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In this paper, a novel modeling technique has been attempted to develop the mathematical model for a bioreactor functioning at
multiple operating regions. The first principle mathematical equations of the reactor are used with the POLYMATH software to
generate essential data for the model development. A relative analysis is also carried out with the existing models in the literature.
An optimal PID controller is then designed using a multiobjective particle swarm optimization algorithm. The controller tuning
procedure is individually discussed for both the stable and unstable steady state regions. The controller tuned for each region
is scheduled using a set-point scheduler to achieve a complete control over the bioreactor. The effectiveness of the proposed
scheme has been confirmed through a comparative study with the controller tuning methods proposed in the literature. The results
show that, the proposed method provides enhanced performance in effective reference tracking and load disturbance rejection
with minimal ISE and IAE. Finally the proposed method is validated on the nonlinear bioreactor model in the presence of a
measurement noise. The results testify that the PSO tuned PID performs well in tracking the change in biomass concentration at

the entire operating region.

1. Introduction

Bioreactor plays a vital role in chemical process industries to
produce important chemical and biochemical compounds.
In this system, living organisms also known as microbes
are converted into marketable products such as beverages,
antibiotics, vaccines, and industrial solvents [1-3]. The
quality of the final product from a bioreactor depends mainly
on the control loop employed to monitor and control the
microbial growth based on the reference input. Apart from
this, incidental external and internal disturbances in a reactor
may result in reactor failure. Therefore, there is a strong
financial inspiration to develop a finest control scheme that
would facilitate rapid startup and stabilization of continuous
bioreactors subject to redundant disturbances [4].

In the literature, a variety of methods have been dis-
cussed to implement a robust controller for the bioreactor
operating at single or multiple steady-states. Kumar et al.

have examined a bioreactor with input multiplicities. With
an experimental study, the mathematical models for the
different steady state operating regions are developed, and a
nonlinear PI controller was implemented [5]. Sivakumaran
et al. have discussed recurrent neural network (RNN) based
modeling method for a nonlinear bioreactor operating at
single steady state and implemented a nonlinear model
predictive controller to obtain satisfactory result [6]. Nagy
has proposed a neural network model-based predictive
control (NNMPC) strategy for a fermentation bioreactor
model, and with simulation result they concluded that the
proposed NNMPC provides enhanced performance com-
pared to linear MPC and PID controller [7]. Giriraj Kumar
et al. have discussed a genetic-algorithm- (GA-) based PI
controller tuning for a bioreactor operating at stable steady
state [8]. Bioreactor operating at unstable steady state was
widely discussed by the researchers due to its complexity and
instability [9-11]. A detailed analysis to realize various model
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based control configurations for continuous bioreactor was
presented by Zhao and Skogestad [4].

In the control literature, regardless of the considerable
progress in advanced process control proposals such as slid-
ing mode control (SMC), model predictive control (MPC),
and internal model control (IMC), PID controllers are still
widely employed in industrial control systems because of
their structural simplicity, reputation, robust behavior, and
easy implementation. Along with the system’s stability, it also
satisfies chief performance such as smooth reference track-
ing, efficient disturbance rejection, and measurement noise
attenuation criteria. Most of the PID tuning approaches
proposed for stable and unstable system require numerical
computations to identify the optimal controller parameters
(12, 13].

Recently, soft computing approach-based PID tuning has
attracted the researchers due to its ability to find optimized
controller parameters with a minimized computation time.
The particle swarm optimization (PSO) algorithm is one of
the soft computing methods introduced by Kennedy and
Eberhart [14]. In recent years, it is widely considered to
find optimal solutions for various engineering optimization
problems [15-22]. In this paper, PSO algorithm is primar-
ily considered for PID controller parameter optimization
because (i) is an autotuning method and does not require
detailed mathematical description of the process under con-
trol, and (ii) very few parameters to assign compared to other
evolutionary methods such as GA and bacterial foraging
optimization (BFO) [23]. PSO-tuned optimal controller
implementation for stable systems are reported by Korani
et al. [24]. Chang and Shih proposed an improved PSO
optimization algorithm to tune the PID controller for a
nonlinear inverted pendulum system [15]. Zamani et al.
have discussed a multiobjective PSO algorithm to tune the
controller for automatic voltage regulator (AVR) problem
[25]. They have proposed a multiobjective PSO algorithm
to tune the Ho PID controller for a nonlinear system [26].
Banu and Uma have discussed a hybrid algorithm-based
PID controller implementation for a nonlinear CSTR [27].
Kanth and Latha have attempted a PSO-based PID and I-
PD controller-tuning for a class of unstable systems [28,
29]. The PSO-based controller provides better servo and
regulatory responses than the classical PID and modified
internal model controller (IMC). They also discussed a PSO-
based controller implementation for a bioreactor operating
at unstable operating region.

From the literature, it is observed that a nonlinear system
with multiple steady states can be effectively controlled by a
gain-scheduled control scheme [27, 30]. This control scheme
consists of a family of local controller and a scheduler
(switching unit). The switching unit activates the controller
based on the set-point in order to achieve effective control
over the entire operating region of the process.

The main contributions of the work are as follows.
Initially, the first principle model has been developed
using the POLYMATH software generated data. A multiple
objective function-based PSO algorithm has been proposed
for the PID controller parameter tuning. PID tuning for
the stable and unstable operating region of the bioreactor
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FIGURE 1: Schematic diagram of the bioreactor.

is separately addressed. The tuned PID controllers are gain
scheduled to provide a complete control on the bioreactor
system. The effectiveness of the proposed scheme has been
validated through a simulation study by using the nonlinear
bioreactor model.

2. Process Description

Bioreactor can be defined as a reactor system employed
to execute a number of biological reactions in a liquid
medium to form intermediate and final products. Figure 1
shows the schematic diagram of the bioreactor. The dynamic
behavior of the reactor is complex, and a number of vital
manufacturing processes belong to this group:

(Substrate + Cell) L (Morecells + Products). (D
The basic reaction inside the bioreactor is
AL p, (2)

where “A” is the reactant, “k” is reaction rate constant, and
“P” is the product.

Biosynthesis is widely utilized to convert the living cells
(biomass/microbes) into marketable chemical, pharmaceu-
tical, food and beverage products. Equation (2) shows the
operation performed during biosynthesis. In this operation,
the biomass/microbes consume nutrients from the substrate
(feed) to cultivate and to produce more cells and important
products [1]. During this operation the bioreactor is kept
under a controlled environment with constant pH, temper-
ature, agitation rate, and dissolved oxygen tension to attain
better growth of microbes. In biosynthesis, microorganisms
play an essential role in the production of industrial chemi-
cals, enzymes, and antibiotics.

The various stages of microbial growth in a bioreactor
during biosynthesis are schematically shown in Figure 2.
During the initialization of the process, the living cells
(microbes) are placed inside the bioreactor maintained with
incubated environment, and the necessary feed (substrate)
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FIGURE 2: Stages of microbial growth in a bioreactor.

is gradually applied to the microbes. In the first stage
(lag phase), all the living cells are allowed to adjust their
performance to the new environmental conditions after the
adjustment, they are getting ready to begin reproduction. In
the second stage (growth phase) the cells consume nutrients
and increase in size. If the environmental conditions are
favorable, each cell grows, divides into two which, in turn,
grow and divide and the cycle conditions. This process is
rapid and the growth rates of cells are proportional to cell
concentration and the nutrient. After the growth, they reach
a minimum biological space called stationary phase (third
stage). At this stage, the cell growth is limited due to the lack
of one or more nutrients, buildup of toxic materials during
biosynthesis and organic acids generated during the growth
phase. Many important fermentation products are produced
in stationary space. After the stationary phase, the cells will
reach death phase. Death phase is mainly due to the toxic by,
products and depletion of nutrient supply. In this, a decrease
in live cell concentration occurs [2, 3].

In the above three stages (Figure 2), essential work is per-
formed in growth and stationary phase. Since it is necessary
to place a controller in this region to increase productivity the
cell mass concentration (X) and substrate concentration (S)
are the two process state variables available for the controller
design. To optimize the model-based controller parameter,
it is necessary to delineate the various stability regions in
the bioreactor and to study the effect of substrate (S) on
the biomass (X). The main objective for implementing the
controller for the bioreactor is to maximize the production
and to minimize the waste. The stoichiometry for biomass
activity is very complex since it varies with environmental
conditions, microorganism, and nutrients in the feed. Due
to these reasons, unstructured models are mainly considered
for analysis purpose. A number of studies are available in the
literature for model-based control of bioreactor [8—10].

The following mathematical equations can describe a
variety of industrial bioreactors [11]:

Cell balance: d—)t( = (u—- D)X,

Substrate balance:

3
dp
Product balance: T —DP + (au+ )X,
(4)
Monod kinetics: py = max
Kn+S

where “p” is the specific growth rate, “X” the biomass
concentration, “S” the substrate concentration, and “a” and
“B” are yield parameters for the product. At steady state, the
variables willbe X = X, S = S;, and P = P;.

At steady state operating region, (3) will be

ax,

ds;
— 0 2% _ 5
5 =0 0. (5)

dt

If more than one steady state occurs, it is identified as trivial
steady state and nontrivial steady state:

(i) for trivial solution, X; = 0 when (y; — D;) #0,
(ii) for nontrivial solution X, # 0 when (y; — Ds) = 0.

The nominal parameter and constant values considered
in the mathematical equations are presented in Table 1.

3. First Principle Model Development

Figure 3 shows a generalized procedure to be followed
for model development and model validation practice for
nonlinear bioreactor.

Real time model development for a bioreactor is a chal-
lenging job, and sometimes it may not provide a satisfactory
model due to its nonlinear nature. The operating time of
the bioreactor is also large compared to the other nonlinear
chemical process loops existing in the chemical industries.
Generally in industries, the bioreactor may run for several
days in order to convert the raw material in to products.
Collecting the real time data to develop the model around
the operating regions (lag, growth, and stationary phases) is
time consuming. Hence, in this paper, a first principle-based
model development is proposed for the bioreactor widely
considered in the literature. The first principle modeling
equations from (3) and (4) are considered in this work to
develop the mathematical model of the bioreactor (state-
space and transfer function model).

The state-space model the of the system is represented by
the following equations [11]:

X (t) = Ax(t) + Bu(®),

(6)
y(t) = Cx(1),
where
Us D; XS/";
A=| _ x
“Hs o _p B
Y Y (7)
_XS
b= [ Sr=S ]
C= [1 0], D = [0], (8)
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FIGURE 3: Stages in model development and validation procedure.

(where: us, Ds, pl, Y, S, Sf, and X; are the final steady
state values of the bioreactor considered during the model
development.

Table 2 shows the POLYMATH software codes developed
to simulate the bioreactor data at various operating levels.
Each program is separately simulated for a simulation time of
10 hours, and the corresponding plots are shown in Figures
4to 6.

Initially the “lag phase” is simulated by considering
the values as represented in Table 2. The generated data
from the above program is considered to construct Figure 4,
and it depicts the time-related values of feed and product
concentrations in the lag phase region. In this region, the
microbes are allowed to adjust their performance to the
new environmental conditions. Since the increase in the
product concentration in this region is very minimal or
approximately zero, in the simulation study the final values
for “biomass concentration” and “substrate concentrations”
are “0” and “3.850639,” respectively. From Table 1, it is
observed that data attained from the simulation study is
very close with the actual data (i.e., biomass concentration
(BC) = 0; substrate concentration (SC) = 4).

Simulation study for growth phase is done with the
values provided in Table 2. The created data from simulation

Lag phase (Xs = 0g/lit; S5 = 4 g/lit; X(o) = 0 g/lit; S(o) = 1 g/lit)
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FIGURE 4: Stages of microbial growth in lag phase.

is considered to construct Figure 5. It shows the time-related
values of feed and product concentrations in the growth
phase region.

In this region, the microbes consume nutrients from the
feed and increase its size. After reaching the maximum size,
it will split into two and grows. This operation is rapid since
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TaBLE 1: Nominal parameters of bioreactor.

Parameter Values
0; g/lit—lag phase

X Biomass concentration 0.9951; g/lit—growth phase

1.5302; g/lit—stationary phase
4.0; g/lit—lag phase

Ss Substrate concentration 1.5122; g/lit—growth phase
0.1746; g/lit—stationary phase

D Dilution rate 0.3; hr!

X, Feed substrate concentration 4.0 g/lit

Prmax Maximum specific growth rate 0.53; hr!

K Substrate saturation constant 0.12; g/lit

Y Cell mass yield 0.4

K Substrate inhibition constant 0.4545; lit/g

0; g/lit—lag phase

X(0) Initial arbitrary value of biomass (for simulation study) 0.125; g/lit—growth phase
1; g/lit—stationary phase
1; g/lit—lag phase
S(0) Initial arbitrary value of substrate (for simulation study) 1; g/lit—growth phase
1; g/lit—stationary phase
o B Yield parameters for the product—to be selected based on the substrate and biomass
(it will have value only during the real time study)
TaBLE 2: POLYMATH program for bioreactor simulation.
Lag phase Growth phase Stationary phase
d(x)/d(t) = (u—D) * x d(x)/d(t) = (u—D) * x d(x)/d(t) = (u—D) * x
x(0) =0 x(0) = 0.125 x(0) =1
d(s)/d(t) = D x (sy —s) — (u* x/Y) d(s)/d(t) = D x (s —s) — (u*x x/Y) d(s)/d(t) = D x (sy —s) — (u* x/Y)
s(0) =1 s(0) =1 s(0) =1
u = ((pm * 5)/(km +5)) u = ((tp * 5)/(ky +5)) u = ((tty * 5)/(km +5))
u, = 0.53 u, = 0.53 u, = 0.53
km = 0.12 kn =0.12 kyn = 0.12
D =03 D=03 D=03
sp=4 s; = 1.5122 s; = 0.1746
Y =04 Y =04 Y =04
t(0) =0 t(0) =0 t(0) =0
t(f) =10 t(f) =10 t(f) =10

there will be a sudden rise in the product concentration. In
the simulation study the final values for “BC” and “SC” are
“0.989742” and “1.528277, respectively. From Table 1, it is
observed that data attained from the simulation study is very
close with the actual data (i.e., BC = 0.9951; SC = 1.5122).

Simulation study for stationary phase is conducted using
Table 2 values, and the generated data provides Figure 6. This
figure depicts the time-related values of feed and product
concentrations in the stationary phase region.

In this stage, the cell growth is limited due to the lack of
the nutrients, buildup of toxic materials during biosynthesis,
and organic acids generated during the growth phase. During

this stage, all the available microbes are converted in to useful
chemical and biochemical products. In this study the final
values for “BC” and “SC” are “1.526381” and “0.159153,”
respectively. From Table 1, it is observed that data attained
from the simulation study is very close with the actual data
(i.e., BC = 1.5302; SC = 0.1746).

Figure 7 represents the combinations of the product
concentration achieved in lag, growth, and stationary phases.
This diagram is the exact replica of the cell growth stage
discussed in Section 2 (Figure 2).

From the POLYMATH simulation, the following values
are obtained for the final feed and product concentrations:
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FIGURE 5: Stages of microbial growth in growth phase.
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FIGURE 6: Stages of microbial growth in Stationary phase.

(i) lag phase: SC = 3.850639 g/lit; BC = 0 g/lit,

(ii) growth phase: SC = 1.528277 g/lit; BC = 0.989742
g/lit,

(iii) stationary phase: SC = 0.159153 g/lit; BC = 1.526381
g/lit.

These values are implemented in (7), to develop the
first principle model of the bioreactor for the growth and
stationary phases, and the developed models are tabulated
in Table 3. From the Table 3 values, it is confirmed that the
developed model by this procedure is approximately similar
to the model existing in the literature [11].

The developed mathematical models shown in Table 3
are utilized along with a delay time of “0.1” in the proposed
study (the delay time = measurement of the product
concentration, converting the measured concentration into
the value acceptable by the control loop) for the PSO-based
PID controller tuning.

The POLYMATH program considered in this simulation
study also provides the following information about the
bioreactor considered in this study.

Figure 8 shows the specific growth rate of microbes
with respect to the substrate (feed) concentration. Each
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TABLE 3: Mathematical model of the bioreactor.

Developed model Available model
’ (Wayne Bequette, 2003 [11])
A | 0 0064 Ao [ 0 —0.068}
~0.77 —0.1298 ~0.75 —0.1302

~0.9883 B - {0'9951}
5 5104 2.4878

microbe (cell) has its own size, and after reaching the
maximum growth, the microbe starts the reproduction. Later
it consumes the feed and continues the reproduction until it
reache the elimination phase.

Figure 9 shows the relationship between the specific
growth rate and the biomass concentration. Initially the
growth rate rapidly increases due to the transition of the
microbe from the lag phase to the growth phase. After
reaching the maximum growth rate, due to the reproduction
operation, the biomass concentration increases.
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Figure 10 depicts the relationship between the feed and
the biomass concentration. Initially the biomass concentra-
tion linearly increases with respect to the feed concentration.
After reaching the maximum growth rate in microbes, even
though the feed is less, due to the reproduction operations,
the concentration in the biomass increases.

Figure 11 shows the specific growth rate of microbes with
respect to time. In this a simulation period of 10 hrs is shown.
In growth phase, the rate of growth linearly increases with
respect to time. When it attains the maximum growth rate,
the microbes researches their saturation level. Following the
saturation, some of the microbe (cell) may expire due to the
reasons such as lack of food ageing. Hence, after saturation,
the growth rate of microbe rapidly decreases with respect to
time.

Figure 12 shows the relationship between the specific
growth rate and the “pH” value inside the bioreactor. Form
the diagram, it is observed that the microbes can effectively
grow when the surrounding “pH” is 6 < pH < 7.5.

4. PSO Algorithm

Particle swarm optimization (PSO) algorithm is a popu-
lation-based evolutionary computation technique developed
by the inspiration of the social behavior in bird flocking
or fish schooling [14]. It has become one of the most
powerful soft computing methods for solving optimization
problems. It attempts to mimic the natural process of group
communication of individual knowledge, to achieve some
optimum property. In PSO algorithm, a population of swarm
is initialized to move in a “D” dimensional search space.
Each particle in swarm has a position represented by a
vector “St = (si1,8i2,...,5i4)” and velocity represented by
a vector “Vi = (v;1,vi,...,via)> At the beginning, each
particle in the swarm population is scattered randomly
throughout the entire search space “d” and with the guidance
of the performance criterion, the flying particles dynamically
regulate their velocity and position according to their own
flying experience and their companions flying experience.
Each particle remembers its best position obtained so far,
which is denoted ppest (P}). It also receives the globally best

Biomass concentration (g/lit)

0'1 1 1 1 1 1 1 1
1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

Substrate concentration (g/lit)

FiGUre 10: Relationship between the product and feed concentra-
tion.

10 11 12 13 14 15 16 17 18 19 20
Time (hour)

FiGURE 11: Growth rate of microbes.

position achieved by any particle in the population, which is
denoted as gpest (G:) [17, 20, 21, 24]. The updated velocity of
each particle can be calculated using the present velocity and
the distances from ppest and ghest. The updated velocity and
the position are given in (6) and (8), respectively. Equation
(7) shows the inertia weight:

Vi = W' VI+C Ry - (PL—S) +Co- Ry - (G — S,
St = gt Yl

S

where C; and C, are positive constants known as acceleration
constants. “C;” is the cognitive learning rate and “C,” is the
global learning rate. R, and R, are random numbers in the
range 0-1. The parameter “W” is inertia weight that increases
the overall performance of PSO. The larger value of “W”
(i.e., Wiax) can favor the global wide-range search, and lower
value of “W” (i.e., Wpin) implies a higher ability for local
nearby search (see Pseudocode 1).

W = Wiax — (Iterx[

5. PSO-based PID Tuning

The PID tuning process is to find that the optimal values
for K,, K, and K, form the search space that minimizes the
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objective function (11). During this search, the performance
criterion “J(K,, Kj, K4)” guides the optimization algorithm
to get appropriate value for the controller parameters.

In the literature, there is no clear guide line to assign the
algorithm parameters for the PSO algorithm. In this study,
before proceeding with the PSO-based controller tuning, we
assigned the following parameters.

Dimension of search space “D” is three (ie., Kp, K;
K;); the number of swarm and bird steps is considered as
twelve; the cognitive (C;) and global (C,) search parameter
is assigned the value of 2, the inertia weight “Wy,” and
“Wmax is assigned the value 0.2 and 1, respectively.

In this study, a noninteracting form of parallel PID
controller is considered to control the nonlinear system.

Parallel PID structure

1 K;
Kp<1+§+rds> = (Kp+?’+de), (10)

1

where: 1; = K,/Kj, 14 = Ka/K,.

5.1.  Controller Tuning. The controller tuning process is
employed to find the best possible values for K,, K;, and
K;. In order to achieve the superior accuracy during the
optimization search, it is necessary to assign appropriate
performance index which guides the PSO algorithm.

In this work we considered the following performance
criterion (11) with six parameters, ISE, IAE, M,, t,, t;, and
Eg:

J(Kp>KisKa) = (w1 -IAE) + (wy -ISE) + (ws - M)
(11)
+ (wy - t5) + (ws - ;) + (ws - Eg),

where

T 100
IAE = L le(t)ldt = J r(t) — y(0)|dt,  (12)

0
T
ISE = JO e (t)dt = Lwo [r(t) — y(1)] dt, (13)

My = y(t) - (1), (14)

ISRN Chemical Engineering

where ¢, isrise time (time required for y(t) to reach 100%
of its setpoint at the first instant), t; issettling time —
time required for y(t) to reach an stay at r(t) [ie.,y(t) =
r(t)], Es issteady state-error, T is simulation time, where
W1, Wa,. .., We are weighting functions used to set the priority
of the multi-objective performance index parameters, and
the value of “w” varies from 0 to 10. The performance
criterion J(Kp,K;, Kg) guides the PFO algorithm to get
appropriate values for the controller parameters.

Figure 13 shows the block diagram of the MOPSO-based
PID controller tuning proposed for the bioreactor model.

5.2. Optimization Search. Prior to the optimization search,
it is necessary to assign the parameters for the PSO algorithm
and the multi-objective performance index criterion.

In this study, the following values are assigned:

(i) dimension of the search space (D) = 3 (i.e., Kp, K;
Kd))

(ii) number of swarm and bird steps is considered as
twelve, the cognitive (C;) and global (C,) search
parameter is assigned the value of 2, the inertia
weight “Whin” and “Wpay” is assigned the value 0.2
and 1, respectively,

(iii) the maximum iteration for generation (Iter) is set to
250,

(iv) boundaries for the three dimensional search space is
assigned as

Value 1 = —25% < K, < +50% (i.e, 2.5 < K, < 5.0),

Value 2 = —20% < K; < +20% (i.e., —2.0 < K; < 2.0),

Value 3 = —20% < K < +30% (i.e., =2.0 < K4 < 3.0),
(15)

(v) the weighting values are assigned as w; = w, = w3 =
wy = 10 and ws = wg = 5,

(vi) maximum simulation time is selected as 100 sec,

(vii) the “t,” is preferred as <25% of the maximum sim-
ulation time. The simulation time should be selected
based on the process time delay,

(viii) the overshoot (M) range is selected as <100% of the
P 8
reference signal,

(ix) the “t;” is preferred as <50% of the maximum simu-
lation time,

(x) the E is assigned as zero,

(xi) the reference signal is considered as unity (i.e.,
R(s) = 1).

5.3. Comparative Study. In order to evaluate the perfor-
mance of the proposed algorithm, a comparative analysis is
done with the most successful soft computing methods like
PSO and BFO.
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space (d); inertia weight (W);

Current velocity = 0.5 * rand (d, N)

fori=1:N

Replacement %

Replacement %
end

fori=1:N
Replacement %
Replacement %

end

Record the optimized K, Kj, K, values.

Step 1 % Assign values for the PSO parameters %
Initialize: swarm size (N) and step size; learning rate (C;, C,) dimension for the search

% Initialize random values and current fitness %
R; =rand (d, N); R, =rand (d, N); Current fitness = 0 * ones (N, 1)
Step 2 % Initialize Swarm Velocity and Position %
Current position = 10 * (rand (d, N) — 0.25)
Step 3 Evaluate the objective function of every particle and record each particle’s P! and G!.
Evaluate the desired optimization fitness function in “d”—dimension variables

Step 4 Compare the fitness of particle with its P}

If current fitness (i) < local best fitness (7);
Then local best fitness = current fitness; %

local best position = current position (i); %

Step 5 Compare the fitness of particle with its G; and replace the global best value as given below.

If current fitness (i) < global best fitness (i);
Then global best fitness = current fitness; %

global best position = current position (7); %

Step 6 Update the current velocity and position of the particles according to (6) and (8)
Step 7 Repeat step—2 to 6 until the predefined value of the performance index has been reached.

and replace the local best value as given below.

Pseupocopk 1: Pseudocode for multiple objective PSO-based PID tuning.

MOPSO algorithm parameters

|

PSO algorithm

Error |%

Process information (M, t;, ts, Ess)

K | K

R(s)

Ka
Uc(s)

Y(s)

PID controller

e(t)

Bioreactor
model

o
T_

FiGure 13: Block diagram of the MOPSO algorithm-based PID controller tuning.

PSO. The simulation is carried out by using the PSO
algorithm attempted by RajniKanth and Latha [28]. The
following algorithm parameters are considered: dimension
of search space is three (i.e., K, Kj, K4); number of swarm
and bird steps is considered as 25; the cognitive (C;) and
global (C,) search parameter is assigned the value of 2 and
1.5, respectively. The inertia weight “W” is fixed as 0.7.

BFO. For the basic BFO algorithm, the following values are
considered: dimension of search space is three; number of
bacteria is chosen as ten; the number of chemotaxis steps

is set to five; number of reproduction steps and length of a
swim is considered as four; number of elimination-dispersal
events is two; number of bacteria reproduction is assigned as
five; probability for elimination-dispersal has a value of 0.2
[29].

6. Results and Discussions

6.1. Set-Point Scheduling. A complete control scheme of
the nonlinear bioreactor operating at multiple steady states
is schematically presented in Figure 14. This system has a
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family of classical PID controller (PID1 for unstable region
and PID2 for stable region) and a gain scheduler switch. The
switch considered in this study is an electronic switch, and
the switching time by this device is negligible.

In the bioreactor, during the lag phase, a manual control
is employed to monitor and control the biomass activity (0 to
10 hr in Figure 7). During the growth phase, the cell growth
is very rapid, and its concentration is the function of the time
and the substrate feed rate (from 10 to 20 hr in Figure 7). At
this region, in order to increase the production rate and to
reduce the wastage, it is essential to implement an optimally
tuned controller. All the necessary products are produced in
the stationary phase (from 20 to 30 hr in Figure 7).

In order to maintain the product quality, it is necessary
to implement another controller in this region since the PID
tuned for growth phase (unstable state) will not provide the
robust performance in the stationary phase (stable steady
state). This can be avoided by implementing a gain scheduler
along with a separate PID controller based on the operating
regions.

The set-point-based gain scheduler considered in this
work is a comparator assisted electronic switch, which acti-
vates the corresponding PID controller based on the available
set-point value. The scheduler unit continuously monitors
the reference signal (biomass concentration) applied to the
bioreactor and selects the suitable local controller unit to
execute a complete control over the entire operating region
as depicted in Figure 14.

6.2. Growth Phase Model. The second-order unstable trans-
fer function model of the bioreactor with a measurement
delay of “0.1” is shown in (12):

Gls) ( —0.9951s — 0.2987 )e,olls.

16
§24+0.1302s — 0.051 (16)

This process model has two stable poles and an unstable
pole. The PSO-based PID controller tuning is proposed
for the model with the multi-objective performance cri-
terion represented in (11). To examine the performance
of the MOPSO algorithm, five trials are performed. The
best solution among the trials is chosen as the optimal
solution. The final convergence of the optimized controller
parameters is shown in Figure 15, and the K}, K;, K; values
are summarized in Table 3.

It shows that the proposed MOPSO-based tuning has
less number of iteration compared to BFO algorithm [29].
Figure 16 depicts the servo response of the growth phase
model. From this response, it is observed that, the proposed
method provides a reduced value of “M,,” and “¢,” compared
to PSO and BFO tuned PID controller. Through a simula-
tion time of 100 min, the MOPSO algorithm provides an
enhanced result in reference tracking with reduced ISE and
IAE than a single objective PSO algorithm (Table 4) [28].

The regulatory response is studied with a load distur-
bance of 0.3 (30% of setpoint) introduced at 75th min as
in Figure 17. The controller successfully rejects disturbance
at 87th min and allows the system to track the setpoint
from 88th min onwards. The controller also provides a
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smooth output. From the result, the observation is that the
proposed PID controller provides a very stable and smooth
response for both the set-point tracking and load disturbance
elimination.

6.3. Stationary Phase Model. The second-order stable trans-
fer function model of the bioreactor with a measurement
delay of 0.1 hr is depicted in (13):

—1.535 — 0.4588 )e*(“s
§2 + 2.564s + 0.6792 '

6 = (17)

The MOPSO-based PID controller tuning is proposed
for the above model, and the ultimate convergence of the
controller parameters (best solution among the five trials) is
shown in Figure 18, and the optimized values are presented
in Table 5.

A step change of 1g/lit is introduced to the bioreactor
model, and the corresponding reference tracking perfor-
mance of the controller (PID2) is presented in Figure 19. A
relative analysis with the previously published work is also
carried out [8]. The proposed controller provides improved
performance with reduced values for t,, t;, ISE, and IAE
compared to other methods such as ZN, GA, and Skogestad.

A load disturbance of 0.3 (30% of setpoint) is introduced
at 75th min to test the regulatory performance of the
controller. From Figure 20, it can be inferred that the PSO-
tuned PID controller is able to reject the load disturbance
quickly (77th min) and maintains the biomass concentration
based on the given setpoint. A summary of the performance
comparisons between the proposed and the existing methods
are presented in Table 4. The MOPSO-tuned PID provides
superior performance with reduced ISE and IAE values in
entire operating region. (In Table5 the suffix “s” is for
setpoint and “L” is the load disturbance.)

6.4. Controller Implementation on Bioreactor Model. The
performance of the proposed method is examined on
the nonlinear bioreactor model, developed using the first
principle equations from (3) to (5). Simulation studies have
been carried out on the nonlinear model to demonstrate the
reference tracking and disturbance rejection performance of
the proposed MOPSO-tuned PID controller in the growth
phase and stationary phase of the biomass.

Initially, a step change in the biomass concentration of
0.9951 g/lit has been introduced in the system. To study the
regulatory performance, a 20% change in the dilution rate
is applied at 300th sampling instant, and the corresponding
change in system parameters such as substrate concentration,
dilution rate, and controller output (PID1) is observed
(Figures 21 and 22). The observation is that change in
substrate concentration is more compared to other variables.
Later a step change of 1.5302 g/lit has been applied at 700th
sampling instant to study the performance in the stationary
phase. This change in setpoint, activates the local PID
controller (PID 2) with the help of the set-point scheduler.
From Figure 21, the observation is that though there is a
small overshoot due to the process nonlinearity, the proposed
controller provides a smooth setpoint tracking in the entire
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FIGURE 14: Bioreactor control with local PID controllers and setpoint scheduler.

TABLE 4: Performance evaluation for unstable region.

Algorithm PID parameters Iteration number Reference tracking

K, K; Ky ISE TAE
MOPSO —0.5499 —0.0638 —0.2018 58 7.143 2.673
BFO —0.5374 —0.0702 —0.0537 85 5.903 2.429
PSO —0.491 —0.0501 —0.1201 52 11.54 3.397

1 L5
> 0 4 °
=) 2 05 .
B 05t - g
s &
2 1} i é 0r ]
£
a—1.5 g -0.5 i
o
D) . . . . 1 , .
0 10 20 30 40 50 60 70 80 90 100 0 50 100 150
Iteration Time (min)
— K --- Setpoint
— K; —— Process output
— Ky —— Controller output
FIGURE 15: Convergence of controller parameters for unstable oper- ~ FIGURE 17: Load disturbance rejection performance for unstable
ating region. operating region.
1.6
1.4 R 4
1.2 R @ 3 b
z g 2t ]
o 1r & 1H 4
& g
S 08¢t . 5 0f
° & -1t ]
2 0.6 i 5 2
L5} =
04t J g -3 1
£ 4 .
0.2 . S sl _
0 e -6 : : - : - - -
0 5 10 15 20 25 30 35 40 45 50 0 0 20 30 40 50 6 70 8
Time (min) Iteration number
—— MOPSO — 5
— BFO — K
— PSO — Ky
FIGURE 16: Reference tracking performance for unstable operating FiGgure 18: Convergence of PID parameters for stable operating
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TABLE 5: Performance evaluation for stable region.

ISRN Chemical Engineering

Method Iter K, K; Ka ISE; TAE; ISE; TAEL
ZN — —1.6722 —1.8580 —0.3762 0.6343 0.796 0.991 0.995
Skogestad — —0.3268 —-0.3268 —0.1634 20.50 4.528 31.95 5.652
GA — —1.2440 —1.3980 —0.2427 1.120 1.058 1.751 1.323
MOPSO 34 —0.5612 -2.0712 0.0133 0.2863 0.5351 0.5098 0.714
2 . . .
—— 15} =
-~ 1p |

Y 7 1 g 051

2 ; 2 ool v

e

o ]

Z ~15}

3 | |

I _2.5 1 1 1 1 1 1
0 . . . . . . . . . 0 200 400 600 800 1000 1200 1400
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FIGURE 19: Servo response for stable operating region.
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FIGURE 20: Load disturbance rejection performance for stable oper-
ating region.

operating region. The regulatory performance is then studied
by introducing 20% change in the dilution rate at 1000th
sampling instant. The corresponding change in the substrate
concentration and the dilution rate is described in Figure 22.
Due to the presence disturbance, the dilution rate and the
substrate concentration are more oscillatory from 1000th to
1150th sampling instant. Later the response reaches a very
smooth value up to 1400th sampling instant.

The transition between the controller (from PIDI to
PID2) is initiated by the set-point scheduler during the 700th
sampling instant (Figure 21). Due to this changeover, a spiky
change in the controller output is observed at 700th sampling
instant. This effect disappears quickly and the controller
output reaches a steady-state value at 783rd sampling instant.

FiGure 21: Change in biomass concentration and control signal for
load disturbance.

Process variables

0 1 1 1 1 1 1
0 200 400 600 800 1000 1200

Sampling instants

1400

—— Substrate concentration
—— Dilution rate

FIGURE 22: Variation of process variables in the presence of load
disturbance.

The robustness of the proposed control scheme is then tested
by introducing a measurement noise (noise power of 0.001;
sampling time of 0.1 sec).

Figure 23 shows the variations of biomass concentration
and Figures 24 and 25 depict the variation of substrate
concentration, dilution rate, and controller signal in the
presence of measurement noise. The reference tracking
response of the set-point scheduled bioreactor shows that
the proposed scheme works well in the noisy environment.
In the presence of measurement noise, the dilution rate and
the substrate concentration are more oscillatory from Oth
to 500th sampling instant. After 500th sampling instant,
the system enters into stationaty phase since the effect of
measurement noise is minimal. From these observations, it
is concluded that the proposed controller scheme is robust,
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FIGURE 24: Variation of feed concentration and dilution rate for
multiple operating regions.

and it helps to provide a better output for setpoint tracking
in the entire operating region of the bioreactor.

7. Conclusion

Modeling and the model-based robust controller imple-
mentation for the nonlinear chemical system is a chal-
lenging work. This paper presents a novel method for
modeling and model-based PID controller implementation
for a nonlinear bioreactor. First principle equation-based
model for the bioreactor is developed using POLYMATH
software. The developed model is then considered for
PSO algorithm-based PID controller tuning. The proposed
method implements a time domain associated multiobjective
performance criterion to guide the PSO algorithm in order
to obtain optimized PID parameters. Two different local
PID controllers are tuned separately for both the stable and
unstable operating regions and implemented using a set-
point-assisted gain scheduler to track the biomass concen-
tration based on the reference signal. From the extensive
simulation studies, it can be observed that the proposed
scheme provides enhanced result in setpoint tracking and
disturbance rejection. This controller also shows a robust
performance in the presence of measurement noise. From the
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FIGURE 25: Variation of controller signal for multiple operating
regions.

study, it can be concluded that the proposed method helps
to provide an approximated mathematical model using the
modelling equations governing the systems. The proposed
controller scheme can be considered as an alternative to other
gain scheduled controllers widely employed in nonlinear
system control.

Nomenclature:

C: Positive constants (0-2)
Cy:  Feed concentration

C,:  Reactor concentration
e(t): Error

Ghest:  Global best position
IAE: Integral absolute error
ISE:  Integral squared error
Ky,:  Proportional gain

Ki:  Integral gain

Kg:  Derivative gain

N: Filter constant (10)
Ppest: Local best position

PV: Measured output

Q: Inlet flow rate

R: Random number (0-1)
r(t): Reference input

S: Position of particle

SP:  Setpoint

T Integral time constant
74:  Derivative time constant
U.(s): PID controller output
Vi Velocity of particle

W:  Inertia weight of particle
y(t): Measured variable

Y (s): Process output.

Superscripts

t: Iteration number
t + 1: Updated iteration number.
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