00284∗∗∗
(1.47) (1.74) (3.89) (10.06)

Observations 272716 272716 529371 529371
R2 0.00033 0.00038 0.00014 0.00047
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 2.10: Truncation of the fund flow distribution

This table presents results for Fama-MacBeth cross-sectional regressions of excess and 4-factor
abnormal fund returns on fund characteristics and controls. Only funds with positive quarterly
flows are included (i.e., flow>0). The independent variables are: DistressFamily, a dummy
which takes the value of one if a fund belongs to a family with at least one fund in distress (a
fund with quarter flows below the 10th percentile), and zero otherwise; Large, a dummy which
takes the value of one if a fund belongs to a family constituted by more than 20 equity funds,
and zero otherwise; FamilySize, the natural log of the lagged assets under management of
the family; FundSize, the natural log of the lagged fund’s total assets under management;
PastF lows, quarterly fund flows in the previous quarter; PastReturns, quarterly fund returns
in the previous quarter. The frequency of the observations is quarterly. The sample goes from

1990 to 2010.

(1) (2) (3) (4)
Excess Returns 4-factor alpha

DistressFamily×Large 0.0070** 0.0050** 0.0077*** 0.0058***
(2.57) (2.42) (4.37) (3.71)

Large 0.0022 -0.0010 0.0008 -0.0014
(1.18) (-0.61) (0.78) (-1.38)

DistressFamily 0.0020* 0.0013 0.0011 0.0006
(1.90) (1.22) (1.46) (0.80)

Size -0.0012*** -0.0008***
(-2.87) (-3.61)

Family Size 0.0015*** 0.0013***
(5.61) (7.15)

Flows(t-1) -0.0079*** -0.0026
(-2.78) (-1.55)

Returns(t-1) 0.1194** 0.0841***
(2.40) (3.64)

Constant 0.0211** 0.0089 0.0037** -0.0059***
(2.21) (1.02) (2.62) (-2.91)

Observations 35,038 33,988 35,038 33,988
R-squared 0.026 0.178 0.024 0.102

t-statistics in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 2.11: Propensity score matching

This table presents results for Fama-MacBeth cross-sectional regressions of excess and 4-factor
abnormal fund returns on fund characteristics and controls. Distressed funds are not included.
Only funds matched to funds in distressed families (based on Large, FundSize, and investment
style) are included as the control group. The independent variables are: DistressFamily, a
dummy which takes the value of one if a fund belongs to a family with at least one fund
in distress (a fund with quarter flows below the 10th percentile), and zero otherwise; Large,
a dummy which takes the value of one if a fund belongs to a family constituted by more
than 20 equity funds, and zero otherwise; FamilySize, the natural log of the lagged assets
under management of the family; FundSize, the natural log of the lagged fund’s total assets
under management; PastF lows, quarterly fund flows in the previous quarter; PastReturns,
quarterly fund returns in the previous quarter. The frequency of the observations is quarterly.

The sample goes from 1990 to 2010.

(1) (2) (3) (4)
Excess returns 4-factor alpha

DistressFamily×Large 0.0044** 0.0034** 0.0037*** 0.0024**
(2.08) (2.30) (2.91) (2.24)

Large 0.0013 -0.0015 0.0013* -0.0004
(0.94) (-1.46) (1.85) (-0.78)

Siblings 0.0010 0.0006 0.0005 0.0004
(1.10) (0.74) (0.92) (0.83)

Fund Size -0.0009*** -0.0005**
(-2.82) (-2.45)

Family Size 0.0011*** 0.0009***
(4.18) (4.13)

Past Flows 0.0037 0.0046**
(1.11) (2.52)

Past Returns 0.0825 0.0650***
(1.66) (2.83)

Constant 0.0141 0.0049 -0.0005 -0.0075***
(1.52) (0.58) (-0.43) (-3.60)

Observations 50,315 49,500 50,315 49,500
R-squared 0.018 0.165 0.015 0.087

t-statistics in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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.1 Appendix

Table A.1: Are similar portfolio holdings hurting distressed funds?

This table presents results for Fama-MacBeth cross-sectional regressions of excess and 4-factor
abnormal fund returns on fund characteristics and controls. Only distressed funds are in-
cluded. Overlaps is computed as the fraction of the affiliated funds aggregated portfolio at
time t− 1 invested in the positions the distressed funds are selling at time t. The independent
variables are: Large, a dummy which takes the value of one if a fund belongs to a family
constituted by more than 20 equity funds, and zero otherwise; FamilySize, the natural log of
the lagged assets under management of the family; FundSize, the natural log of the lagged
fund’s total assets under management; Fees, the expense ratio plus 1/7th of the front load;
PastF lows, quarterly fund flows in the previous quarter; PastReturns, quarterly fund returns
in the previous quarter. The frequency of the observations is quarterly. The sample goes from

1990 to 2010.

(1) (2) (3) (4)
Excess returns 4-factor alpha

Large×Overlaps -0.0412*** -0.0428** -0.0308*** -0.0331**
(-2.86) (-2.59) (-2.67) (-2.40)

Large -0.0061 -0.0019 -0.0067* -0.0034
(-1.31) (-0.37) (-1.93) (-0.79)

Overlaps 0.0058 0.0008 0.0111** -0.0027
(0.80) (0.10) (2.26) (-0.36)

Size -0.0009 0.0004
(-1.52) (0.55)

Fees -0.3335** -0.2821**
(-2.29) (-2.19)

Past Flows -0.0115 -0.0083
(-1.52) (-1.31)

Past Returns -0.0029 0.0122
(-0.07) (0.41)

Constant 0.0039 0.0096 -0.0091*** -0.0066
(0.39) (1.05) (-5.32) (-1.58)

Observations 7,018 6,931 7,018 6,931
R-squared 0.092 0.276 0.078 0.221

t-statistics in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table A.3: Are distressed fund managers more likely to be replaced in large
fund families?

This table reports results for probit regressions where the dependent variable is a dummy
that takes value one if the fund manager of fund j in quarter t+ 1 is different from the fund
manager of fund j in quarter t, and zero otherwise. DistressedFund is a dummy that takes
value one if quarterly fund flows are below the 10th percentile of our fund flow distribution.
Large is a dummy which takes the value of one if a fund belongs to a family constituted
by more than 20 equity funds, and zero otherwise; FundSize, the natural log of the lagged
fund’s total assets under management; Fees, the expense ratio plus 1/7th of the front load;
PastF lows, quarterly fund flows in the previous quarter; PastReturns, quarterly fund returns
in the previous quarter. Fund manager data are obtained from CRSP Mutual Funds. Time
fixed effects are included in all specifications and errors are clustered at the fund manager

level. The sample goes from 1999 to 2010.

(1) (2) (3)

DistressedFund 0.2335*** 0.1765*** 0.1558***
(9.58) (7.21) (6.36)

DistressedFund×Large 0.1287** 0.1180** 0.1088**
(2.55) (2.32) (2.13)

Large -0.0389 -0.0148 -0.0102
(-1.42) (-0.57) (-0.40)

Fund Size -0.0632*** -0.0551***
(-13.40) (-10.38)

Fees 8.6666***
(4.28)

Past Returns -0.0661
(-0.39)

Past Flows -0.2067***
(-3.22)

Constant -1.3429*** -0.9938*** -1.1492***
(-13.60) (-9.78) (-12.26)

Observations 54,888 54,865 54,371
Robust z-statistics in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table A.4: Cross sectional dispersion in returns

This table presents results for Fama-MacBeth cross-sectional regressions of excess and 4-factor
abnormal fund returns on fund characteristics and controls. Distressed funds are not included.
The independent variables are: CS(σ) the within family cross sectional quarterly return dis-
persion computed as in Nanda, Wang, and Zheng (2004); DistressFamily, a dummy which
takes the value of one if a fund belongs to a family with at least one fund in distress (a fund
with quarter flows below the 10th percentile), and zero otherwise; Large, a dummy which
takes the value of one if a fund belongs to a family constituted by more than 20 equity funds,
and zero otherwise; FamilySize, the natural log of the lagged assets under management of
the family; FundSize, the natural log of the lagged fund’s total assets under management;
PastF lows, quarterly fund flows in the previous quarter; PastReturns, quarterly fund returns

in the previous quarter.

(1) (2) (3) (4)
Excess returns 4-factor alpha

Large × DistressFamily 0.0040** 0.0037** 0.0035*** 0.0027**
(2.09) (2.57) (2.73) (2.29)

Large 0.0010 -0.0012 0.0012* -0.0000
(0.88) (-1.12) (1.81) (-0.05)

DistressFamily 0.0004 0.0003 0.0002 0.0003
(0.50) (0.45) (0.42) (0.56)

CS(σ) 0.0998** 0.0433 0.0493* 0.0226
(2.04) (1.11) (1.79) (0.99)

Fund Size -0.0007** -0.0004**
(-2.27) (-2.59)

Family Size 0.0008*** 0.0007***
(4.07) (4.82)

Past Flows 0.0047 0.0055***
(1.53) (3.25)

Past Returns 0.0859* 0.0669***
(1.76) (3.00)

Constant 0.0124 0.0060 -0.0013 -0.0066***
(1.48) (0.75) (-1.29) (-3.42)

Observations 74,419 73,166 74,419 73,166
R-squared 0.025 0.165 0.019 0.084

t-statistics in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table A.5: Under which conditions a cross-trade is more likely to occur?

This table reports results for probit regressions where the dependent variable is a dummy
that takes value one if a trade meets our requirements to define a cross trade (i.e., there
is at least another trade happening within the same family, during the same day, in the
same stock but in an opposite direction), and zero otherwise. Only trades of large families
are included. DistressedFundHoldings is the percentage of the share outstanding held by
distressed funds in the family at the beginning of the quarter; Laggedalpha is stock 4-factor
alpha in quarter q−1; Amihud′sIlliquidity is stock illiquidity in quarter q−1; StockV olatility
is intra-quarter daily return volatility computed in quarter q−1. Time fixed effects are included
in all specifications and errors are clustered at the stock level. The sample goes from 1999 to

2010.

(1) (2) (3)

Distressed Fund Holdings 4.3812*** 3.3484*** 3.6811***
(22.84) (21.03) (21.91)

Lagged alpha 0.2238*** 0.2456***
(6.23) (6.54)

Amihud’s Illiquidity -2.2688*** -3.0768***
(-14.00) (-15.25)

Stock Volatility -0.2308*** -0.0701
(-4.00) (-1.03)

Constant 0.2437*** 0.0643*** 0.3184***
(5.28) (3.66) (6.85)

Observations 39,952 39,947 39,947
Robust z-statistics in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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