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SUMMARY
This paper formulates a new scalable algorithm for motion planning and control of multiple
point-mass robots. These autonomous robots are designated to move safely to their goals in a
priori known workspace cluttered with fixed and moving obstacles of arbitrary positions and sizes.
The control laws proposed for obstacle and collision avoidance and target convergence ensure that
the equilibrium point of the given system is asymptotically stable. Computer simulations with the
proposed technique and applications to a team of two planar (RP) manipulators working together in
a common workspace are presented. Also, the robustness of the system in the presence of noise is
verified through simulations.
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1. Introduction
Active and continuous research in the area of motion planning and control (MPC) of robots has
incessantly spanned over the past two decades. A high level of sustained interest in this field is
invariably due to the coupling of inherent constraints and restrictions, wide-ranging capabilities
of robots, abundance of real-world applications1, 2 and the array of possibilities of mechanical
systems. Nowadays, robots are capable of performing dull, dirty, dangerous or difficult tasks such
as surveillance, construction, transportation and traffic control, healthcare, mining and sampling,
reconnaissance, landscape maintenance, museum guides and planetary exploration.1, 3–5 Developing
multiple robots are favored over single units due to the stringent time and cost constraints, increased
robustness, greater fault tolerance, better safety, accelerated performances and higher capabilities, to
outline a few major ones.2, 3, 6 The multiple robots can cooperate and network for better, faster and
more efficient results.

The aforementioned tasks and missions of multi-robots are normally carried out in dynamic
environments which includes both stationary and dynamic obstacles. The dynamic obstacles (known
or even unknown) may be the mobile robots themselves as well as other solid bodies moving in the
workspace. Constructing control laws is a difficult and challenging task because the environment is
dynamic rather than static.1 Over the past two decades, researchers have devised numerous algorithms
to address motion planning problem for multiple robots taking into account both collision and
obstacle avoidances. These algorithms have been categorized into continuous, piecewise continuous,
discontinuous, discrete, time varying and a working hybrid of controllers.1, 7 The reader can refer to1

for more information on these types of algorithms.
Most of the work carried out with autonomous multiple agents in obstacle ridden workspace using

continuous control laws in dynamic environments have guaranteed stability only. This implies that
there is a possibility that some trajectories starting in the neighborhood of the equilibrium point may
lead to traps (local minima) outside the equilibrium point. Thus one desires to have trajectories that
always converge to the equilibrium, that is to attain an asymptotic stable system. Researchers over the
years have proposed some useful techniques to solve the problem of local minima via the use of some
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1072 Motion planning and control of multiple robots

special functions.1 These techniques are using Potential Functions,8 using Dipolar Inverse Lyapunov
Functions,9 executing a random robot motion,10 temporarily relocating the goal11 and constructing a
potential field based on superquadrics.12

An interesting and noteworthy work was done by Vanualailai et al.13 in 2008 where the authors
showed that if the robot, its target and the obstacle positions are collinear, then the robot can be
trapped behind the obstacle. This implies that the asymptotic stability of a system is dependent on
the initial conditions. Thus by removing those initial conditions which can lead to traps, Vanualailai
and his colleagues successfully proved the asymptotic stabilization of a point mass system.13

In this paper, we will control the motion of multiple point-masses in the presence of fixed and
moving obstacles in a priori known workspace. Our seminal aim is to design continuous control laws
that ensure asymptotic stability of the system, irrespective of the initial conditions of the system (as
opposed to13). A scalable algorithm for obstacle and collision avoidances, and target convergence
is proposed that works for multiple point-mass robots with multiple moving and fixed obstacles of
arbitrary shapes and sizes. To the authors’ knowledge, this is the first time such an algorithm is
developed for avoidances of fixed and moving obstacles in parallel. In addition, we also look at the
effect of noise in the simulations. These noise are time-dependent small disturbances that could be
encountered in the sensor readings.

A new systematic control scheme is described for the construction of the control laws which can
be favored over other schemes. The method is systematic, elegant and yet simple compared to, for
example, the Lyapunov-based control scheme1, 2, 13 where there is no definite and standard procedure
of constructing a Lyapunov function from which the controllers can be extracted. Moreover, the
scalable algorithm proposed in this paper for multiple point-masses can easily be applied to other
planar robots such as planar robot arms, car-like robots and mobile manipulators. As an illustration,
we have considered the motion of two planar (RP) robot working together in Section 6.

This paper is organized as follows. In Section 2, we define of the workspace, point-mass robots and
derive the kinematic model. The motion planning and control problem of the point masses is discussed
in Section 3, together with introduction of the targets and the velocity algorithm. In Section 4, various
types of obstacles are considered and the obstacle avoidance scheme is proposed. Stability analysis
is carried out in Section 5 while Section 6 considered the motion of two planar (RP) robot working
together in a common workspace. Finally, in Section 7 concluding remarks on the contributions and
future work are made.

2. Modelling a Point-Mass Robot
The notations and terminologies of this paper are adopted from the prequel.14

Definition 1. The workspace is a fixed, closed and bounded rectangular region for some η1 > 0
and η2 > 0. Precisely, the workspace is the set WS = {(z1, z2) ∈ R2 : 0 ≤ z1 ≤ η1, 0 ≤ z2 ≤ η2}.

Definition 2. Let Pi be the ith point-mass robot in the z1z2 plane, positioned at (xi, yi) with a
circular protective region of radius rPi

≥ 0 and moving with a velocity of vi at time t ≥ 0. Precisely,
the circular protective region is the set

Pi = {
(z1, z2) ∈ R

2 : (z1 − xi)
2 + (z2 − yi)

2 ≤ r2
Pi

}
.

According to,1 the disk-representation strategically aids in the construction of the motion planning
algorithms. Let ui1 and ui2 be the z1 and z2 components, respectively, of vi , then the kinematic model
of Pi can be expressed as

ẋi = ui1,

ẏi = ui2,

(xi0, yi0 ) := (xi(0), yi(0))

⎫⎪⎬
⎪⎭ (1)
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Motion planning and control of multiple robots 1073

for i = 1, 2, . . . , n. System (1) is a description of the instantaneous velocities of Pi where ui1 and
ui2 are classified as the controllers. Hereafter, we shall use the vector notation xi = (xi(t), yi(t)) to
refer to the position of Pi in the z1z2 plane.

3. Convergence of Point Masses
In our MPC, we want the ith point-mass robot Pi to start from an initial position, move towards a
target and finally converge at the center of the target. We therefore affix a target for each Pi :

Definition 3. The target for the point-mass robot Pi is a disk of center (pi1, pi2) and radius rTi
.

Precisely, it is a set

Ti = {
(z1, z2) ∈ R

2 : (z1 − pi1)2 + (z2 − pi2)2 ≤ r2
Ti

}
.

We consider an appropriate form of vi , which can drive Pi from its initial position to the target
position and make it stop there. The authors in ref. [14] developed a practical velocity algorithm
which depended on the initial and final positions of the robot:

vi(t) = |v0| ‖xi(t) − ei‖
‖xi(0) − ei‖ , (2)

where v0 is the initial velocity (assumed same for all the robots) of Pi at t = 0 and ei = (pi1, pi2) �=
xi(0) is an equilibrium point of system (1). Note that vi given by equation (2) is defined, continuous
and positive over the domain

Di = {x ∈ R
2 : xi(0) �= ei}.

For xi(t) �= ei , we further let ξi(t) be the angular position of Ti with respect to the position of Pi at
time t . The angle ξi(t) is defined implicitly as

tan ξi(t) = pi2 − yi(t)

pi1 − xi(t)
. (3)

4. Collision and Obstacle Avoidances
The various types of fixed and moving obstacles and new stabilizing controllers for the avoidances
are outline in this section. The obstacles considered in this paper include

• moving obstacles, which are the point-mass robots;
• fixed obstacles, which are antitargets and stationary solid objects of various shapes and sizes.

This paper describes all possible obstacles using simple forms such as circles, ellipses and lines,
which can enclose all the possible obstacles.

Assumption 1. Initially, at t = 0, there is no positional overlap between any two robots or
between a robot and an obstacle in the workspace WS.

Assumption 2. There is a priori knowledge of the workspace. That is, the initial and target
positions of the robots, and the types, positions and sizes of all obstacles are priori known.

4.1. Moving obstacles
From a practical viewpoint, avoidance of moving obstacles is the most important task for the mobile
robots1 operating in a dynamic environment. A mobile robot itself becomes a moving obstacle for all
the other mobile robots in WS. We provide the following definition of a moving obstacle.

Definition 4. The j th moving obstacle is a disk with center (xj , yj ) and radius rP j . Precisely, the
j th moving obstacle is the set Pj = {(z1, z2) ∈ R2 : (z1 − xj )2 + (z2 − yj )2 ≤ r2

P j
} .
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Fig. 1. Schematic representation of the collision avoidance of Pj by Pi in the z1z2 plane.

In order for the point-mass robot Pi to avoid collision with Pj , we define controllers ui1 and ui2 as:

{
ui1 = vi cos(ξi + εi),
ui2 = vi sin(ξi + εi),

(4)

where εi determines the direction in which Pi should turn to avoid collision with Pj . The inclusion of
εi is well elucidated in Fig. 1. If εi > 0, then the point-mass will turn left; if εi < 0, it will turn right;
and if εi = 0, it will move straight towards the target. Thus controlling the value of εi will enable
robot Pi to avoid obstacles and reach its target safely.

Claim 1 With the form of the velocities given by equation (4), the point-mass robot Pi is guaranteed
to converge at its target position.

Proof. When the ith robot reaches its target, (pi1, pi2), the controllers ui1 and ui2 in equation (4)
converge to zero since vi given in (2) vanishes at the target.

Definition 5. Let dmax > 0 be a predefined scalar. The set S1 defined by

S1 =
n⋃

j=1
j �=i

{
(z1, z2) ∈ R

2 : r2
pj

< (z1 − xj )2 + (z2 − yj )2 < (rpj
+ dmax)2

}

is denoted as the total sensing zone which is the combination of all sensing zones as seen in Fig. 2.

Let

R
(1)
ij =

√
(xi − xj )2 + (yi − yj )2 − (rpi

+ rpj
)

be the distance between Pi and Pj for j = 1, 2, . . . , n, j �= i. Consider Ri1 = min(R(1)
ij ) for j =

1, 2, . . . , n, j �= i, the distance from Pi to the nearest Pj . For this nearest moving obstacle, denote
its center as (x ′, y ′) and define

tan ϕi1 = y ′ − yi

x ′ − xi

and

fi1 = (xi − x ′)(pi2 − yi) − (yi − y ′)(pi1 − xi).
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Fig. 2. Schematic representation of the avoidance scheme with parameter dmax.

Remark: If fi1 = 0, then the points (xi, yi), (x ′, y ′) and (pi1, pi2) are collinear, so the angle ϕi1

shown in Fig. 2 will be same as ξi . If fi1 < 0, then ϕi1 > ξi and if fi1 > 0, then ϕi1 < ξi .
We now look for an appropriate form of εi . With the help of Fig. 2, we enact the following rules:

Rule 1: In order to avoid collision with the nearest moving obstacle, Ri1 should be positive.
Rule 2: If the robot is approaching the obstacle, it should change its direction when it enters the

sensing zone.
Rule 3: When the robot enters the sensing zone, it should turn right if fi1 ≤ 0. Otherwise it should

turn left. This is to ensure that it follows the shortest path.

Note that the size of the sensing zone is determined by dmax. If dmax is large, then Pi will avoid
the moving obstacle from a greater distance. Thus dmax is classified as the control parameter in this
research.

4.1.1. Proposed form of εi . Normally seen in literature1, 2, 13, 15 for effective avoidances, the distance
Ri1 and similar avoidance measures appear in the denominator of repulsive potential field functions.
Adopting the methodology, we propose the following form of εi :

εi = tan−1

(
αi1βi1

Ri1

)
, (5)

where

αi1 =
{

0, if Ri1 ≥ dmax

dmax − Ri1, if Ri1 < dmax
and βi1 =

{
1, if fi1 ≤ 0

−1, if fi1 > 0 .

The function αi1 plays two roles here. Firstly, it ensures that the output εi will be a continuous
function. Thus the controllers derived will be continuous everywhere along the trajectory of the
system. Secondly, it ensures that the turning is initiated when a robot enters the sensing zone. The
parameter βi1 is an indicator function, which indicates the direction Pi should turn in the sensing
zone to ensure that an overall shortest path is achieved. We also note that:

1. The function εi given by equation (5) spans in the interval (−π/2, π/2).
2. With the form of εi given in equation (5), we see that as Pi comes closer to Pj , the Ri1 will decrease.

This will inevitably increase |εi | since Ri1 appears in the denominator. Hence an increase in |εi |
will force Pi will move away from the obstacle.
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Fig. 3. Trajectory of two point-mass robots with dmax = 3 and v0 = 5.

Now, substituting (5) into (4) and simplifying, we obtain controllers of the form

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ui1 = |v0|
‖xi(0) − ei‖

⎡
⎣ (pi1 − xi)Ri1 − (pi2 − yi)αi1βi1√

α2
i1 + R2

i1

⎤
⎦

ui2 = |v0|
‖xi(0) − ei‖

⎡
⎣ (pi2 − yi)Ri1 + (pi1 − xi)αi1βi1√

α2
i1 + R2

i1

⎤
⎦

(6)

We further note that these controllers are bounded and continuous at every point over the domain

Di1 = {(xi, yi) ∈ R
2 : xi(0) �= ei ∩ (xi − xj )2 + (yi − yj )2 > (rpi

+ rpj
)2

for j = 1, 2, . . . , n}.

Example 1. We demonstrate the simulation result for two point mass mobile robots navigating
in the z1z2 plane. Figure 3 shows the trajectories of these robots from the initial to final states. The
initial and final states are given as: x1(0) = (8, 8), x2(0) = (22, 22) and e1 = (25, 25), e2 = (5, 5),
respectively When the robots approach each other in the middle of the workspace, we clearly see that
they avoid each other, and finally converge to their designated targets.

4.2. Antitargets: Targets as obstacles
According to,1 a target fixed for a mobile robot needs to be treated as a stationary obstacle for all
the remaining robots operating within WS. Therefore, the target of Pi will inherently become an
antitarget for all Pj ’s, for j = 1, 2, . . . , n, j �= i in WS.

Definition 6. The j th antitarget is a disk with center (pj1, pj2) and radius rT j . It is described as
the set ATj = {(z1, z2) ∈ R2 : (z1 − pj1)2 + (z2 − pj2)2 ≤ rT

2
j }.

We can then describe the sensing zone surrounding the antitargets as

S2 =
n⋃

j=1
j �=i

{
(z1, z2) ∈ R

2 : r2
T j < (z1 − pj1)2 + (z2 − pj2)2 < (rT j + dmax)2

}
.
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Let R
(2)
ij = √

(xi − pj1)2 + (yi − pj2)2 − (rpi
+ rTj

) be the distance between Pi and ATj . Now,

consider Ri2 = min(R(2)
ij ) for j = 1, 2, . . . , n, j �= i which is the distance from Pi to the nearest

j th antitarget. For this nearest antitarget at every t ≥ 0, denote its center as (a′, b′) and let

fi2 = (xi − a′)(pi2 − yi) − (yi − b′)(pi1 − xi).

Then define εi as:

εi = tan−1

(
αi2βi2

Ri2

)
,

where

αi2 =
{

0, if Ri2 ≥ dmax

dmax − Ri2, if Ri2 < dmax
and βi2 =

{
1, if fi2 ≤ 0

−1, if fi2 > 0 .

Thus for the avoidance of the antitargets, the controllers are

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ui1 = |v0|
‖xi(0) − ei‖

⎡
⎣ (pi1 − xi)Ri2 − (pi2 − yi)αi2βi2√

α2
i2 + R2

i2

⎤
⎦

ui2 = |v0|
‖xi(0) − ei‖

⎡
⎣ (pi2 − yi)Ri2 + (pi1 − xi)αi2βi2√

α2
i2 + R2

i2

⎤
⎦

(7)

which are bounded and continuous at every point over the domain

Di2 = {(xi, yi) ∈ R
2 : xi(0) �= ei ∩ (xi − pj1)2 + (yi − pj2)2 > (rpi

+ rTj
)2

for j = 1, 2, . . . , n}.

Example 2. Figure 4 shows an interesting simulation with four point-mass robots. We see that
each of the robots maneuver from its initial position to the target position while avoiding the targets
of the other robots that may be encountered along its path. The initial and final positions were
generated randomly. Figure 5 shows evolution of the controllers for P1. One can clearly notice the
asymptotic convergence of the controllers as t → ∞. For the other robots a similar trend in evolution
was obtained.

4.3. Stationary elliptical obstacles
Let q ∈ N solid bodies be fixed within the boundaries of WS which may intersect the path of the
point-mass robots. We assume that the lth obstacle is an ellipse with center given as (ol1, ol2).

Definition 7. The lth obstacle is a set

FOl =
{

(z1, z2) ∈ R
2 :

(z1 − ol1)2

a2
l

+ (z2 − ol2)2

b2
l

≤ 1

}
, for l = 1, 2, . . . , q,

where al and bl are positive constant.

In special case if al = bl , then the set FOl represents a circular object. The sensing zone
surrounding these elliptical obstacles is

S3 =
q⋃

l=1

{
(z1, z2) ∈ R

2 :
(z1 − ol1)2

(al + dmax)2
+ (

z2 − ol2)2

(bl + dmax)2
< 1

}
.
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Fig. 4. Trajectory of four point-mass robots with dmax = 3 and v0 = 5.
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Fig. 5. Evolution of the control signals, u11 and u12 along the trajectory of P1.

In order to avoid all the obstacles in the workspace, it is sufficient for the robots to avoid the obstacle
that is nearest to it at any time t ≥ 0. As such, we let

R
(3)
il = (xi − ol1)2

(al + rpi
)2

+ (yi − ol2)2

(bl + rpi
)2

− 1

be a distance measure between Pi and FOl and consider Ri3 = min(R(3)
i1 , R

(3)
i2 , . . . , R

(3)
iq ) being the

distance measure from Pi to the nearest stationary elliptical obstacle. For this nearest obstacle,
denote its center as (o′

1, o
′
2) and let fi3 = (xi − o′

1)(pi2 − yi) − (yi − o′
2)(pi1 − xi). Further let αi3 =
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Fig. 6. Collision-free trajectories of three point-mass robots in an obstacle-ridden workspace with dmax = 3 and
v0 = 5.

{ 0, if Ri3 ≥ dmax
dmax − Ri3, if Ri3 < dmax

and βi3 = { 1, if fi3 ≤ 0
−1, if fi3 > 0 . In this case, we define εi as:

εi = tan−1

(
αi3βi3

Ri3

)

so that the controllers ui1 and ui2 become

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ui1 = |v0|
‖xi(0) − ei‖

⎡
⎣ (pi1 − xi)Ri3 − (pi2 − yi)αi3βi3√

α2
i3 + R2

i3

⎤
⎦

ui2 = |v0|
‖xi(0) − ei‖

⎡
⎣ (pi2 − yi)Ri3 + (pi1 − xi)αi3βi3√

α2
i3 + R2

i3

⎤
⎦

(8)

which are bounded and continuous at every point over the domain

Di3 = {(xi, yi) ∈ R
2 : xi(0) �= ei ∩ (x − ol1)2

(al + rpi
)2

+ (y − ol2)2

(bl + rpi
)2

> 1

for l = 1, 2, . . . , q}.

Example 3. Figure 6 illustrates a simulation where multiple point-masses move in a workspace
cluttered with fixed elliptical obstacles. The size and position of the obstacles are randomly generated.
The robots avoid each other and the fixed elliptical obstacles they encounter in their path to the target.

4.4. Line obstacles
A line segment can be considered as a fixed obstacle in Euclidian plane. Let us fix m > 0 line obstacles
in WS.
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1080 Motion planning and control of multiple robots

Definition 8. The kth line segment in the z1z2 plane, from the point (ak1, bk1) to the point (ak2, bk2)
is the set

LOk = {(z1, z2) ∈ R
2 : (z1 − Xk)2 + (z2 − Yk)2 = 0} , for k = 1, 2, . . . , m,

where Xk = ak1 + (ak2 − ak1)λk and Yk = bk1 + (bk2 − bk1)λk is its parametric representation for
0 ≤ λk ≤ 1.

With the help of Definition 8, we can then describe the sensing zone that encloses the line segments
as

S4 =
m⋃

k=1

{
(z1, z2) ∈ R

2 : 0 < (z1 − Xk)2 + (z2 − Yk)2 < d2
max

}
.

For the robot Pi to avoid the kth line segment, we utilize the minimum distance technique (MDT)
designed by Sharma in ref. [1]. The technique basically involves calculating the minimum distance
from a robot to a line segment is calculated and hence avoiding the resultant closest point. Avoidance of
the closest point on a line segment simply affirms that the mobile robot avoids the whole line segment.

Minimizing the Euclidian distance between the point (xi, yi) of Pi and the point (Xk, Yk) on
the kth line segment, we get

λik = (xi − ak1)qk1 + (yi − bk1)qk2,

where

qk1 = (ak2 − ak1)

(ak2 − ak1)2 + (bk2 − bk1)2
, and qk2 = (bk2 − bk1)

(ak2 − ak1)2 + (bk2 − bk1)2
.

If λik ≥ 1, then we let λik = 1, in which case (Xk, Yk) = (ak2, bk2) and if λik ≤ 0, then we let
λik = 0, in which case (Xk, Yk) = (ak1, bk1). Otherwise we accept the value of λk between 0 and 1.1

We let R
(4)
ik =

√
(xi − Xk)2 + (yi − Yk)2 − rpi

be the distance between Pi and LOk and consider
Ri4 = min(R(4)

i1 , R
(4)
i2 , . . . , R

(4)
i5 ) being the distance measure from Pi to the nearest stationary line

obstacle. For this nearest obstacle, denote its center as (X′, Y ′) and define

fi4 = (xi − X′)(pi2 − yi) − (yi − Y )(pi1 − xi),

αi4 =
{

0, if Ri4 ≥ dmax

dmax − Ri4, if Ri4 < dmax
and

βi4 =
{

1, if fi4 ≥ 0
−1, if fi4 < 0 .

For Pi to avoid the line segments, we define εi as:

εi = tan−1

(
αi4βi4

Ri4

)

so that the controllers ui1 and ui2 are

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ui1 = |v0|
‖xi(0) − ei‖

⎡
⎣ (pi1 − xi)Ri4 − (pi2 − yi)αi4βi4√

α2
i4 + R2

i4

⎤
⎦

ui2 = |v0|
‖xi(0) − ei‖

⎡
⎣ (pi2 − yi)Ri4 + (pi1 − xi)αi4βi4√

α2
i4 + R2

i4

⎤
⎦

(9)
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Fig. 7. Collision-free trajectories of four point-mass robots in the presence of line obstacles.

The controllers ui1 and ui2 are bounded and continuous over the domain

Di4 = {(xi, yi) ∈ R
2 : xi(0) �= ei ∩ (xi − Xk)2 + (yi − Yk)2 > r2

pi

for k = 1, 2, . . . , m}.

Example 4. Figure 7 shows an interesting computer simulation with four point-masses in a
workspace that contains line obstacles. The initial and target position of the robots and the parameters
related to the line segments were a priori chosen to achieve a pseudo traffic situation. From the
simulation, we see that the point masses avoid the line segments along its path to their targets.

4.5. Multi-tasking
We now combine the avoidance schemes described in Sections 4.1 to 4.4 to form a generalized MPC
scheme for the avoidance of multiple types of obstacles and convergence to the target. Therefore, we
define εi as:

εi = tan−1

(
4∑

s=1

αisβis

Ris

)
. (10)

With the form of εi , we see that the controllers ui1 and ui2 are given as

ui1 = |v0|
‖xi(0) − ei‖

⎡
⎢⎢⎢⎢⎣

(pi1 − xi) − (pi2 − yi)
4∑

s=1

αisβis

Ris√
1 +

(
4∑

s=1

αisβis

Ris

)2

⎤
⎥⎥⎥⎥⎦

ui2 = |v0|
‖xi(0) − ei‖

⎡
⎢⎢⎢⎢⎣

(pi2 − yi) + (pi1 − xi)
4∑

s=1

αisβis

Ris√
1 +

(
4∑

s=1

αisβis

Ris

)2

⎤
⎥⎥⎥⎥⎦

(11)
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Fig. 8. Collision-free trajectories of Pi for i = 1, 2, . . . , 5 in a obstacle-ridden WS.
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Fig. 9. Evolution of the control signals, u11 and u12 along the trajectory of P1.

which are bounded and continuous at every point over the domain

Di = {(xi, yi) ∈ R
2 : xi(0) �= ei ∩ Ris > 0 for s = 1, 2, 3, 4}.

Example 5. The simulation shown in Fig. 8 is of five point-mass robots maneuvering in the
workspace WS cluttered with fixed and moving obstacles with randomized sizes. We have considered
a simple setup where each robot maneuvers from an initial to a final configuration, whilst avoiding
obstacles of different types along the path. The rectangular obstacles made up of line segments
may represent a building in real-life situation. Figure 9 shows the time evolution of the nonlinear
controllers for P1. We can see that eventually, at the center of the target the controllers became zero.
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4.6. Effect of noise
To evaluate the robustness of our current approach, we now look at the effect of noise that could
be encountered in the sensor measurements. Since we are considering sensing zones around each
obstacle, it suffices to include the noise components into the parameters αis and βis as follows:

αis =
{

0, if R̂is ≥ dmax

dmax − R̂is, if R̂is < dmax
and βis =

{
1, if f̂is ≤ 0

−1, if f̂is > 0

where R̂is = Ris + σμis(t) and f̂is = fis + σνis(t), for s = 1, 2, 3, 4. The terms σμis(t) and σνis(t)
are the small disturbances in the sensor readings, the constant σ ∈ [0, 1] is the noise level while μis(t)
and νis(t) are time-dependent variables randomized between and including −1 and 1.

Example 6. To explore the effect of noise in the simulation, we have regenerated the simulation
of Fig. 8. The new simulations at different noise levels are shown in Fig. 10. The parameter σ is
given in the captions of each subfigure while μis(t) and νis(t) were taken as random numbers in the
interval [−1, 1] for s = 1, 2, 3, 4 and i = 1, 2, . . . , 5. We have also plotted the time evolution of the
nonlinear controllers for P1 for each of the simulations. We again see that eventually, at the center
of the target the controllers became zero. Some minor changes are noticed in the trajectories of the
point-masses and in the controllers.

5. Stability Analysis
The new controllers ui1 and ui2 are bounded and continuous at every point over the domain

Di = {(xi, yi) ∈ R
2 : xi(0) �= ei ∩ Ris > 0 for s = 1, 2, 3, 4}.

This gives rise to the following theorem:

Theorem 1. The point ei (i = 1, 2, . . . , n) is a global asymptotic stable equilibrium point of
system (1).

Proof. Consider the Lyapunov function

L =
n∑

i=1

Li(xi)

where Li(xi) = 1
2‖xi(t) − ei‖2, which is defined, continuous, positive and radially unbounded over

the domain

Di = {xi(t) ∈ R
2 : xi(0) �= ei ∩ Ris > 0 for s = 1, 2, 3, 4}.

It is clear that L has first partial derivatives in the neighborhood D(1) = D1 ∩ D2 ∩ · · · ∩ Dn of the
equilibrium point ei of system (1). Moreover, in the region Di , we see that Li(ei) = 0 and Li(xi) > 0
for all xi �= ei .

Now, the time-derivative of Li(xi) along a trajectory of system (1) is given by

L̇i(xi) = −
√

u2
i1 + u2

i2 ‖xi(t) − ei‖ cos εi.

Again, it is clear that in the region Di , L̇i(ei) = 0 and L̇i(xi) < 0 for all xi �= ei . Hence it can be
concluded that the point ei for i ∈ {1, 2, . . . , n} is a global asymptotic stable equilibrium point of
system (1).
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(a) Trajectories for σ = 0.1.
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(b) Control signals, u11 and u12 for σ = 0.1.
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(c) Trajectories for σ = 0.2.
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(d) Control signals, u11 and u12 for σ = 0.2.
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(e) Trajectories for σ = 0.5.
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(f) Control signals, u11 and u12 for σ = 0.5.

Fig. 10. Trajectories of Pi and the evolution of control signals for P1 under the influence of noise.
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z1

z2

θi(t)

i

ri(t)

Fig. 11. Schematic representation of the ith planar (RP) manipulator in the z1z2 plane. (Adopted from15)

6. Application: Two Planar Robot Arms in W S
We apply the approach to a system of two planar robot arms operating together in a common
workspace WS. The robot arms have a translational joint and a rotational joint in the z1z2 plane as
shown in Fig. 11. The arm consists of two links made up of uniform slender rods; the revolute first
link with fixed length and the prismatic second link which caries the payload at the gripper.

With the help of Fig. 11, we assume:

(i) the planar robot arm is anchored at the point (ai, bi);
(ii) the first link has a fixed length �i ;

(iii) the second link has length ri(t) at time t ; and
(iv) the manipulator has angular position θi(t) at time t ;
(v) the coordinate of the gripper is (xi(t), yi(t)).

Remark: We can express the position of the end-effector of the articulated manipulator arm
completely in terms of the state variables ri(t) and θi(t) as:

xi(t) = ai + (�i + ri(t)) cos θi(t),

yi(t) = bi + (�i + ri(t)) sin θi(t).

The ith planar robot arm is governed by the following system of ODEs:

ṙi(t) = ui1 cos θi + ui2 cos θi,

θ̇i(t) = ui2 cos θi − ui1 sin θi

�i + ri

,

ri(0) =
√

(xi(0) − ai)2 + (yi(0) − bi)2 − �i,

θi(0) = atan2 (yi(0) − bi, xi(0) − ai) ,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(12)

for i = 1, 2. System (12) is a description of the instantaneous velocities of the ith planar robot
arm. Here ui1 and ui2 are again classified as the controllers. We shall use the vector notation
xi = (ri(t), θi(t)) to refer to the position of the ith planar robot arm in the z1z2 plane.

In the following subsections, we consider different types of obstacles that the system may encounter.

6.1. Mechanical singularities
From a practical viewpoint, the motion of the manipulators are restricted in the sense that the end-
effector of the 2-link manipulator can not go inside the first link. Thus a circular region of radius ri

with center (ai, bi) that encloses the first link is treated as an artificial obstacle for the end-effector.
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6.2. Fixed obstacles
If the workspace contains fixed obstacles, then it is important for the entire Link 2 to avoid the
obstacle. That is, if the end-effecter wants to overcome an obstacle from the side of the obstacle then
the second link must be pulled inside the first link. For simplicity, assume that the lth obstacle is a
circular disk with center (ol1, ol2) and radius rol .

In order for the entire Link 2 to avoid a fixed obstacle, it is important that every point on this link
avoids the obstacle. For the avoidance, we again utilize the MDT by Sharma in ref. [1]. In our case,
we want the line segment (Link 2) to avoid a fixed obstacle.

Let (x(1)
il , y

(1)
il ) be a point on the second link that is closest to the lth fixed obstacle. It can be shown

that

x
(1)
il =

(
�i + λ

(1)
il

)
cos θi, y

(1)
il =

(
�i + λ

(1)
il

)
sin θi,

where λ
(1)
il = ol1 cos θi + ol2 sin θi − �i . Note that λ

(1)
il ∈ [0, ri]. Thus if ol1 cos θi + ol2 sin θi − �i <

0, then we take λ
(1)
il = 0 and if ol1 cos θi + ol2 sin θi − �i > ri , then we take λ

(1)
il = ri . We further

define

R
(1)
il =

√(
x

(1)
il − ol1

)2
+
(
y

(1)
il − ol2

)2
− rol

be the distance from the center of the lth obstacle to the point (x(1)
il , y

(1)
il ).

6.3. Moving obstacles
Since the two robots are working in the same workspace, each will be treated as a moving obstacle for
the other. Thus each link of the j th manipulator becomes a moving obstacle for the ith manipulator.
For the avoidance of the j th manipulator, it is necessary for the end-effector of ith manipulator to
avoid the closest point on the j th manipulator. We again use MDT here. Suppose (x(2)

ij , y
(2)
ij ) is a point

on a link of the j th manipulator that is closest to the end-effector of the ith manipulator, then it can
be shown that

x
(2)
ij = aj + λ

(2)
ij cos θj , y

(2)
ij = bj + λ

(2)
ij sin θj ,

where λ
(2)
ij = (xi − aj ) cos θj + (yi − bj ) sin θj . Note that λ(2)

ij ∈ [0, lj + rj ]. Thus if (xi − aj cos θj +
(yi − bj ) sin θj < 0, then we take λ

(2)
ij = 0 and if (xi − aj cos θj + (yi − bj ) sin θj > lj + rj , then we

take λ
(2)
ij = lj + rj . For i, j = 1, 2 and i �= j , we further define

R
(2)
ij =

√(
xi − x

(2)
ij

)2
+
(
yi − y

(2)
ij

)2

be the distance between the points (x(2)
ij , y

(2)
ij ) and (xi, yi).

6.4. Design of controllers
Taking into account the different types of obstacles discussed in Sections 6.1 to 6.3, we now design
the control laws. Let ei = (pi1, pi2) be the target position of the ith end-effector. Consider R̂i =
min(ri, R

(1)
il , R

(2)
ij ) + σμi(t) and

αi =
{

0, if R̂i ≥ dmax

dmax − R̂i, if R̂i < dmax
and βi =

{
1, if f̂i ≤ 0

−1, if f̂i > 0
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(f) Final state of the robot arms.

Fig. 12. Snapshots of the trajectories of the robot arms traced by their end-effectors.

where f̂i = pi1 sin θi − pi2 cos θi + σνi(t), σμi(t) and σνi(t) are the noise components. Then we
design the controllers ui1 and ui2 as

ui1 = |v0|
‖xi(0) − ei‖

⎡
⎣ (pi1 − (�i + ri) cos θi)Ri − (pi2 − (�i + ri) sin θi)αiβi√

α2
i + R2

i

⎤
⎦

ui2 = |v0|
‖xi(0) − ei‖

⎡
⎣ (pi2 − (�i + ri) sin θi)Ri + (pi1 − (�i + ri) cos θi)αiβi√

α2
i + R2

i

⎤
⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(13)

We further note that the controllers are bounded and continuous at every point over the domain

Di = {(xi, yi) ∈ R
2 : xi(0) �= ei ∩ Ri > 0} for i = 1, 2.
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Example 7. To illustrate the effectiveness of the proposed solution, this example involves a virtual
situation wherein two planar robot arms have to move from their initial to final states whilst avoiding
collisions and obstacles. The noise parameters taken here are σ = 0.3 while μis(t) and νis(t) are
random numbers in the interval [−1, 1]. The iterative motion of the arms is shown in Fig. 12. We note
here that when the end-effecter overcomes an obstacle from the side of the obstacle, the second link
(Link 2) is pulled inside the first link (Link 1) ensuring that the entire arm avoids the obstacle. In the
final maneuver the translational arm is pulled out so that the end-effector reaches the target.

7. Concluding Remarks
The paper presents a simple yet systematic and robust scheme for solving the motion planning and
control problem of multiple point-mass robots. A tailored velocity algorithm is used to drive the
robots towards its goal at all times and render it stationary once it reaches this goal. Then with a
careful definition of the turning angle εi , we generate the control laws so that the robots can avoid
various types of obstacles along their paths.

The control laws proposed in this paper also ensure an asymptotic stability of the system. This
is proven using the Direct Method of Lyapunov. While we have proved the asymptotic stability of
the system, computer simulations using point-mass robots and anchored 2-link (RP) manipulators
highlight numerically the stabilization property of the system. In addition, we have studied the effect
of noise in simulations showing the robustness of the system.

Future work will consider real-time experiments by incorporating the proposed controllers into
real robots. Other work will involve motion planing and control of nonholonomic mechanical
systems in literature. The car-like robots, tractor-trailor systems and the mobile manipulators are such
examples.
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