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Abstract. Inferring the network topology from the dynamics is a fundamental
problem, with wide applications in geology, biology, and even counter-terrorism.
Based on the propagation process, we present a simple method to uncover the
network topology. A numerical simulation on artificial networks shows that our
method enjoys a high accuracy in inferring the network topology. We find that the
infection rate in the propagation process significantly influences the accuracy, and
that each network corresponds to an optimal infection rate. Moreover, the method
generally works better in large networks. These finding are confirmed in both
real social and nonsocial networks. Finally, the method is extended to directed
networks, and a similarity measure specific for directed networks is designed.
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1. Introduction

Spreading processes widely exist in various fields, including physics, chemistry, medical
science, biology, and sociology [1]. For example, reaction diffusion processes [2],
pandemics [3], cascading failures in electric power grids [4], and information
dissemination [5] can be naturally described by the framework of spreading. In the past
decade, spreading on complex networks has been intensively studied. Studies have revealed
that the spreading results are strongly influenced by the network topologies [6]–[9]. With
this understanding, some network manipulating methods are designed to hinder spreading
in the case of diseases or accelerate spreading in the case of information dissemination [10].

Recently, increasing attention has been paid to the microscopic level when studying
the spreading process on networks [11]. Since the local structure around each node can be
very different, the final spreading coverage varies from several nodes to the entire network
when the propagation originates from distinct nodes. So far, many methods, such as the
k-shell [12] and the leaderrank [13], have been proposed to rank the spreading ability of
the nodes (i.e., how many nodes will finally be reached when the spreading originates from
this single node).

A fundamental problem related to the spreading process is how to infer the network
topology from the observation of the spreading results. If this question is answered, we
could, for instance, have a better understanding of the organization of groups of terrorists
(social networks) and the structure of some biology systems (metabolic networks). Since
building the relation between the dynamics and the network structure is a crucial problem,
much effort has been made in this direction [14]. In [15], the authors design a method to
reconstruct the network based on the observation of some oscillation taking place on
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it. Moreover, noise is found to lead to a general one-to-one correspondence between the
dynamical correlation and the network connections [16]. Very recently, the oscillation
has also been used to predict the missing nodes in a network [17]. Even though spreading
processes exist widely in many real systems, so far little has been reported in the literature
about inferring the network topology based on the spreading. The closest studies are
[18, 19], where the spreading results are used to identify the initial spreader of a certain
disease or information.

In this paper, we proposed a simple method to uncover the network topology. The
basic idea is that the similarity between nodes can be estimated based on the spreading
results. We test our method in two well-known artificial network models. The results
shows that our method has a high accuracy in inferring the network topology. Moreover,
the infection rate of the spreading is found to significantly influence the inferring accuracy,
and each network has an optimal infection rate. We also validate our method in both real
social and nonsocial networks. Finally, we design a new similarity measure and extend our
method to directed networks. The new similarity measure is shown to remarkably improve
the inferring accuracy compared to existing similarity measures.

2. Model

We consider a network with N nodes and E links. The network is represented by an
adjacency matrix A, where aij = 1 if there is a link between node i and j, and aij = 0
otherwise. To simulate the spreading process on networks, we employ the SIR model [1].
Actually, this model has been used to simulate many different propagation process.
Without losing any generality, we consider online information spreading as an example in
this paper. We assume that each user has probability f to submit some news. As such,
there will be f × N items of news propagating in the network. After some news/story α
is submitted (or received) by a user, it will infect each of this user’s susceptible neighbors
with probability β. After infecting neighbors, the user will immediately become recovered.
All the users who received (or got infected by) α at the end will be recorded. For each
user i, the set of news/stories that he/she received is denoted as Γ(i).

3. Methods and metric

3.1. Methods

In the following, we will describe the method we used to infer the network topology based
on the news propagation process. The basic idea is that the news/stories received by
users can be used to estimate the similarity between them (nodes). We assume that the
nodes with higher similarity are more likely to be connected in networks. Therefore, the
obtained similarity sij can be regarded as the likelihood score Lij for two nodes to have a
link, i.e., Lij = sij.

Actually, the similarity sij is subject to different definitions. Here, we consider some
well-known similarity definitions, as follows.

(i) Common neighbors (CN). By common sense, two nodes, i and j, are more likely to
have a link if they received many identical news/stories. The simplest measure of this
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neighborhood overlap is the directed count, namely

sij = |Γ(i) ∩ Γ(j)|. (1)

(ii) Salton index (SI). The Salton index [20] is defined as

sij =
|Γ(i) ∩ Γ(j)|√|Γ(i)| × |Γ(j)| , (2)

where |Γ(i)| the number of items of news received by user i.

(iii) Jaccard index (JI). This index was proposed by Jaccard over 100 years ago [21], and
is defined as

sij =
|Γ(i) ∩ Γ(j)|
|Γ(i) ∪ Γ(j)| . (3)

(iv) Sorensen index (SSI). This index is used mainly for ecological community data [22],
and is defined as

sij =
2 × |Γ(i) ∩ Γ(j)|
|Γ(i)| + |Γ(j)| . (4)

(v) Hub promoted index (HPI). This index is proposed for quantifying the topological
overlap of pairs of substrates in metabolic networks [23], and is defined as

sij =
|Γ(i) ∩ Γ(j)|

min{|Γ(i)|, |Γ(j)|} . (5)

(vi) Hub depressed index (HDI). There is a measure with the opposite effect on hubs, which
is

sij =
|Γ(i) ∩ Γ(j)|

max{|Γ(i)|, |Γ(j)|} . (6)

(vii) Leicht–Holme–Newman index (LHN). This index assigns high similarity to node
pairs that have many common neighbors compared to the expected number of such
neighbors [24]. It is defined as

sij =
|Γ(i) ∩ Γ(j)|
|Γ(i)| × |Γ(j)| . (7)

(viii) Resource allocation index (RA). The similarity between i and j is defined as the
amount of resource j received from i [25], which is

sij =
∑

α∈Γ(i)∩Γ(j)

1

mα

, (8)

where mα is the number of users who finally received news α.

As a benchmark, we compare the similarity-based method with the well-known
preferential attachment (PA) process. The mechanism of preferential attachment has
been used to generate evolving scale-free networks, where the probability that a new
link is connected to the node i is proportional to k(i) [27]. Based on this network
growing mechanism, the likelihood score for two nodes to have a link can be calculated as
Lij = |Γ(i)| × |Γ(j)|.
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3.2. Metric

To measure the accuracy of the method in inferring the network topology, we use the
standard metric of the area under the receiver operating characteristic curve (AUC) [28].
In the network topology inference problem, there are four possible outcomes from the
prediction. A true positive (TP) is the prediction of a link that exists in the real network,
and if the link does not exist in the real network then it is called a false positive (FP).
Conversely, a true negative (TN) means that a link that does not exist in the real network
is not predicted, and a false negative (FN) is the lack of prediction of a link that actually
exists in the real network.

To draw the receiver operating characteristic curve (ROC) curve, only the true positive
rate (TPR) and the false positive rate (FPR) are needed. The TPR defines how many
TPs occur among all TP and FN samples available during the test. On the other hand,
FPR defines how many FPs occur among all FP and TN samples available during the
test. The ROC curve is created by plotting the TPR versus the FPR at various threshold
settings. When using normalized units, the area under the ROC curve (AUC) is equal to
the probability that a true link has a higher score than a nonexisting link.

In this paper, we use a simple way to calculate the AUC. We pick a true link and
a nonexisting link in the network and compare their scores. If, among n pairs, the real
link has a higher likelihood score Lij than the nonexisting link n1 times and equal score
n2 times, the AUC value is as follows: AUC = (n1 + 0.5 ∗ n2)/n. Note that, if links were
ranked at random, the AUC value would be equal to 0.5. By reanalyzing the following
results with another accuracy measure, we verify that the performance of the methods is
not strongly influenced by the accuracy measure we used. Therefore, we only present the
results of AUC in section 4.

4. Results

4.1. Artificial networks

We first test our method in two artificial network models: (i) Watts–Strogatz (WS)
networks [29], (ii) Barabasi-Albert (BA) networks [27]. When implementing our method,
we select the Jaccard similarity definition as an example here. Figure 1 shows the AUC in
the parameter space (β, f) for both WS and BA networks. Actually, both β and f control
the amount of data we can obtain from the spreading process. If β is too small, the news
can only propagate several steps, and the data for similarity calculation will be limited.
If f is small, only a few items of news are propagating in the network and the obtained
similarity matrix will be sparse as well. The first crucial observation in figure 1 is that
the surface of the AUC has a pronounced maximum around β = 0.15 in WS networks and
β = 0.1 in BA networks for all values of f . As discussed above, a small β will result in a
sparse similarity matrix and eventually lead to a poor AUC. In the case of large β values,
the spreading will cover almost all the network. Consequently, the information of the local
network structure cannot embed in the spreading results. The optimal β is somehow close
to the critical infection rate for the spreading coverage [1]. Compared to β, the influences
of f on the AUC is smaller. Even though the AUC keeps increasing with f , the increasing
speed becomes significantly slower once f is larger than 0.3.
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Figure 1. The AUC in the parameter space (β, f) for (a) WS networks (N = 500,
p = 0.1, 〈k〉 = 10) and (b) BA networks (N = 500, 〈k〉 = 10). The results are
averaged over 10 independent realizations.

Next, we move to investigate how the network structure properties influence the
inferring accuracy. From figure 1, we can already see that the AUC in BA networks is lower
than that in WS networks, which indicates that it is generally easier to infer a network
with homogeneous degree distribution. Furthermore, we study the effect of average degree
on the inferring accuracy in detail, with results reported in figure 2. Figures 2(a) and (b)
show that, as the average degree 〈k〉 increases, the AUC shifts to the left in both networks.
In figures 2(c) and (d), we can see that both the optimal β∗ and maximum AUC∗ decrease
with increasing 〈k〉. Interestingly, β∗ is very stable under different f . In WS networks, β∗

stays almost unchanged when changing f . In BA networks, β∗ slightly decreases as f
increases.

We further apply our method on artificial networks with different size. We present the
maximum AUC∗ (with respect to optimal β∗) against N under different β in figures 3(a)
and (b). Interestingly, the inferring accuracy constantly increases with the network size.
The curve with the optimal β∗ enjoys the largest slope (β∗ = 0.15 in WS networks and
β∗ = 0.1 in BA networks). However, the slope slowly becomes smaller as N increases. In
figures 3(c) and (d), we report the maximum AUC∗ against N under different f . The
results show that f can always improve AUC∗.

In reality, the infection rate might not be the same in different spreading processes.
For example, some items of news are interesting and thus propagate wider than other
news. Besides this, the spreading may only originate from a small region in the network.
In the following, we investigate the non-uniform spreading parameters and localized initial
condition in the SW and BA models.

In order to model the non-uniform spreading parameters, we modify the spreading
process above. Specifically, the infection rate is no longer a constant. After a node is
randomly selected as the initial spreader, an infection rate will be set as a random value
in the range [β−ε, β+ε]. β is the average infection rate and ε is the error magnitude. When
ε = 0, the spreading process reduces to the SIR model we considered before. Once ε > 0,
the infection rate will be different in each spreading process (i.e., each initial spreader
selection is corresponding to a different infection rate setting).

We also model the localized initial condition. Instead of selecting the initial spreader
from all the nodes in the network, we now consider only the nodes in one specific region
as the initial spreader candidates. In practice, we randomly select a node as the seed
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Figure 2. The dependence of the AUC on β under different 〈k〉 in (a) WS
networks (N = 500, p = 0.1) and (b) BA networks (N = 500), respectively. (c) and
(d) show the relation between the optimal β∗ and 〈k〉 under different f in WS
networks and BA networks, respectively. The insets in (c) and (d) are the relation
between the maximum AUC∗ and 〈k〉 under different f . The results are averaged
over 10 independent realizations.

and calculate the shortest path length from the seed to all the other nodes. The η ∗ N
nodes with the smallest shortest path length to the seed will form the region for the initial
spreader candidates. Clearly, the region is as large as the whole network when η = 1. Once
η < 1, the spreading can only originate from a part of the network.

Figures 4(a) and (b) show the effect of the non-uniform spreading parameters on the
inference accuracy. We have already discussed that neither small nor large β is good for
inferring the network topology. This is because the similarity matrix is too sparse under
small β while the similarity between nodes cannot be accurately estimated under large β,
since the viruses cover almost the whole network. The non-uniform spreading parameter
setting can increase/decrease some infection rates in spreading. This makes both the small
β case and large β case have some spreading processes with infection rate close to the
optimal β∗, which leads to an improvement in the AUC under these values of β. However,
the non-uniform spreading parameter setting may significantly lower the maximum AUC,
and the optimal β∗ will be shifted to a smaller value.

Figures 4(c) and (d) show the effect of a localized initial condition on the inference
accuracy. Actually, the localized initial condition mainly influences the results under small
β. When β is very large, the spreading covers almost the whole network and the spreading
results will be independent of the original spreaders. In SW networks, the localized initial
condition will lower the accuracy under small β. This is because a large part of the
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Figure 3. The maximum AUC∗ (with respect to optimal β∗) against N under
different β in (a) WS networks (〈k〉 = 5, p = 0.1) and (b) BA networks (〈k〉 = 5),
respectively. (c) and (d) show the maximum AUC∗ against N under different f in
WS and BA networks, respectively. The results are averaged over 10 independent
realizations.

network has no spreading record to calculate the similarity matrix. Interestingly, the
localized initial condition seems to improve the accuracy under small β in BA networks.
BA networks have some hub nodes which connect to almost all the other nodes in the
network and these hub nodes can effectively enhance the local spreading to a global
level (so the similarity matrix will not be too sparse). In the local region where the
initial spreaders are chosen, the inference accuracy becomes better, since more spreading
information is available for calculating the similarity.

4.2. Real undirected networks

We will validate our method in real undirected networks, and all the similarity definitions
discussed above will be compared. Both social and nonsocial networks are selected.

The social networks are as follows: Dolphins (friendship network with 62 nodes and
159 links) [30], Jazz (musical collaboration network with 198 nodes and 2742 links) [31],
Netsci (collaboration network of network scientists with 379 nodes and 914 links) [32],
and Email (email communication network with 1133 nodes and 5451 links) [33].

The nonsocial networks are as follows: Word (adjacency network in English text with
112 nodes and 425 links) [32], E. coli (metabolic network of E. coli with 230 nodes and 695
links) [34], USAir (Airline network of USA with 332 nodes and 2126 links) [35], TAP (yeast
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Figure 4. AUC versus β under the non-uniform infection rate setting in (a) SW
and (b) BA networks. AUC versus β under the localized initial condition in (c)
SW and (b) BA networks. In this figure, f = 0.4. The parameters are N = 500,
p = 0.1, 〈k〉 = 10 for the WS networks and N = 500, 〈k〉 = 10 for the BA networks.
The results are averaged over 10 independent realizations.

protein–protein binding network generated by tandem affinity purification experiments,
with 1373 nodes and 6833 links) [36], and PPI (a protein–protein interaction networks
with 2375 nodes and 11 693 links) [37].

The results in table 1 show that the similarity-based network inferring method can
achieve significant higher accuracy than the preferential attachment method. Among the
similarity measures we considered, the SI, JI, and RA generally perform best, and they are
very robust in their performance. We also examine the performance of different similarity
metrics in these networks with the non-uniform spreading parameters and localized initial
condition. The results show that the SI, JI, and RA metrics still generally perform best,
and the AUC is not significantly influenced.

4.3. Real directed networks

Actually, our method can be easily extended to directed networks. However, all the
similarity measures discussed above are symmetric (i.e., sij = sji). This implies that, if
a direction link exists, the link in the other direction will exist as well. This will largely
lower the accuracy. To solve the problem, we propose an asymmetric similarity (AS)
measure for inferring the network topology in directed networks. Mathematically, it can
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Table 1. AUC of different similarity definitions in real undirected networks. The
parameters are set as β = 1/〈k〉 and f = 0.5. The similarity with best performance
in each network is highlighted in bold font.

CN SI JI SSI HPI HDI LHN RA PA

Dolphins 0.8098 0.8088 0.8351 0.8164 0.7836 0.8110 0.7989 0.8200 0.6678
Word 0.8082 0.8109 0.8041 0.8044 0.7774 0.7921 0.6747 0.8192 0.7674
Jazz 0.7918 0.7933 0.7891 0.8007 0.7370 0.7925 0.6876 0.8041 0.7552
E. coli 0.8712 0.9022 0.8944 0.8943 0.8345 0.8918 0.7689 0.8900 0.8302
USAir 0.9086 0.9145 0.9074 0.9066 0.8510 0.8999 0.6524 0.9132 0.8984
Netsci 0.8998 0.9186 0.9183 0.9167 0.9086 0.9148 0.9071 0.9138 0.6672
Email 0.8439 0.8758 0.8676 0.8670 0.8157 0.8554 0.7276 0.8558 0.8131
TAP 0.8691 0.9033 0.9065 0.9082 0.8854 0.9034 0.8903 0.8942 0.7223
PPI 0.8937 0.9345 0.9349 0.9342 0.8613 0.9324 0.8117 0.9124 0.8404

Table 2. AUC of different similarity definitions in real directed networks. The
parameters are set as β = 2/〈kout〉 and f = 0.5. The similarity with best
performance in each network is highlighted in bold font.

CN SI JI SSI HPI HDI LHN RA AS PA

Prisoners 0.7339 0.8159 0.8133 0.8164 0.7951 0.7987 0.7559 0.7483 0.8350 0.6469
SM FW 0.6643 0.6834 0.6634 0.6543 0.6839 0.6484 0.6127 0.6774 0.7635 0.6111
LR FW 0.7046 0.7135 0.7097 0.7012 0.7052 0.7019 0.7038 0.7102 0.7308 0.6855
Neural 0.7083 0.7076 0.7051 0.7052 0.7049 0.6995 0.6476 0.7209 0.7658 0.6864
Metabolic 0.7043 0.7373 0.7239 0.7246 0.7596 0.7175 0.7027 0.7178 0.8031 0.6542
PB 0.8757 0.8784 0.8761 0.8777 0.8606 0.8722 0.7676 0.8767 0.8926 0.8677

be expressed as

sij =
|Γ(i) ∩ Γ(j)|

|Γ(i)| . (9)

A large sij indicates that j received most of the news/stories passing through i. Therefore,
the network is more likely to have a directed link from i to j.

We considered several real directed networks to validate our method. The networks
are the following: Prisoners (friendship network between prisoners with 67 nodes and 182
links) [38], SM FW (food web network in St. Mark area with 54 nodes and 356 links) [39],
LR FW (food web network in Little Rock area with 183 nodes and 2494 links) [39],
Neural (the neural network of C. elegans with 297 nodes and 2359 links) [40], Metabolic
(the metabolic network of C. elegans with 453 nodes and 2040 links) [39], and PB (the
hyperlink between the blogs of politicians with 1222 nodes and 19090 links) [41]. Again, we
observe that the inferring accuracy of the similarity-based method is higher than that of
the preferential attachment method. Interestingly, the AS measure performs best among
all the similarity measures. The results indicate that the asymmetric feature is crucial for
inferring network topology in directed networks.

Like in undirected networks, we examine the performance of different similarity
metrics in a directed network with non-uniform spreading parameters and localized initial
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condition. We observe that the accuracy is largely lowered. Generally speaking, it is more
difficult for the virus/information to propagate in these networks due to the directionality
of the links. Therefore, the virus is very likely to stay in a local region under the localized
initial condition, which results in a very sparse similarity matrix for inferring the network
topology and thus a much lower AUC. The phenomenon is even more serious in some
acyclic networks (such as the SM food web and LR food web).

5. Conclusion

To summarize, we have proposed a method to infer the network topology based on the
spreading process on networks. Specifically, the similarity between nodes is estimated
by the information/virus that nodes received, and the nodes with the highest similarity
are assumed to be connected. We tested our method in classic artificial network models
and found that our method enjoys high inferring accuracy. Moreover, we found that the
infection rate in the spreading process significantly affects the inferring results and that
there is an optimal infection rate for each network. The findings were confirmed in many
real networks. Finally, the method was extended to directed networks. We have proposed a
new similarity measure, which is shown to perform better than other well-known similarity
measures in directed networks.

We remark that many extensions can be made in this direction. For example, the
inferring accuracy can be further improved if the time information of the spreading is
known (i.e., at what time the nodes receive the virus). In addition, it is interesting and
important to design an more efficient method for cases where only partial information of
the spreading can be obtained.
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