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Irregular tube-shaped microfossils incertae sedis are a typical constituent of Late
Jurassic shallow-water reefal carbonates of the Northern Calcareous Alps of Austria
and are described in open nomenclature. The enigmatic, polymorphous spar-filled
tubes with neither observable external nor internal skeletal elements occur either free
within peloidal sediments or mostly fixed to skeletal substrates embedded in microbial

 

crusts including the genera 

 

Labes

 

 Eliá

 

ß

 

ová, 

 

Crescentiella

 

 Senowbari-Daryan 

 

et al

 

. or

 

Isnella 

 

Senowbari-Daryan. The tubes are varied in shape and closely resemble different

 

taxa of sponges. As the microbial crusts preferentially occur associated with these
tubiform microfossils, this association is suggested to be non-parasitic and mutualistic.

 

Without the surrounding crusts, the existence of these animals would have been masked
or perhaps even totally lost in the fossil record expressing the importance of these
findings as a characteristic element in the inventory of Late Jurassic reefal biocoenoses.
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Late Jurassic shallow-water carbonates in the Northern

 

Calcareous Alps (NCA) (Fig. 1A, B) of Austria known

 

as Plassen Formation of the Plassen Carbonate Platform
are reported from various today isolated occurrences.

 

These occurrences belong to different palaeogeo-

 

graphically independent and isolated carbonate
platforms of the Plassen Carbonate Platform system,
each prograding towards deep-water radiolarite basins
(Figs 1C and 2). These have been investigated recently
with respect to facies, micropalaeontology and biostrati-

 

graphy (e.g. Schlagintweit 

 

et al

 

. 2003, 2005; Gawlick

 

et al

 

. 2004). The majority of these localities are con-

 

centrated in the central NCA, mainly the Salzkammergut

 

area with the type-locality Mount Plassen (Fig. 1B). The
latter exposes the complete sedimentary sequence
comprising an initial Kimmeridgian shallowing-upward
succession, lagoonal limestones of latest Kimmeridgian-
Tithonian age, ?Early Berriasian backreef to slope
sediments representing a deepening upward, and final
drowning in the Berriasian (Gawlick & Schlagintweit
2006). There are two intervals of coral-stromatoporoid
reefal limestones, the first in the Late Kimmeridgian
and a second in the Late Tithonian (?pro parte Early
Berriasian) (Fig. 1A). These fossiliferous limestones
contain calcareous algae (mainly Dasycladales),
benthic foraminifera and a considerable number of
predominantly encrusting microorganisms of unknown

systematic position (microproblematica). The frontal
parts facing the platform slopes are characterized
by boundstones containing a diverse association of

 

microencrusters (e.g. 

 

Crescentiella morronensis

 

,

 

 Iberopora
bodeuri

 

,

 

 Koskinobullina socialis

 

,

 

 Radiomura cautica

 

),
and variable amounts of syngenetic cement crusts
(Schlagintweit & Gawlick 2008). Tube-shaped micro-
problematica often associated with crusts of assumed
microbial origin occur especially in these boundstones.
In the present paper these microproblematica are
described and their systematic position and mutual
relationships with the surrounding crusts are discussed.
The specimens are described from thin sections derived
(in alphabetical order) from Mount Drei Brüder, Mount
Jainzen, Mount Krahstein, Mount Lugberg, Mount
Rettenstein and Mount Trisselwand (Fig. 1B).

 

Tube morphotypes

 

Due to their peculiar shapes, pointing to a biogenic
origin, these are here referred here to as tubes and
not as cavities. They occur either free within fine-
grained peloidal packstones or fixed to hard substrates
(Fig. 3); especially in the latter they display encrustations

 

with 

 

incertae sedis

 

 of supposed microbial affinities.
In all tubes the central hollow is composed of sparry
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Fig. 1. A. Schematic profile of the Plassen Carbonate Platform at Mount Plassen (based on Schlagintweit et al. 2003, 2005) with indication
of the two reefal intervals from which the studied material were derived. B. Block tectonic framework of the middle part of the Northern
Calcareous Alps (from Frisch & Gawlick 2003); asterisks mark the sample localities (DB = Drei Brüder, J = Jainzen, K = Krahstein, L = Lugberg,
R = Rethenstein, T = Trisselwand) and the type-locality of the Plassen Formation Mount Plassen (PL). C. Framework of Late Jurassic to Early
Cretaceous platform-basin reconstruction (after Gawlick & Schlagintweit 2006). Late Kimmeridgian and Late Tithonian are the times of
maximum platform growth with rapid progradation towards and over the radiolaritic basins in between.
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calcite (except 

 

morphotype

 

-4) without detectable
skeletal elements. Because of the wide morphological
range (polymorphism) that obviously reflects intra-
specific variability as well as differences at the species
and/or genus level (?suprageneric position) and
their occurrence in random thin sections, it is rather
difficult to describe the specimens in terms of planes of
sectioning and to interpret their exact morphology.
The most common forms are referred to here as
morphotypes 1 to 5.

 

Morphotype

 

-1. – This is represented by irregular
swollen tubes (total length up to 3 mm) showing a
more or less flat basal part fixed to the substrate
(Fig. 4A–C; cf. pharetronid sponges in Figs 3A, 4B).
A thinner, elongate part stretches away from the
substrate, but is often also present in the terminal
part. Microbial crusts occur as thin micritic linings
(Fig. 4A, B) or comparable thick envelopes (Fig. 4C).

 

Morphotype

 

-2. – The general shape of this small
tube type is irregular cylindrical (length: 0.5–1.3 mm;
width: 0.15–0.3 mm; Fig. 4D–G). One end maybe
tapered and flattened, the other rounded-acute (cf.
Fig. 4D, F) and sometimes bent (Fig. 4E).

 

Morphotype

 

-3. – This type is characterized by
more voluminous tubes with one flattened end, the
other tapering with an acute-rounded termination
(Fig. 4H–J). Irregularly distributed elongated lateral
protrusions are conspicuous in longitudinal sections
(Fig. 4H–I). Their irregular distribution on both sides
clearly indicates that these are not concentric rings
or bulges, but individual pustule-like elements. In a
single specimen there are different types of protrusions:
some are thin and cylindroconically tapering while
others are broader with rounded ends.

 

Morphotype

 

-4. – This type is represented by irregular
cylindrical tubes of erect growth with pustule-like
elements more regularly distributed along the whole
tube and comparably short with respect to morphotype-
3 (Figs 3D, 5A–E, 6A). Tube length mostly between
1 and 2 mm, exceptionally up to 5 mm (Fig. 3D),
width is 0.2–0.45 mm, at the level of the pustules
0.35–0.85 mm. 

 

Morphotype

 

-4 occurs either without
distinct microbial crusts (Fig. 5A) or more typically

 

surrounded by 

 

Labes atramentosa

 

 Eliá

 

ß

 

ová with the
basal part fixed towards the substrate (Fig. 5B–E). The
continuation of the tube above the microencruster
‘cortex’ can be traced in some specimens (Fig. 5B, D).
The occurrence of internal sediment (?or relics of the
primary hard parts), observable only in this mor-
photype, could point to partial damage or invasion
by a larger opening (Fig. 5D, see also Fig. 6A). A
specimen directly comparable to our 

 

morphotype

 

-4
was figured by Schmid (1996, fig. 110) from the Late
Jurassic of Portugal.

 

Morphotype

 

-5. – The tubes of this type show irregular,
sometimes arborescent constrictions (Fig. 5F–H) and/
or lateral appendages (Fig. 5G–H), often in gregarious
associations (3F). Length of the tube 0.5 to 3 mm.

 

Microbial crusts and microencrusters

 

The central tube is herein referred to as the ‘core’ and
the surrounding micritic envelope with tiny tubes as
‘crust’. The core typically exhibits crusts of assumed
microbial origin (= microbial crusts in the sense of
Leinfelder 

 

et al

 

. 1993). These maybe micritic, fine-
peloidal crusts (Fig. 4J) associated with or without

Fig. 2. Stratigraphic table of the Jurassic of the Northern Calcareous Alps with its lateral variations depending on the paleogeographic
position (after Gawlick et al. 2007).
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microencrusters and forming a structure corre-
sponding to the ‘layered thrombolite with peloidal
microstructure’ in the classification scheme of Schmid

 

(1996). Microencrusters with an embedded core

 

belong to the genera 

 

Labes

 

 Eliá

 

ß

 

ová, 1986 (Figs 5B–D,
?E, 6A), 

 

Crescentiella

 

 Senowbari-Daryan 

 

et al

 

., 2008
(Fig. 6B), and aff. 

 

Isnella

 

 Senowbari-Daryan, 2007
(Fig. 6C–E), and differ in the dimensions and structure

 

of the micritic sheets and cores (see original references

 

for details). Morphologically very close are 

 

Labes

 

(Late Jurassic) and 

 

Isnella 

 

(Late Triassic), that
according to Senowbari-Daryan (2007, p. 50) should
differ, apart from differing stratigraphy, mainly
by their dimensions of both ‘central hollow’ and

encrusting tubes, thus, pointing to differences at species
rather than genus level (Table 1). Microencruster
with tiny pores were designated as 

 

Isnella 

 

aff

 

. misiki

 

expressing these uncertainties (Figs 4F and 6C–E);
in some specimens there are both tiny and larger
tubes (Fig. 6E). Further taxonomic considerations
are beyond the scope of the present paper.

For all three taxa mentioned above, a microbial
origin (cyanophyts?) was envisaged either in the original

 

descriptions or in recent contributions. Eliá

 

ß

 

ová (1986)
regarded the ‘major central cavity’ as part of 

 

Labes

 

;
for 

 

Isnella

 

 Senowbari-Daryan (2007) assumed the
central cavity simply as an empty space resulting from
repeated upward coiling of the surrounding tube

Fig. 3. Late Jurassic fore-reefal to upper slope microfacies containing tube-like organisms. A. Fixed to pharetronid sponge (for magnification
see Fig. 4B). B. Switched between serpulids and covered by micritic crust of Labes atramentosa Eliáßová. C. Irregular shaped tubes with
peloidal packstone. D. Cylindrical elongated tube fixed on a coral showing envelope of assumed microbial crusts. E. Numerous tubes with
microbial crusts, predominantely of fine-peloidal thrombolitic type. F. Metazoans with tubes fixed by crusts of Labes atramentosa Eliáßová.
A. Mount Krahstein, B. Mount Drei Brüder, C–F. Mount Jainzen.
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Fig. 4. Thin-section photomicrographs of Late Jurassic tube-shaped microfossils incertae sedis. A–C. Morphotype-1 with irregular bulbous
shapes fixed to skeletal substrates, e.g. pharetronid sponges (A). Note thin micritic lining (B) and thick microbial crust (C). D–G. Morphotype-2,
irregular cylindrical with one tapering and rounded (D, F) or bent endings (E). Note thick microbial crust in G. H–J. Morphotype-3, with one
flattened and one acute ending; lateral pustules and protuberances. Note thick microbial crusts (I–J). A–B. Mount Krahstein,
C: Mount Rettenstein, D–F, I–J. Mount Jainzen, G. Mount Trisselwand, H. Mount Drei Brüder (localities see Fig. 1B).

Table 1.  Comparison of Isnella Senowbari-Daryan, 2007 and Labes Eliáßová, 1986, both mono-specific taxa. Data of Labes are from the
Late Jurassic of the Northern Calcareous Alps and between brackets data from Eliáßová (1981, 1986).

Isnella misiki Senowbari-Daryan Labes atramentosa Eliáßová Isnella aff. misiki Senowbari-Daryan

Morphology Cylindrical to cupola-shaped Cylindrical to low conical
Size Up to 1.5 mm × up to 6 mm Up to 3 mm × up to 5 mm 0.5 mm × up to 5 mm
Central diameter mostly 0.5 mm 0.2–0.85 mm (0.6–1.2 mm) 0.17–0.5 mm
Tube diameter up to 40 μm 50–150 μm (70–200 μm) 15–70 μm
Stratigraphy Ladinian–Carnian Kimmeridgian–Tithonian 

(?Berriasian)
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(Fig. 6C–E). A third possibility was discussed by
Schmid (1996), noting that the chimney-like growth

 

of ‘

 

Tubiphytes

 

’ was similar to the inhalant and
exhalant canal system of porifera (see also Brachert

 

1986). The general interpretation for these ‘

 

Tubiphyte

 

s’
chimneys (= 

 

Labes atramentosa

 

), that this peculiar

growth type is not just incidental but results from the
overgrowth of another organisms in order to take
advantages is followed in the present paper (see
following discussion). The visible tube sections of

 

Labes

 

 (width 0.065–0.2 mm) are often wrapped around
the embedding central ‘core’, just between two adjacent

Fig. 5. Thin-section photomicrographs of Late Jurassic tube-shaped microfossils incertae sedis. A–E. Morphtype-4, elongated cylindrical
tubes with spinose surface texture. Note epibiontic coverage with Labes atramentosa Eliáßová. Arrows indicate the continuation of the
tubes above the basal enveloping. F–H. Morphotype-5, irregular to arborescent growth with lateral appendages. Note similar shaped
chambers of microencruster Radiomura cautica Senowbari-Daryan & Schäfer (R). A, D. Mount Krahstein, C. Mount Trisselwand,
B, E–H. Mount Jainzen.
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pustules (Fig. 5C, D); in cases of greater distances
between the protuberances there maybe two tubes of

 

Labes

 

. In cross-sections the tubes of 

 

Labes

 

 also
surround the central core in a concentric manner
(Fig. 5E). These tube-epibiont constructions can reach
heights up to a maximum of 5 mm; in other types the
outer micritic crusts of 

 

Labes

 

 become reduced in
thickness during growth, resulting in forms that
suggest microvolcanoes with basal widths of 2–3 mm
(Fig. 5D). The uppermost part of the embedded tubes
obviously were not encrusted (Fig. 5B, D); the ‘overall’
crusts of the specimen shown in Figure 5C is likely
due to oblique sectioning.

There seems to exist special relationships between
certain microencrusters and tube morphotypes
with the surface morphology obviously impacting the
epibiont coverage. For example, the occurrence of

 

Labes atramentosa

 

 and 

 

Isnella

 

-type crusts have shown
to preferentially encrust spinose textured tubes, most
typically 

 

morphotype

 

-4 but also 

 

morphotype

 

-3.
The spinose surface obviously was advantageous
for enhanced tube coverage. Growth seems to have

initiated in a manner relatively parallel to the tubes
surroundings, followed by enlargement and final
broadening of the base. In this way, better fixing to
the substrate independent from the tube was obtained
and possible acted as nucleus for larger micrite
mounds. Tubes of 

 

morphotype

 

-2 with a smoother
surface show strong thrombolitic crusts (Fig. 4D, E) and
in rare cases 

 

Isnella

 

-type crusts also occur (Fig. 4F).
Arborescent-shaped tubes usually do not exhibit

 

distinct microencruster envelopes, but commonly display
a thin covering of more densely packed peloids than
the surrounding sediment (Fig. 5G–H) or gregarious
associations of thrombolitic crusts (Fig. 5F).

 

Interpretation of the tubes

 

The morphological features (e.g. spinose surface,
differences in opposed tube endings) together with
common tube-specific epibionts reveal a higher grade
of organization for these unknown organisms, thus
excluding an abiogenic or ichnological origin such as

Fig. 6. Microencruster incertae sedis of assumed microbial origin from the Alpine Late Jurassic. A. Labes atramentosa Eliáßová. B. Crescentiella
morronensis (Crescenti); here only the micritic portion (‘cortex’) is interpreted as being microbial in origin (Senowbari-Daryan et al. 2008,
for details). Note the incorporated fine-detrital material lacking in the crust of Labes. C–E. Isnella aff. misiki Senowbari-Daryan. Note the
tubes being finer as in Labes showing snail-like enrollment (C: right below). In E there are both small tubes (Isnella-type, arrow 2) and larger
ones (Labes-type arrow 1).
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worm-like burrows (cf. Elliott 1980; fig. 8F in Riding
& Thomas 2006).

Looking at elongated variously-shaped organisms
with or without protrusion on the surface, a possible
sponge origin (sponge mummies) is here favoured.
In terms of sponge description (see Hooper 2000,
for glossary) the pustule-like elements of the ‘tubes’
are likely to represent fistules, combined with pores
(exhalant or inhalant) of the aquiferous system. These
forms correlate well with those of sponges, for instance
massive-lobate (morphotype-1), ovate (morphotype-2),
tubular or columnar erect, cylindrical, club-shaped
(morphotype-4) or arborescent-bifurcate branching
(morphotype-5). In addition, morphotypes-3 and -4
can be attributed to the surface structures ‘fistulose’,
‘conulose’ or with fistules (see Hooper 2000, for
details). The supposed tube opening (opposite to the
attached part) could be a terminal osculum and the
pustules lateral oscula. With respect to the outer
surface morphology or epibiont moulding, a cross-
reference can be drawn to extant sponges where a
distinct host specificity of sponge-associated bacteria
was evidenced (e.g. Taylor et al. 2004). In conclusion,
the tubes generally compare with sponges morpho-
logically, and also in the interpretation of the mode
of life, as discussed below. However, we cannot exclude
that the different morphotypes described herein belong
to different species/genera or perhaps to different groups
of organisms.

Mode of life of the tube-microbial 
consortium

In the fore-reefal boundstones, microencrusters of the
group Labes–Isnella–Crescentiella exhibit a maximum
occurrence as crusts around the reported ‘tubes’.
This distribution and the aforementioned host-
specificity are regarded as not only incidental but
also as providing evidence of a special ecological
interaction/relationship between the two groups
involved. It is also plausible that encrustation of the
tubes happened during the life-time of the sponges
(compare also Schmid 1996, p. 190). Normally there
are enough elongated skeletal remains for fixation in
the same palaeoenvironment. Our assumption of a
sponge nature of the tubes enveloped by Labes and
other types of microbial crusts is in accordance with
Brachert (1986) and Schmid (1996), indicating that
these grew around the pores (exhalant/inhalant) of the
sponge’s aquiferous system. Brachert (1986, for details)
discussed different modes/types of diagenetically
controlled siliceous sponge preservation with cemented
moulds (mummies) (type C–E) that correspond to our
findings. Within this field, the central tube organisms

performed a passive ‘task’ simply acting as the substrate
for the actively encrusting microorganism. As sponges
are organisms that filter food particles/nutrients from
seawater, it is likely that the crustose epibionts
participated in this activity. How greatly the sponge
capability of the intake/uptake of nutrients was
negatively influenced is unclear. In this manner, the
surrounding tuberculated/fistulated tubes can be
interpreted as a strategy for direct participation in
the gathering of nutrients. The core-forming biota
benefited in turn by protection from predation by
the coverings and by better fixation to the substrate,
thereby gaining more stability against environ-
mental hazards (cf. storm waves) enhancing survival.
Fixation by the crusts must have been a very rigid
construction, since we never observed isolated
broken specimens. The observed encrustations as
well as the dark rim surrounding the tube (e.g.
Figs 4F and 6A) could point to the existence of a
former skeleton (?aragonite, ?amorphous silica)
that became totally recrystallized during diagenesis.
The existence of siliceous sponges in this environ-
ment, for instance, is indirectly proven by the
occurrence of siliceous rhaxellid/rhaxelloid sponge
microscleres in the Late Jurassic fore-reefal limestones
of the NCA (Schlagintweit et al. 2007). Interestingly,
the occurrence of Reophax? rhaxelloides, which is
composed of spherical sponge microscleres (‘rhaxes’),
is bordered with tubes in the same localities.
Another possibility would be that these tubes
were originally only composed by soft tissue (?soft
sponges).

Specimens without enveloping crusts may occa-
sionally be observed dispersed in the sediment (Fig. 5A).
We conclude that both ‘core’- and ‘crust’-forming
biota benefitted from this specialized association
pointing to mutualism rather than to commensalism
(Boucher et al. 1982). It is important to mention that
the Alpine settings are different from those of the Late
Jurassic outer ramp deposition of siliceous sponge facies at
the European margin (e.g. Matyszkiewicz 1997; Krautter
1998), where these tube-microbial crust constructions
also occur in a presumably deeper water and less agitated
environment (Brachert 1986; Schmid 1996). Here,
the advantage of the moulded sponges is not directly
evident. Perhaps they benefited from the metabolic
products of the microencrusters but this is unclear.

Similar-shaped tubes of unknown systematic
position are also reported from Middle to Late Triassic
reefal carbonates (Fig. 7). The re-appearance of such
structures (including Isnella-type crusts) in the Late
Jurassic with a gap of roughly 50 Ma could therefore
be discussed as holdover taxa, refugia species or an
example of the Lazarus effect (e.g. Stanley 1998; Wignall
& Benton 1999).
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Conclusions

Late Jurassic reefal platform margin carbonates
contained not only the typical associations of corals,
stromatoporoids and diverse microencrusters but also
tube-like organisms of unknown systematic position
associated with microbial crusts. The enveloping of the
microencruster (biomuration) enabled the preser-
vation of the tubes hollow that would otherwise perhaps
have been lost during taphonomy, making palaeoeco-
logical reconstructions and syntheses difficult. For the
tube-like organisms, an interpretation as a mutualistic
and non-parasitic biological interaction between
sponges and microbial communities is favoured;
however, more details are needed to assess the bio-
logical nature of these enigmatic structures more
precisely. These substrate-fixed tube-crust constructions
are a characteristic element in the well-agitated
fore-reefal carbonate facies of the Late Jurassic Plassen
Carbonate Platform in the Northern Calcareous Alps.
In ramps along the northern European margin of
Alpine Tethys, such structures are also recorded,
but from a deeper-water depositional setting of the
siliceous sponge facies that is lacking in the Northern
Calcareous Alps. Future micropalaeontological investi-
gations should allow a better refinement of existing
Late Jurassic general reef types, reef zonations and
reefal biocoenoses also on a microscale.
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