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A B S T R A C T

Over the last ten years, the hedonic approach has been acknowl-
edged as the most appropriate method for addressing the val-
uation of goods that have a non-constant quality. This thesis is
structured in four independent papers that investigate statisti-
cal problems related to this approach. The aim is to improve
actual knowledge in the hedonic field through an empirical or
theoretical approach, and provide results that are useful for re-
searchers and practitioners.
The price index problem in the hedonic context is discussed
in the first two papers. The first paper introduces a theoreti-
cal framework for estimating hedonic price indices and their
confidence intervals. The second paper analyzes the asymptotic
properties of the most common hedonic price indices. The third
paper focuses on variable selection in hedonic models where
multicollinearity is present. In particular, it proposes a new vari-
able selection algorithm that outperforms ordinary automated
selection techniques. The fourth paper implements a method-
ology for comparing the prediction accuracy of two hedonic
models.
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A statistical analysis, properly conducted,
is a delicate dissection of uncertainties,

a surgery of suppositions.

— M.J. Moroney
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Part I

I N T R O D U C T I O N



1
H O U S I N G G O O D S A N D T H E H E D O N I C
A P P R O A C H

1.1 the hedonic approach

In the last ten years, the hedonic approach has been acknowl-
edged as the most appropriate method for addressing the val-
uation of goods that have a non-constant quality. The starting
point of this approach is the hedonic hypothesis: Each good
is considered a bundle of characteristics, and its price depends
solely on these characteristics. The economic theory supporting
the hedonic hypothesis dates back to Lancaster (1966) and was
successively developed by Rosen (1974).
Let pti and xti := (xti,1, ..., xti,K), i = 1, ...,n denote the price of
a good i at time t and its corresponding K characteristics. The
hedonic hypothesis assumes that the price of a good depends
on its characteristics:

pti = f
t(xti,1, ..., xti,K), i = 1, ...,nt, t = 1, ..., T ,

where the function ft describes how the characteristics interact
to build the price. The number of goods observed in period t is
denoted by nt, and it is assumed that nt > K. Clearly, this ana-
lytical relation does not hold in real-world situations, where too
many factors participate in the price-building process. To solve
this problem, it is assumed that the observed price and char-
acteristics are realizations of random variables related through
the following stochastic model

pti = f
t(xti,1, ..., xti,K) + u

t
i , i = 1, ...,nt, t = 1, ..., T , (1)

where uti represents a stochastic error term encompassing all
the factors not accounted for by the characteristics. The func-
tion ft is usually called the hedonic regression function, or
simply the hedonic function. Unfortunately, as pointed out by
Rosen (1974), no economic model allows to define an a priori
functional form, therefore implying that estimating the hedonic
function should be a data-driven process.
Depending on the use of equation (1), hedonic research can
be classified in two categories. The first category focuses on

2



1.1 the hedonic approach 3

the impact of a specific subset of characteristics on the price.
This category has been extensively treated in the hedonic lit-
erature, and includes studies attempting to price environmen-
tal amenities, measuring the impact of socio-demographic vari-
ables, and evaluating policy decisions. This category typically
uses an econometric framework, for the purpose is to conduct
a ceteris paribus analysis of the variables influencing the price.
The classical approach consists of linearly regressing the price
of a house on its characteristics, and considers the estimated
coefficients implicit prices of the characteristics. Testing proce-
dures are then used to assess the impact of each characteristic
on the price of the good.
The second category includes studies aiming to investigate the
predictive accuracy of the hedonic model (1). To this end, the
traditional ceteris paribus point of view is not required, and
a statistical approach using a wide range of estimation tech-
niques is adopted. In particular, the linear hedonic function is
often considered too restrictive, and semiparametric and non-
parametric estimation techniques are used.
Surprisingly, although prediction is of utmost importance in
computing hedonic price indices, this category has played a
minor role in the hedonic research field. Few researchers have
addressed the problem of predicting prices according to given
characteristics, and even fewer have tried to build hedonic price
indices for housing goods.
Two major domains in which hedonic methods are applied are
high-technology goods and housing goods. In this thesis, we
focus on housing goods and, in particular, on single-family
houses for the canton of Zurich. In contrast to the international
research stream, hedonic research applied to housing goods in
Switzerland has been undertaken in the two categories, as de-
scribed in the next section.

1.1.1 Hedonic research on housing in Switzerland

The first research paper considering a hedonic approach us-
ing Swiss housing data dates back to Thalmann (1987), who
showed differences in the characteristics affecting rents between
the city of Lausanne and its district. Grosclaude and Soguel
(1992) used a hedonic regression to assess the impact of traf-
fic noise pollution on rents for the city of Neuchatel. A study
investigating the effect of traffic noise on rents in residential
locations was also conducted by Iten and Maibach (1992) for
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the Zurich Agglomeration. In his dissertation Riedi (1992) de-
veloped a price index based on a hedonic approach for the
canton of Ticino. Studies focusing on hedonic price indices for
the real estate market were also carried out by Bender et al.
(1994). Bignasca et al. (1996) used a hedonic approach to an-
alyze the price of houses financed by the cantonal bank of
Zurich. Hoesli et al. (1997a) and Hoesli et al. (1997b) subse-
quently compared hedonic price indices with price indices re-
sulting from a repeat sales approach. In a PhD thesis, Scog-
namiglio (2000) empirically compared traditional real estate as-
sessment methods with the hedonic assessment method, and
provided practical instructions for implementing these meth-
ods. Hedonic price indices based on rents were constructed
by Fahrländer (Fahrländer (2001a) and Fahrländer (2001b)) ac-
cording to different geographic regions of the Swiss housing
market. Salvi et al. (2004) published a technical report for the
cantonal bank of Zurich, in which the impact of several char-
acteristics on the house price was analyzed. In their report, a
hedonic price index was also computed and then compared to
a price index that did not account for quality changes. In 2005,
Baranzini and Ramirez (2005) estimated the impact of noise on
rents in Geneva. Fahrländer (2006) was the first who used a
semiparametric hedonic approach to analyze the prices of con-
dominiums and single-family houses at the nationwide level.
In 2008, adding land-specific variables to the classic hedonic
model, Baranzini et al. (2008b) assessed how land affects gross
monthly rents in the urban areas of Geneva and Zurich.
In 2008, the Swiss Journal of Economics and Statistics dedi-
cated an entire issue to hedonic methods applied to housing
in Switzerland. After the introductory paper by Baranzini et al.
(2008a), Bourassa et al. (2008) compared the Swiss single-family
and condominiums price indices published by the Swiss Na-
tional Bank with hedonic-based price indices published by IAZI
and W&P.1 Salvi (2008) estimated the impact of airport noise
on property prices, taking into account spatial correlation in
the analysis. In a research paper, Fahrländer (2008) compared
two methods for computing nationwide hedonic price indices
for single-family houses and condominiums. In a paper, Banfi
et al. (2008) again considered the problem of valuing the effect
of environmental disturbances on housing goods. After having

1 Informations-und Ausbildungs-Zentrum für Immobilien (IAZI) and Wüest
& Partner (W&P) are two leading real estate consultancy firms in Switzer-
land.
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tested for market segmentation in the rental housing market for
Swiss Alpine resorts, Soguel et al. (2008) analyzed whether en-
vironmental characteristics were priced differently according to
market segmentation. Djurdjevic et al. (2008) used a multilevel
model and a classic hedonic model for rents in Switzerland to
model housing submarkets and assess the predictive capability
of these models. Finally, using a data set on monthly rents for
Geneva and Zurich, Baranzini et al. (2008c) established that for-
eigners were penalized, and paid more than autochthones for a
given dwelling quality.
Baranzini and Schaerer (2011) included in a hedonic model
characteristics based on a geographic information system to es-
timate the impact of environmental variables on the Geneva
rental market. Bourassa et al. (2011) used the hedonic approach
to compute price indices for land value, land leverage, and
house value. They estimated an error correction model of house
prices and land leverage to determine which variables affect
house prices and cause changes in land leverage.

1.2 hedonic price indices for housing goods

When hedonic methods and, in particular, hedonic price in-
dices are computed for housing goods, considerable attention
must be devoted to the adopted methodology. This because of
the magnitude of the investments realized in the housing mar-
ket. As carefully explained in a recent report published by the
OECD (2013), buying a house typically represents the single
largest investment in the life of a household and, therefore,
a sizeable amount of risk for mortgage lenders. Moreover, re-
searchers and practitioners consider house price indices indica-
tors reflecting the financial stability and the economic activity
of a nation. Households may therefore want to use house price
indices as wealth indicators and as instruments to make invest-
ment decisions, whereas firms could use house price indices to
gauge risk exposure and assess the households’ borrowing ca-
pacity. Additionally, governments could use house price indices
as a macroeconomic indicator to help make monetary policy
decisions and measure inflation. Recognizing the importance
of a sound indicator for the housing market, the Swiss Federal
Council has approved the creation of a nationwide price index
based on the hedonic approach for the Swiss housing market.
The hedonic price index should be introduced in the official
statistics in 2017.
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To measure price changes in housing goods relative to a base
period, price statisticians have defined different sorts of price in-
dices, each possessing specific statistical properties. Although
the mathematical definitions of these indices differ greatly, a
particular sort of price indices, the Elementary Price Indices
(EPI), forms the basis upon which every price index is con-
structed.
Let G := {g1, ...,gn} be a set of n goods for which the price be-
haviour has to be analyzed over the periods t = 1, ..., T , and
let pt := (pt1, ...,ptn) ′ be the sample vector containing the prices
of the goods belonging to G measured in period t. Simplifying
the price index formulae proposed by Beer (2006), two main
approaches estimate an elementary price index for a given set
of goods G :

ÊPI
st
=
µ̂(pt)
µ̂(ps)

and ÊPI
st
= µ̂

(
pt

ps

)
, (2)

where pt

ps :=
(
pt1
ps1

, ..., p
t
n
psn

) ′
represents the sample vector of the

price ratios of the goods in the base period s and in the current
period t, respectively. The functional µ̂ is the estimator of the
central tendency measure of the observed prices. Interestingly,
economic theory provides no guiding model in the choice of the
elementary index: The basic index formula and the estimator of
the central tendency measure µ must be selected according to
the axiomatic and statistical properties of the index. In addition,
to be effective, these formulae have to be complemented with a
practical description of the economic phenomenon of interest,
since the variables chosen for the price index formula depend
on the purpose of the price index. Two main choices are effec-
tuated.
First, the objects involved in the phenomena have to be identi-
fied, i.e., the set G must be defined according to the research
question. For housing goods, an initial distinction is usually
made between rental and owned properties. This distinction
can subsequently be refined to consider different types of rental
and owned properties. For example, owned properties can be
divided into residential and commercial properties. In turn, res-
idential properties can be divided into detached houses and
condominiums. Another standard partition is made according
to geographic regions, where housing markets may behave dif-
ferently. Very often, a price index is an aggregate of sub-indices,
each sub-index corresponding to a different object. These sub-
indices usually determine if price changes emanate from a par-
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ticular segment and/or good type of the housing market.
Second, a price measure must be associated with the consid-
ered objects. Once the considered objects have been defined,
specific prices have to be measured. For residential properties,
a distinction is usually made between sale and stock prices. The
sale price of a house represents the price resulting from the
supply-and-demand interaction, whereas stock prices measure
the value at a given time. Price indices based on sale prices are
mainly used to measure the inflationary pressures that house-
holds face, while price indices based on stock prices measure
wealth changes and variations in the households’ borrowing ca-
pacity.
Importantly, the set G and the price measure depend on the
purpose of the index, and are independently chosen regarding
the mathematical definition of the index. The purpose of the
index allows the practical implementation of the mathematical
definition (2). Once the purpose of the index has been defined,
no multiple uses of the index are thus allowed.
One major methodological problem arises when considering
sale prices, and is related to the change in the quality of the
good, in our case purchased houses. One implicit assumption
in the price index definition (2) is the quality invariance of ob-
jects sold during different periods. Whereas we can assume that
the quality of the stock of houses remains approximately the
same from one month to another due to the small fraction of
new houses entering the market, this may not be the case for
the basket of purchased houses. Due to extreme house hetero-
geneity, each house at a given time is considered a unique good,
and the observed period-specific prices are greatly influenced
by the quality of the purchased houses. The quality problem
stems from the intrinsic quality of each single good and the
quality of the purchased basket of goods for the entire mar-
ket. In fact, even if the same basket of houses is purchased be-
tween two periods, the quality inherent in each specific good
has changed because of time depreciation or refurbishments.
The problem of quality change is particularly acute for indices
built on the central tendency measures of prices; these indices
mix price and quality changes. Even when ratios of median
prices are considered, a marked discrepancy is observed with
the quality-adjusted price indices (see Bourassa et al. (2008)).
To address the quality-variation problem, several hedonic price
indices have been proposed in the hedonic literature. The fol-
lowing classification is based on the work of Hill (2012).
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1.2.1 Time-dummy hedonic price indices

The basic idea of time-dummy hedonic price indices is to not
rely on any specific formula from price index theory, but to
directly exploit the stochastic version of the hedonic hypothe-
sis (1) to compute quality-adjusted price indices. This intent is
achieved by introducing time-dummy variables in equation (2),
and considering the coefficients of these dummy variables as
quality-adjusted price indices. The standard approach consists
of estimating the following model by pooling all cross-sectional
data together:

p = f(X) + Dγ+ u, (3)

where p is a price vector with N :=
∑T
t=1 nt components, and X

is a N× K matrix containing the characteristics of the housing
goods over all time periods. The hedonic function is defined as
f(X) := (f(x11), f(x

1
2), ..., f(xTN))

′. The matrix D is aN× (T −1) ma-
trix containing the time-dummy variables: Dit = 1 if observa-
tion i occurs in period t, and Dit = 0 otherwise, with i = 1, ...N
and t = 2, ...T . The coefficients γ = (γ2, ...,γT ) ′ represent the
quality-adjusted price indices. The stochastic error term is rep-
resented by the N-vector u.
Although conceptually simple, and avoiding the problem of
choosing among different price index formulae, time-dummy
indices suffer from severe drawbacks. First, because an explicit
price index formula is not used, the axiomatic properties of the
computed price indices cannot be used. Second, the hedonic
function f is the same across all time periods, implying that
the price building-process is constant over time. This may be
true when housing goods are considered over several quarters,
but the hypothesis seems too restrictive when a time horizon
of several years is considered. Third, the computed indices γ
may be very sensitive to the functional form f and the estima-
tion method used to estimate equation (3), thus casting doubt
on the reliability of such indices. Finally, as observations from
new time periods are added to the pooled data set, the previ-
ously computed indices may change magnitude, possibly inval-
idating the results obtained in previous periods. Due to these
drawbacks, time-dummy hedonic price indices are not consid-
ered in the present thesis.
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1.2.2 Single and double imputed hedonic price indices

In contrast to time-dummy indices, single and double imputed
hedonic price indices address the variation quality problem by
modifying the usual price index formulae. Since the price index
formulae in (2) assume that prices for the same set of goods
G are compared between a base period s and a time period
t, single imputed hedonic indices use stochastic equation (1)
to predict the price of the goods in G for a given time period
according to the price-building process estimated in the other
time period. The resulting Hedonic Elementary Price Indices
(HEPI) are given by:

ĤEPI
st
=
µ̂(p̂t)
µ̂(ps)

and ĤEPI
st
= µ̂

(
p̂t

ps

)
. (4)

In contrast to single imputed hedonic price indices, where ob-
served prices are used in one of the two periods, double im-
puted hedonic price indices also estimate the prices in the base
period:

ĤEPI
st
=
µ̂(p̂t)
µ̂(p̂s)

and ĤEPI
st
= µ̂

(
p̂t

p̂s

)
. (5)

Single and double imputed hedonic price indices offer impor-
tant advantages over time-dummy price indices. In each time
period, a specific hedonic function ft is estimated, thus allow-
ing the imputed price index to take into account a possible mod-
ification of the price-building process occurring in the housing
market. Moreover, since in each period the estimation is carried
out independently, adding new time periods does not influence
the price index values previously computed. Finally, due to
the explicit price index formulae used, the axiomatic approach
from price index theory can be used.
These hedonic price indices, however, inherit all the estimation
problems related to equation (1), and are subject to the price in-
dex problem plaguing price index theory. In the author’s opin-
ion, however, imputed hedonic price indices provide a better
approach to the quality variation problem and therefore repre-
sent the chosen approach in the present dissertation. The prob-
lems related to these price indices are reviewed in Section 1.3.
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1.2.3 Characteristic hedonic price indices

Characteristic hedonic price indices are similar to imputed in-
dices, since in this case the hedonic function is also indepen-
dently estimated in each time period. Instead of predicting the
prices for the whole set G according to the price-generating pro-
cess estimated in the other time period, however, a single good
g∗ representative of the set G is chosen. The price behaviour of
this characteristic good is then compared across the two time
periods:

ĤEPI
st
=
p̂t(g∗)

p̂s(g∗)
.

The characteristic good g∗ usually corresponds to a central ten-
dency indicator of the characteristics’ vector. Characteristic he-
donic price indices basically possess the same advantages of
imputed hedonic price indices over time-dummy indices. It is
not clear if imputed or characteristic price indices provide a bet-
ter approach for estimating price indices. The main advantage
over imputation indices seems to be that the two different price
index formulae are unified in a single formula, thus reducing
the price index problem. This advantage seems to be compen-
sated by the problem of choosing a good g∗ representative of
the set G. If the purpose of the hedonic price index is, for ex-
ample, to provide a sound indicator of the housing market con-
dition, basing a price index on an average housing good may
neglect particular dynamics of certain types of housing goods.
Little research, however, analyzed characteristic hedonic price
indices, and these questions could provide material for further
research.

1.3 statistical problems of hedonic methods

In this section, the statistical problems related to estimating
equation (1) and computing hedonic price indices are reviewed.
These problems are of concern depending on the purpose of
the hedonic analysis, but often affect the two categories.

1.3.1 Heterokedasticity and autocorrelation

When equation (1) is estimated, the presence of heteroskedas-
ticity is thought to be caused by one of the characteristics in-
cluded in the hedonic regression. This assumption is usually
motivated by the large number of variables included in the
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initial model, thus avoiding the presence of omitted variables
in the model’s error term. In equation (3), moreover, the het-
eroskedasticity problem may be even more serious, since it is
legitimate to assume a time dependency of the error term’s dis-
tribution. In this case, the characteristics and time may be re-
sponsible for heteroskedasticity.
Although often present in hedonic regression models, the het-
eroskedasticity problem has been explicitly addressed by only
a few authors. Using only the living area and age as char-
acteristics of single-family houses, Goodman and Thibodeau
(1995) identified the age of a house as the main cause leading
to the detection of heteroskedasticity. In a subsequent analy-
sis, Goodman and Thibodeau (1997) included additional char-
acteristics and considered the possible influence of housing
submarkets in detecting heteroskedasticity. They found that, al-
though they segmented the housing market into submarkets,
age-related heteroskedasticity was observed for half of the mar-
ket segments. Fletcher et al. (2000) supported these findings,
but also identified the external area of the property as a possi-
ble characteristic causing heteroskedasticity. The heteroskedas-
ticity issue has been explored by Stevenson (2004a), who also
identified age as the main source of heteroskedasticity in hedo-
nic price equations at an aggregate level. He found, however,
that the definition of housing submarkets seems to eliminate
the heteroskedasticity problem for the majority of the submar-
kets, and argued that a lesser variation of the characteristics at
a disaggregate level may be responsible for this phenomenon.
In fact, it is not clear how the age of a house affects its price.
As explained by Goodman and Thibodeau (1995), several oppo-
site effects are usually measured by the age variable. Either the
house is old enough to produce a vintage effect and increase the
house price, or the age of a house decreases the house price due
to deterioration. Moreover, the probability of renovations usu-
ally increases with the age of the house, countering the house
depreciation. Thus, the more the age of a house increases, the
more the variance of the error term is supposed to increase,
leading to heteroskedasticity.
To address the heteroskedasticity problem, three main approach-
es have been adopted in the hedonic literature. The first, often
used when the aim is to assess the impact of externalities on
the house price, is to use Heteroskedasticity-Consistent (HC) es-
timators of the coefficients’ standard errors. This approach al-
lows the usual testing procedures, and establishes if the given
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set of characteristics is significant. White and Leefers (2007) and
Nelson (2010) represent recent publications using HC estima-
tors in the case of hedonic regressions. The second approach,
mainly used when the focus is on predicting prices, consists
of directly modeling the heteroskedastic error term as a func-
tion of the characteristics, and successively estimates the hedo-
nic model with iterative reweighted regression methods. This
modus operandi, in contrast to the previous approach, gen-
erally reduces the variance of the predictions. Goodman and
Thibodeau (1995), Goodman and Thibodeau (1997), Fletcher
et al. (2000), and Stevenson (2004a) used this approach. The
third approach is used in both categories of hedonic studies. In
the parametric context, heteroskedasticity is often considered to
be caused by a bad model specification. Thus, transformation
methods based on the paper by Box and Cox (1964) have been
applied to dependent and independent variables to assume a
normal distribution of the error term, and then proceed with
a maximum-likelihood estimation approach (see Maurer et al.
(2004)).
In contrast to heteroskedasticity, temporal autocorrelation is
usually not a problem when equation (1) and (3) are estimated,
since in this case pooled or simply cross-sectional data are used.
More relevant than time correlation is the possible spatial cor-
relation between the observations. In the housing context, loca-
tion is one of the most important characteristics determining
the price of a house. If this characteristic is not correctly taken
into account in the hedonic equation, a spatial correlation may
be present, possibly leading to inefficient and biased estimators.
The definition of a spatial correlation structure in the hedonic
price equation is mainly intended to avoid these statistical prob-
lems. To implement this structure, however, geo-spatial data are
necessary, thus increasing the amount of data necessary for es-
timation. For a review of the studies considering spatial depen-
dency in the hedonic housing context, see Hill (2012).
Importantly, the consequences of the presence of heteroskedas-
ticity and/or autocorrelation are negative for both categories
of hedonic studies. In fact, standard testing procedures are not
valid, and the model’s predictions are inefficient.

1.3.2 Functional form

The functional form problem has been addressed in various
ways, depending on the aim of the hedonic study. The stud-
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ies trying to assess the impact of a specific set of character-
istics have focused more on parametric estimation techniques,
whereas valuation and prediction studies have used nonpara-
metric methods extensively.
The first category mainly relied on the Box-Cox transformation
methods to allow general model specifications, thus maintain-
ing the interpretation of the characteristics in the price-building
process. Recently, however, modern nonparametric techniques,
although not allowing standard testing procedures, have also
been used to determine the impact of specific characteristics on
the price of a house. The second category of hedonic studies
seems to be the focus of more research than in the past, proba-
bly also due to the recent interest in hedonic price indices. Non-
parametric methods are widely used in this category, and are of-
ten combined with resampling techniques to assess the model’s
prediction accuracy. Clearly, studies focusing on prediction of-
ten use black-box estimation techniques, and determining the
role played by a characteristic in the price-building process is
not always possible. See Hill (2012) for a review of nonparamet-
ric methods applied to housing goods in the hedonic context.
Recently, the flexibility of genetic algorithms has prompted re-
searchers in the hedonic domain to apply the neural networks
estimation technique to predict prices. See Landajo et al. (2012)
for a review of this specific estimation method in the hedonic
domain.
A remark on the hedonic model’s functional form is necessary
at this point. The goal of a prediction model in hedonic studies
must be to achieve a good trade-off between in- and out-of-
sample prediction accuracy. Focusing exclusively on the in- or
out-of-sample prediction accuracy may lead either to overfitting
or underfitting the available data. This concept is of paramount
importance in the case of imputed hedonic price indices. In
fact, imputed prices for the goods observed in one period corre-
spond to out-of-sample predictions in hedonic model estimated
in another time period. In-sample and out-of-sample prediction
play thus a role in computing hedonic price indeices. Surpris-
ingly, although often possessing hyperparameters that can be
chosen to improve out-of-sample prediction accuracy, nonpara-
metric estimation techniques have not been used extensively to
compute hedonic price indices. In addition, probably due to
the binary nature of the aim driving hedonic research, semi-
parametric methods have also been rarely used in the hedonic
housing domain in general, and, in particular, to compute hedo-
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nic price indices. Up to the present, researchers seem to prefer
either full parametric or nonparametric estimation techniques,
but this approach may be questionable depending on the hedo-
nic price index that must be computed. In this author’s opinion,
using a semiparametric approach to estimate equation (3) could
provide a more flexible functional form, thus solving one of the
problems related to time-dummy price indices.

1.3.3 Variable selection and multicollinearity

When the purpose of the statistical analysis is to establish if a
specific subset of characteristics affects the price-building pro-
cess, variable selection methods are used. Since no economic
model is available to guide the researcher in selecting relevant
characteristics, the bottom-up testing approach is impractical,
since the initial variables chosen for inclusion in the hedonic re-
gression are completely subjective. A common strategy adopted
by researchers and practitioners is thus to introduce all the
available characteristics in the hedonic price function and then
use a top-down testing approach. Although this approach pro-
vides a better alternative than the bottom-up approach, this ap-
proach also presents some, often ignored, considerable draw-
backs. First, when several subsequent tests, i.e., multiple tests,
are performed, the final confidence level does not correspond
to the nominal level of each test. Moreover, the tests are gener-
ally not independent of each other, thus requiring sophisticated
statistical techniques to compute the final level of the multiple
tests. Second, when the number of characteristics is large, it
is difficult to choose which variables to test without involving
subjective judgements of the variables’ importance.
The problems that arise when these testing approaches are used
are worsened by the presence of multicollinearity among the
characteristics. In this case, the variance of the estimated co-
efficients is usually high, making the variables not significant.
Excluding a not significant variable in the selected model when
multicollinearity is present may result in a severe model mis-
specification, and lead to the wrong conclusions concerning the
set of characteristics affecting the price. Moreover, the presence
of multicollinear characteristics negatively affects the predic-
tion accuracy of hedonic linear models, and may cause insta-
bility in the estimation results for other regression methods.
Although multicollinearity is not a major concern for many
fields, it naturally occurs when the hedonic approach is used.
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In the hedonic context, according to the author’s experience,
multicollinearity seems to result from the combination of four
situations. In the first situation, the variables contained in a sub-
set of characteristics are linearly dependent because of a techno-
logical constraint in the production process of the goods. Tech-
nology goods typically belong to this first situation. The second
case is when consumers’ preferences imply a relation between
the observed combinations of characteristic bundles. The num-
ber of bathrooms per total number of rooms in a house seems,
for example, to be dictated more by consumers’ preferences
than by technological constraints. The third situation appears
when two characteristics are proxies for the same unobserv-
able variable. The physical volume and the number of rooms
in a house can be thought of as proxies of a ‘space’ variable,
and will probably be highly correlated. Finally, multicollinear-
ity could arise when polynomial and/or interaction terms of
the characteristics are considered in the hedonic function. This
case occurs when one has a statistical need to obtain a good fit,
describe a non-linear behaviour of a characteristic of interest,
or take into account the possible heteroskedasticity of the error
term. The variable age, for example, is typically considered to
cause heteroskedasticity and, therefore, age’s quadratic and cu-
bic terms are often included in the main regression. It is thus
important to stress that, although multicollinearity may not be
present among the original set of characteristics, it could be in-
duced.
Surprisingly, the multicollinearity problem is often neglected in
the hedonic literature. Multicollinearity indicators, such as the
variance inflation factor and the condition number, are rarely
reported in hedonic publications, thus casting shadow on the
validity of the selection procedure and on the predictions’ accu-
racy.

1.3.4 Hedonic indices and the price index problem

In the present context of heterogeneous goods, the price index
problem is defined as the inability to choose a specific price
index formula in (2). This choice exists not only in selecting a
general price index formula but also in adopting a central ten-
dency indicator µ. Two main approaches have been suggested
in the price index literature to address the price index problem.
The first approach, based on the economic theory of utility and
cost functions, demonstrates how each price index formula cor-
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responds to specific assumptions made about the utility or cost
functions. Depending on the validity of these assumptions, a
price index can thus be selected. The second approach uses the
axiomatic theory developed in the price index literature. This
approach assumes that a price index must satisfy a certain num-
ber of axioms to effectively measure price changes. To choose
among different price index formulae, a given set of axioms is
chosen. Each axiom is then checked for each index in turn.
These approaches, however, were developed for classic price
indices. Beer (2006) adopted an axiomatic approach to verify
the axiomatic properties of general hedonic elementary price
indices. To the author’s knowledge, Beer’s work represents the
first attempt to solve the price index problem in the hedonic
context. More recently, Hill and Melser (2008) investigated the
hedonic price index problem for housing goods. They conclu-
ded that the hedonic approach complicates the index problem,
and introduced a new source of variation in the indices. Up
to the present, the price index problem has been neglected in
the hedonic literature, and requires further research to be ad-
dressed.

1.4 personal contribution

In light of the statistical problems, four research papers have
addressed one specific problem in turn. The aim was to extend,
through an empirical or theoretical approach, actual knowledge
in the hedonic field, providing results that are useful for re-
searchers and practitioners.
The price index problem in the hedonic context is discussed in
the first two papers. The third paper focuses on variable selec-
tion in hedonic models where multicollinearity is present. In
particular, a new variable selection algorithm that outperforms
ordinary automated selection techniques is proposed.
The fourth paper implements a methodology for comparing
the prediction accuracy of two hedonic models. The empirical
results of these papers are all based on a data set kindly pro-
vided by Wüest & Partner, an international real estate consul-
tancy firm. Transaction prices for single-family dwellings and
their corresponding characteristics were collected for the Swiss
canton of Zurich from banks, insurance companies, and other
real estate agencies. The collected data are organized in 44 sub-
sequent quarterly data sets, spanning the first quarter of 2001

to the fourth quarter of 2011.
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1.4.1 The econometric foundations of hedonic elementary price in-
dices

The first article is a paper originally written by Brachinger and
Beer (2009), thoroughly revised and extended by Dr Michael
Beer and the author in 2012 (see Brachinger et al. (2012)). It
proposes a mathematical description of characteristics and ele-
mentary aggregates. In the following step, a hedonic economet-
ric model is formulated, and hedonic elementary population
indices based on (2) are explicitly defined by choosing a cen-
tral tendency indicator µ. We emphasise that population indices
are unobservable economic parameters that must be estimated
with suitable sample indices. It is shown that, within the de-
veloped framework, many of the hedonic index formulae used
in practice are identified as sample versions corresponding to
particular hedonic elementary population indices.
Using the introduced theoretical framework, a general proce-
dure for estimating the confidence intervals of hedonic elemen-
tary price indices is then proposed. This procedure is imple-
mented in the empirical part of the paper - the author’s prin-
cipal contribution -, where the hedonic indices are estimated
along with their bootstrapped confidence intervals. To compare
the sample variation of the hedonic price indices, the confi-
dence intervals’ lengths are then computed. The obtained con-
fidence intervals’ lengths, together with the results from price
index theory, suggest an empirical answer to the price index
problem. This conclusion partially sheds light on the price in-
dex problem, allowing practitioners to choose among different
price index formulae.

1.4.2 Asymptotic properties of imputed hedonic price indices in the
case of linear hedonic functions

In the second paper, the asymptotic properties of the most com-
mon hedonic price indices based on the elementary price in-
dices presented in (2) have been analyzed. In particular, the he-
donic counterpart of the Laspeyres, Paasche, and Fisher price
index has been considered for the single, double, and character-
istic methods. In fact, although these indices are used widely,
little research has been conducted to investigate the asymptotic
properties of these hedonic price indices. The present paper
therefore attempts to fill the actual knowledge gap by analyz-
ing the asymptotic properties of the most commonly used im-
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puted hedonic price indices.
The analysis must be considered as a new theoretical approach
for addressing the price index problem, relying on the stochas-
tic component introduced by the hedonic approach, and usu-
ally not present in ordinary price indices. Interestingly, the as-
ymptotic equivalence of single imputed, double imputed, and
characteristics hedonic price indices has been established in the
case of a linear hedonic function. This result appears to be quite
important, since it implies that the price index problem tends
to vanish in large samples from a probabilistic point of view,
thus alleviating an uncomfortable situation price statisticians
have to face.
Despite the importance of the results, they must also be care-
fully placed in the context in which estimating hedonic models
takes place. In the case of a non-linear hedonic regression func-
tion, our results are generally not valid, even for continuous he-
donic functions. An important case is represented by log-linear
hedonic models, which are commonly used to model the hedo-
nic prices of housing goods.
A secondary result of the paper concerns the asymptotic distri-
bution of hedonic price indices. Due to the high nonlinearity
of the parameters present in the hedonic price index formu-
lae, it seems unrealistic to analytically compute the asymptotic
distribution of such indices even in the case of linear hedonic
function, which suggests the resampling methods described in
the first paper should be used.

1.4.3 A new approach to variable selection in the presence of multi-
collinearity: a simulated study with hedonic housing data

The third paper evaluates the impact of multicollinearity on
automated variable selection procedures. In particular, back-
ward stepwise selection based on the Akaike Information Cri-
terion (AIC) and the Bayesian Information Criterion (BIC) crite-
ria is considered. This objective is achieved by comparing the
model selection performance of various selection methods in
hedonic regression models where noise variables inducing or
not inducing multicollinearity have been introduced. In addi-
tion to analyzing widespread stepwise selection methods based
on information criteria, a new selection method using a multi-
model approach is also examined.
The performance of the selection procedures is gauged regard-
ing their ability to identify the data-generating process. To this
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end, a data-generating process is simulated. The paper exclu-
sively focuses on identifying this data-generating process, as-
suming that the process is a nested version of a more general
model in which all the available characteristics are included in
the analysis. The ability of each selection method to correctly
identify this data-generating process is compared for different
simulation settings.
The findings suggest that, when multicollinearity is not present,
backward stepwise regression is a reliable method for iden-
tifying the original data-generating process. The performance
of this selection method, however, is decreased in the case of
noise variables inducing multicollinearity, thus requiring the
use of an alternative selection approach. To solve this problem,
a selection method based on a multimodel approach has been
suggested. The proposed method clearly shows better perfor-
mance in the case of multicollinearity and, surprisingly, seems
to perform equally well with the AIC and BIC criteria. These two
features are particularly important, since even if multicollinear-
ity is present and the non-appropriate information criterion for
the set-up is used, the correct set of informative variables is in
general selected.

1.4.4 Selection of regression methods in hedonic price models based
on prediction loss functions

The fourth paper analyzes how the selection of a regression
method in hedonic price models is affected by the loss function
used to assess the model’s prediction accuracy. To this aim, a
given hedonic price model is estimated using an ordinary least
squares regression method and a robust regression technique.
The predictive accuracy of each regression method is computed
for various loss functions, and then compared to the prediction
accuracy of the rival estimation method. This comparison is per-
formed by difference in means t-tests on prediction losses.
Up to the present, only a few studies have illustrated the advan-
tages of robust estimation methods in hedonic models when the
main goal is to analyse characteristics’ implicit prices. It is not
clear, however, whether estimation techniques perform better
than usual OLS estimators from a prediction point of view, and
whether this performance depends on the loss function used to
compute the prediction error.
To assess the models’ prediction accuracy, losses caused by pre-
dictions obtained with a classic linear regression model are
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compared to losses caused by predictions obtained with ro-
bust estimation techniques. This intent is achieved by carrying
out mean-difference tests for paired samples on the prediction
losses. In particular, three loss functions were considered in the
present analysis: square, absolute, and bisquare loss function.
A rough comparison of the expected loss point estimates, as of-
ten conducted in the hedonic literature, is shown to be mislead-
ing, since it does not account for the sample variation of these
point estimates. Moreover, the out-of-sample predictive accu-
racy may depend strongly on the resampling technique used to
compute out-of-sample predictions. Great care is thus needed
in interpreting the out-of-sample prediction accuracy. Based on
the methodology, the robust estimator was shown to perform
as well as the OLS estimator for the square and absolute loss
functions. Interestingly, although the two regression methods
showed similar coefficients’ values, the robust estimator per-
formed significantly better for the bisquare loss function.
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T H E E C O N O M E T R I C F O U N D AT I O N S O F
H E D O N I C E L E M E N TA RY P R I C E I N D I C E S 1

2.1 introduction

A Consumer Price Indices (CPI) measures the average price
change of consumer goods in a market between two fixed time
periods, assuming that their quality remains constant. In prac-
tice, however, the quality of the universe of products that house-
holds consume is continually changing. It is therefore necessary
to estimate the contribution of the quality change to the ob-
served price change in order to measure the quality-corrected
‘pure’ price change.

The state-of-the-art manner of handling differences and chan-
ges in quality is the so-called hedonic approach. Its main idea is
to identify the quality of a product – or, in other words, its
‘potential contribution . . . to the welfare and happiness of its
purchasers and the community’ (Court, 1939, p. 107) – with a
vector of product characteristics. In the hedonic approach, a
regression equation is estimated relating the characteristics of
the product to its price. Once such a relationship is established,
the price of any similar item can be predicted by plugging its
characteristics into the estimated hedonic (regression) function.

CPI concepts usually structure the basket of consumer goods
in a hierarchical way. Individual price observations are trans-
formed into a final index value through a sequence of aggrega-
tion steps. In the first stage, the price evolution is individually
observed for restricted groups of homogeneous products, the
so-called elementary (expenditure) aggregates. These aggregates
usually serve as strata for data collection and form the build-
ing blocks of a CPI. For each of them, a so-called elementary price
index is calculated. In further stages, these elementary price in-
dices are ‘averaged to obtain higher-level indices using the rela-
tive values of the elementary expenditure aggregates as weights’
(ILO et al., 2010, para. 9.3). The need for adjusting price mea-
surements for quality change normally appears at the level of
elementary aggregates when individual prices are directly com-

1 This article is a joint work by Prof. Hans Wolfgang Brachinger, Dr Michael
Beer and the author (see Brachinger et al. (2012)).
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pared. Therefore, quality adjustment is – to our opinion – pre-
dominantly an issue of elementary price indices. Elementary
price indices where the quality adjustments are based on the
hedonic approach are called hedonic elementary price indices.

The literature on hedonic methods in price statistics is steadily
growing, with Triplett (2004), ILO et al. (2010, Chap. 21) and
Hill (2011) being three of the most recent comprehensive and
fundamental overviews – the last of them with a particular fo-
cus on house price indices. The present paper contributes to
this literature in proposing a formal framework for hedonic el-
ementary price indices that incorporates and generalises these
approaches. Our framework corroborates the existing theory
by providing a novel conceptual approach from which most
of the elementary hedonic price indices used in practice can
be derived. Moreover, it defines the necessary concepts that al-
low, e.g., to examine state-of-the-art hedonic index estimators
from both an axiomatic and empirical viewpoint. We empha-
sise particularly the clear separation of elementary (population)
indices as unobservable economic parameters from their esti-
mators, the sample indices. In this aspect, the present piece of
work abuts on the mindset of papers like, e.g., Dorfman et al.
(1999), Brachinger (2002), Balk (2005), and Silver and Heravi
(2007).

Section 2.2 provides a precise definition of characteristics and
elementary aggregates. This definition permits a clear-cut and
concise formulation of an econometric model underlying ev-
ery hedonic price index. Section 2.3 discusses elementary price
index concepts in general. These concepts are extended to uni-
versal formulae for hedonic elementary population indices in
Section 2.4. Each of these indices is a well-defined economic
parameter that eventually needs to be estimated from a ran-
dom sample of observations. In Section 2.5 sample versions of
the universal formulae are presented and a general procedure
to estimate their confidence intervals is proposed. It is shown
that from these sample indices most of the elementary indices
used in practice can be derived. An empirical application of
the introduced concepts to residential housing prices is finally
presented in section Section 2.6. The paper closes with a short
summary.



2.2 elementary aggregates and the hedonic model 24

2.2 elementary aggregates and the hedonic econo-
metric model

2.2.1 Goods and characteristics

We begin by describing the basic entities of an elementary price
index, namely some consumer goods offered in a market, the
set of characteristics they exhibit, and the corresponding ele-
mentary aggregate. The formal language used for this purpose
will allow us later to build an econometric model on top. From
the outset, the characteristics of the goods play an important
role as surrogates for the notion of quality. Their omnipresence
in our framework will make the step from general (quality-
unadjusted) to hedonic (quality-adjusted) elementary price in-
dices straightforward.

Let O denote the set of all consumer goods supplied in a
market at a certain point in time.2 Here, the notion of a good
means physically tangible items like, e.g., used cars or personal
computers as well as services and other immaterial entities to
which a price can be assigned. Each of these goods exhibits a
set of characteristics. Examples of such characteristics might be
the volume or the physical mass of the good, the horsepower,
mileage or colour of a used car, or the processor speed of a com-
puter. Other non-physical characteristics comprise the location
of sale or any after-sales service. Statistically speaking, a char-
acteristic simply is a variable or an attribute. It may be scaled
on different measurement levels from nominal to cardinal.

It is obvious that not every characteristic can be observed
for a given good o ∈ O, i.e. each characteristic m is generally
only defined on a specific subset Om of O. Processor speed,
for example, is a characteristic of computers but not (yet) of
clothes or bicycles. So the domain Om of the characteristic m :

‘processor speed’ contains the set of all computers, but also all
other devices carrying a CPU including many modern house-
hold appliances, cars, and communication devices.mmight not
always be relevant to the purchaser of such goods, but techni-
cally, it is defined and measurable; we will come back to the
economic relevance of certain characteristics later. Food, hospi-
tal services, and package holidays are examples of goods for
which the characteristic ‘processor speed’ is not defined, hence
they lie outside Om.

2 We are going to raise the restriction to a single point in time in Section 2.4.
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Although characteristics can be of any measurement scale, it
is always possible to quantify their values such that they form
a subset of the Euclidean real number space. This leads to the
following definition:

Definition 2.2.1. A characteristic m is a real-valued function m :

Om −→ R defined on a non-empty subset Om of O. The set Om is
called the domain of m and, for each o ∈ Om, m(o) will be called
the m-value of o.

For the sake of simplicity, them-value of omay also be called
itsm-characteristic. The set of all characteristics will be denoted
by M := {m : Om −→ R | Om ⊂ O,Om 6= ∅}.

The reason why we put such emphasis on the domains of the
characteristics is that they will now serve as building blocks for
our definition of an elementary aggregate. Guidelines to practi-
tioners on how elementary aggregates should be specified are
traditionally rather vague and leave most decisions to the users’
discretion. The authors of ILO et al. (2010, para. 9.7), e.g., con-
fine themselves to requiring that elementary aggregates consist
of goods that are ‘as similar as possible’, ‘preferably fairly ho-
mogeneous’, ‘expected to have similar price movements’, and
‘appropriate to serve as strata for sampling purposes’. While
such formulations may suffice in practice, they are much too
cursory to serve as a building block of a hedonic economet-
ric model. The following much more formal definition of an
elementary aggregate contains all elements needed for the elab-
oration of our econometric framework.

Definition 2.2.2. An elementary aggregate G is a set of goods in
O having the following properties:

1. The set MG of the characteristics defined for all elements of G is
not empty, i.e.

MG := {m ∈M|Om ⊃ G} 6= ∅ . (6)

2. The intersection of the domains of all characteristics contained
in MG is a subset of G, i.e.⋂

m∈MG

Om ⊂ G . (7)

Each element o ∈ G will be called an item of the elementary aggregate
G. The elements of MG are called distinguishing characteristics of
G.



2.2 elementary aggregates and the hedonic model 26

Property (1) means that all goods belonging to an elemen-
tary aggregate G have at least one characteristic in common.
Conversely, if two goods do not belong to the same elementary
aggregate, there must be a characteristic that is defined for one
of these goods but not for the other. Property (2) ensures that
each good carrying all characteristics of MG is contained in the
elementary aggregate. Note that every elementary aggregate in
the sense of Def. 2.2.2 is defined relative to the set O of all goods
supplied on the market.

The following proposition shows that each elementary aggre-
gate has some kind of maximality property in the sense that its
distinguishing characteristics fully determine the items of the
aggregate. In other words, there is no item of an elementary ag-
gregate that is not contained in the intersection of the domains
of all distinguishing characteristics.

Theorem 2.2.1. Each elementary aggregate G equals the intersection
of the domains of its distinguishing characteristics, i.e.⋂

m∈MG

Om = G . (8)

Proof 2.2.1. We have G ⊂ Om for all m ∈ MG. Therefore, G ⊂⋂
m∈MG

Om. The inclusion in the other direction is given by prop-
erty 2 of Def. 2.2.2, hence equality holds.

It should be noted that an elementary aggregate in the sense
of Def. 2.2.2 may still comprise many different items. In partic-
ular, there is no explicit requirement regarding the similarity
or homogeneity of the items contained. So if, e.g., the phys-
ical mass of an object was taken as the only distinguishing
characteristic, the respective elementary aggregate would em-
brace the whole universe of physically tangible goods, exclud-
ing just services and other intangible products like computer
software. Thus we define the term ‘elementary aggregate’ in
a much broader sense than it is usually applied in practice.
However, it follows from Prop. 2.2.1 that supplementing the
set MG of distinguishing characteristics of an elementary ag-
gregate with additional characteristics leads to a diminution of
G. By selecting the appropriate list of distinguishing characteris-
tics, we may thus in practice reduce a very general aggregate to
one which satisfies the homogeneity or similarity requirements
cited above.

As a consequence of Prop. 2.2.1, it is furthermore possible
to induce elementary aggregates from samples of individual
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goods. Let O∗ ⊂ O be any set of goods. These might be, e.g., dif-
ferent models of personal computers. Let MO∗ := {m ∈M|Om ⊃
O∗} be the set of all characteristics whose domains contain these
goods, i.e. all characteristics that are defined for all elements of
O∗. In the case of personal computers, these would contain typ-
ical attributes such as CPU speed, RAM size, hard drive size,
brand, length of warranty period, etc., but also others such as
the serial number, which may not be relevant to the consumers’
purchase decision. Assume that MO∗ is not empty. Then, it is
possible to specify the elementary aggregate G(O∗) induced by
O∗. The induced elementary aggregate is defined as the intersec-
tion of the domains of all characteristics in MO∗ , i.e.

G(O∗) :=
⋂

m∈MO∗

Om . (9)

The set O∗ is thus extended by all goods on the market that
exhibit at least the same characteristics as the goods fixed in O∗.
Obviously, by means of (9), any given set of characteristics M

induces an elementary aggregate G(M) :=
⋂
m∈MOm.

Def. 2.2.2 of an elementary aggregate is admittedly guided by
theoretical elegance rather than practical pertinence. Nobody
will be able to provide a comprehensive list of the distinguish-
ing characteristics of even the simplest elementary aggregate
being used in practice. Nonetheless is such an abstract defi-
nition inevitable to make the vague notion of an elementary
aggregate manageable from an econometric viewpoint. More-
over, we presume that the idea of distinguishing characteristics
can serve as an implicit guideline for practitioners needing to
decide on which items should belong to a certain elementary
aggregate. The authors of ILO et al. (2004, para. 3.147 ff.) iden-
tify three main approaches to the classification of consumer
goods, namely the classification by product type, by purpose,
and by economic environment. Recommended practice is ‘to
use a purpose classification at the highest level, with product
breakdowns below’. Inevitably, the characteristics of goods play
a certain role when elementary aggregates are defined by prod-
uct type at the lowest level. The main merit of the concept in-
troduced in Def. 2.2.2 is thus the duality between the elemen-
tary aggregate and its distinguishing characteristics. This dual-
ity will be exploited below.

As a final note to this first section, it is worth highlighting
that the distinguishing characteristics of an elementary aggre-
gate provide some very useful means of identifying items that
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are ‘equivalent’ in a certain sense. We will use this property
later to partition an elementary aggregate into classes of equiv-
alent quality. Let {m1, . . . ,mK} ⊂MG denote any finite subset of
the distinguishing characteristics of an elementary aggregate G.
By assembling them to a vector function

m : G −→ RK, o 7−→m(o) := (m1(o), . . . ,mK(o))
′ (10)

all the items of G are mapped to a K-dimensional vector of char-
acteristics. This identification of goods with a characteristics
vector leads to an equivalence relation on G defined by

o1 ∼m o2 :⇐⇒ m(o1) =m(o2) . (11)

Two items of an elementary aggregate are thus identified if and
only if their m-values, i.e. their m1- to mK-values coincide. The
equivalence classes respective to the relation ∼m will be called
m-equivalence classes. They partition G into subsets containing
items with equal m-values. The quotient set induced by this
equivalence relation will be denoted by G/∼m.

2.2.2 Characteristics and prices

In the last section, we identified a good with a list of charac-
teristics and we showed how goods can be grouped into ele-
mentary aggregates. The economic foundation of this approach
is the consumer theory developed by Lancaster (1966, 1971).
This theory assumes that ‘one demands not just physical ob-
jects, but the qualities with which they are endowed’ (Milgate,
1987, p. 546). Consumers’ preferences are therefore originally
directed towards the characteristics of a good, and the latter
determine eventually the consumers’ preference ordering be-
tween individual items of an elementary aggregate.

Lancaster (1971, p. 140 ff.) himself emphasised that some char-
acteristics of a good are usually irrelevant for a consumer’s pur-
chase decision (such as the serial number of a personal com-
puter). Irrelevant characteristics are especially those that are
invariant for all items of an elementary aggregate. Inversely,
Lancaster defines a characteristic as relevant when ignoring it
would change the preference ordering between two items.

Driven by the consumers’ individual preferences, Lancaster’s
approach suggests that a good’s price observed on the market
is essentially determined by the relevant characteristics of that
good. This assumption is called hedonic hypothesis in the litera-
ture (see e.g. Triplett, 1987; United Nations, 1993; Dickie et al.,
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1997). The hedonic hypothesis serves as the general basis for
all hedonic price indices. In order to build up a solid theory of
hedonic price indices, we propose formulating it as an econo-
metric model in the following form:

HEM 2.2.1. Let G be an elementary aggregate with distinguishing
characteristics MG. There exists a finite set of characteristics

M
pr
G = {m1, . . . ,mKG} ⊂MG (12)

and a function hG : RKG −→ R>0, such that the price p(o) of any
item o ∈ G can be written as

p(o) = hG
(
m

pr
G (o)

)
+ ε(o) (13)

with mpr
G (o) = (m1(o), . . . ,mKG(o))

′. The residual term ε(o) is
assumed to be stochastic with conditional expectation

E
(
ε(o) |m

pr
G (o)

)
= 0 . (14)

The set Mpr
G will be called the set of price-relevant characteris-

tics, and hG is the hedonic function of G.

This model exploits the idea that for an elementary aggre-
gate for which the hedonic hypothesis holds, the set of distin-
guishing characteristics contains a finite subset of price-relevant
characteristics. They determine the price up to a residual term
that covers any quality-independent price component. Assump-
tion (14) implies that the hedonic price of an item with a certain
quality is given by the average price over all items of the same
quality.

One of the central points here is that the vector of price-
relevant characteristics is seen as a surrogate for a good’s qual-
ity. Much in the spirit of the outline provided in the System of
National Accounts 1993 (see United Nations, 1993, para. 16.105 ff.),
the term ‘quality’ subsumes all characteristics of an item which
make it distinguishable from other items from an economic
point of view. The hedonic function hG, being defined on the
quotient set G/ ∼mpr

G
, maps each class of items of equivalent

quality to a constant price.
Assumption (14) appears reasonable if all the equivalence

classes [o] are sufficiently homogeneous, which is the case when
the number of price-relevant characteristics is large enough.
Similarly to what was already mentioned above, the size and
thus the homogeneity of the individual classes is a non-increas-
ing function of the number of price-relevant characteristics, since
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adding additional characteristics generally leads to more and
thus smaller equivalence classes.

We deliberately do not impose any restrictions on the func-
tional form of the hedonic function since, at this stage, we see
no reason to do so. Finding an appropriate candidate of a he-
donic function that links the vector of price-relevant character-
istics to the average price a consumer needs to pay for an item
of equivalent quality is a purely statistical issue. Triplett (2004)
convincingly argues that ‘imposing some rule for what the he-
donic function “should” look like destroys part of the informa-
tion that market prices convey’. Referring to Rosen (1974), he
emphasises that ‘the form of the hedonic function is entirely an
empirical matter that is determined by the distributions of buy-
ers around the hedonic surface, and not by the form of their
utility functions.’ Therefore, the hedonic function can neither
provide an economic explanation for the behaviour of economic
agents nor identify demand or supply. It just describes the sta-
tistical relationship between the market price and the quality
of a good, no matter how the price and thus the purchasers’
valuation of characteristics emerge.

In the framework developed so far, we described the universe
of consumer goods available in a market at a certain point in
time. By means of distinguishing and price-relevant character-
istics, we provided a formal definition of the notion of an ele-
mentary aggregate and established a link between the price of
a good and its quality. The following section now introduces
the time dimension and defines the basic forms of elementary
price indices.

2.3 elementary price indices

2.3.1 Elementary aggregates over time

Elementary price indices measure the average price evolution
of an elementary aggregate between two time periods. There
is a base period 0, serving as reference period, and a current
period 1 for which the prices are compared. As time passes,
we may observe a certain variation of the items contained in a
given elementary aggregate: new items appear on the market
and are purchased by consumers, others disappear. This effect
is particulary pronounced for products where there is a rapid
turnover of differentiated models, such as computers, commu-
nication, and multimedia devices.
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The duality between elementary aggregates and distinguish-
ing characteristics introduced in the previous section allows for
a constant understanding of the nature of an elementary aggre-
gate over time. Instead of fixing the exact content of an aggre-
gate, we fix the distinguishing characteristics and allow new
objects to become part of the aggregate if and only if they carry
at least all these fixed characteristics. More formally, this leads
to the following definition of a current (elementary) aggregate.

Definition 2.3.1. Let T be the set of all time periods considered and
let, for any time t ∈ T, denote Ot the set of all goods supplied on the
market at time t. Let G = G0 be any elementary aggregate defined
relative to O0 and let MG be its set of distinguishing characteristics.

Then, for any time t ∈ T, the current aggregate Gt = Gt(MG) is
defined as the elementary aggregate induced by MG on Ot, i.e.

Gt(MG) :=
⋂

m∈MG

Otm , (15)

where Otm ⊂ Ot denotes the domain of characteristic m in period t.
The composite elementary aggregate GT induced by G0 is de-

fined by
GT :=

⋃
t∈T

Gt(MG) . (16)

Obviously, by means of (16), any elementary aggregate G de-
fined relative to a base period induces a composite elementary
aggregate GT for any set T of time periods. Technically, Gt(MG)

can be empty for certain t ∈ T.
If we focus on the bilateral comparison of a reference period

1 with a base period 0, one feature of our approach is that it
yields with G0 ∩ G1 ⊂ G{0,1} a straightforward identification of
the set of matched items for the two periods. Moreover, the
disappearing items are assembled in the difference set G0 \ G1

while any new unmatched items are represented by G1 \G0. The
impossibility of matching price observations over time being the
main motivation for applying quality adjustment techniques in
price statistics, these difference sets are going to be of particular
importance in our framework.

2.3.2 Concepts of elementary price indices

Relating to what was said in the last paragraph, an elementary
price index is typically calculated from two sets of matched
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price observations: individual goods are sampled from an ele-
mentary aggregate and their prices are collected over a succes-
sion of time periods. For the bilateral comparison of two time
periods 0 and 1 this implies that only those items of the ele-
mentary aggregate G = G0 are considered which remain avail-
able in period 1. Moreover, items newly appearing in period 1
are ignored as their price cannot be matched with a price in
the base period. In other words, bilateral comparisons are a pri-
ori restricted to G0 ∩ G1 (and raising this restriction will be the
central purpose of quality-adjusted price indices).

There are basically two competing approaches for the speci-
fication of an elementary price index. One approach relates the
average price of the elementary aggregate G in the current pe-
riod 1 to its average price in the base period 0, whereas the
other takes the average price ratio of the individual items as a
measure for the change in price level observed from 0 to 1.

If we denote by µ a measure of location defined for any uni-
variate distribution of positive real numbers (i.e. what we called
‘average’ above), the two approaches just described can be writ-
ten as

EPI0:1(G) =
µ
(
p̃1(G)

)
µ
(
p̃0(G)

) (17)

and
EPI0:1(G) = µ

(
p̃1/p0(G)

)
, (18)

respectively.3 Note that these indices are population indices
since they are defined on the whole population of items of a
given elementary aggregate. As such, they are latent economic
parameters that cannot be observed in practice.

Several elementary price index formulae co-exist in statisti-
cal practice which must be considered as functions ‘that trans-
form sample survey data into an index number’ (Balk, 2005,
p. 676) or, in other words, as an estimator or the sample version
of a population index.4 They base upon a sample of objects
o1, . . . ,oN ∈ G0 ∩ G1 available in both periods for which prices
ptn := pt(on) were collected. The most widely used formulae

3 In these formulae, p̃t(G) stands for the distribution of the prices {pt(o)} and
p̃1/p0(G) for the distribution of the price ratios

{
p1(o)/p0(o)

}
of all items

o ∈ G0 ∩ G1 with pt(o) being the observed price of an item o at time t
(t ∈ {0, 1}).

4 We further refer to the papers by Dorfman et al. (1999) as well as Silver and
Heravi (2007) for some discussion on the fundamental distinction between
sample and population indices.
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Population index Sample index Index type

(17) ÊPI
0:1

D =

∑N
n=1 p

1
n∑N

n=1 p
0
n

Dutot

ÊPI
0:1

J =

N

√∏N
n=1 p

1
n

N

√∏N
n=1 p

0
n

Jevons

ÊPI
0:1

HD =

(∑N
n=1

(
p1n
)−1

)−1

(∑N
n=1

(
p0n
)−1

)−1
‘Harmonic Dutot’

(18) ÊPI
0:1

C =
1

N

N∑
n=1

p1n
p0n

Carli

ÊPI
0:1

J = N

√√√√ N∏
n=1

p1n
p0n

Jevons

ÊPI
0:1

HC =

(
1

N

N∑
n=1

(
p1n
p0n

)−1
)−1

‘Harmonic Carli’

Table 1: Elementary sample indices.

are summarised in Table 1. They differ in the population in-
dex they target and in the way they implement the measure of
location µ, namely, e.g., as arithmetic, geometric, or harmonic
mean. The Jevons elementary price index formula targets both
population indices simultaneously, since (17) and (18) coincide
if µ is implemented by the geometric mean.

There has been much debate in the literature on which of
these and other alternative elementary sample indices was the
most favourable. We do not intend to take this discussion any
further but refer to Chapter 20 of ILO et al. (2004) for a detailed
and comprehensive overview. It is just worth highlighting that
the discussion on what index type to prefer should start at the
level of population indices where no sampling issues arise. If
there is no apparent economic reason to favour either (17) or
(18) and any specific choice of µ, there may be axiomatic and
empirical arguments that lead to a preferred definition. We are
going to take up this point later when we look at hedonic ele-
mentary population indices.
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The most important issue of the elementary price indices in-
troduced so far is their inability to cope with a changing uni-
verse of items contained in the elementary aggregate. Limiting
the set of items to those which are available in all time periods
considered is, in general, a far too restrictive strategy. For many
specific aggregates, especially for those subject to rapid techno-
logical progress, the set of items available in the base period
and in all current periods will be too small to represent well
enough the range of items of the aggregate.

Therefore, the set of items for which prices are available in
all time periods considered must be artificially enlarged. This
is usually done by assigning (‘imputing’) estimated prices to
those items of the aggregate which are unobservable in certain
time periods. Conventional methods for imputing unobserved
prices are typically ad hoc solutions that attempt to deduce the
price of an item by ‘quality-adjusting’ the observed price of an-
other item of similar quality (see e.g. ILO et al., 2004, Chap. 7

or Triplett, 2004, Chap. II for a comprehensive overview). How-
ever, they lack a sound methodological foundation and may not
work consistently for all individual items of an elementary ag-
gregate. A more satisfying solution to the problem of imputing
unobservable prices is offered by the hedonic approach.

Based on the hedonic econometric model introduced in Sec-
tion 2.2, we are now going to extend the two population indices
outlined above such that they incorporate the entire population
of a composite elementary aggregate.

2.4 hedonic elementary price indices

2.4.1 The hedonic econometric model revisited

The hedonic econometric model establishes a relationship be-
tween characteristics and prices of the items of an elementary
aggregate. This relationship is valid for a fixed point in time. In
order to explicit its time dependency and to facilitate the com-
parison of two or more time periods, we propose to reformulate
the model as follows:

HEM 2.4.1 (in time). Let G = G0 be any elementary aggregate de-
fined relative to the set O0 of all goods supplied on the market at a base
period 0 and let MG be its set of distinguishing characteristics. Let GT
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be the composite elementary aggregate induced by G0 for a given set
of time periods T. There exists a finite set of characteristics

M
pr
G = {m1, . . . ,mKG} ⊂MG (19)

and, for each period t ∈ T, a function htG : RKG −→ R>0, such that
the price pt(o) of any item o ∈ Gt available at time t can be written
as

pt(o) = htG
(
m

pr
G (o)

)
+ εt(o) (20)

with mpr
G (o) = (m1(o), . . . ,mKG(o))

′. For all t ∈ T, the residual
term εt(o) is assumed to be stochastic with conditional expectation

E
(
εt(o) |m

pr
G (o)

)
= 0 . (21)

Note that we assume the set Mpr
G of price-relevant character-

istics to be time-invariant. From a theoretical a posteriori view-
point, this condition is less restrictive than it first appears since
we only request that M

pr
G be finite. It may thus well assemble

the whole set of characteristics which prove to be price-relevant
in at least one of the time periods considered. If a characteristic
is price-irrelevant in a certain period of time, the corresponding
hedonic function will just neglect it.

The central aspect of this reformulation of the hedonic econo-
metric model is the postulated time-dependency of the hedonic
function htG. Fixed items are sold on the market for different
prices at different points in time (this is what price statistics is
all about), and the hedonic function mirrors these movements
in how the market evaluates the inherent quality of an item.
For an elementary aggregate where the hedonic econometric
model holds, the quality-adjusted price evolution is thus fully
represented by the evolution of the hedonic function over time.
An appropriate comparison of the hedonic functions in a base
and a current period may thus be seen as an implementation of
an elementary price index measuring pure price change.

Before we proceed to the formulation of hedonic elementary
population indices based on the idea just described, we propose
simplifying the notation by ‘randomising’ the hedonic econo-
metric model introduced above. Imagine a random draw from
all the items of an elementary aggregate Gt at time t and de-
note by Mt the random vector of price-relevant characteristics
and Pt the random variable representing the price of the drawn
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item.5 By the hedonic econometric model, the relationship be-
tween Mt and Pt is given by

Pt = htG(M
t) + εt (22)

where the random error εt has Eεt = 0 for all t ∈ T and is
assumed to be independent of Mt. Within this additive error
model, the hedonic function htG therefore is exactly the condi-
tional mean

htG(m) = E(Pt |Mt =m) , (23)

and the conditional distribution P(Pt |Mt) depends onMt only
through htG.

2.4.2 Simple hedonic elementary population indices

In Section 2.3 we identified two approaches for defining el-
ementary population indices either as the ratio of some av-
erage prices (17) or as some average of the price ratios (18).
Both of these population indices were defined on the restricted
set G0 ∩ G1 of items available in both the base and the cur-
rent period. With this restriction, it was ensured that the com-
pared prices belonged to identical goods and thus that the qual-
ities of the items compared were equal. Consequently, the mea-
sured price evolution was not subject to any bias due to quality
change.

Hedonic elementary price indices adhere to the paradigm of
fixed reference qualities, but they do not rely on a fixed set of
items for which prices need to be available in both time peri-
ods. Once the hedonic function for a certain time period is de-
termined, it is able to deliver imputed prices for virtually any
vector of price-relevant characteristics and as such for any item
quality. The idea of hedonic elementary price indices is now
to fix the reference quality of an elementary aggregate through
vectors of price-relevant characteristics. With the help of the
hedonic functions, the reference qualities are mapped to corre-
sponding prices that can ultimately be compared using one of
the two elementary price index approaches introduced above.

The simplest form of a hedonic elementary price index takes
just one vector µ∗ of price-relevant characteristics as reference

5 The distribution of the random variable Pt corresponds to the distribution
of prices denoted by p̃t(G) in Section 2.3, and the expectation E(Pt) is one
possible implementation of µ

(
p̃t(G)

)
.
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quality. Irrelevant of the type of elementary population index
used, this yields the index formula

HEPI0:1(G) =
h1G(µ

∗)

h0G(µ
∗)

=
E(P1 |M1 = µ∗)

E(P0 |M0 = µ∗)
(24)

which we call simple hedonic elementary population index.6 It re-
lates the imputed price of the reference quality µ∗ at time 1 to
its imputed price at time 0.7

The open question here is how µ∗ should be defined. The
most obvious approach is to take some mean vector of price-
relevant characteristics of the items available at the base or
the current period. Formally, this gives us either µ∗ = EM0

or µ∗ = EM1 and with (24) corresponding implementations of
the simple hedonic elementary population index.

The disadvantage of both of these implementations is that
they asymmetrically favour the quality spectrum of the elemen-
tary aggregate at either the base or the current period. We there-
fore propose to work with a generalised reference quality dis-
tribution, represented by a random vectorM. The most natural
choice for this reference distribution would probably be a mix-
ture of M0 and M1, i.e.

PM = gPM0 + (1− g)PM1 , (25)

with PM, PM0 and PM1 being the probability measures of M,
M0 and M1, respectively, and g ∈ (0, 1). If we set µ∗ = EM, we
get with g = 0 or g = 1 the two implementations of simple he-
donic elementary population indices already introduced above
and with g = 1/2 a sensible candidate of an index that symmet-
rically incorporates the quality spectrum in both the base and
the current period.8

6 Hill and Melser (2008) use the term ‘characteristics price index’ for this type
of index formula.

7 Technically, the index (24) is only well-defined if µ∗ lies in m
pr
G (G0) ∩

m
pr
G (G1), i.e. in the domains of both h0G and h1G. If this is not the case, a

minimal requirement is that both hedonic functions can be extended to a
domain including µ∗. This is normally not a problem in practice if a regres-
sion approach is chosen that allows for reasonable out-of-sample prediction.

8 For the special case of parametric hedonic functions, Brachinger (2002) intro-
duces simple hedonic elementary population indices of the type (24) under
the name of ‘true hedonic price indices’. He distinguishes explicitly the im-
plementations obtained when µ∗ = EM with g = 0, 1, or 1/2. Referring
to their orientation towards either the base, the current, or both periods si-
multaneously, he calls these implementations ‘true hedonic Laspeyres price
index’, ‘true hedonic Paasche price index’, and ‘true hedonic adjacent peri-
ods price index’, respectively.
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2.4.3 Full hedonic elementary population indices

Simple hedonic elementary population indices evaluate the ‘dis-
tance’ of the two hedonic functions in the base and in the cur-
rent period at just one single quality point µ∗. Although this
is certainly a valid practice, there are ways of better exploiting
the full spectrum of the reference quality distribution and of
obtaining a more representative index value.

One such way is to transform the whole reference quality
distribution with the help of the two hedonic functions and to
compare the resulting price distributions using the approaches
described in Section 2.3.2. If we take the expectation as measure
of location µ, the population indices (17) and (18) translate into
full hedonic elementary population indices defined by

HEPI0:1(G) =
Eh1G(M)

Eh0G(M)
(26)

and

HEPI0:1(G) = E

[
h1G(M)

h0G(M)

]
. (27)

In both cases, the expectations are built over the whole range of
M and cover thus the reference quality distribution as a whole.9

We see that the distribution of M in principle does not need
to be related to either M0 or M1, although a mixture like (25)
is probably still the most reasonable choice. The minimum as-
sumption to be made is that the range of M is contained in the
domain of both h0G and h1G. Note that, following (23), we have

EhtG(M) = EM(EPt |Mt(Pt |M)) (28)

=

∫
R

KG

[∫
R

pdPPt|Mt(p |m)

]
dPM(m) .

for t ∈ {0, 1}. Here, PPt|Mt stands for the probability measure of
the conditional distribution of Pt given Mt, and EPt |Mt is the
expectation with respect to this probability measure. Moreover,
PM is the probability measure respective to the distribution

9 Diewert et al. (2009) showed that for the widely used special case of log-
linear hedonic functions and under certain assumptions for the reference
quality distribution used (which are satisfied when g = 0 or g = 1), both the
simple and the full hedonic elementary indices are equivalent.
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of M, and EM is its expectation. If one considers continuous
random variables and vectors, equation (28) can be rewritten as

EhtG(M) =

∫
R

KG

[∫
R

p
f(Pt,Mt)(p,m)

fMt(m)
dp

]
fM(m)dm (29)

with f(Pt,Mt) being the common probability density of Pt and
Mt, fMt the marginal density ofMt and, finally, fM the density
of M. It can be seen that for this equation to be well-defined,
the support of fM needs to be contained in the support of fMt

for t ∈ {0, 1}. In other words, for each vector m ∈ RKG with
fMt(m) = 0, it is necessary that fM(m) = 0. This has to be
taken into consideration when the reference quality M is cho-
sen. In particular, PM must not attribute a positive probability
to any set of characteristics vectors that does not have a positive
probability with respect to PM0 and PM1 as well, i.e. within the
populations available in both the base and current period.

In practice, therefore, it is even useful to assume that PM0

and PM1 attribute a positive probability to any non-discrete set
of vectors in the characteristics space, i.e. the cartesian product
of the ranges of all price-relevant characteristics. This ensures
that out-of-sample-prediction is possible, and thus there are no
formal restrictions on the distribution of reference characteris-
tics M.

2.4.4 Universal formulae for hedonic elementary price indices

In the last two sections, we introduced alternative definitions
of a hedonic elementary population index. There the expecta-
tion operator was used as a special choice of a measure of lo-
cation. There is, however, no a priori reason for this restriction.
A natural generalisation of this approach results if we admit
transformations of the price distributions. The expectation of
the transformed price distribution characterises the location of
this distribution. A measure of location of the original price dis-
tribution then results from backtransforming the expectation of
the transformed price distribution.

Based on these reflections, the full hedonic elementary popu-
lation indices (26) and (27) can be generalised to

HEPI0:1(G) =
ϕ−1(Eϕ(h1G(M)))

ϕ−1(Eϕ(h0G(M)))
(30)
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and

HEPI0:1(G) = ϕ−1

(
E

[
ϕ

(
h1G(M)

h0G(M)

)])
(31)

where ϕ is a continuous and injective function that maps a
connected subset of R to R and ϕ−1 is its inverse.

With respect to the usual elementary price index formulae,
three particular ϕ-functions play an important role. These are
the identity, the hyperbolic transformation ϕ(x) = x−1 as well
as the natural logarithm ϕ(x) = ln x. We will see below that
depending on the choice of ϕ among these alternatives, the
well-known hedonic elementary sample indices can be derived.
Note that both definitions, (30) and (31), coincide if ϕ(x) = ln x.
This is due to the linearity of the expectation and the properties
of the natural logarithm.10

We propose with (30) and (31) two universal prototypes of he-
donic elementary population indices that leave, however, some
degrees of freedom for the choice of ϕ and of the reference dis-
tribution of M. We argued already that the latter is reasonably
defined as a (symmetric) mixture of the base and the current
period characteristics. However, there is no evident argumenta-
tion that favours either choice of ϕ except for the coincidence
of both formulae if ϕ(x) = ln x. Beer (2007a) discussed this
question – a variant of what is called the price index problem in
the literature (see e.g. Hill and Melser, 2008) – in the light of
the well-known axiomatic approach to statistical price indices
(Eichhorn and Voeller, 1976; Eichhorn, 1978) and managed to
prove that (30) is preferable to (31) since it satisfies all proposed
index axioms if ϕ(λx) = ϕ(λ) +ϕ(x) or ϕ(λx) = ϕ(λ)ϕ(x) for
all λ, x ∈ R. This latter condition, however, holds for all three ϕ-
functions proposed above, so the axiomatic approach does not
seem to be sufficient for choosing one ‘best’ universal hedonic

10 Silver and Heravi (2007) use exactly (30) with ϕ(x) = ln x as the definition
of a ‘Jevons’ population index, although just for the case of conventional (i.e.
non-hedonic) elementary price indices. In fact, we could well rewrite (17)
and (18) in an analogous way as

EPI0:1(G) =
ϕ−1(Eϕ(P1))
ϕ−1(Eϕ(P0))

and
EPI0:1(G) = ϕ−1

(
E
[
ϕ
(
P1/P0

)])
with P0 and P1 being the base and current period prices of the same item
randomly drawn from the reference set G0 ∩ G1.
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elementary population index. Hence, there are obviously other
arguments that need to be considered.

If there are no theoretical reasons that determine the choice
of a specific population index, the introduction of the hedonic
econometric model described by (20) offers at least the possi-
bility to gauge the candidate index formulae according to the
statistical properties of their estimators. Why not opt for the
population index which can be estimated with highest statis-
tical precision? Comparing the lengths of confidence intervals
of estimators for the various population indices could therefore
offer a new approach to address the price index problem. We
are going to follow this idea through in the next two sections.

2.5 confidence intervals of hedonic price indices

2.5.1 Hedonic imputation indices

So far, we always remained on the abstract level of index def-
initions and population indices which are, as we repeatedly
stressed, economic parameters that cannot directly be observed
and eventually need to be estimated. For this purpose, we first
turn towards the estimation of the time-varying hedonic func-
tions using an appropriate regression approach. Any estimate
ĥtG of the hedonic function htG can be seen as the result of a
mapping

h : RNt

>0 ×RNt×KG −→ H

(Pt, Mt) 7−→ ĥtG := h[Pt, Mt]
(32)

where Pt = (Pt1, . . . ,P
t
Nt) denotes the random vector of sam-

pled prices, Mt is the respective Nt ×KG random matrix of the
price-relevant characteristics (Mt

1, . . . ,M
t
Nt) observed in period

t, and H := {h : RKG −→ R>0} denotes the admissible hedonic
functions applicable to the given elementary aggregate G.11

Assume that ĥt (t ∈ {0, 1}) are estimators of the hedonic func-
tions ht based on regression of item characteristics to prices in
period 0 and 1, respectively. Then, relying on an i.i.d. sample of
reference characteristics vectors M1, . . . ,MN where Mn

L
∼ M

11 As the elementary aggregate is supposed to be fixed, we are going to lighten
the notation by dropping the index G from here on wherever possible.
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for all n ∈ {1, . . . ,N}, sample versions of the universal popula-
tion indices defined by (30) and (31) are given by

ĤEPI
0:1

=
ϕ−1

(
1
N

∑N
n=1ϕ(ĥ

1(Mn))
)

ϕ−1
(
1
N

∑N
n=1ϕ(ĥ

0(Mn))
) (33)

and

ĤEPI
0:1

= ϕ−1

(
1

N

N∑
n=1

ϕ

(
ĥ1(Mn)

ĥ0(Mn)

))
, (34)

respectively.
From these two formulae, by choosing ϕ among the alter-

natives mentioned above, we get the five hedonic elementary
sample indices displayed in Table 2 which are hedonic counter-
parts to the elementary sample indices summarised in Table 1.
We recognise that the elementary index formulae most widely
used in practice (see e.g. ILO et al., 2004, paras. 20.38–45) prove
to be estimators of the population indices (30) and (31). Among
these are the indices attributed to Dutot, Jevons, and Carli, and
the one that is called ‘Harmonic Carli’ here. Moreover, we find
a ‘Harmonic Dutot’ sample index which to our knowledge does
not appear in the literature. Note that when using ϕ(x) = ln x
both general sample indices (33) and (34) lead to the Jevons
elementary price index formula.

Once the ϕ-function is fixed and the distribution of M is de-
fined, the single remaining influence factor that determines the
performance of the hedonic elementary sample indices (33) and
(34) and thus eventually the statistical quality of the index esti-
mates is the regression approach used to estimate the hedonic
functions. As we already discussed in Section 2.2, estimating
the relationship between characteristics and price is a purely
statistical issue with no a priori restriction on the functional
form or regression approach to choose. As Triplett (2004, p. 186)
stated, ‘Any empirical form that fits the data is consistent with
the theory.’ So the entire repertoire of regression analysis can be
applied to find an approach that best fits the data and delivers
price predictions with the highest possible precision. The only
point to remember is that estimated hedonic functions are nor-
mally used to perform some out-of-sample predictions where
they should still provide plausible estimates.

In practice, the prevalent regression approaches for estimat-
ing hedonic functions are linear, semi-log and double-log mod-
els which perform well for many data sets. Curry et al. (2001)
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Formula Transformation Sample index Index type

(33) ϕ(x) = x ĤEPI
0:1

D =

∑N
n=1 ĥ

1(Mn)∑N
n=1 ĥ

0(Mn)
Dutot

ϕ(x) = ln x ĤEPI
0:1

J =

N

√∏N
n=1 ĥ

1(Mn)

N

√∏N
n=1 ĥ

0(Mn)
Jevons

ϕ(x) = x−1 ĤEPI
0:1

HD =

(∑N
n=1

(
ĥ1(Mn)

)−1)−1(∑N
n=1

(
ĥ0(Mn)

)−1)−1 ‘Harm. Dutot’

(34) ϕ(x) = x ĤEPI
0:1

C =
1

N

N∑
n=1

ĥ1(Mn)

ĥ0(Mn)
Carli

ϕ(x) = ln x ĤEPI
0:1

J = N

√√√√ N∏
n=1

ĥ1(Mn)

ĥ0(Mn)
Jevons

ϕ(x) = x−1 ĤEPI
0:1

HC =

 1
N

N∑
n=1

(
ĥ1(Mn)

ĥ0(Mn)

)−1−1 ‘Harm. Carli’

Table 2: Hedonic elementary sample indices.

were among the few authors who argued for a more flexible
functional form, although the neural network approach they
tested at the example of TVs did not show to be favourable to
the linear or semi-log models.12 Beer (2007a) investigated the
use of conventional models compared to a partial least squares
approach in an empirical study on used cars data. There, the
winning model in terms of lowest bootstrap aggregate predic-
tion error was an adaptive semi-log approach where individual
regressions with automated variable selection and outlier de-
tection were carried out and used for prediction for each of
the car models in the sample. In the housing example to be
presented in Section 2.6, we are going to rely on a semi-log
approach with variable selection and outlier detection. Techni-
cally, each of these regression models is nothing else than a
specific choice of h, transforming observations of prices and
price-relevant characteristics in each period to estimates of the
hedonic functions.

12 The failure of their neural network approach was particularly due to its
instability on out-of-sample predictions.
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2.5.2 Bootstrapped confidence intervals for hedonic imputation in-
dices

It seems ambitious to analyse the statistical qualities of HEPI
estimators given the potential complexity of the hedonic func-
tions and the generally unknown form of the reference char-
acteristics distribution. The most promising approach in this
situation is certainly to address this question with an appropri-
ate bootstrap procedure. Conditioned on the functional form of
the hedonic regression, bootstrap confidence intervals deliver
an insight on how precisely hedonic elementary sample indices
estimate the corresponding population indices.

Drawing from Beer (2007b,a), we suggest to use a wild boot-
strap approach as it was described by Davidson and Flachaire
(2000) – at least in cases where a linear regression approach is
chosen for estimating the hedonic function and thus standard-
ised residuals are available. The main advantage of the wild
bootstrap is its ability to cope with heteroscedastic error terms
which are a priori not excluded in a setting defined by the hedo-
nic econometric model (20) together with (21). With Î0:1 being
one of the five hedonic elementary price indices considered in
Table 2, a confidence interval for the corresponding population
index is obtained using the following resampling procedure:

1. For each time period t ∈ {0, 1}, estimate the hedonic re-
gression function ĥt := h[Pt, Mt] from the respective sam-
ples of price and characteristics observations in each pe-
riod and compute the corresponding hedonic elementary
price index Î0:1 using the sample of reference characteris-
tics vectors M1, . . . ,MN.

2. For each bootstrap replication s = 1, . . . ,S,

a) for each time period t ∈ {0, 1},

i. obtain simulated residuals εt?sn := rtnv?sn (n =

1, . . . ,Nt) by multiplying each of the standard-
ised residuals rtn of the hedonic regression mod-
els by an independent realisation v?sn of a ran-
dom variable that follows a Rademacher distri-
bution;

ii. compute simulated price values pt?sn := ĥt(Mt
n)+

εt?sn use them to estimate the simulated hedonic
function ĥt?s := h[pt?s, Mt], where

pt?s = (pt?s1, . . . ,p
t
?sNt).
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b) Calculate a simulated hedonic price index Î0:1?s using
the simulated hedonic functions ĥt?s and the same
sample of reference characteristics vectorsM1, . . . ,MN

as in Step 1. Compute the estimation error ζ0:1?s :=

Î0:1?s − Î0:1.

3. The increasingly ordered estimation errors ζ0:1?[s], s = 1, . . . ,S,
finally allow to compute the (1− 2α) confidence interval
as [̂

I0:1 − ζ0:1?[(S+1)(1−α)], Î
0:1 − ζ0:1?[(S+1)α]

]
.

Obviously, the number S of bootstrap replications is chosen
such that (S+ 1)α is an integer.

It should be noted here that by leaving the reference charac-
teristics vectors M1, . . . ,MN fixed, it is assumed that PM puts
positive probability on this discrete, fixed and known set of ref-
erence characteristics vectors only. This might be somewhat too
restrictive in theory and could easily be resolved by introduc-
ing resampled reference characteristics vectors in Step 2b of the
algorithm. However, a previous study carried out by one of the
authors (see Beer, 2007a, p. 136) showed almost no additional
variance stemming from this source, so taking a fixed reference
set should be sufficient in practice.

2.5.3 The special case of time dummy hedonic indices

We shall close this section by a comment on the time dummy
variable method, which is a widely used alternative to the hedo-
nic imputation indices discussed above (see e.g. Griliches, 1971,
p. 59, Silver and Heravi, 2003, pp. 280–1, Triplett, 2004, p. 48–55,
Diewert et al., 2009, or Hill, 2011). There, the price and charac-
teristics data of both the base and the current period are pooled
and the price-relevant characteristics m = (m1, . . . ,mK)

′ are
supplemented by a time dummy variable t. Then a joint para-
metric hedonic function h{0,1}G is estimated on the basis of the

pooled sample. From the estimated hedonic function ĥ{0,1}G two
period-specific hedonic functions ĥtG (t = 0, 1) are easily recov-
ered through

ĥtG(m) := ĥ
{0,1}
G (m, t) . (35)

These can be plugged into all hedonic elementary sample index
formulae presented above.
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An interesting situation emerges if we adopt the semi-log
functional form for estimating the hedonic function. Then the
relevant regression equation is given by

lnP = β0 + δ t+

K∑
k=1

βkMk + ε (36)

and the estimated hedonic functions ĥtG can be written as

ĥtG(m) = exp

(
β̂0 + δ̂ t+

K∑
k=1

β̂kmk

)
. (37)

with β̂0, . . . , β̂k and δ̂ being the OLS estimates of the correspond-
ing coefficients in (36). Obviously,

ĥ1G(m) = exp δ̂× ĥ0G(m) (38)

for all m, and all of the sample index formulae listed in Table 2

reduce to ĤEPI
0:1

= exp δ̂. They are thus completely indepen-
dent of the reference quality distribution used.

Although the property of independence just described sounds
appealing, we agree with, e.g., Diewert et al. (2009) who argue
in favour of hedonic imputation indices. In contrast to the time
dummy approach, they have the advantage of not imposing
any constraint on the functional form and eventually on the
parameters of the hedonic functions. We are convinced that the
flexibility of the functional form is important and therefore that
any technical restrictions should be avoided.

2.6 hedonic indices for single-family dwellings

2.6.1 The data

The data used for the present analysis were kindly provided by
Wüest & Partner, an international consultancy firm for real es-
tate. Transaction prices of single-family dwellings and their cor-
responding characteristics were collected for the Swiss canton
of Zurich from banks, insurances, and other real estate agen-
cies. The collected data are organized in 44 subsequent quar-
terly data sets, spanning from the first quarter of 2001 to the
fourth quarter of 2011. The number of sampled observations
per quarter ranges from 137 in the first quarter 2002 to 411 in
the fourth quarter 2010, covering in average more than 50% of
the transactions occurred in the relevant area.



2.6 hedonic indices for single-family dwellings 47

The set M
pr
G of price-relevant characteristics is defined by

means of the following observed characteristics: age (age; in
years), volume (vol; in cubic meters), surface of the land sur-
rounding the property (land; in square meters), status (status;
low–medium or superior)13, condition (cond; poor–reasonable
or excellent), micro location of the house within the munic-
ipality (micro; bad–medium or good), house type (type; semi-
detached or detached), number of rooms (rooms), the macro
location of the house within the canton (macro; centre, south,
or north), and number of parking spaces (park). Each quarterly
data set is considered as containing price and characteristics
information for items sampled from the induced elementary
aggregate Gt = Gt(MG), where MG are the distinguishing char-
acteristics of ‘single-family dwellings’, M

pr
G ⊂ MG and t =

0, . . . , 44.
All the computations carried out in the present paper were

done using the free software environment R (Version 2.15.1,
Windows, 64-bit; see R Core Team, 2012). In particular, the he-
donic elementary price indices were computed by means of the
HEPI package (see Beer, 2007a) available at R-Forge14.

2.6.2 Specification and estimation of quarterly hedonic functions

Based on the considered set of price-relevant characteristics,
a semi-log hedonic function was independently estimated for
each quarter (t = 1, . . . , 44) following the model equation

log(pti) = β0 +β1 log(ageti) +β2 log(volti)

+β3 log(landti) +β4status_supti +β5cond_excti
+β6micro_goodti +β7type_detti +β8roomsti
+β9macro_sti +β9macro_nti +β10parkti
+β11 log(landti)type_detti
+β12 log(landti)micro_goodti
+β13 log(landti)macro_sti
+β14 log(landti)macro_nti + ε

t
i , (39)

where εti represents an error term satisfying the hypothesis
stated in (21). The choice of this functional form rests on the fol-
lowing considerations: As already mentioned in Section 2.5.1,

13 All categorical variables were dummy-coded with the first mentioned cate-
gory being the null case.

14 http://r-forge.r-project.org/projects/hepi/
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Figure 1: Quarterly hedonic elementary price indices from the first
quarter 2001 to the fourth quarter 2011. The five considered
hedonic indices plotted together (top left) and individually
with their corresponding bootstrapped 95% confidence in-
tervals (remaining plots).

taking the logarithm of the transaction price is a well-established
approach in the hedonic literature, mainly intended to obtain
a better fit and mitigate potential heteroscedasticity problems.
In contrast to other hedonic house price models such as those
adopted by Goodman and Thibodeau (1995), Fletcher et al. (2000),
and Stevenson (2004b), we decided to include the age variable
in logarithmic form as well. This choice is primarily motivated
by the inclusion of the status and condition dummies, which
adequately account for both the age-related vintage and ren-
ovation effects described by Goodman and Thibodeau (1995).
Due to a high variation in the land price across different ge-
ographical locations and house types, three interaction terms
were additionally considered to take into account these effects.
Note that, referring to the principles outlined in section Sec-
tion 2.2.2, the chosen specification of the hedonic function does
not rest on any economic theory but tries to accommodate best
the considered data.

After a first estimation of the 44 regression models, an aver-
age of 7% of the observations were detected as unduly influ-
ential based on the DFFITS criterion and removed for the fol-
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lowing analyses. Koenker’s studentised version of the Breush-
Pagan test against heteroscedasticity was subsequently applied
to each regression model, revealing that 33 out of 44 linear mod-
els were plagued by heteroscedasticity at the 5% level. This re-
sult suggested that the use of a price-logarithmic hedonic func-
tion to address the heteroscedasticity problem was, in general,
ineffective.

Since the observed heteroscedasticity could, however, also be
due to a model misspecification, a heteroscedasticity-robust
Ramsey Regression Equation Specification Error Test (RESET)
was carried out to exclude this possibility. For each quarter the
second, third, and fourth power of the fitted values obtained by
means of equation (39) were included in the extended regres-
sion. The joint significance of the added regressors was then
tested using a Wald test relying on the HC covariance matrix es-
timator recommended by Long and Ervin (2000). For each quar-
ter the null hypothesis of a correct model specification could
not be rejected at the 5% level.

The presence of heteroscedasticity having been confirmed, a
heteroscedasticity-robust Wald test (again based on the covari-
ance matrix estimator recommended by Long and Ervin (2000))
was finally applied to eliminate variables that were both indi-
vidually and jointly not significant at the standard level. We re-
frained from using even more sophisticated variable selection
methods for fear of overfitting the data, knowing that the hedo-
nic functions were going to be used to some out-of-sample pre-
diction. The adjusted R2 statistics of the retained models range
from 0.57 to 0.84.

2.6.3 Computation of hedonic imputation indices and bootstrapped
confidence intervals

The first quarter of 2001 was chosen as base period t = 0 for all
indices computed. A different reference sampleM1, . . . ,MN0+Nt

was compiled for each quarter by pooling the base period’s ob-
served characteristics with the observed characteristics in the
relevant current period. The hedonic functions estimated in Sec-
tion 2.6.2 were then used to compute the five hedonic elemen-
tary sample indices presented in Table 2 for each period. The
wild bootstrap approach described in Section 2.5.2 was carried
out with S = 999 replications resulting in a 95% confidence
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Dutot Harm. Dutot Carli Harm. Carli Jevons

1.1591 1.0027 1.0234 0.9942 1.0000

Table 3: Average confidence interval lengths as percentage of the
Jevons interval length.

interval for each hedonic index.15 The index values and confi-
dence intervals obtained are shown in Fig. 1.

The behaviour of the five indices is similar with all of them
showing a 40 to 50 percent price increase for the eleven years
under investigation. Interestingly, although all confidence inter-
vals appear to be comparable, only the interval lengths of the
Harmonic Carli, Harmonic Dutot, and Jevons sample indices
are roughly the same on average while the interval lengths of
the Carli and Dutot sample indices are substantially larger (see
Table 3). Conditioned on the semi-log functional form used for
estimating the hedonic functions, the former three sample in-
dices seem to show the lowest variance due to sampling from
the price and characteristics distributions in the base and refer-
ence period. Particularly noteworthy is the poor performance
of the Dutot price index. Combining these empirical results
with the axiomatic reflections cited in Section 2.4.4, it is the
Harmonic Dutot and the Jevons index formulae that seem to
be preferable when choosing the hedonic elementary popula-
tion index to be used. This is consistent with the results ob-
tained by Beer (2007a) for his study on used cars, where, addi-
tionally, the Jevons index was seen to be least sensitive to the
(mis-)specification of the hedonic functional form.

Taking note of these observations, it seems to us thus that
the Jevons hedonic elementary price index is the most attrac-
tive universal formula from both a theoretical and empirical
point of view. It is clear, however, that for certain data sets, the
empirical behaviour of the index estimators may be different
from the results obtained here. We appreciate thus any further
research on this topic.

15 Note that the simulated price values in Step 2(a)ii of the bootstrapping al-
gorithm were calculated as log(pt)?sn := ĥt(Mt

n) + ε
t
?sn in order to accom-

modate the price-logarithmic functional form (see also Beer, 2007b, p. 89).
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2.7 summary

We started the present piece of work with a formal definition
of elementary aggregates. From the outset, much emphasis was
put on the duality between elementary aggregates and their
distinguishing characteristics. The latter played a central role
when we translated the hedonic hypothesis known from the
literature into a hedonic econometric model.

After discussing the two fundamental concepts of elemen-
tary price indices, we defined a list of hedonic elementary pop-
ulation indices reaching from simple indices where the entire
quality range of an object was represented by a single vector
of price-relevant characteristics to two universal index formu-
lae showing much flexibility in how the price distributions in
the base and current period are compared. As population in-
dices are unobservable economic parameters, there is a need
for sample indices acting as appropriate estimators of these pa-
rameters. We were able to show that most of the index formulae
used in practice could be naturally derived within the proposed
theoretical framework. The established framework additionally
allowed to implement a procedure for computing bootstrapped
confidence intervals for hedonic elementary indices.

Neither of the universal formulae of hedonic elementary pop-
ulation indices proposed in this paper is completely determined.
So the user needs to make some further decisions in order to
obtain a concrete target population index and eventually a cor-
responding sample index formula for practical applications. To
this end, bootstrapped confidence interval lengths were used to
compare the considered hedonic elementary indices.

Based on axiomatic reflections and empirical computations,
we argued that the most attractive candidate of a hedonic ele-
mentary price index for an elementary aggregate G and for any
given reference quality distribution PM was

HEPI0:1(G) = exp

(
E

[
ln

(
h1G(M)

h0G(M)

)])
. (40)

An estimator of this index is given by the Jevons formula

ĤEPI
0:1

J = N

√√√√ N∏
n=1

ĥ1(Mn)

ĥ0(Mn)
(41)

based on estimates ĥ0 and ĥt of the hedonic functions and with
M1, . . . ,MN sampled symmetrically from the price-relevant char-
acteristics in both the base and the current period.
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3
A S Y M P T O T I C P R O P E RT I E S O F I M P U T E D
H E D O N I C P R I C E I N D I C E S I N T H E C A S E O F
L I N E A R H E D O N I C F U N C T I O N S

3.1 introduction

To measure the price changes of goods and services relative to
a base period, price statisticians have defined different sorts of
price indices. To cope with a possible quality variation of the
goods across different time periods, the hedonic approach has
established itself, in the last ten years, as the most appropriate
method for computing quality-adjusted price indices. The basis
of the hedonic approach is the hedonic hypothesis: Each good
is considered as a bundle of characteristics, and its price solely
depends on these characteristics. Unfortunately, economic the-
ory provides no guiding theory on the choice of the hedonic
index, thus making the investigation of the statistical proper-
ties of these indices of primary importance.
A great amount of research has been carried out to appropri-
ately model the relationship between the price of a good and its
characteristics. To a lesser extent, researchers have focused on
hedonic price indices, solely suggesting alternative formulae to
their computation. These alternative formulae use, in general,
the hedonic hypothesis to impute the price of goods in classi-
cal price index formulae1. Surprisingly, the obtained formulae
are mainly used as descriptive statistical measures, thus com-
pletely neglecting their probabilistic nature. In a recent paper,
Brachinger et al. (2012) used a bootstrap approach to evaluate
the statistical properties of different elementary hedonic price
indices, empirically showing, in particular, that some indices
seem to have smaller confidence interval lengths than others.
The aim of the present paper is to use a standard probabilis-
tic approach to determine the asymptotic properties of single
imputed, double imputed, and characteristic hedonic price in-
dices. This approach should provide a better understanding of
the theoretical parameter that a hedonic index tries to estimate.
The present paper is structured as follows. Section 3.2 reviews

1 Hedonic price indices based on time dummy variables are not analyzed in
the present paper since they do not rely on traditional price index formulae.
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the most common imputed hedonic price indices. The conver-
gence in probability of hedonic price indices is then analyzed
in Section 3.3. Section 3.4 concludes the paper.

3.2 hedonic imputed price indices : a review

Three main approaches are considered in the present paper to
compute quality-adjusted price indices: single imputed, dou-
ble imputed, and characteristics methods. As mentioned in the
footnote, time dummy price indices are not analyzed. More-
over, only the hedonic counterpart of the classical Laspeyres,
Paasche, and Fisher price indices are considered. The adopted
terminology and the following definitions are based on Hill
(2011).
Let Pt := (Pt1, ...,Ptnt)

′ ∈ Rnt and Xt := (xt1, ..., xtnt)
′ ∈ Rnt×K de-

note a vector of random prices and a matrix of random charac-
teristics in period t, respectively. The hedonic hypothesis states
that for each time period, the price of a good solely depends on
its characteristics. The corresponding statistical model is given
by

Pti = f
t(xti) + ε

t
i = f

t(xti1, ..., xtiK) + ε
t
i , i = 1, ...,nt,

where xtij is the j-th characteristic of good i in period t, and the
function ft describes how the characteristics interact to build
the price. The function ft is usually called the hedonic regres-
sion function, or simply the hedonic function. We denote the
hedonic function estimated in period t by f̂t . The set of ob-
served characteristics is constant through time, i.e., is the same
for each time period t = 1, ..., T . The number of goods observed
in period t is denoted by nt, and it is assumed that nt > K. The
variable εti represents a stochastic error term.
One major consequence due to the above statistical model is
that, even if we identify a good with its characteristics, the
price randomly varies. This means that for exactly the same
good, we can observe different prices. This implies, in turn, that
the quantity variable used to compute classical price indices is
not appropriate for the hedonic approach. It is therefore rec-
ommended to consider each good as being unique and set the
quantity variable qti equal to 1 for each good appearing in the
traditional price index formulae.
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3.2.1 Single imputed hedonic price indices

Single imputed hedonic price indices use the statistical model
implied by the hedonic hypothesis to impute the prices of each
good considered in one time period according to the hedonic
function estimated in the other time period. Estimated prices
in one period are then compared to imputed prices in the other
period. If we define the quality of a good by its vector of charac-
teristics, it becomes evident that the quality of the goods does
not change between periods.
Let ĤILsi0,t, ĤIP

si
0,t, and ĤIFsi0,t denote the estimators of the Las-

peyres, Paasche, and Fisher single imputed hedonic price in-
dices, respectively. They are defined as

ĤILsi0,t =

∑n0
i=1 f̂

t(x0i )∑n0
i=1 P

0
i

ĤIPsi0,t =

∑nt
i=1 P

t
i∑nt

i=1 f̂
0(xti)

ĤIFsi0,t =
√
(ĤILsi0,t)

1/2(ĤIPsi0,t)
1/2,

where 0 and t represent the base and current time periods, re-
spectively. The base period is chosen among the time periods
t = 1, ..., T . These estimators are random variables that attempt
to estimate the unknown population hedonic price index.

3.2.2 Double imputed hedonic price indices

In contrast to single imputed indices, double imputed hedonic
price indices impute prices for both time periods. Once the he-
donic functions for the two periods have been estimated, the
set of characteristics in one period is evaluated according to the
hedonic function estimated in the other period. By construction,
this guarantees that the quality of the goods does not change
between periods, and so prices can be directly compared.
Let ĤILdi0,t, ĤIP

di
0,t and ĤIFdi0,t denote the estimators of the Las-
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peyres, Paasche, and Fisher double imputed hedonic price in-
dices, respectively. They are defined as

ĤILdi0,t =

∑n0
i=1 f̂

t(x0i )∑n0
i=1 f̂

0(x0i )

ĤIPdi0,t =

∑nt
i=1 f̂

t(xti)∑nt
i=1 f̂

0(xti)

ĤIFdi0,t =
√
(ĤILdi0,t)

1/2(ĤIPdi0,t)
1/2,

where 0 and t represent the base and current time periods, re-
spectively. The base period is chosen among the time periods
t = 1, ..., T .

3.2.3 Characteristic hedonic price indices

Instead of imputing prices for each good in a given period, char-
acteristic hedonic price indices compute a representative good
for one time period, and then impute the price of this charac-
teristic good using the estimated hedonic functions in the two
periods. The characteristic good is thought to appropriately rep-
resent the set of goods in one time period and is usually defined
as being the mean vector of the characteristics. Also, in this case,
since only the characteristic good is considered, quality does
not change across periods, and prices are directly comparable.
Let ĤILch0,t, ĤIP

ch
0,t, and ĤIFch0,t denote the estimators of the Las-

peyres, Paasche, and Fisher characteristic hedonic price indices,
respectively. They are defined as

ĤILch0,t =
f̂t(x0)
f̂0(x0)

ĤIPch0,t =
f̂t(xt)
f̂0(xt)

ĤIFch0,t =
√
(ĤILch0,t)

1/2(ĤIPch0,t)
1/2,

where xt := (xt1, ..., xtK) = ( 1nt
∑nt
i=1 x

t
i1, ..., 1nt

∑nt
i=1 x

t
iK) repre-

sents the mean vector of the characteristics.

3.3 convergence in probability

Although widely employed, the above defined indices have been
used as empirical quantities, without considering their statisti-
cal properties. To derive such properties, the hedonic function
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ft considered in the hedonic hypothesis must be specified and
an estimation technique accordingly adopted. In the present pa-
per, the following linear hedonic function

ft(x
t
i1, ..., xtiK) : = (xti)

′βt = (42)
= βt0 +β

t
1x
t
i1 + ... +βtKx

t
iK, i = 1, ...,nt

is assumed in each time period.
The following proposition identifies the theoretic indices to-

ward which the above defined hedonic price indices converge.

Theorem 3.3.1. Let (Pti , xti), i = 1, ...,nt be a random sample of nt
independent random variables belonging to period t (t = 1, ..., T). We
assume that in each time period, the characteristics’ vector xti follow
the same probability distribution with finite mean: xti ∼ xt and µxt :=

E(xt) < +∞ ∀i. If the usual hypotheses 2 hold in each time period
for the linear hedonic model in (42), then

i) ĤILsi0,t, ĤIL
di
0,t, and ĤILch0,t converge in probability toward

µ′
x0
βt

µ′
x0
β0 .

ii) ĤIPsi0,t, ĤIP
di
0,t, and ĤIPch0,t converge in probability toward

µ′
xt
βt

µ′
xt
β0 .

Proof. Some of the following equalities are explained in 3.5 at
the end of the document.
i) The convergence in probability of ĤILsi0,t is first established:

plim
n0,nt→+∞ĤILsi0,t = plim

n0,nt→+∞
∑n0
i=1(x

0
i )
′β̂t∑n0

i=1 P
0
i

=

= plim
n0→+∞

∑n0
i=1(x

0
i )
′(plimnt→∞ β̂t)∑n0
i=1 P

0
i

=

= plim
n0→+∞

∑n0
i=1(x

0
i )
′βt∑n0

i=1 P
0
i

=

=
plimn0→+∞ 1

n0

∑n0
i=1(x

0
i )
′βt

plimn0→+∞ 1
n0

∑n0
i=1 P

0
i

=

=
E((x0i )

′βt)

E(P0i )
=

E((x0i ))
′βt

Ex0i
(E(P0i |x

0
i ))

=

=
µ′x0β

t

Ex0i
((x0i )

′β0)
=
µ′x0β

t

µ′x0β
0

.

2 See Greene (2011), page 92.
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For double imputed indices, we have

plim
n0,nt→+∞ĤILdi0,t = plim

n0,nt→+∞
∑n0
i=1(x

0
i )
′β̂t∑n0

i=1(x
0
i )
′β̂0

=

= plim
n0→+∞

∑n0
i=1(x

0
i )
′(plimnt→∞ β̂t)∑n0
i=1(x

0
i )
′β̂0

=

= plim
n0→+∞

∑n0
i=1(x

0
i )
′βt∑n0

i=1(x
0
i )
′β̂0

=

=
plimn0→+∞ 1

n0

∑n0
i=1(x

0
i )
′βt

plimn0→+∞ 1
n0

∑n0
i=1(x

0
i )
′β̂0

=

=
E((x0i )

′βt)

E((x0i )
′β̂0)

=
E((x0i ))

′βt

EX0(E((x0i )
′β̂0|X0))

=

=
µ′x0β

t

Ex0i
((x0i )

′β0)
=
µ′x0β

t

µ′x0β
0

.

For ĤILch0,t, we simply have

plim
n0,nt→+∞ĤILch0,t =

(plimn0→+∞ x0)′(plimnt→+∞ β̂t)
(plimn0→+∞ x0)′(plimn0→+∞ β̂0) =

µ′x0β
t

µ′x0β
0

.

ii) The demonstrations for the Paasche indices are similar:

plim
n0,nt→+∞ĤIPsi0,t = plim

n0,nt→+∞
∑nt
i=1 P

t
i∑nt

i=1(x
t
i)
′β̂0

=

= plim
nt→+∞

∑nt
i=1 P

t
i∑nt

i=1(x
t
i)
′(plimn0→∞ β̂0) =

= plim
nt→+∞

∑nt
i=1 P

t
i∑nt

i=1(x
t
i)
′β0

=

=
plimnt→+∞ 1

nt

∑nt
i=1 P

t
i

plimnt→+∞ 1
nt

∑nt
i=1(x

t
i)
′β0

=

=
E(Pti)

E((xti)
′β0)

=
Exti

(E(Pti |x
t
i))

E((xti))
′β0

=

=
Exti

((xti)
′βt)

µ′xtβ
0

=
µ′xtβ

t

µ′xtβ
0

.

and
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plim
n0,nt→+∞ĤIPdi0,t = plim

n0,nt→+∞
∑nt
i=1(x

t
i)
′β̂t∑nt

i=1(x
t
i)
′β̂0

=

= plim
nt→+∞

∑nt
i=1(x

t
i)
′β̂t∑nt

i=1(x
t
i)
′(plimn0→∞ β̂0) =

= plim
nt→+∞

∑nt
i=1(x

t
i)
′β̂t∑nt

i=1(x
t
i)
′β0

=

=
plimnt→+∞ 1

nt

∑nt
i=1(x

t
i)
′β̂t

plimnt→+∞ 1
nt

∑nt
i=1(x

t
i)
′β0

=

=
E((xti)

′β̂t)

E((xti)
′β0)

=
EXt(E((xti)

′β̂t|Xt))
E((xti))

′β0
=

=
Exti

((xti)
′βt)

µ′xtβ
0

=
µ′xtβ

t

µ′xtβ
0

.

and

plim
n0,nt→+∞ĤIPch0,t =

(plimnt→+∞ xt)′(plimnt→+∞ β̂t)
(plimnt→+∞ xt)′(plimn0→+∞ β̂0) =

µ′xtβ
t

µ′xtβ
0

.

The convergence in probability of the Laspeyres and Paasche
hedonic price indices can then be used to establish the conver-
gence in probability of the Fisher index.

Corollary 1. The Fisher hedonic price indices ĤIFsi0,t, ĤIF
di
0,t, and

ĤIFch0,t converge in probability toward√√√√(µ′x0βt
µ′x0β

0

)1/2(
µ′xtβ

t

µ′xtβ
0

)1/2
.

Proof. For single imputed hedonic price indices, we have

plim
n0,nt→+∞ĤIFsi0,t =

√
( plim
n0,nt→+∞ĤILsi0,t)1/2( plim

n0,nt→+∞ĤIPsi0,t)1/2 =

=

√√√√(µ′x0βt
µ′x0β

0

)1/2(
µ′xtβ

t

µ′xtβ
0

)1/2
.

For double imputed and characteristic hedonic price indices,
the proof is identical.



3.4 conclusions 60

The following corollary is directly implied by Proposition
3.3.1 Corollary 1:

Corollary 2. Laspeyres, Paasche, and Fisher price indices are asymp-
totically equivalent in the case of single imputed, double imputed, and
characteristics hedonic price indices.

We have proved that hedonic price indices converge in prob-
ability toward a non-linear function of the statistical models’
parameters. Interestingly, each estimator of the individual pa-
rameters possess a normal asymptotic distribution (see Greene
(2011) for details):

- β̂0
a
∼ N(β0, (σ

0)2

n0
Q−1
X0
), Q−1

X0
:= plimn0→+∞ 1

n0
(X′0X0)

−1.

- β̂t
a
∼ N(βt, (σ

t)2

nt
Q−1
Xt
), Q−1

Xt
:= plimnt→+∞ 1

nt
(X′tXt)

−1.

- µ̂x0j
a
∼ N(µx0j

,σ2
x0j
/n0), j = 1, ...,K.

- µ̂xtj
a
∼ N(µxtj

,σ2
xtj
/nt), j = 1, ...,K.

Unfortunately, even for these well-known distributions, it seems
infeasible to derive the asymptotic distribution of the indices,
even (unrealistically) assuming stochastic independence among
time periods and/or regressors.

3.4 conclusions

The asymptotically equivalence of single imputed, double im-
puted, and characteristics hedonic price indices has been estab-
lished in the case of goods possessing a linear hedonic function.
This result appears to be quite important, since it implies that
the price index problem tends to vanish in large samples, thus
alleviating an uncomfortable situation price statisticians have
to face.
Despite their importance, the obtained results must also be
carefully placed in the context in which estimation of hedonic
models takes place. In the case of a non-linear hedonic regres-
sion function, in fact, our results are generally not valid, even
for continuous hedonic functions. An important case is repre-
sented by log-linear hedonic models, which are commonly used
to model the hedonic prices of housing goods. When inverse
transformation is applied to obtain the imputed prices in the
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original scale, the mean of a non-linear function has to be cal-
culated to obtain the theoretical price index, thus invalidating
the results found.
An indirectly interesting result concerns the asymptotic distri-
bution of the hedonic price indices. It seems unrealistic to an-
alytically compute the asymptotic distribution of such indices,
therefore suggesting the use of resampling methods to deter-
mine their distribution.
In the present paper, only a specific class of imputed hedonic
indices has been analyzed. It could be interesting to conduct
further research to determine whether other hedonic price in-
dices converge in probability toward the same theoretical pa-
rameter and establish if their asymptotic distribution could be
explicitly determined.
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3.5 appendix : asymptotic properties of linear he-
donic models

The following properties hold under the classical linear model
hypothesis and the hypothesis assumed in Proposition 3.3.1.
The employed terminology is borrowed from DasGupta (2011).

Property 1. In any time period t and base period 0, we have

plim
nt→+∞

∑n0
i=1(x

0
i )
′β̂t∑n0

i=1 P
0
i

=

∑n0
i=1(x

0
i )
′βt∑n0

i=1 P
0
i

.

Proof. We consider first the convergence in probability of a sin-
gle term (x0i )

′β̂t as nt → +∞. The probability distribution of the
K-dimensional random variable (x0i ) does not depend on nt. It
can therefore be considered as converging in probability toward
itself as nt → +∞: plimnt→+∞(x0i ) = (x0i ). Under the classical
hypothesis of the linear regression model estimated in period t,
we have that plimnt→+∞ β̂t = βt. The multi-dimensional con-
vergence preservation implies that plimnt→+∞(x0i )′β̂t = (x0i )

′βt.
Using again the convergence preservation, we obtain

plim
nt→+∞

n0∑
i=1

(x0i )
′β̂t =

n0∑
i=1

plimnt→+∞
(
(x0i )

′β̂t
)
=

n0∑
i=1

(x0i )
′βt.

Since the denominator
∑n0
i=1 P

0
i does not depend on nt, we also

have that plimnt→+∞∑n0
i=1 P

0
i =
∑n0
i=1 P

0
i . Thus implying

plim
nt→+∞

∑n0
i=1(x

0
i )
′β̂t∑n0

i=1 P
0
i

=
plimnt→+∞∑n0

i=1(x
0
i )
′β̂t

plimnt→+∞∑n0
i=1 P

0
i

=

∑n0
i=1(x

0
i )
′βt∑n0

i=1 P
0
i

.

Remark 1. Property 1 is also valid if the denominator is replaced with∑n0
i=1(x

0
i )
′β̂0, since it represents a random variable not depending on

nt.

Proof. If in time period t a linear hedonic function is assumed,
then

i) E(Pti) = µ
′
xtβ

t

ii) E((xti)
′β̂t) = µ′xtβ

t.
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Proof. It is assumed that Pti = (xti)
′βt + εti . According to the

linear model hypotheses, we have that E(εti |x
t
i) = 0. A stronger

form of exogeneity is not necessary, since the characteristics
vectors xti , i = 1, ...,nt are assumed to be independent in a
given time period.
i) Using the law of iterated expectations, we have

E(Pti) = Exti
(E(Pti |x

t
i)) = Exti

(
E
(
(xti)

′βt + εti |x
t
i

))
=

= Exti
((xti)

′βt) = µ′xtβ
t.

ii) The second equality is slightly more complicated to demon-
strate. Substituting the Pt with the statistical model in the clas-
sical OLS estimation formula β̂t = ((Xt)′(Xt))−1(Xt)′Pt, we have

β̂t = βt + ((Xt)′(Xt))−1(Xt)′εt,

with εt := (εt1, ..., εtnt)
′. Using the exogeneity hypothesis, we

have E(εt|Xt) = 0. We must condition on the whole character-
istics matrix Xt to use the law of iterated expectations.

E((xti)
′β̂t) = EXt(E((xti)

′β̂t)|Xt) =

= EXt

(
E
(
(xti)

′(βt + ((Xt)′(Xt))−1(Xt)′εt)|Xt
))

=

= EXt

(
E
(
(xti)

′βt + (xti)
′((Xt)′(Xt))−1(Xt)′εt|Xt

))
=

= Exti
((xti)

′βt) =

= µ′xtβ
t.
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A N E W A P P R O A C H T O VA R I A B L E S E L E C T I O N
I N T H E P R E S E N C E O F M U LT I C O L L I N E A R I T Y:
A S I M U L AT E D S T U D Y W I T H H E D O N I C
H O U S I N G D ATA

4.1 introduction

The hedonic approach considers each good as a bundle of char-
acteristics. This bundle of characteristics is related to the price
of the good through the so-called hedonic price function. Much
research has been devoted to identifying the characteristics that
determine the price-building process, or, alternatively, to estab-
lish if a specific set of characteristics significantly affects the
price of a given good.
Two major problems arise when trying to identify price relevant
characteristics in hedonic price regressions. First, no economic
model is available to guide researches in selecting the charac-
teristics. Second, multicollinearity is often detected among the
characteristics, thus negatively influencing standard selection
techniques. To partially overcome these difficulties, automated
variable selection methods seem to provide a valid approach.
Automated variable selection methods allow, with a computer
algorithm, the best subset of characteristics to be selected ac-
cording to a specific selection criterion. This criterion is often
represented by an objective function that has to be minimized.
In early versions, automated techniques used the classical t or
F tests as the selection criterion and suffered, therefore, from
problems derived from carrying out several non-independent
tests. Modern implementations, however, are based on selection
criteria stemming from information theory, providing a better
theoretical framework in which the selection takes place.
A major critique concerning automated selection methods is
that a single ‘best’ model is selected, completely ignoring the
other models. This criticism is particularly pertinent when sev-
eral alternative models display values of the objective function
similar to the objective function value of the selected model, a
situation that typically occurs in the case of multicollinearity.
A new approach proposed by Burnham and Anderson (2004)
consists of computing the weight of each model with an infor-
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mation criterion, and subsequently deducing the importance of
each independent variable. The statistical analysis thus relies
on the whole set of models, and this critique does not apply.
The paper is structured as follows. Section 4.2 introduces the
automated variable selection techniques and selection criteria.
The multimodel approach and the characteristics’ importance
are discussed in section 4.3. A new selection procedure based
on the characteristics’ importance is illustrated in section 4.4.
The statistical measure used to gauge the variable selection
techniques is then illustrated in section 4.5. Sections 4.6 and
4.7 define the simulation set-up and describe the data used,
respectively. The results are shown in section 4.8. Section 4.9
concludes the paper.

4.2 stepwise selection and information loss crite-
ria

Stepwise selection is a greedy algorithm that locally optimizes
the criterion by successively nesting regression models. The
present article considers only backward stepwise selection. Back-
ward stepwise selection starts from a full model, where all
the available variables are considered, and then drops the non-
relevant variables. At each iteration of the algorithm, a single
variable is identified by the selection criterion and then elimi-
nated. The algorithm stops when dropping a variable does not
significantly improve the value of the objective function.
Let M := {M1, ...,Mm} be the set of candidate models and K

the total number of characteristics. Since the focus is on back-
ward stepwise selection, the models contained in M are all
nested models of a full model MF including all K character-
istics. Mi := {y, x1, ..., xKi} ∈M denotes a regression model with
dependent variable y and independent variables x1, ..., xKi . It is
assumed that the models are all applied to the same data set
containing n observations. IL : M → R denotes the objective
function that has to be minimized. When a new step in the iter-
ation process worsens the objective function’s value more than
a given tolerance level, the algorithm stops. The algorithm in
4.10 describes the different steps undertaken by backward step-
wise selection to obtain a model that locally minimizes the loss
function IL. Since backward stepwise selection is a greedy al-
gorithm, the search over the model set is not complete, i.e., the
algorithm does not consider all possible 2K models, therefore
providing a possible globally sub-optimal solution.
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Two different information loss functions IL are considered in
the present paper. The first criterion is the famous Akaike In-
formation Criterion (AIC) proposed by Akaike (1973), which is
defined as

AIC : M −→ R

Mi 7−→ −2 log(L(θ̂|x1, ..., xKi) + 2Ki,

where L denotes the likelihood of the model. The second crite-
rion is called the Bayesian Information Criterion (BIC) and was
presented by Schwarz (1978). It is given by

BIC : M −→ R

Mi 7−→ −2 log(L(θ̂|x1, ..., xKi) +Ki log(n).

Both criteria are based on a log-likelihood function evaluated
at the estimated parameters’ value plus a term penalizing the
model’s complexity. In the case of a linear regression model
with a normal distributed error term,
−2 log(L(θ̂|y, x1, ..., xK) is simply equal to n log(σ̂2), where σ̂2 is
the maximum-likelihood estimated model variance.

4.3 the multimodel approach and variables’ impor-
tance

We consider as before a set M = {M1, ...,Mm} of candidate mod-
els. For each model, we compute the values IC1, ..., ICm, where
ICi denotes either the AIC or BIC value of the i-th model. Let
ICMin = mini=1,...,m{IC(Mi)} be the information criterion value
of the best model. According to the multimodel approach pro-
posed by Burnham and Anderson (2004), we define the models’
weights as

wIC : M −→ [0, 1]

Mi 7−→
exp(−1

2(ICi − ICMin))∑m
r=1 exp(−1

2(ICr − ICMin))
.

We clearly have that 0 6 wIC(Mi) 6 1 and
∑m
i=1wIC(Mi) = 1.

From a Bayesian point of view, these weights represent the a
posteriori probabilities of each model. As explained by Burn-
ham and Anderson (2004), the defined AIC-based model weights
put the following a priori probabilities on the set of candidate
models:

P(Mi) =
exp

(
1
2Ki log(n) −Ki

)∑m
i=1 exp

(
1
2Ki log(n) −Ki

) , i = 1, ...,m,
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whereas BIC-based model weights implicitly assume that P(Mi) =

1/m, i = 1, ...,m.1 One question that naturally arises when us-
ing the multimodel approach is how to determine the initial set
M of alternative models. When no theory is available to specify
a set of candidate models, a solution is to consider all possible
models for the available variables. All-subset regression seems
therefore indicated in this situation. All-subset regression is a
branch and bound algorithm that, given an initial set of regres-
sors, estimates all possible regression models. Assuming that
the full model contains K regressors, the total number of mod-
els is equal to 2K − 1, where the empty model is a priori dis-
carded.
To determine the importance of a given variable, Burnham and
Anderson (2004) suggest the computation of the following vari-
ables’ weights:

w
x,post
IC : {x1, ..., xK} −→ [0, 1]

xi 7−→
m∑
j=1

wIC(Mj)1{xi∈Mj}
,

where 1{xi∈Mj}
is an indicator function. Even if a variable is

not included in the best model according to the information
criterion, the variable could nevertheless possess a high weight.
If all models not including a given variable have weights near
zero, then the weight of this variable is near one. Conversely, if
the weights of the models not containing a given variable sum
up to almost one, then the weight of this variable is near zero.

4.4 variables’ weights and price-relevant charac-
teristics

Since the main goal is to identify a single model that carefully
describes the relation between the price of a good and its char-
acteristics, we suggest using variables’ weights to define an au-
tomated selection procedure; a given variable is included in the
final model only if the variable reaches a minimum level of
importance, i.e., the variable’s weight is greater than a given
value. The major difficulty is determining this minimum level.
Two remarks are necessary in order to specify the minimum im-
portance level. First, the importance level should not be based
on the computed variables’ weights, because such a selection

1 The interpretation of these a priori probabilities differs due to the statistical
context in which the AIC and BIC are derived.
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rule would tend to highlight data-specific features, thus caus-
ing poor model generalization. Second, the importance level
should depend on the set of candidate models: If a variable is
under-/over-represented in the set of models, a lower/higher
importance level should be considered. According to these re-
marks, we assess the minimum level of importance with the
following definition.

Definition. For a given information criterion IC and a given set of
candidate models M = {M1, ...,Mm}, the a priori weight wxi,ap

IC of
a variable xi, i = 1, ...,K is defined as

w
x,ap
IC : {x1, ..., xK} −→ [0, 1]

xi 7−→
m∑
j=1

P(Mj)1{xi∈Mj}
,

where P(Mi) denotes the a priori probability of model Mi.

The following corollary can be used to approximate the BIC a
priori weights and save computing time:

Corollary. If M is given by all possible regressors subsets and the
number of regressors is large, then wx,ap

BIC (xi)
∼= 0.5 ∀i.

Proof. In the all-subset case, each variable is contained exactly
in 2K−1 models. The a priori BIC-based variables weights are
therefore equal to

w
x,ap
BIC (xi) =

m∑
j=1

1

m
1{xi∈Mj}

=
2K−1

2K − 1
∼= 0.5 ∀i when K� 1.

Based on the a priori weights, the following variable selection
rule has been implemented:

Selection Rule. For a given information criterion IC and a given
set of candidate models M, a variable xi ∈MF is included in the final
model if and only if wx,post

IC (xi) > w
x,ap
IC (xi).

If the a posteriori weight of a given variable is greater than
its a priori value, then the variable is included in the selected
model. According to the previously stated selection rule, a vari-
able is included in the selected model only if the BIC-based
weight wxBIC is greater than 0.5.
The proposed selection method is easily implemented and, in
contrast to AIC- and BIC-based stepwise regression, simultane-
ously considers the importance of a given variable in all models
belonging to M.
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4.5 mean balanced accuracy

To assess the performance of the selection method, the aim of
the regression must be clearly defined. Since the goal is to iden-
tify the independent variables that affect the dependent vari-
able, the selection method has to be gauged according to its
ability to identify the data-generating process or, at least, the
model that most carefully approximates the data-generating
process for a given class of models.
Let Msel be a regression model selected with the preceding
selection techniques. The task of identifying the original data-
generating process can be viewed as a binary classification prob-
lem. Let IC be the number of informative variables correctly
identified, IW the number of informative variables not included
in the selected model, UC the number of uninformative vari-
ables correctly identified, and UW the number of uninforma-
tive variables included in the selected model. These four quan-
tities represent the so-called confusion matrix. Using the confu-
sion matrix, several accuracy measures are available. Recently,
Brodersen et al. (2010) introduced the concept of balanced accu-
racy to measure the performance of a classification algorithm.2

It is defined as

BA(Msel|y,X) =
1

2

(
IC

IC+ IW
+

UC

UC+UW

)
,

where y and X denote the observed dependent and indepen-
dent variables, respectively. If S data sets (y1,X1), ..., (yS,XS)
from the same data-generating process are available, the Mean
Balanced Accuracy (MBA) can be computed as follows

MBA =
1

S

S∑
s=1

BA(Msel|ys,Xs).

4.6 simulation study

In real-world applications, the data-generating process is un-
known. To gauge the performance of a given selection method,
a data-generating process is thus simulated and the performance
of the selection technique evaluated. We propose a simulation
in the context of hedonic regression. First, a hedonic price func-
tion including a set of a priori chosen characteristics is esti-

2 Their paper empirically shows, in particular, the advantages of using bal-
anced accuracy when unbalanced classification problems are considered.
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mated. Second, the estimated hedonic function is used to simu-
late prices according to the characteristics. In the third step, an
increasing number of noise variables inducing or not inducing
multicollinearity is added to the set of characteristics. Finally,
a selection algorithm is applied to a linear regression model
based on the data set containing the simulated prices, the char-
acteristics used to simulate the prices (informative variables),
and the noise variables (uninformative variables).
Two remarks are of primary importance at this point. First,
the ‘true’ data-generating process is contained in the initial full
model. Second, we do not a priori specify the multicollinearity
degree induced by noise variables. In the case of noise vari-
ables inducing multicollinearity, adding a new noise variable
may not worsen the multicollinearity problem as much as the
previously added noise variable.

4.6.1 Price-generating process

Let (pi, xi1, ..., xig), g < K be the data set containing the price pi
of the i-th good in a given time period and the price-relevant
characteristics (xi1, ..., xig). The following process is used to sim-
ulate log-prices:

i) A log-linear hedonic model is assumed:

log(pi) = β0 +β1xi1 + ... +βgxig + εi,

where εi represents a stochastic error term. Let ̂log(pi)
denote the estimated log-price for the i-th observation.

ii) A simulated error term is added to the estimated log-
prices to obtain the simulated log-prices according to the
characteristics:

log(p∗i ) = ̂log(pi) + ε∗i ,

where the simulated stochastic error term ε∗i is randomly
generated with a N(0,σ2) probability distribution.

The main problem is to adequately choose the variance σ2 of the
simulated error term. As suggested by Chong and Jun (2005),
the error term’s variance can be chosen to achieve a specific R2

in the price-generating process. Let r2 represent the R2 value
required from the log-price generating process. Computing the
simulated error variance as

σ2 =

(
1− r2

r2

)
Var(l̂og(p))
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guarantees that the R2 of the data-generating process is equal
to r2. The term

Var(l̂og(p)) := Var(( ̂log(p1), ..., ̂log(pn))

represents the empirical variance of the estimated log-prices.
To analyze how the selection method performs for different R2

levels, two R2 values were used to compute the simulated error
variance: 50% and 90%. These levels were chosen since hedonic
regressions rarely display R2 values under 50%. For each of
the R2 levels, 1 ′000 data sets containing n observations were
simulated.

4.6.2 Noise variables and hedonic regression equations

Once the log-prices have been simulated, a set of uninforma-
tive variables (xi(g+1), ..., xiK) is added to the set of informative
variables (xi1, ..., xig). A selection method is then applied to the
following full regression model

log(p∗i ) = β0+β1xi1+ ...+βgxig+βg+1xi(g+1)+ ....+βKxiK+ui,

where ui is the full model stochastic error term.
To assess the performance of the selection method for a vary-
ing number of noise variables, the number of noise variables in-
cluded in the model is progressively increased to obtain three
different ratios of noise variables to the total number of vari-
ables considered. The ratios are 33%, 42%, and 50%. The noise
variables added to the model have been chosen to induce or not
induce multicollinearity in the full model.

4.7 the data

The data used for the analysis were kindly provided by Wüest
& Partner, an international real estate consultancy firm. Transac-
tion prices of single-family dwellings and their corresponding
characteristics were collected for the Swiss canton of Zurich
from banks, insurances companies, and other real estate agen-
cies. In the present study, the 320 transactions observed for the
third quarter 2011 are considered.
The following characteristics were used to simulate the log-
prices: age (age; in years), volume (vol; in cubic meters), sur-
face of the land surrounding the property (land; in square me-
ters), and the macro location of the house within the canton
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Multicollinearity not induced Multicollinearity induced

age 1.2 1.2 1.3 age 42.5 43.2 43.2
vol 1.7 2.0 2.1 vol 1.6 6.7 10

land 1.6 1.6 1.7 land 1.6 1.8 15.6
macros 1.6 1.6 1.6 macros 1.6 1.6 1.6
macron 1.6 1.6 1.6 macron 1.6 1.6 1.6
statuss 1.2 1.2 1.2 age2 239 241.4 243.1
conde 1.3 1.3 1.3 age3 99.3 100 101.9
rooms 1.3 1.4 vol2 7.2 9.15
typed 1.2 land2 13.5

Table 4: Variance inflation factors of the regression models. All cate-
gorical variables appear as factors in the regression equation
with the first category defined as the reference group.

(macro; center, south, or north). In addition to these a priori cho-
sen price-relevant characteristics, eight different noise variables
were used. The noise variables not inducing multicollinearity
are given by status (status; low–medium or superior), condition
(cond; poor–reasonable or excellent), number of rooms (rooms),
and the house type (type; semi-detached or detached). The noise
variable inducing multicollinearity are powers of the informa-
tive variables used to generate prices: age2, age3,vol2, and land2.
Added noise variables that do not induce multicollinearity have
also been chosen because they are potentially related to the in-
formative variables. Clearly, this relation is non-linear: cond and
status are typically age-related characteristics, whereas rooms
and type are related to vol and land, respectively. This approach
was chosen, since it allows a fairer comparison between noise
variables not inducing and inducing multicollinearity.
The noise variables are progressively added to the log-price
generating model to vary the percentage of noise variables to
the total number of variables. Table 4 shows the regression mod-
els and the corresponding Variance Inflation Factor (VIF). As
can be seen, when noise variables inducing multicollinearity
are added to the data-generating process, the VIF values of the
variables are greater than the usual recommended value of 5.
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4.8 results

In this section, the results for the simulation set-up and the se-
lection methods are described. All computations have been per-
formed with the statistical software R (see R Core Team (2012)
for further information).

4.8.1 Backward stepwise selection and MBA

The left side of Figure 2 shows the MBA values according to
the number of noise variables not inducing and inducing multi-
collinearity and the R2 levels, when a backward stepwise selec-
tion approach is used. Interestingly, independently of the infor-
mation criterion, the performance of the backward stepwise se-
lection method in the case of noise variables not inducing mul-
ticollinearity seems to be mostly unaffected by the number of
added noise variables and the fit of the original data-generating
process. As expected, the performance of the backward step-
wise selection method is improved when the BIC criterion is
used: Since the price-generating process is contained in the ini-
tial full model and is given by only a few big effects, the BIC
criterion will asymptotically select the original data-generating
process with a probability of 1 (see Burnham and Anderson
(2004)). Nevertheless, both information criteria generally per-
form well when noise variables not inducing multicollinearity
are used.
Not surprisingly, independently of the selection criterion, the
selection method performs systematically worse when noise
variables inducing multicollinearity are used. The MBA of the
two stepwise selection methods seems to be equally affected
by the introduction of noise variables inducing multicollinear-
ity. Interestingly, adding a new noise variable inducing multi-
collinearity does not necessarily worsen the MBA value. This is
probably because the multicollinearity induced by age2 and age3

is higher than for the vol2 and land2 variables (see Table 4), thus
making it easier for the stepwise selection algorithm to identify
these last two variables as added noise.

4.8.2 Multimodel selection and MBA

The findings resulting from the multimodel selection approach
are illustrated in the right side of Figure 2. Analogously to the
backward stepwise selection method, the performance of the
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Backward stepwise selection Multimodel weights selection
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Figure 2: Mean balanced accuracy of backward stepwise selection
and multimodel weights selection according to the number
of noise variables and R2 values.

multimodel selection approach is analyzed regarding the num-
ber of added noise variables and the two R2 values.
When noise variables not inducing multicollinearity are added
to the original data-generating process, the MBA, as for the
previous selection method, seems to be mostly unaffected by
the number of added noise variables and the fit of the data-
generating process, and this occurs independently of the infor-
mation criterion. This invariance, however, does not hold in the
case of multicollinearity-inducing noise variables, with the MBA
clearly higher for R2 = 90%. Moreover, when R2 = 50%, the
number of added noise variables has an impact on the MBA val-
ues when the AIC is used, this time in the expected direction.
Also remarkable is the performance of the AIC and BIC mul-
timodel selection approaches for noise variables not inducing
multicollinearity. In contrast to the previous selection methods,
these approaches have virtually the same MBA values.
Very interestingly, the MBA for the multimodel approach is sys-
tematically better than that of the backward stepwise approach
when multicollinearity is present, especially for a high R2. This
result stems from the very nature of the multimodel approach;
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computing the variables’ importance according to a well-cali-
brated set of candidate models allows the selection algorithm
to gauge the relevance of each variable in each model in turn.

4.9 conclusions

The present paper exclusively focused on identifying the data-
generating process, assuming that this process is a nested ver-
sion of a more general model in which all the available char-
acteristics are included in the analysis. The findings in sec-
tion 4.8 suggest that when multicollinearity is not present back-
ward stepwise regression is a reliable method for identifying
the original data-generating process, independently of its R2

value. The performance of this selection method, however, is de-
creased in the case of noise variables inducing multicollinearity,
thus requiring the use of an alternative selection approach. To
solve this problem, a selection method based on a multimodel
approach has been suggested. The proposed method clearly
shows better performance in the case of multicollinearity and,
surprisingly, seems to perform equally well with the AIC and
BIC criteria. These two features are particularly important, since
even if multicollinearity is present and the non-appropriate in-
formation criterion for the set-up is used, good MBA values are
obtained.
Another advantage presented by the proposed multimodel me-
thod is that, due to the high MBA values, it seems reasonable
to assume that the variance introduced by the selection method
does not significantly increase the coefficients’ variance. The
usual formulas for the coefficients’ standard deviations could
therefore be used as approximations of the theoretical ones,
thus making it possible to use classical test statistics once the
regression model has been selected.
When the purpose of the hedonic regression is prediction, how-
ever, the relevance of the multimodel selection approach is ques-
tionable. A comparison of the out-of-sample prediction perfor-
mance of the multimodel selected model with the prediction
performance of an averaged model could be a subject for fur-
ther research.
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4.10 appendix : backward selection pseudo-algorithm

Algorithm 1 Backward selection pseudo algorithm

Require: MF, IL, tol
1: M←MF, gM ← IL(MF), iter← TRUE

2: while iter do
3: for i = 1 to |{xi ∈M}| do
4: Mi ←M\{xi}, gi ← IL(Mi)

5: end for
6: Mdrop ←Mi∗ such that IL(Mi∗) < IL(Mi) ∀i
7: gMdrop

← IL(Mdrop)

8: if gMdrop
> gM + tol then

9: iter← FALSE

10: else
11: M←Mdrop, gM ← IL(Mdrop)

12: end if
13: end while
14: return M



5
S E L E C T I O N O F R E G R E S S I O N M E T H O D S I N
H E D O N I C P R I C E M O D E L S B A S E D O N
P R E D I C T I O N L O S S F U N C T I O N S

5.1 introduction

Research activity in hedonic price models can roughly be di-
vided into two categories: Determining the impact of specific
characteristics on the price of goods or predicting the price
for a bundle of characteristics. In the second category, in par-
ticular, much research has been devoted to comparing differ-
ent estimation techniques with respect to their predictive ac-
curacy, and successively formulating recommendations on the
technique to use. Unfortunately, most of the published analyses
seem to suffer two main drawbacks. First, authors tend to focus
on quadratic and absolute loss functions, without investigating
the prediction accuracy of the chosen estimation method for
other loss functions. Second, final recommendations are usu-
ally based on a direct comparison of the prediction accuracy’s
point estimates, completely ignoring the sample variation of
such estimates.1

Thus, the aim of the present paper is twofold. The first purpose
is to analyse how the choice of a regression method in hedonic
price models will depend on different loss functions. In addi-
tion to the usual square, and absolute loss functions, a bounded
loss function is also considered to compute the prediction accu-
racy. The second purpose is to adopt an approach that allows
for statistically comparing the predictive accuracy of the con-
sidered regression methods, and to illustrate how misleading
the usual comparisons based on point estimates can be. To this
end, a modified version of the test proposed by Diebold and
Mariano (1995), and the permutation test introduced by Koni-
etschke and Pauly (2013) are applied to compare the predictive
accuracy of non-robust, and robust regression techniques.
The paper is structured as follows. Section 5.2 introduces the
employed hedonic price model, illustrates the concept of loss
function, and defines the in- and out-of-sample prediction ac-

1 See Laurice and Bhattacharya (2005) and Hannonen (2008) as examples of
recent publications containing these drawbacks.
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curacy. The statistical tests used to compare the prediction per-
formance of the regression methods are explained in Section
5.3. Section 5.4 describes the data, briefly illustrates the two re-
gression methods that are compared, and shows the empirical
results. Section 5.5 concludes the paper.

5.2 hedonic price model estimation and evaluation

5.2.1 Loss function and prediction accuracy

Let the random variables P and X := (X1, ...,XK) denote the
price and the K characteristics of a good, respectively. For a
random sample of n independent observations

(Pi, Xi) := (Pi,Xi1, ...,XiK), (43)

we assume the following additive model for the log of the price:

log(Pi) = β0 +Xi1β1 + ... +XiKβK + εi, (44)

where εi represents a stochastic error term with E(εi|Xi) = 0

and V(εi|Xi) = σ2, ∀i.2
Let P̂r be the estimated price in the original scale obtained
through a regression method r. In the present paper, r repre-
sents the non-robust and robust regression techniques, respec-
tively. The main goal is to compare the distribution of the ran-
dom variables L(P, P̂r(X)), r = 1, 2, where L : R2 −→ R+

denotes the prediction loss function. Three loss functions are
used in the present paper: The usual square loss function, the
absolute loss function, and the bisquare loss function. For a def-
inition of these loss functions, please refer to 5.6.
To measure the prediction accuracy, we consider the expected
values µr := E(L(P, P̂r(X))), r = 1, 2. As noted by Hennig and
Kutlukaya (2007), the choice of the central tendency indicator
is arbitrary but could be related to the functional form of the
loss function. Since the expected value of the loss function is
not robust to extreme values, one could suggest a robust loss
function to limit the influence of extreme values. This motivates
the choice of the bisquare loss function.
As already mentioned, in the hedonic literature, point estimates
of the expected loss are often compared, and the optimal re-
gression method is selected according to these point-estimates.

2 Although we restrict ourselves to cross-sectional data, the illustrated proce-
dures can easily be modified for pooled cross-sections with an heteroskedas-
tic error term.
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However, as pointed out by Diebold (2012), the fact that a sin-
gle realization of the random variable µ1 is smaller than µ2 (or
vice versa) does not guarantee that the observed inequality also
holds for the population parameters. To investigate if the popu-
lation parameters are statistically not equal, difference in means
tests can be applied to estimators of the population parameters.
The in- and out-of-sample prediction error’s estimators of the
expected loss are given by

µ̂inr =
1

n

n∑
i=1

L(Pi, P̂r(Xi)), r = 1, 2

and

µ̂outr =
1

n

n∑
i=1

L(Pi, P̂r,−s(i)(Xi)), r = 1, 2,

respectively. The expression P̂r,−s(i) indicates that price in the
original scale has been estimated without a subset of sample
variables containing the i-th random variable Xi. Both cross-
validation and bootstrap techniques are available to compute
µ̂outr (see Hastie et al. (2003)). In the present paper, we limit
ourselves to the cross-validation approach.

5.3 comparing prediction performance

To gauge if the prediction accuracies of two estimation methods
are statistically different for a given loss function, the following
two tests are considered in the present paper:

H0 : µ
in
1 = µin2 against H1 : µin1 6= µin2

and
H0 : µ

out
1 = µout2 against H1 : µout1 6= µout2 .

Let Di := L(Pi, P̂1(Xi)) − L(Pi, P̂2(Xi)) and D̄n := 1
n

∑n
i=1Di de-

note the i-th loss differential and the mean loss differential,
respectively. The observations having been assumed indepen-
dent, the random variables Di are also independent. The above
hypotheses are verified by means of the following difference in
means tests.

5.3.1 Permuted t-test

Let Lri := L(Pi, P̂r(Xi)) be the i-th prediction loss for the re-
gression method r, and L := (L11,L

1
2, ...,L2n−1,L

2
n) denote the 2n-
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vector containing the losses of the considered regression meth-
ods. We define the vector L∗ = ((L1,∗1 ,L2,∗1 ), ..., (L1,∗n ,L2,∗n )) as a
random permutation of the vector L. In a recent paper, Koni-
etschke and Pauly (2013) define, among others, the following
modified t-statistic

tKP :=
√
n
D̄∗n
V∗n
−→ N(0, 1),

whereD∗i := L
1,∗
i −L2,∗i , i = 1, ...,n represent the loss differences

of the permuted losses. The expressions D̄∗n = 1
n

∑n
i=1D

∗
i and

V∗2n = 1
n−1

∑n
i=1(D

∗
i − D̄

∗
n)
2 simply denote the mean and vari-

ance estimators of the permuted losses.
Using a simulation study, Konietschke and Pauly (2013) show
that in small samples the proposed statistic improves the power
of the t-test, and the test level is nearer to the nominal one, es-
pecially for skewed distributions.

5.3.2 Modified Diebold and Mariano test

The following test is a modified version of the test proposed
by Diebold and Mariano (1995). In this case, we do not assume
that the loss differentials Di possess the same variance. The
null hypothesis of equal predictive accuracy is tested using the
following modification of the usual t-statistic:

tDM :=
D̄n√

V̂( 1n
∑n
i=1Di)

−→ N(0, 1).

Due to the observations’ independence, the variance V( 1n
∑n
i=1Di)

is estimated by 1
n2

∑n
i=1 V̂(Di). Thus, the main issue is to con-

sistently estimate the variances V(Di), i = 1, ...,n with V(Di) 6=
V(Dj) for i 6= j. The problem is solved by regressing the loss
differentials Di on a constant and computing the coefficient’s
standard error through a heteroskedastic-consistent (HC) esti-
mator. Because of the possible presence of influential observa-
tions, we use the heteroskedastic-consistent estimator proposed
by Cribari-Neto (2004).

5.4 empirical results

5.4.1 Data

The data used for the analysis were kindly provided by Wüest
& Partner, an international real estate consultancy firm. Transac-
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tion prices of single-family dwellings and their corresponding
characteristics were collected for the Swiss canton of Zurich
from banks, insurances companies, and other real estate agen-
cies. In the present study, the 411 transactions observed for the
fourth quarter 2010 are considered3.
The following characteristics were used to explain the log-price
variations: age (age; in years), volume (vol; in cubic meters),
surface of the land surrounding the property (land; in square
meters), micro location within the municipality (micro; bad-ac-
ceptable, or good), and the macro location of the house within
the canton (macro; center, south, or north), status (status; low–
medium or superior), condition (cond; poor–reasonable or excel-
lent), number of rooms (rooms), house type (type; semi-detached
or detached), and number of parking places (garage).

5.4.2 Estimation comparison

The first estimation method is the well known ordinary least
squares (OLS) estimator, and the second is a robust estimation
technique proposed by Maronna and Yohai (2000). In the hedo-
nic literature, several authors have used robust regression meth-
ods to compare robust coefficients estimates to those obtained
with the OLS method, finding that robust coefficients often pos-
sess a better economic interpretation4. Unfortunately, most of
the published papers make use of M-estimators to limit the
effect of influential observations (see for example Yoo (2001),
Graves et al. (1988), and Janssen et al. (1984)). However, as
stressed by Ellis and Morgenthaler (1992), M-estimators may
have a low breakdown point even if no leverage points are
present. On the contrary, the estimation method proposed by
Maronna and Yohai (2000) is particularly indicated for linear
hedonic regression, since it alternates M and S estimators to
handle both categorical and continuous regressors, defining a
high breakdown-point and computationally less expensive ro-
bust estimator. Since a Q-Q plot of the OLS residuals in equation
(44) revealed a heavy-tailed distribution, a robust estimation
technique seemed an appropriate way to prevent influential ob-
servations to unduly influence the model’s predictions.
Table 5 contains the results of both OLS and M-S estimations.
As it can be seen, the two estimation methods display simi-

3 This quarter was chosen since the hypothesis of homoskedasticity could not
be rejected at the standard level of 5%.

4 For example, see Yoo (2001).
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OLS M-S

(Intercept) 12.930∗∗∗ 12.842∗∗∗

(0.102) (0.107)
age 0.000 0.001

(0.001) (0.001)
vol 0.001∗∗∗ 0.001∗∗∗

(0.000) (0.000)
land 0.000 0.000

(0.000) (0.000)
status_s 0.147∗∗∗ 0.126∗∗

(0.037) (0.039)
cond_e 0.023 0.000

(0.039) (0.041)
micro_g 0.148∗∗∗ 0.127∗∗∗

(0.034) (0.036)
type_d −0.058 −0.068

(0.036) (0.038)
rooms 0.043∗ 0.041∗

(0.018) (0.019)
macro_s 0.106∗∗ 0.136∗∗

(0.041) (0.043)
macro_n −0.212∗∗∗ −0.190∗∗∗

(0.044) (0.046)
garage 0.006 0.010

(0.018) (0.019)

N. obs. 411 411

***p < 0.001, **p < 0.01, *p < 0.05

Table 5: OLS and M-S log-linear regression coefficients.

lar coefficients’ values, and share exactly the same significant
variables. This is not surprising, since the two estimation tech-
niques provide consistent estimators of the population param-
eters. Although the coefficients are similar, the main question
is whether the predictive accuracy of the two estimation tech-
niques is the same for a given loss function.
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Square Absolute Bisquare

OLS 0.233 0.279 0.882

Robust 0.273 0.283 0.866

Table 6: In-sample mean losses.

5.4.3 In-sample prediction accuracy

The in-sample prediction performance of the two estimation
methods was compared for the square, absolute, and bisquare
loss functions. Once the log-linear regression model was esti-
mated, the predictions in the original scale were obtained us-
ing the smearing estimator proposed by Duan (1983). Duan’s
smearing estimator guarantees that predictions in the original
scale are unbiased for a general distribution of the regression
model’s error term.
Table 6 shows the mean losses of the two estimation techniques
for the considered loss functions. Apparently, the OLS method
performs much better than the robust one for a square loss func-
tion. This result could be interpreted as a consequence of the
fact that the OLS estimator minimizes the sum of square residu-
als, thereby providing the smallest expected square loss. For the
absolute loss function, the two techniques seem to possess sim-
ilar expected losses. Finally, the M-S estimator seems to possess
a slightly lower expected bisquare loss. This result could also
be expected, since the considered robust estimator alternates
estimators that minimize robust loss functions, thus providing
a better performance for a bounded prediction loss function.
Except for the bisquare loss function, the OLS estimation tech-
nique should, therefore, be preferred to its robust counterpart.
However, as illustrated in Table 7, the above interpretation is
not correct. Both the Diebold-Mariano (D-M) and Konietschke-
Pauly (K-P) t-tests reveal that the prediction accuracy of the

Square Absolute Bisquare

D-M 0.201 0.446 0.042

K-P 0.392 0.469 0.038

Table 7: In-sample difference in means: p-values of equality of means
tests.
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Fold Square Absolute Bisquare

1 0.486 0.174 0.787

2 0.369 0.375 0.866

3 0.101 0.393 0.868

4 0.960 0.359 0.814

5 0.774 0.689 0.225

All 0.501 0.455 0.441

Table 8: Out-of-sample difference in means: p-values of the K-P test.

OLS estimator is not statistically different from that of the ro-
bust M-S estimator for the square and absolute loss functions.
For the bisquare loss function, however, the mean losses are
significantly different at the standard level of 5%. According to
the computed p-values, the M-S estimator should, therefore, be
preferred to the OLS estimator, since it performs at least as good
as the OLS estimator for the considered loss functions.

5.4.4 Out-of-sample prediction accuracy

In this section, the out-of-sample prediction performance of the
OLS and M-S estimators is analyzed. A 5-fold cross-validation
was carried out to compute the out-of-sample prediction losses
of each regression technique. To effectuate a direct comparison
of the prediction accuracy, the OLS and M-S estimators were
computed using the same set of randomly generated folds, and
the out-of-sample losses estimated on the same left-out fold.
To assess how the expected out-of-sample prediction was influ-
enced by an estimation technique in a given fold, the prediction
performance was compared both within each fold and globally
using the K-P test5.
Table 8 shows the obtained results. As can be seen, none of
the considered techniques seems to possess a better prediction
performance for the three loss functions. This result is in con-
trast to what was obtained for the in-sample prediction perfor-
mance, where the robust method dominated the OLS estimator
for the bisquare loss function. It turns out, however, that the
out-of-sample prediction performance of the robust method is
strongly dependent on the set of randomly generated folds. It

5 The D-M test provided similar results.
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seems that the more the influential observations are equally dis-
tributed within each fold, the more similar are the OLS and M-S
prediction performance. On the contrary, if the influential obser-
vations are concentrated in a small number of folds, the robust
estimation technique performs better than the OLS technique in
these folds, causing its global out-of-sample expected loss to
be statistically lower than that of the OLS estimator. Increasing
the number of folds worsens the results’ stability for the given
number of observations. Although the expected out-of-sample
losses of the two regression methods do not seem to be sta-
tistically different, the computed p-values must be cautiously
interpreted.

5.5 conclusions

In the present paper, a systematic approach to compare the
predictive accuracy of two regression methods was presented.
In particular, using cross-sectional data, the prediction perfor-
mance of the usual OLS estimator was compared to the predic-
tion accuracy of the robust M-S estimator proposed by Maronna
and Yohai (2000). The prediction accuracy of the two regression
methods was compared for the square, absolute, and bisquare
loss functions. The Diebold-Mariano and Konietschke-Pauly tes-
ts were finally applied to assess if the expected in- and out-of-
sample losses were statistically different among the regression
methods.
A rough comparison of the expected loss point estimates, as of-
ten effectuated in the hedonic literature, was shown to be mis-
leading, since it does not account for the sample variation of
these point estimates. Moreover, the out-of-sample predictive
accuracy may be strongly dependent on the resampling tech-
nique used to compute out-of-sample predictions. Thus, great
care is needed in the interpretation of the out-of-sample predic-
tion accuracy. Based on the introduced methodology, the M-S
estimator was shown to perform as well as the OLS estimator
for the square and absolute loss functions. Interestingly, despite
the two regression methods displaying similar coefficient val-
ues, the M-S estimator performed significantly better for the
bisquare loss function.
In the present paper, we concentrated on comparing the pre-
dictive accuracy of two regression methods. The same method-
ology could also be applied to compare the prediction perfor-
mance of a given estimation technique for different loss func-
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tions. Additionally, asymmetric loss functions could be employ-
ed to determine the choice of regression method to use. This is
an area for further research.
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5.6 appendix : loss functions

Let P and P̂ denote the model’s dependent variable and its
predicted value, respectively. The following loss functions have
been considered in the present analysis:

• Square loss function:

LSquare : R×R −→ R+

(P, P̂) 7−→

(
P− P̂

P

)2
.

• Absolute loss function:

LAbs : R×R −→ R+

(P, P̂) 7−→

∣∣∣∣∣P− P̂P
∣∣∣∣∣ .

• Bisquare loss function:

LBisq : R×R −→ R+

(P, P̂) 7−→


1−

(
1−

(
1
k
P−P̂
P

)2)3
if
∣∣∣P−P̂P ∣∣∣ 6 k

1 if
∣∣∣P−P̂P ∣∣∣ > k,

where the k represents a parameter defining the func-
tion’s shape.

The three loss functions are represented in Figure 3.
Three remarks are necessary to fully understand the used loss
functions. First, the above loss functions depend on the relative
residuals er := (P − P̂)/P. This seems more reasonable in the
hedonic price context than to consider loss functions based on
usual prediction errors. It appears unrealistic to assume that
the loss caused by the prediction error P − P̂ does not depend
on the relative value of P: A prediction error of 100 ′000 CHF
should cause a greater loss for a house worth 500 ′000 CHF
than for a house worth 1 ′000 ′000 CHF. Second, only symmetric
loss functions have been used, i.e., L(er) := L(P, P̂) = L(−er).
This implies that overestimating the price by a given amount
causes exactly the same loss as underestimating the price by
the same amount. This assumption could not be true and de-
pends on the purpose for which price prediction is conducted.
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Figure 3: Loss functions.

Consider the point of view of a person who owns a house. If the
aim is to predict the price for sale purposes, overestimating the
price might cause a lesser loss than underestimating the price
by a given amount for this person. On the contrary, the same
person might experience a greater loss caused by overestimat-
ing the house price when tax valuation is considered. Third, as
stressed by Hennig and Kutlukaya (2007), the shape parameter
k should not depend on the data, i.e. it should be determined
a priori. For the present analysis, a value of k = 10% has been
chosen. The shape parameter should be interpreted as follows.
If a prediction error exceeds 10% of the property value, the loss
caused does not depend on the magnitude of the prediction er-
ror. This could be the case, for example, if the person for which
the home price is predicted does not take into account the pre-
diction’s validity for relative errors greater than 10%. The shape
parameter, therefore, defines a kind of tolerance threshold for
the person for whom the prediction is conducted.
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C O N C L U S I O N S A N D F U RT H E R R E S E A R C H

The hedonic domain represents a rich research field in which a
wide range of statistical tools can be used to provide an answer
to valuing goods with non-constant quality. The present thesis
tries to shed light on several aspects of hedonic estimation in
the housing field in general, and, in particular, on the estima-
tion of hedonic price indices. Using theoretical and empirical
arguments, several results have been achieved regarding these
applications. Many problems, however, remain unsolved, and
represent an area of further research.
The price index problem in the hedonic context, in particular,
is far from being solved. It could be interesting, for example,
to empirically investigate how nonlinear hedonic functions in-
fluence the price index problem, and establish if asymptotically
the price index formulae are statistically different. This could be
achieved by computing, for different hedonic functions, a given
price index formula. The equality of the price indices could
then be tested, and conclusions drawn regarding the most sta-
ble price index formula.
Concerning the variable selection techniques in the presence of
multicollinearity, the approach using several competing models
seems to be promising. Comparing the proposed selection algo-
rithm to a selection algorithm using a Bayesian approach could
be interesting. Moreover, the performance of the proposed se-
lection algorithm was simulated under normally distributed er-
rors. Its performance for non-spherical errors is unknown and
requires further investigation. In particular, a simulation using
heavy-tailed distribution, a class of distribution often observed
in practice, could be captivating.
The proposed methodology for assessing the prediction perfor-
mance of hedonic models under general loss function, could be
used to compute hedonic price indices. According to the aim of
the price index, a loss function could be modeled, and a corre-
sponding estimation technique chosen. The price index would
finally be computed according to this estimation technique that
minimized the expected loss. Also in this case, investigating
how the computed price index differs for different loss func-
tions could be interesting.

90
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In conclusion, many questions in the hedonic domain remain
unanswered, and further research is needed to improve our
knowledge in this field.
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