
Algorithms and Complexity Results for
Discrete Probabilistic Reasoning Tasks

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Denis Deratani Mauá

under the supervision of

Jürgen Schmidhuber and Marco Zaffalon and Cassio Polpo de
Campos

September 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/20661949?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Dissertation Committee

Fabio Crestani Università della Svizzera Italiana, Switzerland
Fabian Kuhn Università della Svizzera Italiana, Switzerland
Thomas D. Nielsen Aalborg University, Denmark
Serafín Moral Univesity of Granada, Spain

Dissertation accepted on 17 September 2013

Research Advisor Co-Advisor

Jürgen Schmidhuber Marco Zaffalon and Cassio Polpo de Campos

PhD Program Director

Antonio Carzaniga

i



I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been sub-
mitted previously, in whole or in part, to qualify for any other academic award;
and the content of the thesis is the result of work which has been carried out
since the official commencement date of the approved research program.

Denis Deratani Mauá
Lugano, 17 September 2013

ii



To Karina

iii



iv



Abstract

Many solutions to problems in machine learning and artificial intelligence in-
volve solving a combinatorial optimization problem over discrete variables whose
functional dependence is conveniently represented by a graph. This thesis ad-
dresses three types of these combinatorial optimization problems, namely, the
maximum a posteriori inference in discrete probabilistic graphical models, the
selection of optimal strategies for limited memory influence diagrams, and the
computation of upper and lower probability bounds in credal networks.

These three problems arise out of seemingly very different situations, and
one might believe that they share no more than the graph-based specification of
their inputs or the underlying probabilistic treatment of uncertainty. However,
correspondences among instances of these problems have long been noticed in
the literature. For instance, the computation of probability bounds in credal net-
works can be reduced either to the problem of maximum a posteriori inference
in graphical models, or to the selection of optimal strategies in limited memory
influence diagrams. Conversely, both the maximum a posteriori inference and
the strategy selection problems can be reduced to the computation of a probabil-
ity bound in a credal network. These reductions suggest that much insight can
be gained by carrying out a joint study of the practical and theoretical computa-
tional complexity of these three problems.

This thesis describes algorithms and complexity results for these three classes
of problems. In particular, we develop a new anytime algorithm for the maxi-
mum a posteriori problem. Not only the algorithm is of practical relevance, as
we show that it compares favorably against a state-of-the-art method, but it is
the base of the proof of polynomial-time approximability of the two other prob-
lems. We characterize the tractability of the strategy selection problem accord-
ing to the input parameters, and we show that the strategy selection problem
can be solved in polynomial time in singly connected diagrams over binary vari-
ables and univariate utility functions, and that relaxing any of these assumptions
makes the problem NP-hard to solve or even approximate within any bound.

We also investigate the theoretical complexity of computing upper and lower
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probability bounds in credal networks. We show that the complexity of the
problem depends on the irrelevance concept adopted, but is in general NP-hard
even in polytree-shaped networks, and even in trees if we assume strong inde-
pendence. We also show that there is a particular type of inference that can
be solved in polynomial time in imprecise hidden Markov models, whether we
assume epistemic irrelevance or strong independence.
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Chapter 1

Introduction

Many solutions to problems in machine learning and artificial intelligence in-
volve solving a combinatorial optimization problem over variables whose func-
tional dependence is conveniently represented by a graph. Three of these opti-
mization problems are the maximum a posteriori inference in discrete probabilis-
tic graphical models (specifically, in Bayesian and Markov networks, [Park and
Darwiche, 2004]), the selection of optimal strategies for limited memory influ-
ence diagrams [Lauritzen and Nilsson, 2001], and the computation of upper and
lower probability bounds in credal networks [Cozman, 2000].

Arguably, the most studied of these three classes of problems is the prob-
lem of maximum a posteriori inference, which consists in finding an assignment
of the values of a given subset of the variables in the model that maximizes
their marginal joint probability. The theoretical computational complexity of this
task has been largely determined by Park and Darwiche [2004] and de Campos
[2011], in terms of the shape of the underlying graph, the cardinality of variable
domains and the number of latent variables (i.e., variables which are marginal-
ized out from the model). In particular, de Campos [2011] showed that the
problem is NP-hard to approximate even in tree-shaped Bayesian networks, un-
less the cardinality of the variables is assumed bounded, in which case it admits
a fully polynomial-time approximation scheme. On the practical side, many effi-
cient approximate algorithms have been devised [Dechter and Rish, 2003; Park
and Darwiche, 2004; Liu and Ihler, 2011; Jiang et al., 2011; Meek and Wexler,
2011]. These algorithms however are not able to provide a solution with a given
accuracy using a given limited amount of computational resources (i.e., time and
memory). To remedy this situation, we develop in Chapter 2 an anytime algo-
rithm to the problem, which we show empirically to compare favorably against
the only other anytime procedure for the problem we are aware of. The key

1



2

feature of our algorithm is the trade-off between efficiency and accuracy, which
is achieved by designing a multiplicative approximation scheme whose accuracy
and complexity is determined by the user (hence, part of the input). Besides
its practical relevance, the anytime algorithm is the base for proving approx-
imability results regarding the complexity of the two other classes of problems.
Indeed, the fully polynomial-time approximation scheme of de Campos [2011]
can be seen as a special case of our anytime algorithm for networks of bounded
treewidth and bounded variable cardinality.

The second class of problems we study is the selection of optimal strategies
for limited memory influence diagrams. Influence diagrams are intuitive and
concise representations of decision making situations [Howard and Matheson,
1984]. A decision-making problem usually involves both controllable and non-
controllable quantities, which in the formalism of influence diagrams are repre-
sented, respectively, by action and state variables. A strategy is a mapping from
state variables into action variables, which completely determines the behavior
of an agent (or a team of cooperative agents) acting under the model. The spec-
ification of an influence diagram and a suitable strategy uniquely determines a
joint probability distribution over the state variables, and a rational agent tries
to select a strategy that maximizes expected utility over these probability distri-
butions. In principle, an optimal action at a given decision step might depend
on all previous actions and observations, which leads to an exponentially large
strategy. To avoid such an exponential complexity, Lauritzen and Nilsson [2001]
proposed using limited memory influence diagrams, in which the information
available to each local decision is explicitly determined as part of the input, and
hence under the control of the model builder. They showed the existence of a
class of limited memory influence diagrams for which the optimal strategy re-
mains the same if we relax the constraint on the size of admissible strategies, that
is, allowing each local decision to be made based on the full history of actions
and observations does not increase expected utility. They named those diagrams
soluble, showed that membership of a diagram in the class of soluble diagrams
can be verified in polynomial time, and developed an algorithm that finds an op-
timal strategy for a soluble diagram in time exponential in the treewidth of the
underlying graph; the algorithm is thus polynomial time on soluble diagrams of
bounded treewidth. In Chapter 3, we investigate the theoretical complexity of
this problem in terms of the diagram shape, the cardinality of variable domains,
and the structure of the utility function. We conclude that optimal strategies can
be found in polynomial time in diagrams of bounded treewidth over binary state
variables and with a univariate utility function, and that relaxing any of these
conditions results in an NP-hard problem. This shows that the class of soluble
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diagrams is a very restrictive one, and even structurally simple diagrams can be
difficult to solve. We also show that relaxing optimality does make the problem
easier, as we prove that a provably good strategy can be found in polynomial-
time in (non-soluble) diagrams of bounded treewidth over variables of bounded
cardinality, and that the same task is NP-hard in case variables assume arbitrarily
many values.

The third class of problems we consider involves credal networks, which are
graphical models whose numerical parameters are imprecisely specified through
sets of probabilities [Cozman, 2000]. The set-valued quantification allows for
the distinction of uncertainty and indeterminacy, the former being the result of
(partial) ignorance about facts, and the latter being the incapability of acting
under severe uncertainty. Arguably, this distinction facilitates the knowledge
elicitation from experts [Walley, 2000; Antonucci et al., 2007], and allows for
more realistic models of one’s beliefs [Walley, 1991]. A credal network deter-
mines a closed and convex set of joint probability distributions of the variables
in the model. The updating problem is to compute the maximum and minimum
values for the posterior probability of a given variable taking on a certain value
over all the joint distributions determined by the network. The theoretical com-
plexity of the updating problem depends on the precise characterization of the
set of joint distributions induced by a credal network. This joint set is usually
precisely characterized by assigning a proper semantics to the arcs of the net-
work graph. Two common approaches are to assume that the graph encodes
a set of either strong independence or epistemic irrelevance assessments. The
former implies that the joint set arises out of a finite combination of precisely
specified Bayesian networks all of which have a graph structure that coincides
with that of the credal network. The latter takes imprecision as a core feature of
the model, and describes the joint set as a rational extension to a larger domain
of the assessments about local domains provided by the set-valued specifications
in the input; the distributions in the joint set need not be related to any Bayesian
network sharing the exact same graph structure of the credal network.

De Campos and Cozman [2005] showed that under strong independence
the updating problem is NP-hard to approximate even in singly connected net-
works of bounded treewidth, unless all the variables are binary, in which case
the problem can be solved in polynomial time by the 2U algorithm of Fagiuoli
and Zaffalon [1998b]. Under epistemic irrelevance, de Cooman et al. [2010]
showed that the problem can be solved in polynomial time if the underlying
graph is a tree. In Chapter 4, we extend these results and show that updating
singly connected credal networks is NP-hard under either type of irrelevance,
even if the root variables are binary and non-root variables are ternary. We also
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show that under strong independence the problem is NP-hard already in trees,
but that a particular type of query can be answered in polynomial time in hidden
Markov models, a special class of tree-shaped credal networks well-suited for the
analysis of time series. Finally, we show that a fully polynomial-time approxima-
tion scheme for the problem exists if we assume that both the network treewidth
and the variable cardinalities are bounded, and adopt strong independence.

These three classes of problems arise out of seemingly very different situa-
tions, and one might believe that they share no more than the graph-based spec-
ification of the models or the probabilistic treatment of uncertainty. However,
correspondences among instances of these problems have long been noticed in
the literature. Provided that the specification of the credal network satisfies cer-
tain conditions such as sets being represented by their extreme points and strong
independence being adopted, Cano et al. [1994] showed that this problem can
be efficiently reduced to the computation of a maximum posteriori inference in
a properly designed Bayesian network. De Campos and Cozman [2005] showed
that the converse is also true, that is, maximum a posteriori inference in Bayesian
networks can be efficiently reduced to an updating problem in a credal network
that satisfies the conditions of the previous reduction. Antonucci and Zaffalon
[2006, 2008] and de Campos and Ji [2008] studied the correspondence between
updating credal networks and selecting optimal strategies in limited memory in-
fluence diagrams. In particular, they showed that the updating problem in credal
networks satisfying the same conditions and the strategy selection problem in
limited memory influence diagrams can be efficiently reduced one to another.

The existence of efficient reductions between instances of these three dif-
ferent classes of problems brings important consequences, both practical and
theoretical. On the practical side, the reductions enable algorithms developed
for one problem to be directly used to solve the other, thus enriching the toolsets
for solving each of the three problems. On the theoretical side, they lead to a dif-
ferent interpretation of each problem, as seen from the viewpoint of the reduced
problem. For instance, Antonucci and Zaffalon [2008] used the reduction of the
updating problem in credal networks into the strategy selection problem in lim-
ited memory influence diagrams to propose a decision-theoretic representation
of credal networks, by which the imprecision in the numerical parameters is seen
as a decision problem. This decision-theoretic representation of credal networks
allows for the logical constraints in the set-valued specification of parameters to
be graphically and intuitively expressed in the language of influence diagrams.
Also, the reductions allow complexity results for one problem to be immediately
derived from results about another problem. For example, by reducing the up-
dating problem into a maximum a posteriori inference problem, we can show
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that the former is an NPPP-hard problem, as this is the case for the latter [Park
and Darwiche, 2004]. These correspondences however do not render redundant
the parametrized complexity results obtained for each class of problems, as the
reductions usually do not preserve all of the structure of the original problem.
For example, the reduction from an updating problem in credal networks into
a maximum a posteriori inference transforms a tree-shaped credal network into
a graphical model whose graph structure is not a tree. Other reductions insert
cycles that were previously absent, or do not preserve approximation.

To sum up, this dissertation describes a new anytime algorithm for the com-
putation of maximum a posteriori inference in discrete probabilistic graphical
models (more precisely, in Bayesian and Markov networks), and contains a study
about the computational complexity of the problems of selecting optimal strate-
gies in limited memory influence diagrams, and computing upper and lower
posterior probabilities in credal networks. Correspondence between these three
different problems are used to prove both positive and negative complexity re-
sults, justifying their joint treatment.

1.1 Contributions

The following is a summary of the most important contributions of this work,
annotated with references to the publications where they (partially) appeared
previously.

1. We develop a new anytime algorithm for the maximum a posteriori infer-
ence problem in graphical models. The algorithm is carefully analyzed and
is shown empirically to be very competitive. Most of this part appeared
previously in

Mauá, D. D. and de Campos, C. P. [2012]. Anytime marginal
MAP inference, Proceedings of the 28th International Conference
on Machine Learning (ICML).

2. We develop an algorithm to find optimal strategies in limited memory in-
fluence diagrams. We show empirically that the algorithm, which has ex-
ponential worst-case running time performance, is able to solve exactly
much bigger instances than the current state-of-the-art solvers. By using
this algorithm, we are able to evaluate the performance of approximate
algorithms on more realistic inputs. This work appeared in
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Mauá, D. D. and de Campos, C. P. [2011]. Solving decision
problems with limited information, Advances in Neural Informa-
tion Processing Systems 24 (NIPS), pp. 603–611.

3. We show that the problem of selecting an optimal strategy in limited mem-
ory influence diagram is NP-hard to solve in multiply connected diagrams
over binary variables and a single value node, and in singly connected dia-
grams with ternary variables and a single value node. Moreover, we prove
the problem to be NP-hard to approximate within any constant bound even
in singly connected diagrams of bounded treewidth and a single value
node. These results appeared in

Mauá, D. D., de Campos, C. P. and Zaffalon, M. [2012]. Solving
limited memory influence diagrams, Journal of Artificial Intelli-
gence Research 44: 97–140.

4. We prove the existence of a fully polynomial-time approximation scheme
for the strategy selection problem for diagrams of bounded treewidth over
variable of bounded cardinality. This appeared in

Mauá, D. D., de Campos, C. P. and Zaffalon, M. [2012]. The
complexity of approximately solving influence diagrams, Pro-
ceedings of the 28th Conference on Uncertainty in Artificial Intel-
ligence (UAI), pp. 604–613.

5. Complementing previous results, we show that the strategy selection prob-
lem is NP-hard to solve even in singly connected diagrams over binary
variables, unless there is a single value node, in which case we show the
problem can be solved in polynomial time. This result has been submitted
to a journal and is currently under review.

6. We study the parametrized complexity of the updating problem in credal
networks. We show that under strong independence the problem is NP-
hard even in trees. More generally, the problem is NP-hard even in poly-
trees over binary root variables and ternary non-root variables, whether
we assume strong independence or epistemic irrelevance. These results
appeared in

Mauá, D. D., de Campos, C. P., Benavoli, A. and Antonucci, A.
[2013]. On the complexity of strong and epistemic credal net-
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works, Proceedings of the 29th Conference on Uncertainty in Arti-
ficial Intelligence (UAI), pp. 391–400.1

7. We prove the existence of a fully polynomial-time approximation scheme
for the updating problem in credal networks of bounded treewidth over
variables of bounded cardinality, and assuming strong independence. We
show empirically that the approximation outperforms a state-of-the-art ap-
proach for the problem. These results appeared in

Mauá, D. D., de Campos, C. P. and Zaffalon, M. [2011]. A
fully polynomial time approximation scheme for updating credal
networks of bounded treewidth and number of variable states,
Proceedings of the Seventh International Symposium on Imprecise
Probability: Theories and Applications, pp. 277–286.

and

Mauá, D. D., de Campos, C. P. and Zaffalon, M. [2012]. Updat-
ing credal networks is approximable in polynomial time, Inter-
national Journal of Approximate Reasoning 53(8): 1183–1199.

In order to keep the length of this dissertation reasonable, work on closely
related subjects performed during the course of the author’s Ph.D. studies had to
be omitted from this account, such as the evaluation of classifiers based on credal
networks [Zaffalon et al., 2011, 2012], and the design of multilabel classifiers
based on ensembles of Bayesian networks [Antonucci et al., 2013a].

1.2 Organization of the thesis

The rest of this document is organized in three chapters, each containing the
results about one of the three classes of problems described. Chapter 2 contains
the discussion on the problem of selecting maximum a posteriori configurations
in discrete probabilistic graphical models. The complexity analysis of the strat-
egy selection problem in limited memory influence diagrams is then presented
in Chapter 3. The complexity results of updating credal networks are reported in
Chapter 4. Finally, the overall conclusions of this work, together with directions
on future work, are laid out in Chapter 5.

1This paper was awarded the Google Best Student Paper at UAI 2013.



8 1.2 Organization of the thesis



Chapter 2

Maximum a posteriori inference

Finding a mode of a probability distribution over a large number of discrete vari-
ables, a task more commonly known as maximum a posteriori (MAP) inference,
is a building block of many solutions to important applications such as image
segmentation and categorization, 3D image reconstruction, natural language
parsing, statistical machine translation, speech recognition, sentiment analysis,
protein design, and multi-component fault diagnosis, to name but a few.

To allow for efficient manipulation and tractable inference, probability dis-
tributions need to be concisely encoded. A class of models that achieves this
goal is the class of probabilistic graphical models. These are multivariate models
where irrelevance assessments between sets of variables are concisely described
by means of a graph whose nodes are identified with variables [Pearl, 1988;
Koller and Friedman, 2009]. Graphical models are usually distinguished accord-
ing to whether their underlying graphical structure is directed. Bayesian net-
works are models in which a directed acyclic graph is used to represent a set of
local Markov conditions: a variable is independent of the variables associated to
non-descendant non-parent nodes given the variables associated to its parents.
Markov random fields, on the other hand, encode independence assessments by
means of undirected graphs. In these models, the local Markov condition states
that given (the variables associated to) its neighbors a variable is independent
of its non-neighbors.

Although the type of graphical model chosen (i.e., directed or undirected)
might greatly affect the complexity of specifying the requisite numerical param-
eters of the model, it has little effect on the complexity of maximum a posteriori
inference in discrete models. Indeed, by including new variables and/or setting
some evidence, every Bayesian network can be efficiently transformed into an
equivalent Markov network that assigns the same probability value for all vari-

9
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able assignments, and the converse is also true. Moreover, most algorithms can
be applied equally to either class of graphical models. For these reasons, we
shall not pursue the distinction between directed or undirected models in this
chapter, and we shall adopt the language of factor graphs as a unifying visual
representation of either type of model.

Probabilistic models often include latent variables, that is, variables that are
not directly observable and yet are understood as important for modeling the
phenomenon at hand. The inclusion of latent variables helps in eliciting the
model from experts, and decreases the number of parameters required to cap-
ture reasonably well the dependencies in the model, which can prevent over-
fitting when learning models from data and lead to better results [Kwoh and
Gillies, 1996; Binder et al., 1997; Friedman, 1998; Elidan et al., 2000; Zhang,
2004; Elidan and Friedman, 2005; Wang et al., 2013]. For instance, in determin-
ing the premium of a car insurance application, the driving skills and attitude
of the applicant are important features which cannot be directly observed (by
the analyst). Yet it is believed that these features strongly determine the likeli-
hood of e.g. a driver being involved in a car accident and at the same time are
strongly influenced by other personal factors such as the driver’s age [Binder
et al., 1997]. Neglecting these features from the model drastically increases
the number of parameters required to model the correlations between variables,
which makes the model more difficult to specify and less effective [Friedman,
1998].

The problem of finding a mode of a discrete probabilistic graphical model is
notoriously hard, and the presence of latent variables increases its computational
complexity. For instance, the decision version of the MAP inference problem is
NPPP-complete if the model contains (arbitrarily many) latent variables, while
the same problem is “only” NP-complete if latent variables make up a bounded
fraction of the variables [Shimony, 1994; Park and Darwiche, 2004]. When the
underlying graph is a tree, the problem with (arbitrarily many) latent variables
is NP-complete [Park and Darwiche, 2004], whereas the same problem can be
solved in polynomial time in the absence of latent variables [Koller and Fried-
man, 2009]. Also finding a provably good approximation in trees of bounded
degree is NP-hard in the presence of latent variables [Park and Darwiche, 2004]
(however, a fully polynomial-time approximation scheme exists if the number
of states per variable is assumed bounded, de Campos [2011]). Table 2.1 lists
some of the known complexity results of the MAP inference problem in Bayesian
networks (analogous results can be stated for Markov networks). Polytrees and
loopy networks are defined in Chapter 3.

The theoretical difficulty of the problem motivates the search for approxi-
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Table 2.1. Parametrized complexity of the MAP problem in Bayesian networks.

topology treewidth max. variable
cardinality

complexity

“naive” tree one unbounded NP-complete
tree one five NP-complete
polytree two two NP-complete
polytree two unbounded NP-complete
loopy unbounded two NPPP-complete

mate solutions. Recently, there has been a growing interest in the problem, with
the development of many new approximate algorithms. Most of these algorithms
provide solutions that can be arbitrarily poor, which might prevent the user of
such algorithms from fully understanding the effects of approximate inference
in the bigger picture of the application, that is, to know whether better results
could be obtained by improving the quality of inference, or if it is the model or
methodology that are fundamentally flawed. This is the case of message-passing
and beam-search algorithms [Park and Darwiche, 2003; Dechter and Rish, 2003;
de Campos et al., 2003; Yuan et al., 2004; Huang et al., 2006; Yuan and Hansen,
2009; Liu and Ihler, 2011; Jiang et al., 2011]. Such worries have very recently
been addressed by Meek and Wexler [2011] and Cheng et al. [2012], who de-
signed algorithms that are able to provide bounds within which the (probabil-
ity of the) true solution is to be found.1 Moreover, these algorithms allow for
some trade-off between the tightness of the bounds and the amount of compu-
tational resources (memory and time) used. Thus, loose bounds can justify an
increase in processing time dedicated to inference if the final results turn out to
be unsatisfactory, whereas tight bounds can reassure the quality of an efficient
approximate inference algorithm. Moreover, bounds are necessary to account
for alternative explanations in case conclusions are to be drawn from the result
of the inference, as in scientific discovery (e.g., in finding associations between
genes or proteins).

In the rest of this chapter, we briefly review some of the approaches to solve

1Some approximate methods such as the systematic search of Park and Darwiche [2003], the
mini-bucket scheme of Dechter and Rish [2003] and the tree-reweighted variant of Liu and Ihler
[2011] provide a “side guarantee”, that is, they are either inner or outer approximations. We
can obtain an algorithm that provides bounds for the mode probability by combining an inner
and an outer approximation algorithm.



12 2.1 Graphical models and the MAP assignment problem

the problem and present a new algorithm for the computation of MAP inferences
in discrete graphical models of bounded treewidth (Section 2.2). The algorithm
provides an assignment to the variables of interest and bounds on its posterior
probability. In other words, the algorithm returns a solution and an estimate of
its error relative to the optimal solution (i.e., the MAP assignment). The restric-
tion to bounded treewidth models is necessary to enable efficient evaluation of
solutions, that is, to enable polynomial-time computation of the probability of
a given assignment to the variables of interest. The algorithm is then extended
into an anytime procedure, that is, an algorithm that is capable of monotonically
improving the quality of its output as more time is granted (Section 2.3). We
show asymptotic convergence and theoretical error bounds for any fixed number
of steps of the algorithm. In Section 2.4, the performance of these algorithms is
evaluated in experiments with real and synthetic models, and compared against
the state-of-the-art systematic search algorithm of Park and Darwiche [2003].
Concluding remarks appear in Section 2.5.

Most of the content of this chapter is based on the work published in Refer-
ence [Mauá and de Campos, 2012].

2.1 Graphical models and the MAP assignment problem

Consider a set X = {X1, . . . , Xn} of categorical variables, and an indexing set

S ⊆ [n] def
= {1, . . . , n}. We call φ a factor if it is a mapping of the assignments

xS
def
= {x i : i ∈ S} of a subset XS= {X i : i ∈ S} of the variables into non-negative

real numbers, in which case we call the corresponding variable-indexing set S its
scope. A (probabilistic) graphical model over X is a collection Φ = {φ1, . . . ,φm}
of factors whose scopes S1, . . . , Sm satisfy S1∪· · ·∪Sm=[n]. The model concisely
defines a probability measure on the sigma-field of subsets E of joint assignments

x
def
= {x1, . . . , xn} to X by

P(E)
def
=
∑

x∈E

1

Z

∏

i∈[m]
φi(xSi

) , (2.1)

where Z =
∑

x

∏

i∈[m]φi(xSi
) is a normalizing constant known as the partition

function. We often write φi(x) to denote φi(xSi
), leaving the domain implicit, if

no ambiguity arises. If XS is a subset of variables, and xS a possible assignment of
values, the notations P(XS=xS) and P(xS) are used to denote the probability of
the event E = {x′ : x′S = xS} induced by the joint assignments whose projection
on S is xS.
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φ1

φ2 φ3

φ4

X1 X2

X3 X4

Figure 2.1. The factor graph of the graphical model in Example 2.1.

The factor graph of a graphical model Φ is a bipartite graph whose nodes
are identified either with factors φ in Φ or with variables X i in X. The graph
contains an edge {φ, X i} if i is in the scope of φ. The following example helps
in illustrating the concepts introduced thus far.

Example 2.1. Consider a graphical model Φ = {φ1,φ2,φ3,φ4} over four binary
variables X1, X2, X3 and X4, where the factors are specified by the tables below.

X1 X2 φ1(X1, X2)

0 0 10
1 0 0.1
0 1 0.1
1 1 10

X1 X3 φ2(X1, X3)

0 0 5
1 0 0.2
0 1 0.2
1 1 5

X2 X4 φ3(X2, X4)

0 0 5
1 0 0.2
0 1 0.2
1 1 5

X3 X4 φ4(X3, X4)

0 0 0.5
1 0 20
0 1 1
1 1 2.5

The corresponding factor graph is shown in Figure 2.1. The partition function is

Z =
∑

x1,x2,x3,x4

φ1(x1, x2)φ2(x1, x3)φ3(x2, x4)φ4(x3, x4) = 1224.384 ,

and P(X1=1, X2=1, X3=1, X4=1) = 10 · 5 · 5 · 2.5/Z = 0.5104607704.

We say that a variable X i in X is a decision variable if its value is to be deter-
mined.2 The set D indexes the decision variables in X. The variables not indexed

2The term “decision variable” can lead one to think that such a variable necessarily represents
a quantity which can be controlled in the real world. This is however not the case, and such
variables are often related to uncontrollable events.
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by D are called latent variables, and are indexed by H (thus D ∪ H = [n] and
D ∩H = ;). The MAP assignment problem consists in finding3

d∗ ∈ argmax
d

P(XD=d)

= argmax
d

∑

x

∏

i∈[m]
φi(x)

∏

j∈D

δX j=d j
(x) , (2.2)

where δX j=d j

def
= δ(x j − d j) denotes the Kronecker delta function that is one if

x j=d j, and zero otherwise. Note that in our terminology, δX j=d j
is a factor with

scope { j}.
For any assignment d

def
= {d j : j ∈ D} to the decision variables, we can inter-

pret the argument of the maximization in (2.2), that is, the expression
∑

x

∏

i∈[m]
φi(x)

∏

j∈D

δX j=d j
(x) ,

as the probability measure defined by the augmented graphical model Φd =
Φ ∪⋃ j∈D{δX j=d j

}. This probability measure assigns zero probability to joint as-
signments that are not consistent with d, and thus the partition function of the
augmented model is Zd=

∑

x

∏

i∈[m]φi(x)
∏

j∈D δX j=d j
(x). In other words, there

is a one-to-one correspondence between assignments d to the decision variables
(which are the candidate solutions to the MAP assignment problem) and graph-
ical models Φd=Φ∪

⋃

j∈D{δX j=d j
}, and the quality of each assignment d is given

by the partition function Zd of the corresponding graphical model Φd. This way,
we can re-state the MAP assignment problem as a search over graphical mod-
els Φd instead of a search over assignments. Assume without loss of generality
that D= {1, . . . , k}, for some integer k < n, and H = {k + 1, . . . , n}, and define
Ki={φi} for i = 1, . . . , m, and K j+m={δX j=x j

: x j ∼ X i} for each decision j ∈ D.4

Each combination of factors φ1, . . . ,φm+k from sets K1, . . . , Km+k, respectively,
specifies the graphical model Φd corresponding to an assignment d to the deci-
sion variables. Let M = {{φ1, . . . ,φm+k} : φi ∈ Ki} denote all graphical models
obtained in such a way. Finding a MAP assignment d∗ ∈ argmaxd P(XD = d) is
equivalent to finding a graphical model Φ∗ ∈ argmaxΦ∈M

∑

x

∏

φ∈Φφ(x). An as-
signment d∗= {d∗j : j ∈ D} is a MAP assignment if and only if there is a model
Φ∗ = {φ∗1, . . . ,φ∗m+k} in M such that

∑

x

∏

φ∈Φ∗ φ(x) = maxΦ∈M
∑

x

∏

φ∈Φφ(x)

3The formulation of the MAP assignment problem with delta functions is unusual, but it is
important for the results and algorithm we devise later on.

4The notation x i ∼ X i denotes that x i is an element of the sample space of possible values of
variable X i .
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and d∗= argmaxd

∏

j∈Dφ
∗
j+k(d j) (or equivalently, if d∗j = argmaxd j

φ∗j+k(d j) for
every j ∈ D).

Example 2.2. Consider the graphical model in Example 2.1, and suppose that D=
{2,3} and H={1, 4}. The probability of each assignment to the decision variables
is shown in the table below. The rightmost column contains the unnormalized
probabilities P′(x2, x3) = Z · P(x2, x3).

X2 X3 P(X2, X3) P′(X2, X3)

0 0 0.11 135.054
1 0 0.2 251.25
0 1 0.01 12.75
1 1 0.67 825.33

Thus, {X2=1, X3=1} is the single MAP assignment.
To reformulate this MAP assignment problem as a search over graphical mod-

els, consider the factors δX2=x2
and δX3=x3

for every MAP assignment {x2, x3}. Let
K1 = {φ1}, K2 = {φ2}, K3 = {φ3}, K4 = {φ4}, K5 = {δX2=1,δX2=0} and K6 =
{δX3=1,δX3=0}. Each combination of factors ψ1, . . . ,ψ6 ∈ K1, . . . , K6 corresponds
to the graphical model Φd induced by the assignment

d=argmax
x1,x2

ψ5(x2)ψ6(x3) .

LetM be the family of all such graphical models Φd. An assignment {x∗2, x∗3} is a
MAP assignment if and only if there is model Φ∗d = {ψ∗1, . . . ,ψ∗6} in the set

argmax
Φ∈M

∑

x1,x2,x3,x4

∏

i∈[6]
ψi(x)

such that x∗2 = argmaxx2
ψ∗5(x2) and x∗3 = argmaxx3

ψ∗6(x3). Hence,

Φ∗={φ1, . . . ,φ4,δX2=1,δX3=1}
is the solution equivalent to the MAP assignment {X2 = 1, X3 = 1}, and ZΦ∗ =
825.33.

2.2 Approximate algorithms for the MAP assignment
problem

In this section, we review some of the approaches to evaluation and selection
of approximate MAP assignments, and present a new algorithm that provides
bounds on the quality of the solution.
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2.2.1 Clique-tree computation

We start by reviewing clique-tree algorithms, which can be used among other
things to compute (not necessarily efficiently) MAP assignments in graphical
models or to evaluate the unnormalized probability of a given assignment. Many
algorithms use clique trees to organize data and schedule computations, and this
is also the case for the algorithm we develop later on.

Clique-tree algorithms first appeared as methods to compute marginal prob-
abilities in Bayesian networks [Lauritzen and Spiegelhalter, 1988; Shenoy and
Shafer, 1988]. Motivated by the fact that computations in tree-shaped graphical
models are usually efficient and straightforward [Pearl, 1988], clique-tree algo-
rithms re-cast any graphical model as a tree. The efficiency of the computations
in a clique tree is a function of the resemblance of the original graph to a tree.

Formally, let T be a tree over [m] such that each node i is associated to a
set Ci ⊆ [n] and C1 ∪ · · · ∪ Cm = [n] for some positive integer n. We call T
a clique tree if for i = 1, . . . , n the sub-graph obtained by removing from T all
nodes j such that i /∈ C j remains connected.5 This condition is known as the
running intersection property, and guarantees that for any path in the tree (i.e.,
a sequence of non-repeating adjacent nodes) either an integer associated to the
current node (i.e, some k ∈ Ci) appears for the last time in the path or it also
appears in the set associated to the adjacent node.

Let Φ be a graphical model whose factors φ1, . . . ,φk have scopes S1, . . . , Sk,
respectively, and S1 ∪ · · · ∪ Sk=[n]. We say that (T, {C1, . . . , Cm}) is a clique tree
for Φ if T is a clique tree over [m], and for each i = 1, . . . , k there is j ∈ [m]
such that Si ⊆ C j. This last condition is called the family preserving property,
and it guarantees that the scope of each factor is covered by some set associated
to a node of the clique tree, allowing us to associate each factor in the model
to exactly one node in the clique tree. In the following, we assume for ease of
exposition and without loss of generality that if T is a clique tree for Φ then
m= k and Si ⊆ Ci for all i, which allows us to unambiguously associate each
factor φi to the clique tree node i (for any Ci violating the assumption, we can
include a new factor in Φ with domain XCi

and image {1}; the running time of
the computations on the clique trees for both models have the same asymptotic
growth rate, and the new graphical model induces the same probability mea-
sure). This assumption is merely aesthetic, as it prevents us from dealing with

5In Chapter 3, we define the much similar concept of tree decomposition of a graph, which
essentially refers to the same class of objects and could be used here instead. The distinction in
terminology is that we see clique trees as objects not necessarily related to any graph, whereas
the mention of a tree decomposition implies a reference graph.
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4: X3, X4

2: X1, X3, X4 6: X3

1: X1, X2, X4

3: X2, X4 5: X2

Figure 2.2. A clique tree for the family of graphical modelsM in Example 2.2.

two indexing schemes (one for the factors and other for the nodes of the clique
tree) and avoids the subsequent overcomplicated notation. The results obtained
here do not depend, by any means, on that assumption.

The width of a clique tree is the cardinality of the largest set Ci minus one.
Since the complexity of algorithms that operate on clique trees is usually (at
least) exponential in the tree width, one usually seeks to obtain a clique tree of
low width. If it exists, a clique tree for a graphical model Φ of a given maximum
width k (assumed constant) can be found in time linear in the scopes (but expo-
nential in k) [Bodlaender, 1996]. In general, finding a minimum-width clique
tree for a given graphical model is an NP-hard problem [Yannakakis, 1981], and
one usually resorts to heuristics to obtain low-width trees, such as the minimum
fill-in heuristic [Kjaerulff, 1990; van den Eijkhof et al., 2007].

Example 2.3. The tree in Figure 2.2 is a clique tree for any graphical model Φd in
the familyM in Example 2.2. The nodes 1, . . . , 4 are associated, respectively, with
the factors φ1, . . . ,φ4, whereas the nodes 5 and 6 are associated to factors δX2=x2

and δX3=x3
, respectively, for some x2, x3. Note that S2 = {1,3} ⊂ C2 = {1, 3,4}.

The tree has width two, and one can show that there is no other suitable clique tree
of smaller width.

The basic computation scheme with clique trees is the FACTOR-ELIMINATION

procedure in Algorithm 1, which computes the partition function of a graphical
model Φ={φ1, . . . ,φm} associated to a clique tree T over [m].6 Note that CPa(r)=
; in line 5. In a nutshell, the algorithm roots the tree in an arbitrary node
(line 1), and then propagates messages containing the factors µi from the leaves
towards the root (lines 3–7). If r is the root node, we say that a node p of

6The algorithm is also known as the COLLECT algorithm [Shenoy and Shafer, 1988] and
JUNCTION-TREE PROPAGATION algorithm [Jensen and Nielsen, 2007], and is closely related to vari-
able elimination [Dechter, 1999], fusion in valuation algebras [Kohlas, 2003] and nonserial
dynamic programming [Bertele and Brioschi, 1972].
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Algorithm 1 FACTOR-ELIMINATION

Require: A clique tree T over a graphical model Φ = {φ1, . . . ,φm}
Ensure: Z=

∑

X

∏

i∈[m]φi

1: select a node r as root
2: label all nodes as inactive
3: while there is an inactive node i do
4: select an inactive node i with all children active
5: compute µi=

∑

XCi\CPa(i)
φi

∏

j∈Ch(i)µ j

6: label i as active
7: end while
8: Z=µr

the clique tree is the parent of a neighboring node i if p is closer to r. In this
case, we also say that i is a child of p. The set of children and descendants of
i are denoted respectively by Ch(i) and De(i). Note that every node but the
root r has a single parent. The notation in line 5 representing the sum-marginal
of a product of factors will be commonly used in the following discussion, and
represents the factor µi over XCi∩CPa(i)

such that

µi(x
′) =

∑

x∼XCi
:xCi∩CPa(i)

=x′
φi(xSi

)
∏

j∈Ch(i)

µ j(xCi∩C j
) , (2.3)

for all x′ ∼ XCi∩CPa(i)
. The propagation of messages halts when the root has re-

ceived one message from each child, in which case the partition function is ob-
tained by Z =µr . The algorithm runs in O(msw+1) time, where s=maxi |{x i ∼
X i}| is the maximum number of values a variable in the model can assume, and
w = maxi |Ci| − 1 is the width of the clique tree. Thus when the width w is
bounded, the computations take polynomial time.

Let h(i)
def
=
⋃

j∈De(i)∪{i} C j \ CPa(i) be the set of variable indexes that appear
either in the set associated to node i or in any of its descendants. Due to the
running intersection property, the factors containing only variables indexed by
elements of h(i) are not involved in any computations performed in the loop
of FACTOR-ELIMINATION after node i has been processed (i.e., after it has been
labeled as active). Consequently, it can be shown [Koller and Friedman, 2009]
that for i = 1, . . . , m the factor µi satisfies

µi=
∑

Xh(i)

φi

∏

j∈De(i)

φ j . (2.4)
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Since h(r)=[n] by definition of clique trees, the correctness of the computations
follows from applying this result to the root: Z = µr =

∑

X

∏

i∈[m]φi. Hence,
we can evaluate the quality of a candidate solution d to the MAP assignment
problem by building a clique tree T for the corresponding graphical model Φd

and then running FACTOR-ELIMINATION, which produces Zd=
∑

X

∏

φ∈Φd
φ. The

same clique tree structure can be used to evaluate different candidates.

Example 2.4. Consider the MAP problem in 2.2 and the clique tree T in Figure 2.2
as described in Example 2.3. We can evaluate the assignment d={X2=1, X3=0} by
running FACTOR-ELIMINATION with inputs T and Φd = {φ1, . . . ,φ4,δX2=1,δX3=0} ,
which obtains Zd=

∑

X1,X2,X3,X4

∏8
i=1φiδX2=1δX3=0 ∝ P(X2=1, X2=0). The same

clique tree could be used to evaluate e.g. the MAP assignment d={X2 = 1, X3 = 1}
by running FACTOR-ELIMINATION with factors Φd = {φ1, . . . ,φ4,δX2=1,δX3=1}.

The algorithm can be straightforwardly modified to find a MAP assignment
when there are no latent variables (i.e., when H=;) by substituting sums with
maximizations in the computation of factors µi, obtaining a FACTOR-MAXIMIZATION

version of the algorithm in which µi =maxXCi\CPa(i)
φi

∏

j∈Ch(i)µ j (the correctness

of the procedure follows from the commutativity of maximization and product
on the real numbers, Koller and Friedman [2009]). Indeed, a common approx-
imation to MAP inference is to augment the decision set to D′ = D ∪ H and run
FACTOR-MAXIMIZATION, which then computes a lower bound on the value of orig-
inal MAP assignment problem. This idea naturally suggests a greedy approach
to the computation of MAP assignments in the presence of latent variables (i.e.,
H 6= ;), which consists in redefining the factors µi so that latent variables are
summed out while decision variables are maximized. A FACTOR-MAX-ELIMINATION

version of the algorithm computes messages

µi=max
XDi

∑

XHi

φi

∏

j∈Ch(i)

µ j ,

where Di=(Ci ∩D)\CPa(i) and Hi=(Ci ∩H)\CPa(i). This approach has been pro-
posed by Park and Darwiche [2003] as a cheap way of obtaining upper bounds
on subsets of MAP assignments, which allows for a branch-and-bound proce-
dure. Recently, iterative variants of this procedure that propagate messages in
all directions until some convergence criteria is met have been proposed and
justified as approximations by variational inference [Liu and Ihler, 2011; Jiang
et al., 2011]. All these approaches retain the efficiency of message-passing al-
gorithms for inference in graphical models, but produce only rough estimates to
the real value. An exception is the use of FACTOR-MAX-ELIMINATION in a tree whose
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root node r contains all decision variables. In this case, the procedure performs
maximizations only after all latent variables have been marginalized out, which
guarantees the correctness of the procedure for the MAP problem. Enforcing the
clique tree to contain a node over all decision variables results in an exponential
complexity in the number of decision variables [Park and Darwiche, 2004], un-
less the factors in the root node are factorized [Meek and Wexler, 2011]. Thus,
this approach is intractable in arbitrary large models. Yet, accuracy and runtime
can be traded by “promoting” decision variables towards the root. Given any
clique-tree rooted at r we promote a decision variable by including it in a node
closer to the root (or in the root node itself), making sure that the running in-
tersection property of tree decomposition is respected. Promoting variables can
lead to tighter upper bounds, but also to a significant increase in running time
[Park and Darwiche, 2004].

As mentioned in the previous paragraph, Park and Darwiche [2003] devel-
oped a branch-and-bound procedure to the MAP assignment problem that sys-
tematically searches over the space of assignments, running FACTOR-ELIMINATION

to evaluate each candidate solution, FACTOR-MAX-ELIMINATION with decision vari-
ables promoted until a given threshold on the width of the clique tree is achieved
to obtain upper bounds on partial assignments. This strategy greatly narrows the
search space, and makes the approach very competitive in practice. Their algo-
rithm also allows for anytime inference, as the search can be stopped at any time
returning the best solution found so far, and a better solution can be found with
more time. We compare the algorithm we devise later on against theirs. Their
algorithm has exponential worst-case running time, which is not surprising as
the problem is NP-hard and can be reduced from SAT [Darwiche, 2009].

2.2.2 Propagating sets

Recall from the previous section that we can compare the quality of different can-
didate solutions to the MAP assignment problem by running FACTOR-ELIMINATION

with the same clique tree but different indicator factors. More generally, con-
sider a collection of sets of factors K1, . . . , Km such that all factors in each set
Ki have the same scope. Let Φ = {φ1, . . . ,φm} be a graphical model obtained
by selecting one factor φi from each set Ki, i = 1, . . . , m, and let T be a clique
tree for this model. Then T is also a clique tree for any other graphical model
induced by K1, . . . , Km. This is illustrated in the next example.

Example 2.5. Consider the sets of factors K1, . . . , K6 defined in Example 2.2, and
the clique tree in Figure 2.2. For i = 1, . . . , 4, we assign each singleton set Ki to
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the node i in the clique tree. We also assign sets K5 = {δX2=x2
: x2 ∼ X2} and

K6 = {δX3=x3
: x3 ∼ X3} to nodes 5 and 6, respectively, which makes T a clique tree

for all graphical models induced by these sets. Thus, the graphical models induced
by the sets K1, . . . , K6 are the graphical models Φd = {φ1, . . . ,φ4,δX2=x2

,δX3=x3
}

in Example 2.3 that are in one-to-one correspondence with (unnormalized) prob-
abilities of MAP assignments. Moreover, T is a suitable clique tree for any such
model.

An arguably natural approach to approximately solve a MAP assignment
problem, is to use some criteria to select a subset of candidate assignments, and
evaluate the quality of each assignment in the subset running FACTOR-ELIMINATION

on the same clique tree and the corresponding graphical model Φd. The FACTOR-
SET-ELIMINATION procedure in Algorithm 2 implements such an approach, by se-
lecting assignments while it propagates sets of factors over the clique tree. The
algorithm takes a clique tree T over a collection of sets of factors K1, . . . , Km, and
a list of integers k1, . . . , km, and returns in time polynomial in the largest of those
integers a set of numbers that correspond to the (unnormalized) probabilities of
a subset of the assignments, thus performing search and evaluation concurrently.

The algorithm resembles FACTOR-ELIMINATION, but instead of propagating a
single message factor µi per node, it propagates sets of factors

Li ⊆ Mi
def
=







∑

XCi\CPa(i)

φi

∏

j∈Ch(i)

µ j : φi ∈ Ki,µ j ∈ L j







. (2.5)

As we shall see later on, the integer ki provided in the input determines the
maximum cardinality of the set Li, and thus the worst-case time complexity of
the algorithm. A larger value of ki allows more factors to be propagated at node
i, which increases the computational burden and potentially the accuracy of the
algorithm. The object σ first referred to in line 1 is a function from message
factors µi into factors σ(µi), where the latter accounts for errors introduced
when discarding elements from Mi so as to keep the cardinality of Li within the
given bound ki. We shall discuss later on how the elements σ(µi) in lines 6
and 16 are obtained. The pruning operations in lines 8 and 18 return a subset
Li ⊆ Mi of cardinality ki and recompute the upper bounds σ(µi) to account for
the discarded elements. So, if ki ≥ |Mi|, the pruning operation returns Li=Mi.
The algorithm outputs lower and upper bounds Zl and Zu, respectively, to the
maximum partition function Z∗ =max{∑X

∏

i∈[m]φi : φi ∈ Ki} of a graphical
model induced by the sets in the input. The following result shows the corre-
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Algorithm 2 FACTOR-SET-ELIMINATION

Require: A clique tree T over the sets of factors K1, . . . , Km and positive integers
k1, . . . , km

Ensure: Zl ≤ Z∗ ≤ Zu

1: select a node r as root and let σ be an empty dictionary
2: for all leaf node i do
3: let Mi be an empty set
4: for all φi ∈ Ki do
5: add µi =

∑

XCi\CPa(i)
φi to Mi

6: set σ(µi)← µi

7: end for
8: Li = prune(Mi,σi, ki)
9: end for

10: label leaves as active and internal nodes as inactive
11: while there is an inactive node do
12: select an inactive node i whose children are all active
13: let Mi be an empty set
14: for all φi ∈ Ki, µ j ∈ L j, j ∈ Ch(i) do
15: add µi =

∑

XCi\CPa(i)
φi

∏

j∈Ch(i)µ j to Mi

16: set σ(µi)←
∑

XCi\CPa(i)
φi

∏

j∈Ch(i)σ(µ j)

17: end for
18: Li = prune(Mi,σ, ki)
19: label i as active
20: end while
21: Zl =max{µr : µr ∈ Lr}
22: Zu =max{σ(µr) : µr ∈ Lr}

spondence of factors µi ∈ Li computed by this algorithm to those computed with
FACTOR-ELIMINATION.

Theorem 2.1. For i = 1, . . . , m, any µi ∈ Li satisfies µi=
∑

Xh(i)
φi

∏

j∈De(i)φ j for
some combination of φi ∈ Ki and φ j ∈ K j for all j ∈ De(i).

Proof. First, note that the definition of µi in FACTOR-SET-ELIMINATION is identical
to the definition in FACTOR-ELIMINATION. Assume the pruning operations are not
performed, that is, that prune(Mi,σi, ki) returns Mi. Then it is not difficult to
see that µi matches the computation in FACTOR-ELIMINATION for some graphical
model induced by K1, . . . , Km. But since the pruning operation returns a subset
of Mi, this holds also for any µi ∈ Li.
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The following result follows immediately from the above theorem.

Corollary 2.1. Zl=
∑

X

∏

i∈[m]φi for some combination of factors (φ1, . . . ,φm) ∈
K1× · · · × Km.

If the algorithm is run with factor sets K1, . . . , Km that induce graphical mod-
els corresponding to different assignments to decision variables as explained in
Section 2.1, the numbers Zl and Zu returned are lower and upper bounds for
the MAP assignment probability Z∗=maxd P(XD=d). In fact, if ki= |Mi| for all
i = 1, . . . , m, the algorithm is equivalent to an exhaustive search over the space
of assignments, and thus returns Zl = Z∗. Moreover, the value of Zl is actually
achieved by some assignment, and hence denotes the value of a feasible solu-
tion. The assignment corresponding to Zl can be obtained by tracking back the
indicator factors δi, i ∈ D that were propagated to generate the number µr=Zl ,
as in the following example.

Example 2.6. Consider the sets of factors K1, . . . , K6 in Example 2.5, and the clique
tree T in Figure 2.2. Let us simulate a run of FACTOR-SET-ELIMINATION on inputs
K1, . . . , K6, T and k1, . . . , k6, with integers ki set to some sufficiently high value so
that no pruning takes effect (i.e., Li = Mi for all i). This also makes the upper
bounds tight, that is, σ(µi) = µi for any µi in Mi and Li, i = 1, . . . , 6.

First, for i = 1, . . . , 6, we associate to each node i the set Ki. Suppose node 4 is
selected as root. Then, 3,5 and 6 are leaf nodes, while 1 and 2 are internal nodes.
The first loop of the algorithm processes all the leaf nodes, obtaining the sets

M3 = {φ3} , M5 = {φ5 : φ5 ∈ K5}= {δX2=1,δX2=0} ,
M6 = {φ6 : φ6 ∈ K3}= {δX3=1,δX3=0} .

The second loop processes the remaining nodes. In the first iteration of the loop,
the algorithm selects node 1 (as it is the only being inactive and having all children
active at this stage), and computes

M1 =

(

∑

X2

φ1µ2µ3 : µ2 ∈ L2,µ3 ∈ L3

)

=

(

∑

X2

φ1φ3δX2=1,
∑

X2

φ1φ3δX2=0

)

.

Next, the algorithm selects node 2 and computes

M2 =

(

∑

X1

φ1µ1 : µ1 ∈ L1

)

=

(

∑

X1

φ2

∑

X2

φ1φ3δX2=1,
∑

X2

φ1φ3δX2=0

)

.
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Finally, node 4 is selected, which causes the computation of

M4 =

(

∑

X3,X4

φ4µ2µ3 : µ2 ∈ L2,µ3 ∈ L3

)

=

¨

∑

X3,X4

φ4

 

∑

X1

φ2

∑

X2

φ1φ3δX2=1

!

δX3=1 ,

∑

X3,X4

φ4

 

∑

X1

φ2

∑

X2

φ1φ3δX2=0

!

δX3=1 ,

∑

X3,X4

φ4

 

∑

X1

φ2

∑

X2

φ1φ3δX2=1

!

δX3=0 ,

∑

X3,X4

φ4

 

∑

X1

φ2

∑

X2

φ1φ3δX2=0

!

δX3=0

«

.

The algorithm returns the highest of the numbers {µ4 : µ4 ∈ L4}, which according
to Corollary 2.1 and the computations in Example 2.2 is

Zl =
∑

X1,X2,X3,X4

∏

i∈[4]
φ1δX2=1δX3=1 = 825.33 .

The MAP assignment can be obtained by labeling each factor with corresponding
decision variable assignments (or an empty character if the factor does not corre-
spond to a partial assignment of decision variables). To this end, label each factor
φi in Ki, i = 1, . . . , 4 with an empty string, and label each factor δX i=x i

in Ki,
i = 5,6, with the string “(X i = x i)”. Then, label each µi in Mi, i = 1, . . . , 6 with
the concatenation of the labels of its constituting factors. An inductive argument
suffices to show that e.g. the label of µ(1)1 =

∑

X2
φ1φ2δX2=1 is “(X2 = 1)”, the label

of µ(2)2 =
∑

X1
φ2

∑

X2
φ1φ3δX2=0 is “(X2 = 0)”, and the label of Zl=max{µ4 : µ4 ∈

L4} is “(X2 = 1)(X3 = 1)”.
Note that since no “pruning” was performed, the algorithm in the last step

maximizes over as many numbers as assignments of decision variables, which is
equivalent to an exhaustive search.

The complexity of the algorithm is determined by the number of additions
and multiplications needed to compute each factor µi in a set Mi plus the com-
plexity of the pruning operation (which we describe in detail later on). Analo-
gously to FACTOR-ELIMINATION, the complexity of computing each µi is O(msw+1).
Let k be the maximum of k1, . . . , km and |K1|, . . . , |Km|. By design, each set Mi
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contains |Ki|
∏

j∈Ch(i) |L j|= |Ki|
∏

j∈Ch(i) k j ≤ kc elements, where c is the maxi-
mum number of neighbors of a node. Hence, the algorithm runs in O(kcmsw). If
the clique tree given as input contains a bounded number of neighbors for each
node and bounded width, the algorithm runs in time polynomial in the inputs
k1, . . . , km and K1, . . . , Km. Note that for any given graphical model of bounded
treewidth we can obtain a suitable clique tree of bounded width and bounded
number of neighbors per node (e.g., a binary clique tree, Shenoy [1997]).

2.2.3 Pruning messages

As in Example 2.6, without any pruning operation, the FACTOR-SET-ELIMINATION

algorithm amounts to an efficient enumerative scheme, that evaluates all possi-
ble solutions while avoiding many redundant computations that would be per-
formed by running FACTOR-ELIMINATION on each solution. As such, the algorithm
is not applicable to any reasonably large problem. Thus, the algorithm’s effi-
ciency heavily depends on the pruning operations, which are responsible for
limiting the cardinality of the propagated sets according to the input parame-
ters k1, . . . , km. In the following, we discuss how to derive pruning operations
that allow for a trade-off between the quality of the solutions obtained and the
computation time as determined by those input parameters.

Pruning by convexification

Consider a set of factors Mi produced during FACTOR-SET-ELIMINATION which we
wish to prune to produce a smaller set Li whose cardinality is not greater than
the allowed cardinality ki. A factor µ(1)i in Mi is a convex combination of factors
µ
(2)
i and µ(3)i if there is a real 0 ≤ λ ≤ 1 such that µ(1)i = λµ

(2)
i + (1− λ)µ(3)i . A

factor µi ∈ Mi is an extreme if it is not a convex combination of any two other
elements in the set (extremes or not). As the following result shows, convex
combinations can be safely discarded from the propagation, as they certainly
are outperformed by some extrema.

Proposition 2.1. Let µ(1)i , µ(2)i and µ(3)i be three different factors in a set Mi such
that µ(1)i is a convex combination of µ(2)i and µ(3)i . Let also µ(1)r be a solution
obtained by propagating µ(1)i up to the root. Then, there is a solution µr obtained
by propagating either µ(2)i or µ(3)i up to the root that satisfies µ(1)r < µr .

Proof. Let µ(1)j =
∑

XCj\Cp
φ jµ

(1)
i

∏

k∈Ch( j)\{i}µk, µ(2)j =
∑

XCj\Cp
φ jµ

(2)
i

∏

k∈Ch( j)\{i}µk

and µ(3)j =
∑

XCj\Cp
φ jµ

(3)
i

∏

k∈Ch( j)\{i}µk be factors in M j, where j = Pa(i) and
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p=Pa( j). Then µ(1)j is a convex combination of µ(2)j and µ(3)j . By induction in the
nodes of the clique tree in the order they are processed, we find that any number
µ(1)r ∈ Mr obtained by propagating µ(1)i up to the root is a convex combination
of numbers µ(2)r and µ(3)r obtained by propagating µ(2)i and µ(3)i , respectively, up
to the root. Hence, µ(1)r is necessarily (strictly) less than max{µ(2)r ,µ(3)r }.

As a consequence of the above result, the solutions induced by a convex
combination µ(1)i are suboptimal, and can be discarded from Mi without com-
promising the accuracy of the algorithm.

Corollary 2.2. Let µ(1)i , µ(2)i and µ(3)i be three different factors in a set Mi such that
µ
(1)
i is a convex combination of µ(2)i and µ(3)i . Then any solution µ(1)r different from
µ(2)r and µ(3)r , where µ(`)r is obtained by propagating µ(`)i up to the root, `= 1, 2,3,
is not an optimal solution.

Pruning by convex combination is analogous to the problem of obtaining
the convex hull of a finite set of multidimensional points, a problem that has
been largely studied in computational geometry. There are many algorithms that
obtain the convex hull in time polynomial in the cardinality of the unprunned set
and the dimensionality [Avis, 2000], though in practice these algorithms often
suffer from numerical problems due to the use of arbitrary precision.

Pruning by dominance

Another condition that can be verified to prune factors without compromis-
ing accuracy is dominance. Let µ(1)i and µ(2)i be two factors in a set Mi. We
say that µ(2)i dominates µ(1)i , and write µ(2)i ≥ µ(1)i , if µ(2)i (x) ≥ µ(1)i (x) for all
x ∼ XCi∩CPa(i)

.The following result shows that dominated messages can be safely
removed from Mi.

Proposition 2.2. Let µ(1)i and µ(2)i be two different factors in a set Mi such that
µ
(2)
i ≥ µ(1)i . Let also µ(1)r be a solution obtained by propagating µ(1)i up to the

root. Then there is a solution µ(2)r obtained by propagating µ(2)i up to the root that
satisfies µ(2)r ≥ µ(1)r .

Proof. Let

µ
(1)
j =

∑

XCj\Cp

φ jµ
(1)
i

∏

k∈Ch( j)\{i}
µk , µ

(2)
j =

∑

XCj\Cp

φ jµ
(2)
i

∏

k∈Ch( j)\{i}
µk ,

be factors in M j, where j= Pa(i) and p= Pa( j). Since the factors contain only
nonnegative values, it follows that µ(2)j ≥ µ(1)j . By induction in the nodes of the
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clique tree in the order they are processed, we find that any number µ(1)r ∈ Mr

generated by propagating µ(1)i up to the root is dominated by at least one number
µ(2)r obtained by propagating µ(2)i .

As with convex combination, dominated solutions are also suboptimal.

Corollary 2.3. Let µ(1)i and µ(2)i be two different factors in a set Mi such that
µ
(2)
i ≥ µ(1)i . Then any solution µ(1)r is either not an optimal solution or it equals a

solution µ(2)r obtained by propagating µ(2)i up to the root.

Note that convexity and dominance are complementary in that one does not
imply the other.

Pruning dominance can be easily implemented in time polynomial in the
cardinality of the unprunned set and in the dimensionality of factors.

Pruning by clustering

The pruning operation prune(Mi,σ, ki) in the FACTOR-SET-ELIMINATION first dis-
cards non-extreme and dominated factors from Mi. Albeit accurate, these oper-
ations are seldom enough to produce a set Li of cardinality at most ki. To be
able to meet the cardinality constraint, we partition the remaining factors in Mi

(after non-extreme and dominated elements have been removed) in ki clusters
Γ(1)i . . . ,Γ(ki)

i , and obtain Li by selecting one representative factor µ(`)
i

in each clus-

ter Γ(`)i . These representatives are valid solutions in that they can be produced
from combination of factors from the input sets. Hence, they provide attainable
lower bounds for the optimal solution. To account for the (worst-case) errors
introduced by the pruning operations we introduce upper-bound factors σ(µi)
for each discarded factor µi ∈ Γ(`)i \ {µ(`)i

}. We discuss first how to obtain upper
bounds for discarded factors.

Consider a set of factors µ(1)i , . . . ,µ(k)i which we intend to discard, and let µi

be a factor such that µi(x)=max{µ(1)i (x), . . . ,µ(k)i (x)} for all x ∈ XCi∩CPa(i)
. Then

µi ≥ µ(`)i for ` = 1, . . . , k, and it follows from Proposition 2.2 that any value µr

obtained by propagating µi up to the root is greater than or equal to a solution
µ(`)r obtained by propagating µ(`)i up to the root, for ` = 1, . . . , k. Thus, we
can use the factor µi as an upper bound for the factors we wish to discard, and
propagate it to obtain upper bounds on the solutions that we did not compute
(due to discarding factors).

Since the upper bounds need to be propagated, they participate in the over-
all running time just as much as the propagated solutions. Thus, we want to
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σ(µ(1)i )σ(µ(1)i )

σ(µ(4)i )σ(µ(4)i )

µ
(1)
iµ
(1)
i

µ
(2)
iµ
(2)
i

µ
(3)
iµ
(3)
i

µ
(4)
iµ
(4)
i
µ
(5)
iµ
(5)
i

Figure 2.3. A clustering of factors Γ(1)i = {µ(1)i ,µ(2)i } and Γ(2)i = {µ(3)i ,µ(4)i ,µ(5)i }
with representatives µ(1)i and µ(4)i , respectively, and induced upper bounds
σ(µ(1)i ) and σ(µ

(4)
i ).

propagate as few upper bounds as possible. We could for instance generate a
single upper bound µ that would dominate all factors discarded from Mi, but
this would create too loose a bound. On the other extreme, we could use one
upper bound for each discarded factor, but this would cause the propagation
of an exponential number of upper bounds (therefore more than the limit ki).
Instead, we generate and propagate one upper bound for each cluster, which
makes the overall complexity be still polynomial in ki. Let µ(`)

i
be the represen-

tative of a cluster Γ(`)i . To account for the removal of elements in the previous
steps, we set the upper bound σ(µ(`)

i
) as max{σ(µi) : µi ∈ Γ(`)i }. Figure 2.3

depicts one possible pruning by clustering of a set Mi={µ(1)i ,µ(2)i ,µ(3)i ,µ(4)i ,µ(5)i }
and ki = 2.

Let µ(`)r be a solution obtained by propagating the representative µ(`)
i

of clus-

ter Γ(`)i , and let σ(µ(`)r ) be the corresponding propagated upper bound. Since
the upper bound σ(µ(`)

i
) dominates all elements in the corresponding cluster

(including the representative µ(`)
i

), it follows from Proposition 2.2 that σ(µ(`)r )≥
µ(`)r . And since every µ(`)r is a lower bound on the optimal solution it follows that

Zl =max{µr : µr ∈ Lr} ≤ Z∗ ≤max{σ(µr) : µr ∈ Lr}= Zu ,

where Z∗ is the optimal solution of the problem. The above argument guarantees
the correctness of the algorithm.

There still remains to decide how to select good representatives. To this end,
we define the following error function η(µi,µ

′
i) that returns the error introduced
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by “representing” a factor µi with another factor µ′i as

η(µi,µ
′
i) =max

x∼X

µi(x)
µ′i(x)

, (2.6)

where we assume that 0/0
def
= 1 and ε/0 = ∞, for any ε > 0. The number

η(µi,µ
′
i) matches the worst-case (multiplicative) error in the final solution if

we locally discard a factor µi while selecting µ′i as its representative (but never
discard any other factor), that is µi(x) ≤ µ′i(x)η(µi,µ

′
i), for any x such that

µ′i(x) > 0. The error function is asymmetric, and that it is greater than one
if and only if µi is not dominated by µ′i. When µi cannot be represented by a
representative µ′i with η(µi,µ

′
i) <∞, the representatives are effectively chosen

arbitrarily, and in such cases the algorithm might be unable to provide theoreti-
cal guarantees on the error introduced. Nevertheless, we verified experimentally
that even in this pathological case the actual error Zl/Zu produced by the algo-
rithm is often bounded. For convenience, we assume in the rest of this discussion
that η(µi,µ

′
i)<∞, reminding the reader that when this is not the case then the

theoretical guarantee stated by Theorem 2.2 later on is not warranted.
We can extend the error function to measure the quality of representing a set

Mi by a set Li of representatives as follows:

η(Mi, Li) = max
µi∈Mi

min
µ∈Li

η(µi,µ) . (2.7)

The function above denotes the largest error within any two factors in a cluster,
and thus provides an upper bound on the error introduced by the halting of the
propagation of the elements in Mi\Li. The function bears some interesting prop-
erties with respect to dominance. Say that a factor in Mi is maximal if it is not
dominated by any other element of the set. If Mi contains more than ki maximal
elements, then any subset Li ⊂ Mi of cardinality ki satisfies η(Mi, Li) > 1. On
the other hand, let Li be the set of maximal elements of Mi. Then η(Mi, Li)≤ 1.
Thus, we have that min{η(Mi, Vi) : Vi ⊆ Mi, |Vi| ≤ ki} ≤ 1 if and only if Mi has at
most ki maximal elements.

Ideally, we would like to find a set Li ⊆ Mi of at most ki representatives that
minimizes η(Mi, Li). However, this would add an extra complexity to the com-
putations. Indeed, this problem has been shown to be NP-hard to solve exactly
or to approximate up to a factor of log∗ |Mi| [Chuzhoy et al., 2005].7 Relaxing

7The function log∗ n returns the least integer i such that applying log2 operator i times on n
produces a number smaller than one. For instance, log∗ 8 = 3. Notice that log∗ n > 2 for any
n> 8.
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the problem to a (proper) distance (e.g., by defining η(φ,ψ) =maxx | lnφ(x)−
lnψ(x)|) does not make the problem more tractable, as it has been shown by
Feder and Greene [1988] that the corresponding problem is NP-hard to solve or
approximate by any factor smaller than two (i.e., to find a set Li whose error is
provably η(Mi, Li) ≤ 2 minL′ η(Mi, L′i)). Instead, we use a greedy approach that
iteratively attempts to replace a factor in Mi \ Li with a factor in Li such that
η(Mi, Li) is decreased, until either a local optimum is reached or the number
of iterations exceeds a pre-specified limit. The quality of the clusterings thus
produced depends strongly on the initial candidate solution. A good heuristic is
to pick points that are well spread in the space defined by set Mi. Algorithm 3
describes the K-MEDOIDS heuristic that implements this idea. For instance, this
procedure guarantees a 2-approximation if the error function is a distance [Feder
and Greene, 1988].8

Algorithm 3 K-MEDOIDS

Require: A positive integer k and a set K with at least k maximal factors
Ensure: A subset L ⊆ K containing k elements

1: initialize L← ;
2: remove an arbitrary element ψ from K and add it to L
3: set d(φ) = η(φ,ψ) for all φ ∈ K
4: while |L| ≤ k do
5: let ψ= argmaxφ∈K d(φ)
6: remove ψ from K , add it to L and set d(φ) =min{η(φ,ψ), d(φ)}
7: end while
8: return L

We have defined the pruning operation prune(Mi,σ, ki) as first discarding
non-extrema, then discarding dominated factors, and only lastly performing
clustering. One might wonder whether performing clustering directly on the set
Mi (without or before any other pruning) can potentially lead to better clustering
as measured by η(Mi, Li). The following result shows that as far as dominance
is concerned this is never the case.

Proposition 2.3. Let Vi be a subset of Mi that contains at least one factor µ
i

dominated by some element µ∗i in Mi. If V ∗i = Vi ∪ {µ∗i } \ {µi
} then η(Mi, Vi) ≥

η(Mi, V ∗i ).

8Turning the error function into a distance makes the upper bounds obtained more conser-
vative (since the symmetry property of distance functions lead one to considering also the error
introduced on the “dominated” coordinates of discarded factors), but does not affect the correct-
ness of the algorithm.
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Proof. For any µi ∈ Mi, we have that

η(µi,µi
) = max

x:µ
i
(x)>0

µi(x)
µ

i
(x)
> max

x:µ∗i (x)>0

µi(x)
µ∗i (x)

= η(µi,µ
∗
i ) .

For any µi ∈ Mi, let Vi(µi) = {µ′i ∈ Mi : µi = argminµ′′i ∈Vi
η(µ′i,µ

′′
i )}. Since

Mi = Vi(µi)∪ (Mi \ Vi(µi)), it follows that

η(Mi, Vi) =max

¨

max
µi∈Vi(µi

)
η(µi,µi

), max
µi∈Mi\Vi(µi

)
min

µ′i∈Vi\{µi
}
η(µi,µ

′
i)

«

≥max

¨

max
µi∈Vi(µi

)
η(µi,µ

∗
i ), max

µi∈Mi\Vi(µi
)

min
µ′i∈Vi\{µi

}
η(µi,µ

′
i)

«

≥max

¨

max
µi∈Vi(µi

)
min
µ′i∈V ∗i

η(µi,µ
′
i), max
µi∈Mi\Vi(µi

)
min
µ′i∈V ∗i

η(µi,µ
′
i)

«

= η(Mi, V ∗i ) .

Note that if µ∗i ∈ Vi, the inequalities above are trivially satisfied with equality,
since in this case Vi(µi

) = ;.
According to the result above, if Li contains a non-maximal element, we can

replace that element by some maximal element not in Li (if it exists) and obtain
another set L′i whose error with respect to Mi is not worse than the error of
the initial set. Thus, removing dominated factors never degrades the quality of
clustering (but speeds up computations, as we perform clustering on a smaller
set). A similar result can be obtained for convex combinations.

Proposition 2.4. Let Vi be a subset of Mi that contains at least one factor µ
i
which

is a convex combination of factors µ(1)i and µ(2)i in Mi. If V ∗i = Vi∪{µ(1)i ,µ(2)i }\{µi
}

then η(Mi, Vi)≥ η(Mi, V ∗i ).

Proof. Since µ
i

is a convex combination of µ(1)i and µ(2)i , we have that µ
i
(x) ≤

max{µ(1)i (x),µ
(2)
i (x)} for all x∼ X. Thus, it follows for each µi ∈ Mi that

η(µi,µi
)≥ max

x:µ
i
(x)>0

µi(x)

max{µ(1)i (x),µ
(2)
i (x)}

=min{η(µi,µ
(1)
i ),η(µi,µ

(2)
i )} .

Hence,

η(Mi, Vi) =max

¨

max
µi∈Vi(µi

)
η(µi,µi

), max
µi∈Mi\Vi(µi

)
min

µ′i∈Vi\{µi
}
η(µi,µ

′
i)

«

≥max

¨

max
µi∈Vi(µi

)
min{η(µi,µ

(1)
i ),η(µi,µ

(2)
i )}, max

µi∈Mi\Vi(µi
)

min
µ′i∈Vi\{µi

}
η(µi,µ

′
i)

«

≥max

¨

max
µi∈Vi(µi

)
min
µ′i∈V ∗i

η(µi,µ
′
i), max
µi∈Mi\Vi(µi

)
min
µ′i∈V ∗i

η(µi,µ
′
i)

«

= η(Mi, V ∗i ) ,
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where Vi(µi) is defined as in the proof of Proposition 2.3. Note that if both µ(1)i

and µ(2)i are in Vi, the inequalities above are trivially satisfied with equality, since
in this case Vi(µi

) = ;.
The result above shows that replacing a representative with the two extrema

of a convex combination of it does not degrade the quality of the clustering.
However, in doing so we increase the cardinality of the set of representatives
by one. Thus, in principle, one might obtain a better clustering by including a
convex combination representative (but not a convex combination and both of
its extrema at the same time).

The most important characteristic of the error function and the clustering
accuracy measure induced by set error function is that they guarantee that the
overall accuracy of the algorithm improves monotonically if we improve the
clusterings at any node of the clique tree:

Theorem 2.2. The outputs Zl and Zu satisfy Zu ≤ Zl

∏

i∈[m]η(Mi, Li).

Proof. Consider some inactive node i whose children j are all active at some
step of the algorithm, and assume by inductive hypothesis that for any µ j ∈ L j

it holds that σ(µ j) ≤ µ je j, where e j is defined as η(M j, L j)
∏

k∈De( j)η(Mk, Lk).
Then any µi ∈ Mi satisfies

σ(µi) =
∑

XCi\CPa(i)

φi

∏

j∈Ch(i)

σ(µ j)

≤
∏

k∈De(i)

η(Mk, Lk)







∑

XCi\CPa(i)

φi

∏

j∈Ch(i)

µ j






= µi

ei

η(Mi, Li)
,

where µ j ∈ L j, j ∈ Ch(i). Let µ
i

be the representative of a cluster Γi ⊆ Mi,
with σ(µ

i
) = max{maxxµi(x) : µi ∈ Γi}. It follows from (2.7) that σ(µ

i
) ≤

η(Mi, Li)µi
. After the clustering, the new upper bound assigned to µ

i
is (by de-

sign) given by µi=max{σ(µi) : µi ∈ Γi}, which satisfies µi ≤ σ(µi
)ei/η(Mi, Li)≤

eiµi
.

The above result guarantees that the algorithm finds lower and upper bounds
whose ratio is not greater than

∏

i∈[m]η(Mi, Li), which is an upper bound on
the quality of the solution found. The quality of each cluster η(Mi, Li) can be
improved by either increasing the maximum allowed number of elements ki in
the set, or improving the local clustering scheme. Furthermore, each set cannot
have more than |K1|· · · |Km| elements. Thus, for a sufficiently high (but finite)
value of ki, i = 1, . . . , m, the algorithm finishes with the correct answer (i.e., with
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Algorithm 4 ANYTIME-INFERENCE

Require: A clique tree T over sets K1, . . . , Km and integer c
1: let k(0)1 = 1, . . . , k(0)m = 1, Z (0)l =0 and Z (0)u =1
2: set t ← 0
3: while Z (t)l < Z (t)u and not interrupted do
4: run FACTOR-SET-ELIMINATION with k(t)1 , . . . , k(t)m and let (Zl , Zu) be its output
5: set Z (t+1)

l =max{Zl , Z (t)l } and Z (t+1)
u =min{Zu, Z (t)u }

6: find the node i with highest η(Mi, Li)
7: set k(t+1)

i = k(t)i + c, and k(t+1)
j = k(t)j for all j 6= i

8: set t ← t + 1
9: end while

10: return Z (t)l and Z (t)u

an optimal solution and Zl = Zu). These remarks lead naturally to the anytime
inference algorithm we describe next.

2.3 Anytime inference

An anytime algorithm is a procedure that can be interrupted at any time with a
meaningful solution whose quality is a monotonic function of runtime. Hence,
anytime algorithms allow a trade-off between computation time and quality of
solutions.

We can easily transform FACTOR-SET-ELIMINATION into an anytime algorithm
that continuously improve the lower and upper bounds by increasing the maxi-
mum set cardinalities k1, . . . , km. The procedure is described in Algorithm 4. The
anytime algorithm starts by running FACTOR-SET-ELIMINATION with all maximum
set cardinalities k1, . . . , km set to one. This produces an arbitrary (but feasible)
lower bound Z (0)l , and an upper bound Z (0)u that matches the value returned
by FACTOR-MAX-ELIMINATION. Then, for each time step, the algorithm increases
the maximum set cardinality ki of the node i with lowest clustering accuracy
η(Mi, Li) by a given constant c. In principle, even if we improve the clustering
accuracy we might obtain a worse solution, as the function that evaluates clus-
tering accuracy optimizes worst case. This can be circumvented by enlarging
each set Li incrementally.
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2.4 Experiments

We performed experiments with three groups of graphical models, which range
from simple to very challenging problems. The first group, which appears in
the top five lines of Table 2.2, consists of benchmark Bayesian networks used
in real applications.9 In these networks, the MAP inference asks for optimum
assignments of the root nodes given some evidence on every leaf. This creates
hard MAP problems, as every variable in the network is relevant to the solution,
and obtaining an exact solution by FACTOR-MAX-ELIMINATION would take time (at
least) exponential in the number of decision variables (as the root node of the
clique tree would contain all decision variables). The second group (lines 6–8 of
the table) contains graphical models designed to solve multiprocessor schedul-
ing (MS) problems with three processors and varying number of jobs (20, 50
and 100).10 The underlying graph of these models consists of a chain of latent
variables, each with a single root decision node as parent. These graphical mod-
els can be seen as inverted hidden Markov models, where the arcs point from
observed to state variables, and the MAP assignment task is equivalent to finding
the most likely joint observation. Besides the importance of the multiprocessor
scheduling problem itself, this group allows us to evaluate the performance of
the methods when the search space is large but the treewidth (of the underlying
graph of the model) is low. Finally, the third group (last seven lines of the table)
consists of grid-structured graphical models whose parameters were uniformly
sampled. Each Grid-x-y-z model contains x rows, y columns and z layers. For
z=2, variables are quaternary and the grid has two layers: one is the grid itself
and the other is formed by decision variables that are linked to grid variables in
a one-to-one correspondence; for z= 1, the models are standard planar binary
grids, with all border variables chosen as decision variables. These experiments
allow us to better evaluate how the performance is affected by the treewidth
and the size of the search space (note that grids have treewidth proportional
to their smallest “side”). The factors of the graphical models of the second and
third groups were generated by sampling independently and uniformly numbers
between zero and one. The clique trees for our anytime algorithm using the
minimum fill-in heuristic [van den Eijkhof et al., 2007].

We compare our anytime algorithm against SamIam’s implementation of the
systematic search algorithm of Park and Darwiche [2003], which we call SI. We

9At the time this manuscript was written, the networks were available at http://www.cs.
huji.ac.il/site/labs/compbio/Repository/.

10The multiprocessor scheduling problem is to assign each of a given set of jobs to one of many
available processors so as to minimize the overall workload [Garey and Johnson, 1979].

http://www.cs.huji.ac.il/site/labs/compbio/Repository/
http://www.cs.huji.ac.il/site/labs/compbio/Repository/
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NETWORK n d SI AFSE Z/Z∗

Insurance 27 2 0.2s 0.9s 1
Alarm 37 12 0.1s 0.2s 1
Barley 48 10 10s >1h 0.1

Hailfinder 56 17 0.5s 1.4s 1
Pigs 441 145 6m 5m 1

MS-3-20 42 20 2.2s 0.1s 1
MS-3-50 102 50 >1h 0.4s 1

MS-3-100 202 100 >1h 11m 1

Grid-4-10-2 80 40 >1h 7m 0.96
Grid-4-25-2 200 100 >1h 22m 0.73
Grid-4-30-2 240 120 >5h 2.6h 0.55
Grid-6-6-1 36 20 1.1s 0.1s 1

Grid-10-10-1 100 36 1.8s 7s 1
Grid-16-16-1 256 60 48s 12m 1
Grid-18-18-1 324 68 – 2.9h –

Table 2.2. Performance of Anytime Factor-Set-Elimination algorithm (AFSE)
and SamIam (SI) on real and synthetic models.

chose SI because (i) it is a state-of-the-art algorithm, (ii) its implementation is
publicly available, (iii) it is also an anytime procedure, and (iv) it returns feasible
solutions.

Table 2.2 shows the results of the experiments, comparing the proposed
method (named AFSE for short) and SI. The columns in the table refer, respec-
tively, to the model names, total number of variables (n), number of decision
variables (d), amount of time that SI and AFSE, respectively, spent to solve the
instances, and the relative error of the solution obtained by the worst algorithm
in that problem (in case one of the methods was unable to solve the instance
in a reasonable amount of time and memory). The error Z/Z∗ is calculated as
the ratio of the worst value Z by an algorithm and the optimum Z∗ (which of
the two methods obtained such an error can be deduced by comparing the time
each method spent; the error differs from one only if a method was not able to
finish within a time limit of t, which is denoted by a “> t” in the table).

According to Table 2.2 AFSE greatly outperformed SI in the models in the
second group and the two-layer grids of the third group, which indicates that
AFSE performs best when the treewidth of the model is small, irrespective of
the size of the search space. Even though SI was able to find the best solution
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in the models of the second group (but it never converged, so the search have
not stopped), it performed much worse in the two-layer grids, as can be seen in
the error column of the table, which reaches 55% in Grid-4-30-2. This means
that not only did the algorithm not finish within the long time limit but the best
solution found was very poor. Such situations justify the use of methods that can
provide anytime lower and upper bounds for the solution. Also, AFSE performed
similarly to SI in (real) Bayesian networks, with the largest differences in the
Barley and Pigs networks (the former favorable to SI, the latter favorable to
AFSE). We see on the squared grids of the third group that SI can better handle
the increase of treewidth, indeed a known characteristic of SI. The exception is
Grid-18-18-1, where SI exhausted the 8 GB of memory granted without being
able to produce a (candidate) solution. Finally, the time-accuracy trade-off of
the algorithms can be seen in Figure 2.4, which shows the accuracy of AFSE
and SI on models Grid-4-30-2 and Grid-4-25-2 as a function of time. Lower and
upper bounds converge to the optimal solution, and while SI starts with a better
lower bound, it gets stuck in the search and does not converge within the time
limit.

2.5 Conclusion

In this chapter, we discussed the maximum a posteriori assignment problem
in the presence of latent variables, which seeks for a configuration of a subset
of the variables that maximizes the posterior probability. While these models
are building blocks in many applications, most approaches find approximate
solutions that can be arbitrarily poor.

To remedy this situation, we present a new anytime algorithm that improves
its solution as more computation time is granted. The correctness and complex-
ity of the algorithm are thoroughly analyzed, and bounds are obtained on the
precision of the algorithm in any finite time.

The theoretical analysis is supported by experiments with real and synthetic
graphical models, and a comparison against a competitive algorithm. In particu-
lar, the new algorithm compares favorably when the problems exhibit moderate
treewidth but large search space. Unfortunately, as the treewidth increases, the
bounds returned by the algorithm become too loose. This could be mitigated
by decomposing the propagated factors into smaller domains, as in the work of
Meek and Wexler [2011].

We note however that in these experiments the new algorithm is initialized
with an arbitrary solution. We could improve the convergence of the algorithm
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Figure 2.4. Quality of the solutions of AFSE and SI on the Grid-4-30-2 (top)
and Grid-4-25-2 (bottom) models by running time.
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by using common heuristics for finding assignments such as 1-neighborhood lo-
cal search, sequential classification, and MPE initialization [Park and Darwiche,
2004].

Understanding how the numerical parameters of the input affect the com-
plexity of the algorithm is an important question that remains open.



Chapter 3

Probabilistic planning in limited
memory influence diagrams

Decision problems arise when one needs to select one among many possible
actions in order to achieve some pre-defined goal. The problem is often made
more difficult by the presence of uncertainty about the outcomes of the actions.
Decision theory provides a principled framework for representing and solving
decision problems under uncertainty. At the heart of the theory is the notion of
(expected) utility: a number quantifying the decision maker’s preference about
a certain outcome.

The MAP assignment problem discussed in the previous chapter is a special
type of decision problem: one needs to choose one among many possible as-
signments to action variables in order to maximize the posterior probability. In
more general settings, actions can be taken conditionally on certain inputs or
observations, and at different time steps; they can be taken by different agents,
and their value might change over time. Examples include, but are not limited
to, robot trajectory planning, home monitoring and assistance of elderly and
disable people, and cooperative task solving in multi-agent systems [Kaelbling
et al., 1998; Thrun et al., 2005; Hoey et al., 2013].

Influence diagrams [Howard and Matheson, 1984] are probabilistic graph-
ical models especially designed for utility-based decision making under uncer-
tainty. An influence diagram can be seen as a detailed description of a finite-
horizon partially observable Markov decision process (POMDP), which is used to
model many situations involving probabilistic reasoning [Tatman and Shachter,
1990; Kaelbling et al., 1998; Jensen and Nielsen, 2007]. Relative to the descrip-
tion of a POMDP as tables representing the transition and reward functions,
an influence diagram provides a concise representation by exploiting functional

39
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independencies between the variables.
Typically, influence diagrams are used to target situations involving a single,

non-forgetful decision maker. This is implicit in the general assumptions of reg-
ularity and no-forgetting that most planning algorithms for influence diagrams
make. Regularity refers to the assumption of a complete temporal ordering of
the decisions, usually in the form of a single directed path connecting all de-
cision variables in the diagram. No-forgetting requires that actions are taken
conditionally on the whole history of actions and observations. Together, these
assumptions imply that each agent being modeled is fully informed and counts
on unlimited resources.

In many real situations, bounded resources and physical constraints force
decisions to be made based on limited information [Zhang et al., 1994; Lau-
ritzen and Nilsson, 2001]. For instance, an agent acting according to a POMDP
might be forced to disregard part of the available information in order to meet
computational demands [Meuleau et al., 1999; Poupart and Boutilier, 2003].
Cooperative multi-agent settings offer yet another example: each agent might
perceive only its surroundings and be unable to communicate with all other
agents; hence, a policy specifying an agent’s behavior must rely exclusively on lo-
cal information [Hansen, 1998; Bernstein et al., 2005; Detwarasiti and Shachter,
2005; Wu et al., 2011]; it might be further constrained to a maximum size to be
computationally tractable [Amato et al., 2010].

Limited memory influence diagrams (LIMIDs) generalize influence diagrams
to allow for the explicit representation of bounded memory agents and coopera-
tive and distributed decision making [Zhang et al., 1994; Lauritzen and Nilsson,
2001]. More precisely, LIMIDs relax the regularity and no forgetting assump-
tions of influence diagrams. A distinguishing feature of LIMIDs (in comparison
with standard influence diagrams or typical encodings of POMDPs) is that the
information available to any action variable is made explicit in the graphical
structure. This is particularly important when one attempts to determine the
theoretical computational complexity of planning with such models, as we do in
this chapter.

Any influence diagram describing a fully observable Markov decision pro-
cess has an optimal strategy (i.e., a collection of mappings from observations to
actions for each decision stage maximizing expected utility) whose size grows
linearly with the number of action variables. Moreover, this strategy can be
obtained by dynamic programming in polynomial time in the number of pos-
sible observations in each decision stage [Tatman and Shachter, 1990; Jensen
and Nielsen, 2007]. However, planning under the no-forgetting assumption in
partially observable Markov decision processes suffers from the curse of history:
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the size of an optimal strategy might grow exponentially large with the number
of decision stages considered (e.g., the strategy includes a table prescribing a
value for an action variable conditional on each one of the exponentially many
assignments of the other action variables).

Lauritzen and Nilsson advocated the use of LIMIDs as a useful framework for
explicitly modeling the computational constraints faced by planning algorithms
in those cases [Lauritzen and Nilsson, 2001]. In this scenario, a LIMID is the
outcome of removing arcs entering action nodes in an influence diagram that
initially respected regularity and non-forgetting, until the size of a plan (repre-
sented as a collection of tables) is sufficiently small. In other words, a LIMID is
a bounded-memory version of a decision problem initially represented as an in-
fluence diagram. Zhang, Qi, and Poole [1994] and more recently Lauritzen and
Nilsson [2001] determined sufficient conditions under which even influence dia-
grams that violate no-forgetting can be solved exactly and efficiently by dynamic
programming. Roughly speaking, the conditions state that the influence diagram
can be efficiently translated into a fully observable Markov decision process by
aggregating state variables and (re-)ordering actions. Any diagram of bounded
treewidth meeting those conditions can be solved in polynomial time in the size
of the diagram. As de Campos and Ji [2008] showed, even diagrams of bounded
treewidth can fail to meet these conditions and be difficult to solve. Indeed, we
show later on that singly connected LIMIDs of bounded treewidth with binary
variables and a single value node can be solved in polynomial time, but remov-
ing any of these conditions can lead to intractable planning problems. Moreover,
removing any but the assumption of bounded variable domain cardinality makes
the problem hard to approximate.

A possible approach to solve a LIMID is to include arcs entering action vari-
ables so as to make the resulting diagram satisfy the sufficient conditions for
efficient dynamic programming [Nilsson and Höhle, 2001; Jensen and Nielsen,
2007; Yuan et al., 2010]. In terms of the real problem, this implies observ-
ing quantities that were initially deemed unobservable by the semantics of the
LIMID model, which might be undesirable or even unfeasible. Also, the value of
the solution obtained by the augmented diagram in this way is an upper bound
on the value of an optimal solution of the original diagram that can be arbitrarily
loose.

A different approach to planning with LIMIDs is to use local search meth-
ods that sacrifice provably good accuracy for efficiency. Lauritzen and Nilsson
[2001] and Detwarasiti and Shachter [2005] proposed combinatorial proce-
dures that directly search the space of policies, while Liu and Ihler [2012] devel-
oped a message-passing algorithm that efficiently optimizes a surrogate objective
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function. The inapproximability results we develop in this chapter together with
some preliminary experiments we report suggest that these greedy approaches
provide low quality solutions in a non-negligible fraction of diagrams represent-
ing partially observable processes.

Compared to other tasks in probabilistic reasoning and decision making,
there has not been any in-depth study of the theoretical complexity of planning
with LIMIDs, especially when the complexity is given as a function of structural
parameters such as diagram treewidth, variable cardinality and number of value
nodes. In the rest of this chapter, we give an in-depth discussion of the fixed-
parameter complexity of exact and approximated planning in limited memory
influence diagrams. We start, in Section 3.1, by formally describing the syntax
and semantics of influence diagrams. We then state the main problem we ad-
dress in this chapter, namely, the problem of finding a good strategy for a LIMID
(Section 3.2). We move on to define what single and multi-stage diagrams are,
and show their equivalence in the class of bounded treewidth diagrams (Sec-
tion 3.3). Section 3.4 contains the results about the complexity of solving LIM-
IDs exactly, whereas Section 3.5 contains the results about the complexity of
finding provably good approximations for the problem. The chapter ends with a
recapitulation of the material covered and a final discussion (Section 3.6).

The material presented here is based on the contents appearing in the Ref-
erences [Mauá and de Campos, 2011], [Mauá et al., 2012] and [Mauá et al.,
2012a].

3.1 Limited memory influence diagrams

To help introduce the notation and illustrate concepts, consider the following
simple example of a decision problem.

Example 3.1. Two agents R1 and R2 need to coordinate to accomplish a simple
task. Each agent has two possible actions available, with different implications
on the state of the world. Let Xa1

and Xa2
be discrete variables modeling the ac-

tions taken, respectively, by the agents R1 and R2. Suppose the agent R1 acts
first. An action xa1

leads to an outcome xs1
of finitely many possible outcomes

with probability P(xs1
|xa1
) (X s1

is a discrete variable representing the state of the
world after the action). This outcome is not observable by neither of the agents,
and remains unknown. R1 then informs R2 of her action, based on which R2 ex-
ecutes an action xa2

, causing xs2
to obtain with probability P(xs2

|xs1
, xa2
). The

overall utility U is a deterministic function of the joint (unknown) configuration
xa1,s1,a2,s2

= {xa1
, xs1

, xa2
, xs2
} of actions and outcomes assessing its desirability; the
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higher the value of the utility the more desirable the configuration for both agents.
Assume that the utility of any configuration decomposes as a sum of intermediate
rewards X vi

, i = 1,2, that depend each only on the immediate outcome of agent
i’s action, that is, U=X v1

+ X v2
, and that each X vi

is a binary variable that evalu-
ates to one if X si

=0 and vanishes otherwise. Then the expected utility of the joint
plan or strategy ∆ = {(Xa1

= 1); (if Xa1
= 1 then Xa2

= 1; if Xa1
= 0 then Xa2

= 0)}
is E∆(U) =

∑

xv1
xv1

P(xv1
|Xa1
= 1) +

∑

xv2
xv2

P(xv2
|Xa2
= 1) = P(X s1

= 1|Xa1
=

1) + P(X s2
=1|Xa2

=1).

As in the above example, the quantities and events of interest in a discrete
decision problem can be represented by a set of discrete variables X= {X i : i ∈
N}. These include state variables, which represent the unknown quantities over
which the agent has no control (e.g. uncertain outcomes of an action), action
variables, that enumerate the alternative courses of action at a given point, and
value variables, that assess the decision maker’s preference regarding a certain
partial state of the world. The sets of state, action and value variables are de-
noted, respectively, by XS={X i : i ∈ S}, XA={X j : j ∈ A}, and XV ={Xk : k ∈ V},
with S, A and V forming a partition of N . We assume that there are only finitely
many variables, and that each variable assumes finitely many values. Also, value
variables take on real values.

Influence diagrams are graphical representations of structured decision prob-
lems [Howard and Matheson, 1984]. An influence diagram represents both the
agents’ architecture (i.e., what information is available to the agent at each de-
cision stage of the problem) and the environment by means of a directed acyclic
graph (DAG) G=(N , E) where each node i is associated with a variable X i in X.
The nodes in N are partitioned into sets of state, action and value nodes, accord-
ing to the type of variable with which they are associated. An arc from a node i
into an action node j in the graph indicates that by the time the corresponding
action X j is made the value of the variable associated with node i will be known.
Hence, a different action X j= x j can be planned for each possible value of that
variable, as in the following example.

Example 3.2. The problem in Example 3.1 can be represented by the influence
diagram whose structure is depicted as the DAG in Figure 3.1 (as usual, state, action
and value nodes are represented by ovals, squares and diamonds, respectively). The
arc connecting a1 to a2 represents that by the time an action a2 is selected the
decision maker knows which action a1 was selected, thus a different action a2 can
be chosen conditional on each action a1.

The regularity condition states that the all variables can be linearly ordered
in a way that the decision represented by an action variable depends only on the
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a1

s1

v1

a2

s2

v2

Figure 3.1. Influence diagram representation for the problem in Example 3.1.

variables that precede it in the order. Regularity is usually made stronger by as-
suming that the graph of the problem contains a single directed path connecting
all action variables. The action variables are then linearly ordered according to
the topological order.

The no-forgetting condition states that decisions and observations are perma-
nently “remembered”. Graphically, it entails that if i and j are two action nodes
such that i is a parent of j, then all parents of i are also parents of j.1 When
the diagram satisfies regularity, then no-forgetting requires an action node i to
be a parent of every action node j such that j > i (i.e., j succeeds i in the linear
ordering defined).

An influence diagram is said to have limited memory if the no-forgetting
condition is not met. The least memory intensive agent architecture is arguably
the one in which actions are taken independently of each other. Graphically, it
is represented by a LIMID whose action nodes have no parents.

An arc from a node j into a state node i indicates that the probability of X i

depends on the variable associated to node j. Similarly, an arc entering a value
node k from a node i indicates that the variable Xk is a (deterministic) function
of the variable associated with node i. We assume that value nodes are leaves in
the graph, and that the overall utility U decomposes additively in terms of the
value variables, that is, that U=

∑

k∈V Xk.
A strategy ∆={δ j : j ∈ A} is a multiset of local decision rules, or policies one

for each action variable X j in XA. Each policy δ j is a mapping of assignments
xPa( j) to the variables XPa( j) into values x j = δ j(xPa( j)) of X j. We assume that
policies are encoded as tables associating every assignment of the parents to a
value of the decision variable. A policy for an action variable with no parents is
simply an assignment of a value to that variable. Associated with each action vari-

1We assume here that when no-forgetting is satisfied the “remembered” arcs are explicitly
represented in the diagram.
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able X j and policy δ j, there is a degenerate conditional probability distribution
P(X j|xPa( j)) = I(x j=δ j(xPa( j))) (or P(X j) = I(x j=δ j) in case j has no parents),
where I(·) denotes the indicator function that evaluates to one when the ar-
gument is true, and equals zero otherwise. With this correspondence between
policies and (conditional) probability distributions, we define a joint probability
distribution over state and action variables for a given strategy ∆ as

P∆(xS∪A)
def
=
∏

i∈S

P(x i|xPa(i))
∏

j∈A

I(x j=δ j(xPa( j))) . (3.1)

The identity above describes the joint probability distribution over variables XS∪A

induced by the Bayesian network whose structure is the DAG of the influence
diagram without value nodes, and whose parameters are P(X i|XPa(i)) for every
i ∈ S ∪ A. The expected utility of a strategy ∆ is therefore

E∆(U) =
∑

k∈V

E∆(Xk) =
∑

k∈v

∑

xPa(k)

P∆(xPa(k))E(Xk|xPa(k)) , (3.2)

where P∆(xPa(k)) =
∑

x(S∪A)\Pa(k)
P∆(x).

The conditional probabilities associated to state variables in Equation (3.1)
and the conditional expected values of the value variables in Equation (3.2) can
be specified independently of the strategy. An influence diagram is fully specified
by its DAG G annotated with node types, its set of variables X, the conditional
expected values of value variables E(Xk|xPa(k)) associated to each value variable
Xk, and the conditional probability values P(x i|xPa(i)) associated to each state
variable X i. When proving hardness results, we implicitly assume that these
probabilities and expected values are specified by rational numbers.

3.2 Solving LIMIDs

Planning in (limited memory) influence diagrams refers to maximizing expected
utility on the space of strategies. As with other optimization problems, the prob-
lem comes in three variants, one of deciding whether any strategy obtains an
expected utility greater than a given threshold, one of evaluating (i.e., calculat-
ing) the maximum expected utility, and one of selecting an optimal strategy. Pro-
vided that evaluating any given strategy is polynomial-time computable and that
strategies are shortly encoded relative to the size of the encoding of the diagram,
these three variants are equivalent from a complexity point of view.2 Indeed, un-
der such assumptions, the first two variants are trivially solved by the strategy

2This equivalence is satisfied for all NP optimization problems whose decision version is NP-
complete [Paz and Moran, 1981; Ausiello et al., 1995]. To meet the requirements of NP opti-
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selection variant. Moreover, to be able to achieve polynomial-time speed, an
algorithm to evaluate strategies needs to output numbers whose encoding takes
size at most polynomial in the size of the input. Hence, the tractability of strategy
evaluation implies the existence of a polynomial poly(b), where b is the num-
ber of bits encoding the influence diagram, such that the expected utility of any
strategy is bounded in absolute value by 2poly(b) (otherwise we would need super-
polynomially many bits to write the output), and such that the expected utilities
of any two strategies are either equal or differ by at least 1/2poly(b) (otherwise
they would be indistinguishable by an algorithm running in polynomial-time).
Consequently, the evaluation version can be efficiently computed by performing
a binary search using at most 4poly(b) calls of a polynomial-time algorithm that
solves the decision version. Also, given a polynomial-time algorithm for the de-
cision version, we can select an optimal strategy by iteratively deciding whether
there is a strategy that achieves the maximum expected utility of the initial dia-
gram in a new LIMID where the current node is replaced by a state variable with
degenerate conditional probability (we need to test all such possible functions).
Hence, when no confusion arises, we shall often speak loosely of “solving” a
LIMID without explicit mention to which variant of the problem we address.
The capability of efficiently evaluating and shortly encoding strategies is deeply
connected with the shape of the diagram, and particularly with its treewidth,
both of which we review next.

We say that a LIMID is polytree-shaped or singly connected if the undirected
graph we obtain by dropping arc directions is a tree. If a diagram is not a
polytree, it is called multiply connected or loopy. The treewidth of an influence
diagram is a measure of the resemblance of its moral graph to a tree, the moral
graph being the (undirected) graph we obtain by linking any two nodes with a
common child, removing value nodes, and ignoring arc directions.

A tree decomposition of (the moral graph of) an influence diagram is a tree
where each node is associated to a subset of the state and action variables in
the diagram.3 The decomposition satisfies the family preserving and running in-
tersection properties, which state that the family of each action and state node,
and the parent set of each value node, is contained in at least one set associated
to a node of the tree, and that the graph obtained by dropping nodes that do
not contain any given state or action node is still a tree. If T is a tree decompo-
sition with m nodes, we denote by C1, . . . , Cm the sets of nodes of the diagram
associated to nodes 1, . . . , m of the tree, respectively. Thus, the family preserving

mization problems, we must require that any strategy can be evaluated in polynomial time, and
that optimal strategies can be encoded in time and space polynomial in the input size.

3This definition is essentially equivalent to the notion of a clique tree, defined in Chapter 2.
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property implies that C1 ∪ · · · ∪ Cm = S ∪ A. The width of a tree decomposition
is the maximum cardinality of a set Ci associated to a node i minus one. The
treewidth of an influence diagram is the minimum width of a tree decomposition
of it. Intuitively, the treewidth of a diagram measures the resemblance of its un-
derlying moral graph to a tree. The treewidth of a tree-shaped diagram is one,
and is minimal. The treewidth of a singly connected diagram is the maximum
in-degree of a node. The following facts concerning tree decompositions will be
useful in our future discussion about the complexity of solving LIMIDs.

For a fixed integer k, Bodlaender [1996] showed that one can in time linear
in the size of a graph either obtain a tree decomposition of width at most k
or know that such a decomposition does not exist. Hence, for any diagram of
bounded treewidth we can obtain in linear time an optimal tree decomposition,
that is, a tree decomposition of minimum width.4

Any tree decomposition can be turned into a binary tree decomposition (i.e.,
one in which each node has at most three neighbors) of same treewidth in linear
time by inserting new nodes such that the number of nodes in the binary tree
does not exceed twice the number of nodes in the original tree-decomposition,
and the treewidth remains the same, which implies that we can obtain a bi-
nary tree decomposition of minimum treewidth in linear time for any influence
diagram of bounded treewidth [Shenoy, 1997].

Any tree decomposition of a diagram contains supersets of the cliques of the
moral graph associated to its nodes. Furthermore, there is a tree decomposition
whose associated node sets are exactly the cliques of the moral graph if and
only if the moral graph is triangulated, that is, if any cycle with more than three
nodes contains a chord (a link between non-consecutive nodes in the cycle)
[Jensen and Nielsen, 2007, Theorems 4.3 and 4.4, page 122]. A node in a(n
undirected) graph is called simplicial if its neighbors form a clique. If G is a
graph of treewidth k and i is a simplicial node in G of degree d, then the graph
G′ obtained by removing i and all its incident edges has treewidth k′ such that
k = max{d, k′} [Bodlaender et al., 2001]. This is a useful result for analyzing
the treewidth of graphs obtained by augmenting a graph of known treewidth
with simplicial nodes.

Given an influence diagram whose variables take on at most v values, and
a suitable tree decomposition of width k, we can evaluate the expected util-
ity of any strategy ∆ using tree-decomposition algorithms in time and space
O(vk) [Koller and Friedman, 2009, Chapter 23]. Hence, given an influence

4Starting with k=1, we can run Bodlaender’s algorithm with an increasing value of k until a
tree decomposition is found. If the treewidth is bounded by B, the procedure takes O(B f (B))=
O( f (B)) time, where f (B) is the time to build a tree-decomposition of treewidth at most B.



48 3.2 Solving LIMIDs

diagram of bounded treewidth and a strategy, we can obtain an optimal tree-
decomposition in linear time as discussed, and therefore compute the expected
utility of the strategy in polynomial time. De Campos and Ji [2008] showed
that deciding whether the maximum expected utility exceeds a given threshold
is NPPP-complete when the diagram has bounded in-degree, and NP-complete
if it has bounded treewidth. In fact, we show later on that the problem is al-
ready NP-hard in even much simpler models, and even if we allow approximate
solutions.

Not all the arcs and variables in a LIMID are relevant to the computation
of optimal strategies, and the complexity of the problem can be drastically re-
duced by removing nodes and arcs that do not affect the expected utility of an
optimal strategy [Shachter, 1998; Fagiuoli and Zaffalon, 1998a; Shachter, 1999;
Nielsen and Jensen, 1999; Lauritzen and Nilsson, 2001]. A state or action node
is called barren if it has no children. Barren nodes have no influence on any
value node and thus no impact on the selection of an optimal strategy [Jensen
and Nielsen, 2007]. Further irrelevances can be found by applying the con-
cept of d-separation [Pearl, 1988] and non-requisiteness [Fagiuoli and Zaffalon,
1998a; Lauritzen and Nilsson, 2001].

The notion of d-separation is based on the concept of active and inactive (or
blocked) trails in a directed graph. A triple of nodes i, k, j is said to be active with
respect to a set of nodes Z either if i and j are both parents of k and either k or
some of its descendants is in Z , or if i and j are not both parents of k and k is
not in Z . A trail is a sequence of nodes containing an arc for any two consecutive
nodes. Notice that a trail does not need to “follow” the direction of the arcs. A
trail is blocked by a set of nodes Z if it contains a triple of consecutive nodes
which is not active with respect to Z . Two sets of nodes X and Y are d-separated
by a set of nodes Z if all trails from a node i in X to a node j in Y are blocked
by Z . Intuitively, if X and Y are d-separated by Z , then any i in X is irrelevant
to any j in Y and vice-versa once we know the state of the variables in Z .

A parent node k of an action node j is nonrequisite to j if it is d-separated
from all the value nodes that descend from j given the remaining parents of
j and j itself. The arc from k to j is then said to be a nonrequisite arc. A
nonrequisite arc from node k into node j indicates that an optimal policy for
X j is invariant with respect to values of Xk, and thus removing the arc from k
into j leaves the maximum expected utility unchanged [Fagiuoli and Zaffalon,
1998a; Lauritzen and Nilsson, 2001].5 A variable that is nonrequisite to all its

5Note however that removing an arc entering an action node alters the structure of the solu-
tion of the problem.
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children can be safely removed from the diagram without affecting the expected
utility of an optimal strategy. Thus, the exponential growth of policies induced
by requiring no-forgetting can be avoided if all memory arcs (that is, arcs from
parents of a parent action node into an action node) are nonrequisite. This is
the case, for instance, when state variables form a chain in the graph.

By removing a barren node, other nodes might become barren too. Similarly,
by removing a nonrequisite arc, we might create new barren nodes and/or non-
requisite arcs. We say that a LIMID is minimal if it contains no nonrequisite arcs
or barren nodes. Given a LIMID we can obtain its corresponding minimal form
in polynomial time by repeatedly removing nonrequisite arcs and barren nodes
[Lauritzen and Nilsson, 2001]. In singly connected LIMIDs, all arcs entering
action nodes are by definition nonrequisite.

3.3 Single- and multi-stage influence diagrams

We say that a LIMID whose action nodes have no parents is single stage; other-
wise, we say it is multi stage. A single-stage LIMID represents a situation in which
all decisions are either made simultaneously or independently, in sharp contrast
to multi-stage decision problems, where decisions the decisions of one stage de-
pend on the outcomes of the previous stages. As it turns out, any multi-stage
LIMID of bounded treewidth can be efficiently transformed into an equivalent
single-stage diagram. Equivalence means that there is a bijection from strategies
of the transformed diagram into the original diagram that can be computed in
polynomial time, and that preserves expected utility of strategies.

Transformation 3.1. Consider a multi-stage LIMID L and a decision node d with
at least one parent, and let π(1), . . . ,π(m) denote the possible (joint) assignments to
the variables XPa(d). Obtain a new diagram L ′ as follows. Remove Xd and add m
state variables (and their corresponding nodes) X i1 , . . . , X im and m action variables
(and the corresponding nodes) X j1 , . . . , X jm , all taking values in the domain of Xd .
Add an arc from every parent of d to each of i1, . . . , im, an arc from every ik to ik+1,
with k < m, and an arc from every jk to ik, k = 1, . . . , m. Also, add an arc from im

to each child of d. Specify the conditional probability of X i1 as

P(x i1 |x j1 ,xPa(d)) =







1, if xPa(d) = π(1) and x i1 = x j1 ,

0, if xPa(d) = π(1) and x i1 6= x j1 ,

1/m if xPa(d) 6= π(1) .
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Pa(d)

d

Ch(d)

(a)

j1

i1

j2

i2 · · ·

jm

im

Pa(d)

Ch(d)

(b)

Figure 3.2. A piece of a diagram before (a) and after (b) Transformation 3.1.

For k = 2, . . . , m, specify the conditional probability of each node X ik as

P(x ik |x ik−1
, x jk ,xPa(d)) =















1, if xPa(d) 6= π(k) and x ik = x ik−1
,

0, if xPa(d) 6= π(k) and x ik 6= x ik−1
,

1, if xPa(d) = π(k) and x ik = x jk ,

0, if xPa(d) = π(k) and x ik 6= x jk .

Finally, the conditional probability functions P(X i|XPa(i)) of each child i of d have
Xd substituted by X im in their domain, but otherwise remain the same.

Figure 3.2 depicts a decision node with possibly many parents and many
children (on the left) and the new sub-diagram generated by applying Transfor-
mation 3.1 (on the right).

Lemma 3.1. Let L ′ be the result of applying Transformation 3.1 in a diagram L
of treewidth k. Then the treewidth of L ′ is at most k+ 2, and this bound is tight
for some diagram L .

Proof. Let L ′ be the result of applying the transformation in a diagram L of
treewidth k. Moreover, let M and M ′ be the moral graphs of L and L ′, respec-
tively. We can obtain M from M ′ by sequentially eliminating nodes j1, . . . , jm
and i1, . . . , im−1, in this order, and replacing im with d. Let M1, . . . , M2m be the
graphs obtained after applying each of these operations. Thus, M1 is the graph
obtained by removing j1 from M ′, and M2m equals M . Let also k1, . . . , k2m be the
treewidth of the graphs M1, . . . , M2m, respectively, and k0 be the treewidth of M ′.
The node j1 is simplicial and has degree |Pa(d)|+1 in M ′. Since M1 contains the
clique Fa(im) = {im, im−1, jm} ∪ Pa(d) (where Fa(im) is taken with respect to M1

and Pa(d) is taken with respect to M), it follows that k1 ≥ |Pa(im)|= |Pa(d)|+2,
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which implies k0 = max{|Pa(d)|+ 1, k1} = k1. Assume that k` = k0, for some
1 ≤ ` < m− 1. The node j`+1 is simplicial and has degree |Pa(d)|+ 2 in M`.
The treewidth k`+1 ≥ |Pa(d)| + 2 because M`+1 contains the clique Fa(im) =
{im, im−1, jm} ∪ Pa(d). Hence, k` = max{|Pa(d)|+ 2, k`+1} = k`+1, and by induc-
tion we have that

k0 = km−1 .

The node jm is simplicial and has degree |Pa(d)|+2 in Mm−1. Since Mm contains
the clique Fa(im) = {im, im−1} ∪ Pa(d), it follows that km ≥ |Pa(d)|+ 1, and thus
km−1 =max{|Pa(d)|+ 2, km} ≤ km+ 1. Hence,

km−1 ≤ km+ 1 .

A similar reasoning applies for k` with m < ` < 2m. Mm+1 (i.e., the graph
obtained by removing i1) contains a clique of size |{im, im−1}∪Pa(d)|= |Pa(d)|+
2, and the node i1 is simplicial and has degree |Pa(d)|+ 1 in Mm. Hence, km =
max{|Pa(d)|+1, km+1}= km+1. Assume k` = km for m< ` < 2m−2. Then i`−m+1

is simplicial and has degree |Pa(d)|+ 1 in M`. Since M`+1 contains the clique
{im, im−1} ∪ Pa(d), it follows that k` = max{|Pa(d)|+ 1, k`+1} = k`+1. Thus, by
induction

km = k2m−2 .

Finally, the graph M2m−1 (obtained by removing im−1 from M2m−2) contains the
clique {im}∪Pa(d) (so that k2m−1 ≥ |Pa(d)|), and im−1 is simplicial and has degree
|Pa(d)|+ 1 in M2m−2. Thus, k2m−2 = max{|Pa(d)|+ 1, k2m−1} ≤ k2m−1 + 1. Since
the replacement of im with d used to generate M2m = M from M2m−1 does not

change the treewidth (i.e., k
def
= k2m = k2m−1), we have that

k0 = km−1 ≤ km+ 1= k2m−2+ 1≤ k2m−1+ 2= k+ 2 .

Furthermore, one can show that the bound is tight if L is a diagram containing
one state node S, one action node A and one value node V linked as a chain, that
is, S → A→ V . Then the treewidth of the transformed diagram is three while
the treewidth of original graph is one.

The result above can be generalized to multiple applications of Transforma-
tion 3.1. Applying the transformation on two different action variables affect
different parts of the original diagram, and hence transforming a multi-stage di-
agram in a single-stage diagram does not increase the treewidth by more than
two. The following result shows that the transformation can be made efficiently.

Lemma 3.2. Transformation 3.1 can be performed in polynomial time on a dia-
gram of bounded treewidth.
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Proof. Let L ′ be the result of applying the transformation on action node d in
L , and let v be the number of distinct states Xd can assume. As before, let m
be the number of assignments to XPa(d). The digraph of transformed diagram
L ′ contains m additional state variables, and m additional action nodes (plus
the corresponding arcs), so it can be obtained in time linear in the size of the
digraph of L and in m. The new state and action variables all assume d states,
so specifying the new variable takes time O(md). Finally, the transformed dia-
gram also specifies O(m2v3) probability values P(x ik |x ik−1

, x jk ,xd). Let u be the
maximum number of states a variable in the family of d can assume, and k be
the treewidth of L . Then m ≤ u|Pa(d)| ≤ uk. Hence, if L has bounded treewidth
(i.e., if we consider k a constant) then m is a polynomially bounded by u, which
is part of the specification of L . Since all steps of the transformation takes time
at most polynomial in m, and polynomials are closed under composition, the
transformation takes time polynomial in the size of L .

The bottleneck of the computational performance of the transformation is
the potentially high value of m. It is still possible to apply the transformation in
polynomial time if the in-degree of action nodes is considered bounded (which
is a necessary but not sufficient condition for having bounded treewidth). If
the in-degree of action nodes is not bounded then the output of any planning
algorithm, that is, an optimal strategy, might take space exponential in the input.
Thus, assuming that m is bounded is reasonable. To show the equivalence of
single- and multi-stage diagrams, it remains to prove that the transformation
preserves the expected utility of the strategies.

Proposition 3.1. LetL ′ be the result of applying Transformation 3.1 on a decision
variable Xd in a LIMID L . The following assertions are true.

• For each strategy ∆′ for L ′ we can obtain a strategy ∆ for L in time poly-
nomial in the size of ∆′ such that E∆(U) = E∆′(U);

• For each strategy ∆ for L we can obtain a strategy ∆′ for L ′ in time poly-
nomial in the size of ∆ such that E∆′(U) = E∆(U).

Proof. Suppose that XPa(d)=π(k) for some k > 1. By the chain rule of probabil-
ity and the stochastic independencies implied by the graphical structure of the
diagram, we have that

P(x ik , . . . , x im |x jk , . . . , x jm ,π(k)) = P(x ik |x ik−1
, x jk ,π

(k))
∏

`>k

P(x i` |x i`−1
, x j` ,π

(k)) .
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By definition, each state variable X i` with ` 6= k is stochastically independent of
its parent action variable X j` , and the state variable X ik is stochastically indepen-
dent of X ik−1

. In other words, we have for any ` 6= k that

P(x i` |x i`−1
, x j` ,π

(k)) = P(x i` |x i`−1
,π(k)) ,

and
P(x ik |x ik−1

, x jk ,π
(k)) = P(x ik |x jk ,π

(k)) .

We can graphically represent this situation (of conditioning on XPa(d) = π(k)) in
the semantics of LIMIDs by removing the arc from ik−1 to ik together with all the
arcs from j` to i` for ` 6= k in the diagram of Figure 3.2(b), which results in the
diagram in Figure 3.3. Using these context-specific independencies we get to

P(x ik , . . . , x im |x jk , . . . , x jm ,π(k)) = P(x ik |x jk ,π
(k))
∏

`>k

P(x i` |x i`−1
,π(k)) .

Hence, P(x ik , . . . , x im |x jk , . . . , x jm ,π(k)) = P(x ik , . . . , x im |x jk ,π
(k)), and

P(X im= x im |π(k)) =
∑

x jk

∑

x ik
,...,x im−1

P(x ik , . . . , x im−1
, x im |x jk ,π

(k))P(x jk)

=
∑

x jk

P(x jk)
∑

x ik
,...,x im−1

P(x ik |x jk ,π
(k))
∏

`>k

P(x i` |x i`−1
,π(k)) .

By design, each function P(x i` |x i`−1
,π(k))with ` 6= k equals the indicator function

I(x i`= x i`−1
), and P(x ik |x jk) = I(x ik= x jk). We thus have that

P(X im= x im |π(k)) =
∑

x jk

P(x jk)
∑

x ik
,...,x im−1

I(x ik= x jk)
∏

`>k

I(x i`= x i`−1
)

︸ ︷︷ ︸

=I(x jk
=x im )

= P(X jk= x im) .

The equation above says that XPa(d) acts as a “selector” for the conditional prob-
ability distribution P(X im= x im |π(k)), which matches the probability distribution
of the action variable X jk . Although we have assumed that k > 1, the same
reasoning can be used to show that the result holds also for the case k = 1.

We will now show that for every strategy ∆′ for L ′ we can efficiently obtain
a strategy ∆ for L that achieves the same expected utility and vice-versa. To
this end, consider a strategy∆′ = {δ j1 , . . . ,δ jm , . . . } forL ′, and obtain a strategy
∆ = {δd , . . . } for L such that δd is a policy for Xd satisfying δd(π(k)) = δ jk for
all k. For each ∆′ there is exactly one such ∆, and it follows that

P∆′(X im= x im |π(k)) = I(x im=δ jk) = I(x im=δd(π
(k))) = P∆(Xd= x im |π(k)) .
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Conversely, let ∆ be a strategy for L containing a policy δd for Xd , and obtain a
strategy ∆′ = (∆ \ δd)∪ {δ j1 , . . . ,δ jm} such that δ jk = δd(π(k)) for k = 1, . . . , m.
For each ∆ there is exactly one such ∆′, and it follows that

P∆(Xd= xd |π(k)) = I(xd=δd(π
(k))) = I(xd=δ jk) = P∆′(X im= xd |π(k)) .

Consider a pair of strategies ∆ and ∆′ for L and L ′, respectively, that
prescribe the same policies for all overlapping variables, and such that δ jk =
δd(π(k)) for all k. Let N = S∪A∪V denote the nodes of L , and N ′ = S′∪A′∪V ′

denote the nodes of L ′. Thus, S′ = S ∪ {i1, . . . , im}, A′ = (A\ {d})∪ { j1, . . . , jm},
V ′ = V , and we have that

E∆(U) =
∑

xN

P∆(Xd= xd |xPa(d))
∏

i∈N\{d}
P∆(x i|xPa(i))

∑

k∈V

xk

=
∑

xN\{d}

∑

xd

P∆′(X im= xd |xPa(d))
∏

i∈N\{d}
P∆′(x i|xPa(i))

∑

k∈V ′
xk

=
∑

xN\{d}

∑

x im

P∆′(X im= x im |xPa(d))
∏

i∈N\{d}
P∆′(x i|xPa(i))

∑

k∈V ′
xk

=
∑

xN\{d}

∑

x i1 ,...,x im
x j1 ,...,x jm

P∆′(x i1 , x j1 , . . . , x im , x jm |xPa(d))
∏

i∈N\{d}
P∆′(x i|xPa(i))

∑

k∈V ′
xk

=
∑

xN ′

∏

k∈[m]
P∆′(x ik |x ik−1

, x jk ,xPa(d))P∆′(x jk)
∏

i∈N\{d}
P∆′(x i|xPa(i))

∑

k∈V ′
xk

=
∑

xN\{d}

∑

x i1 ,...,x im−1

∏

i∈N ′
P∆′(x i|xPa(i))

∑

k∈V ′
xk

= E∆′(U) .

Thus, for every strategy ∆′ we can obtain in time polynomial in its size a
strategy ∆ such that E∆′(U) = E∆(U), and vice-versa.

Since the class of polynomials is closed under function composition, we can
repeatedly apply Proposition 3.1 until no non-root decision node remains. Each
of these transformations is polynomial-time computable, and we can obtain a
strategy for the original diagram in polynomial time. Hence, we can show that
the following result is true.

Theorem 3.1. Given a multi-stage LIMID L of bounded treewidth, we can obtain
in time polynomial in the size of L a single-stage LIMID L ′ of bounded treewidth,
and such that for each strategy ∆′ for L ′ there is a polynomial-time computable
strategy ∆ for L for which E∆(U) = E∆′(U).
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i2 · · · ik−1

jk−1
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· · ·
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Pa(d) = πk

Ch(d)

Figure 3.3. Illustration of the reasoning in the proof of Proposition 3.1.

Proof. It follows directly from Lemmas 3.1, 3.2, and 3.1.

Thus, single-stage diagrams of bounded treewidth are not easier to solve
than multi-stage diagrams of bounded treewidth, since if this was the case one
could use the above theorem to reduce the latter to the former. The converse
is also true, since we can transform a single-stage diagram into a multi-stage
diagram such that the expected utility of strategies is unchanged by adding a
root state variable with uniform probability as a parent of (some or all) action
nodes. Consequently, the class of single-stage LIMIDs of bounded treewidth is
theoretically as hard to solve as the class of multi-stage LIMIDs. Since these
transformations preserve the value of the solutions (i.e., the expected utility of
strategies), the equivalence extends to approximate solutions as well, that is, ap-
proximately solving single-stage LIMIDs of bounded treewidth within provably
good bounds is as hard as approximately solving multi-stage LIMIDs.

3.4 The complexity of solving LIMIDs

In this section we analyze the fixed-parameter complexity of solving LIMIDs with
respect to the topology of the underlying DAG (i.e., whether it is singly or mul-
tiply connected), the cardinality of the variable domains, and the number of
values nodes. We show that solving LIMIDs of bounded treewidth is NP-hard,
even if we bound the number of values each variable can assume, and admit
only singly connected diagrams. A remarkable exception is the case of singly
connected diagrams with binary state variables and a single value node, which
we show can be solved in polynomial-time. We start by the negative results.
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Theorem 3.2. Given a singly connected LIMID of treewidth two over binary state
and action variables, deciding whether there is a strategy with expected utility
greater than a given rational number k is NP-complete.

Proof. Since the diagram has bounded treewidth, for any fixed strategy ∆ we
can compute its expected utility in polynomial time. Thus, E∆(U) > k can be
decided in polynomial time, and the problem is in NP. Hardness is shown by a
reduction from the partition problem, which can be stated as follows.

Given positive even integer numbers z1, . . . , zn, is it possible to parti-
tion them into two sets of equal sum?

This problem is well-known to be NP-complete [Garey and Johnson, 1979].6 As
usual, we assume that the instances of the partition problem are “reasonably”
and “concisely” encoded as bit-strings of length b = 2(

∑n
i=1dlog2 zie+n−1).7 Any

partition of the numbers into two sets can be represented as an n-dimensional

binary vector (δ1, . . . ,δn) ∈ {0,1}n. Let z
def
= 1

2

∑n
i=1 zi. The partition problem

is thus equivalent to deciding whether there is a binary vector (δ1, . . . ,δn) such
that

∑n
i=1 ziδi =

∑n
i=1 zi(1 − δi) = z. A binary vector (δ1, . . . ,δn) satisfying

that equality is said to be a yes-solution of the problem, otherwise it is called
a no-solution. In either case, the vector is called a solution and the quantity
∑n

i=1 ziδi is called its value. Since the input numbers are even, also the value
of a solution is an even number. Moreover, since only yes-solutions have value
z, and z is an integer number, the value of any no-solution (δ1, . . . ,δn) satisfies
|z−∑n

i=1 ziδi| ≥ 1. We will exploit this integer gap between yes- and no-solutions
later on in the reduction.

Our reduction maps any instance of the partition problem into a LIMID
whose graph structure is shown in Figure 3.4. The action variables Xd1

, . . . , Xdn

are binary variables and represent the assignments of numbers of the parti-
tion problem into one of the two partitions. Thus, a strategy ∆ = {δ1, . . . ,δn}
represents a partition of the input numbers into two sets. The value variables

X v1
, . . . , X vn

are set so that X vi

def
= −ziXdi

/z. Hence,
∑

i E∆(X vi
) = −∑n

i=1 ziδi/z,
which equals minus one if and only if the strategy ∆ is a yes-solution to the
partition problem. The probabilities of the state variables X si

, i = 1, . . . , n, are

6The standard definition of the problem does not require numbers to be even. This however
does not alter the complexity of the problem, as an instance with even numbers admits a yes-
solution if and only if the instance obtained by halving each number admits a yes-solution.

7The usual encoding of an instance of partition problem is a binary string s101s201 · · ·01sn,
where each substring si is the binary representation of the number zi with every digit duplicated.
For example, the encoding of the problem z1=2 and z2=3 is 1100011111.
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v1d1

s1

s′1

v2d2

s2

s′2 · · ·

vndn

sn

s′n r

Figure 3.4. LIMID used to solve the partition problem in the proof of Theo-
rem 3.2.

specified as rational numbers such that P(X si
=1|Xdi

=0)
def
= 1 and

exp(−zi/z)< P(X si
=1|Xdi

=1)< exp(−zi/z) + 2−2−10b ,

where b is the number of bits encoding the instance of the partition problem.8

The state variables X s′1
, . . . , X s′n are deterministic variables that satisfy X s′1

def
= X s1

and X s′i
def
= X s′i−1

∧X si
= X s′i−1

X si
, i = 2, . . . , n (where ∧ denotes logical conjunction).

A simple inductive argument on i = 1, . . . , n shows that X s′n = X s1
X s2
· · ·X sn

, so
that for any strategy ∆ we have that

E∆(X s′n) =
∑

xs1 ,...,xsn

P∆(X s′n=1|xs1
, . . . , xsn

)P∆(xs1
, . . . , xsn

)

=
∑

xs1 ,...,xsn

xs1
xs2
· · · xsn

n
∏

i=1

P(xsi
|Xdi
=δi) =

n
∏

i=1

P(X si
=1|Xdi

=1)δi . (3.3)

Finally, the diagram is fully specified by defining X r
def
= 2+ 2−9b − qX s′n , where q

is a rational number such that e < q < e+ 2−2−9b. It follows that

E∆(U) = E∆(X r) +
n
∑

i=1

E∆(X vi
) = 2+ 2−9b − qE∆(X s′n)−

1

z

n
∑

i=1

ziδi . (3.4)

Consider the continuous function over s ∈ [0, 1]

f (s) = 2+ 2−9b − exp(1− s)− s . (3.5)

It follows from (3.4) that

f
� n
∑

i=1

ziδi/z
�

− E∆(U) = qE∆(X s′n)− exp
�

1−
n
∑

i=1

ziδi/z
�

.

8We can obtain each number P(Xsi
= 1|Xdi

= 1) in time polynomial in b by the truncated
Taylor expansion of exp(−zi/z).
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By (3.3) and the definition of P(X si
=1|Xdi

=1), we have that

E∆(X s′n) =
n
∏

i=1

[exp(−zi/z) + εi]
δi >

n
∏

i=1

[exp(−zi/z)]
δi = exp

�

−
n
∑

i=1

ziδi/z
�

,

where 0< εi < 2−2−10b. It follows that

qE∆(X s′n)> eE∆(X s′n)> exp
�

1−
n
∑

i=1

ziδi/z
�

,

whence qE∆(X s′n)− exp(1−∑n
i=1 ziδi/z)> 0.

According to the Multivariate Binomial Theorem, we have that

E∆(X s′n) =
n
∏

i=1

[exp(−zi/z) + εi]
δi =

∑

k∈C

n
∏

i=1

exp(−ziki/z)ε
δi−ki
i

= exp
�

−
n
∑

i=1

ziδi/z
�

+
∑

k∈C ,k 6=δ

n
∏

i=1

exp(−ziki/z)ε
δi−ki
i ,

where C = {(k1, . . . , kn) ∈ {0,1}n : ki ≤ δi, i = 1, . . . , n}. Each term inside the
sum on the right-hand side of the equation above contains at least one factor
equal to εi for some i = 1 . . . , n. Since the sum contains at most 2n terms, n≤ b,
0< exp(−ziki/z)≤ 1, and εi < 2−2−10b < 1, it follows that

E∆(S
′
n)− exp

�

−
n
∑

i=1

ziδi/z
�

<
∑

k∈{0,1}n
max

i
εi ≤ 2−2−9b .

Consequently, we have that

qE∆(S
′
n)− exp

�

1−
n
∑

i=1

ziδi/z
�

=

qE∆(S
′
n)− q exp

�

−
n
∑

i=1

ziδi/z
�

︸ ︷︷ ︸

<q2−2−9b

+

≤2−2−9b

︷ ︸︸ ︷

[q− e]exp
�

−
n
∑

i=1

ziδi/z
�

︸ ︷︷ ︸

≤1

,

which, since q < 3, is strictly smaller than 2−9b. By combining these inequalities
we find for any strategy ∆ that

0< f
� n
∑

i=1

ziδi/z
�

− E∆(U)< 2−9b . (3.6)



59 3.4 The complexity of solving LIMIDs

Thus, for any strategy ∆ it follows that E∆(U) > f (
∑n

i=1 ziδi/z)− 2−9b. Recall
that the partition problem admits a yes-solution if and only if

∑

i ziδi/z = 1.
Hence, if a yes-solution exists then maxδ E∆(U)> f (1)− 2−9b = 0.

To show that any no-solution has non-positive expected utility, consider the
function f in Equation (3.5). Its first and second derivatives are, respectively,
f ′(s) = exp(1− s)− 1 and f ′′(s) = −exp(1− s). Thus, the function is strictly
concave, increases for s < 1, decreases for s > 1, and has a maximum at s = 1.

If the partition problem does not admit a yes-solution then any strategy ∆
satisfies |z −∑i ziδi| ≥ 1, from which it follows that either

∑

i ziδi/z ≥ 1+ 1/z
or
∑

i ziδi/z ≤ 1 − 1/z. We have from Inequality 3.6, the analysis of f , and
the reasoning above, that if a yes-solution does not exist then maxδ E∆(U) <
max{ f (1+1/z), f (1−1/z)}. Consider the difference f (1+1/z)− f (1−1/z) =
−exp(−1/z)+exp(1/z)−2/z. By analyzing its first and second derivatives, one
can show that the difference is a strictly convex function of z whose infimum
is zero. Hence, the difference is positive and it suffices for the result to show
that f (1 + 1/z) is negative for any positive integer z. To this end, consider
the second-order Taylor series approximation of exp(−s) around zero given by

T2(s)
def
= 1− s+ s2/2, whose Lagrange-form residual is

R2(s)
def
= exp(−s)− T2(s) =−s3 exp(−ξ)/6>−s3/6 ,

where ξ is a number between 0 and s. Hence, −exp(−s) < s3/6− T2(s), from
which it follows that

f (1+ 1/z) = 2+ 2−9b − exp(−1/z)− 1− 1

z

< 2+ 2−9b +
�

1

6z3 − T2(1/z)
�

− 1− 1

z

= 2−9b − 1

2z2 +
1

6z3 ≤ 2−9b − 1

3z3 ,

which, as 2z ≤ 2b in the usual encoding of the partition problem, is negative for
any positive z.

Thus, for any instance of the partition problem we can build in polynomial
time a singly connected influence diagram of bounded treewidth with only bi-
nary variables and such that the partition problem has a yes-solution if and only
if the optimum strategy has non-negative expected utility. Hence, deciding if the
maximum expected utility exceeds a rational solves the partition problem.

The result above required an unbounded number of value nodes. The next
result shows that if we relax the assumption of binary variables and allow vari-
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d1 d2 dn

s0 s1 s2 · · · sn r

Figure 3.5. LIMID used to solve the partition problem in the Proof of Theo-
rem 3.3.

ables to take on at most three values, we obtain the same hardness result even
in the case of a single value node.

Theorem 3.3. Given a singly connected LIMID of treewidth two over binary action
variables, ternary state variables and a single value variable, deciding whether there
is a strategy with expected utility greater than a given rational k is NP-complete.

Proof. Membership in NP follows from the same argument used in the proof
of Theorem 3.2. Hardness is once again showed using a reduction from the

partition problem with n> 3. As before, define z
def
= 1

2

∑n
i=1 zi.

Consider the following LIMID with topology as in Figure 3.5. There are n
binary action variables Xd1

, . . . , Xdn
associated to root nodes, and a chain of n+1

ternary state variables X s0
, X s1

, . . . , X sn
taking on states 1,2 and 3. Also, there is

a single value variable X r with X sn
as single parent. We specify the conditional

expected utility of X r by E(X r |X sn
) = I(X r=3). The probability distribution of X s0

is uniformly specified, that is, P(xs0
) = 1/3. For i = 1, . . . , n, let t i be a rational

such that

2−zi/z ≤ t i < 2−zi/z + 2−(6b+3) ,

where b is the number of bits in the encoding of the partition problem (we can
compute t i by the truncated Taylor expansion of 2−zi/z in time polynomial in b).
The conditional probabilities of state variable X si

given Xdi
and X si−1

are specified
as

P(X si
=1|xdi

, xsi−1
) = I(xsi

= xsi−1
)t

xdi
i ,

P(X si
=2|xdi

, xsi−1
) = I(xsi

= xsi−1
)t

1−xdi
i ,

and P(X si
=3|xdi

, xsi−1
) = 1− P(X si

=1|xdi
, xsi−1

)− P(X si
=2|xdi

, xsi−1
). Note that

P(xsi
|xdi

, X si−1
=3) = I(xsi

=3).

Given a strategy ∆ = {δd1
, . . . ,δdn

}, let I
def
= {i ∈ [n] : δdi

= 1} and I c def
=
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[n] \ I . We have that

E∆(X r) =
∑

xsn

E(X r |xsn
)
∑

xS\{sn}

P(xs0
)

n
∏

i=1

P(xsi
|Xdi
=δdi

, xsi−1
)

=
∑

xS\{sn}

P(X sn
=3|Xdn

=δdn
, xsn−1

)P(xs0
)

n−1
∏

i=1

P(xsi
|Xdi
=δdi

, xsi−1
)

=
∑

xS\{sn}

�

1− P(X sn
=1|Xdn

=δdn
, xsn−1

)− P(X sn
=2|Xdn

=δdn
, xsn−1

)
�

·

· P(xs0
)

n−1
∏

i=1

P(xsi
|Xdi
=δdi

, xsi−1
)

= 1− 1

3

 

∏

i∈I

t i +
∏

i∈I c

t i

!

.

The last equality follows from the definition of the functions P(xsi
|Xdi
=δdi

, xsi−1
),

which are nonzero only if xsi
= xsi−1

, and therefore the sum over xs\{sn} is non
zero only when xs1

= · · ·= xsn
.

According to Lemma 23 in [Mauá et al., 2012] the numbers t i, i = 1, . . . , n,
satisfy 2−zi/z ≤ t i < 2−zi/z+2−6b

. Thus,9

∏

i∈S

t i < 22−6bn−∑i∈S zi/z ≤ 22−5b−∑i∈S zi/z ,

for any S ⊆ [n]. In particular, if∆ is a yes-solution to the partition problem then
∑

i∈I zi/z =
∑

i∈I c zi/z = 1, and

E∆(X r)> 1− 1

3

�

2−1+2−5b
+ 2−1+2−5b

�

= 1− 22−5b

3
. (3.7)

Let q be equal to 22−5b
encoded with 5b + 3 bits of precision (and rounded

up), that is, 22−5b ≤ q < 22−5b
+ 2−(5b+3), which implies (by Lemma 24 in [Mauá

et al., 2012]) that

22−5b ≤ q < 22−5b+2−5b
= 221−5b

< 22−4b
. (3.8)

The reduction is carried out by verifying whether max∆ E∆(X r) > 1− q/3. We
already know that if a yes-solution exists then there is a strategy which obtains

9Since the number of bits used to encode the partition problem must be greater than or equal
to n, we have that n/2b ≤ n/b ≤ 1, and hence 2−( j+1)bn< 2− j b, for any j > 0.
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an expected utility greater than 1− q/3, because of (3.7) and the fact that q is
rounded up. Let us then consider the case where a yes-solution does not exist.
We want to show that in this case max∆ E∆(X r) ≤ 1− 22−4b

/3, which by (3.8)
implies max∆ E∆(X r) < 1 − q/3. Since there is no yes-solution, any strategy
induces a partition (I , I c) such that, for some integer −z ≤ c ≤ z different from
zero, we have that

∑

i∈I zi = z − c and
∑

i∈I c zi = z + c, because the original
numbers zi are positive integers that add up to 2z. It follows that

∏

i∈I

t i +
∏

i∈I c

t i ≥ 2c/z−1+ 2−c/z−1 .

The right-hand side of the equality above is a function on c ∈ {−z, . . . , z} \ {0},
which is symmetric with respect to the y-axis and monotonically increasing for
c > 0. Therefore, it obtains its minimum at |c|= 1. Hence,

∏

i∈I

t i +
∏

i∈I c

t i ≥ 21/z−1+ 2−1/z−1 .

Since n> 3 implies z ≥ 2, it follows from Lemma 24 in Mauá et al. [2012] that

21/z−1+ 2−1/z−1 ≥ 21/z4
.

Each number zi is encoded with at least log2 zi bits, and therefore b ≥ log2(z1)+
· · ·+ log2(zn) = log2(z1 · · · zn). The latter is greater than or equal to log2(z1 +
· · ·+ zn), and hence is also greater than log2 z. Thus, we have that z ≤ 2b, which
implies z4 ≤ 24b and therefore 1/z4 ≥ 2−4b and 21/z4 ≥ 22−4b

. Hence,

21/z−1+ 2−1/z−1 ≥ 22−4b
.

Thus, if a yes-solution does not exist we have that

max
∆

E∆(X r) = 1− 1

3

 

∏

i∈I

t i +
∏

i∈I c

t i

!

≤ 1− 22−4b

3
< 1− q/3 .

Therefore, the partition problem can be decided by verifying whether

max
∆

E∆(X r)> 1− q/3 ,

which concludes the proof.

According to the previous result, trading the number of values nodes with the
cardinality of variables does not affect the complexity of the problem. The next
result shows that by allowing diagrams to be multiply connected in exchange of
admitting a single value nodes also does not affect the hardness result.
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Theorem 3.4. For any LIMID L , there is a LIMID L ′ containing a single value
variable such that any strategy ∆ for L is also a strategy for L ′ and obtains the
same expected utility. Moreover, the treewidth of L ′ is at most the treewidth of L
plus three, and the maximum variable domain cardinality is unchanged.

Proof. Consider, without loss of generality, a binary tree decomposition T of L
such that for every value node vi in V there is a leaf node in the tree whose asso-
ciated node set is Pa(vi).10 Assume additionally that the tree is rooted at a node
r and that the leaf nodes `1,`2, . . . ,`q associated to the sets Pa(v1),. . . ,Pa(vq),
respectively, where q = |V | denotes the number of value variables in L , are
ordered in such a way that they agree with an in-order tree traversal of the tree
decomposition, that is, in a depth-first tree traversal of T rooted at r, the node
`1 precedes `2, which precedes `3, and so on. Let e1 > e0 be upper and lower
bounds, respectively, on all the value variables, that is e0 ≤ X vi

≤ e1 for all vi.
Now consider a diagram L ′ width DAG G′, which contains a single value

variable X v instead of the q value variables of L and an augmented set of state
variables XS′ = XS ∪ {Xw1

, . . . , Xwq
, Xo1

, . . . , Xoq
}, where Xw1

, . . . , Xwq
, Xo1

, . . . , Xoq

are binary variables. Furthermore, the subgraph of G′ obtained by considering
only nodes in S and A is identical to the DAG G of L with the state nodes
w1, . . . , wq replacing the value nodes v1, . . . , vq, respectively. Also, the nodes
o1, . . . , oq are arranged in a chain such that w1 is the parent of o1, w2 and o1

are the parents of o2 and so forth, as in Figure 3.6(b). The probability values
associated with each variable Xwi

, i = 1, . . . , q, is given by

P(Xwi
=1|xPa(vi)) =

E(X vi
|xPa(vi))− e0

e1− e0
.

The probability distribution P(Xoi
|Xoi−1

, Xwi
) of each variable Xoi

, i = 1, . . . , q,11

is such that

P(Xoi
=1|Xoi−1

=1, Xwi
=1) = 1 , P(Xoi

=1|Xoi−1
=1, Xwi

=0) = (i− 1)/i ,

P(Xoi
=1|Xoi−1

=0, Xwi
=1) = 1/i , P(Xoi

=1|Xoi−1
=0, Xwi

=0) = 0 ,

and P(Xo1
= 1|Xw1

= 1) = 1 and P(Xo1
= 1|Xw1

= 0) = 0. Finally, the single
value node v has Oq as its sole parent; its conditional expected utility function
E(X v|Xoq

) is defined as E(X v|Xoq
=1) = qe1 and E(X v|Xoq

=0) = qe0.

10Any binary tree decomposition can be transformed to meet this requirement by repeatedly
selecting a node i associated to a superset of the parents of a value node vi not meeting the
requirement, and then adding two nodes j and k such that the children of i become children of
j, and k is a child of i; the node j is associated to the set of variables associated to i, while k is
associated to Pa(vi). Note that the treewidth is unaltered by these operations.

11We assume o0=; for notational convenience
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v1 v2 · · · vq

S, A

(a)

w1 w2 wq

o1 o2 · · · oq v

S, A

(b)

Figure 3.6. (a) Influence diagram with multiple value nodes. (b) Its equiva-
lent influence diagram containing a single value node as used in the proof of
Theorem 3.4.

To show that the treewidth of L ′ does not exceed the treewidth of L in
more than three, we build a tree decomposition T ′ for L ′ based on the tree
decomposition T as follows. The nodes of T ′ are the same nodes of T . For
each node ` in T , let C` and C ′` denote, respectively, the associated node set in
T and T ′. We start with C ′` = C` for all `, and iteratively insert nodes in node
sets of T ′. We take each node `i of T ′ and include wi, oi and oi−1 in C ′i (oi−1

is included for i > 1), which is enough to cover their families and to satisfy
the family preserving property. Note that at this stage T ′ does not satisfy the
running intersection property, because oi−1 appears in both `i−1 and `i but not
necessarily in every (set associated to a) node in between. Then, we walk around
the tree T ′ in a Euler tour tree traversal where each edge is visited exactly twice,
and we include oi−1 in each node of T ′ that appears between `i−1 and `i during
the walk.12 By doing so we guarantee that the running intersection property
is also satisfied in T ′. Since the Euler tour tree traversal visits each leaf once
and each internal node at most three times, the procedure inserts three new
variables in the sets associated to `1, . . . ,`q and at most three variables oi in the
sets associated to non-leaf nodes, and therefore does not increase the treewidth
of the decomposition by more than three.

It remains to show that the diagrams are equivalent with respect to expected

12An Euler tour tree traversal of T rooted at r is a list of 2m− 1 symbols produced by calling
ET (r), where ET (i) is a recursive function that takes a node i with left children j and right
children k (if either exists) and prints out i, calls ET ( j) (if j exists), prints out i again, calls
ET (k) (if k exists), and then prints out i once more. It is equivalent to the list produced by
visiting the nodes in in-, pre- and post-orders at the same time, or more intuitively, by a walk
around the tree starting at the root node.
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utility of strategies. Let ∆ be a strategy for L . Then ∆ is also a strategy for
L ′ (because the two diagrams share the same action variables and graph over
S ∪ A). First, we need to show that for i = 1, . . . , q it follows that

P(Xoi
=1|xS∪A) =

1

i

i
∑

j=1

P(Xw j
=1|xS∪A) ,

which we do by induction on i. The basis (i=1) follows trivially, because P(Xo1
=

1|Xw1
= 1) = 1 by definition, so according to the graph structure we have that

P(Xo1
= 1|xS∪A) = P(Xw1

= 1|xS∪A). Now assume by hypothesis of the induction
that the above result is valid for every 1≤ i ≤ k < q. Then

P(Xok+1
=1|xS∪A) =P(Xok+1

=1|Xok
=1, Xwk+1

=1)
︸ ︷︷ ︸

=1

P(Xok
=1|xS∪A)P(Xwk+1

=1|xS∪A)

+ P(Xok+1
=1|Xok

=1, Xwk+1
=0)

︸ ︷︷ ︸

k/(k+1)

P(Xok
=1|xS∪A)P(Xwk+1

=0|xS∪A)

+ P(Xok+1
=1|Xok

=0, Xwk+1
=1)

︸ ︷︷ ︸

=1/(k+1)

P(Xok
=0|xS∪A)P(Xwk+1

=1|xS∪A)

+ P(Xok+1
=1|Xok

=0, Xwk+1
=0)

︸ ︷︷ ︸

=0

P(Xok
=0|xS∪A)P(Xwk+1

=0|xS∪A) ,

which using 1= 1/(k+ 1) + k/(k+ 1) is

=
�

1

k+ 1
+

k

k+ 1

�

P(Xok
=1|xS∪A)P(Xwk+1

=1|xS∪A)

+
k

k+ 1
P(Xok

=1|xS∪A)P(Xwk+1
=0|xS∪A)

+
1

k+ 1
P(Xok

=0|xS∪A)P(Xwk+1
=1|xS∪A)

=
k

k+ 1
P(Xok

=1|xS∪A) +
1

k+ 1
P(Xwk+1

=1|xS∪A)

=
k

(k+ 1)
1

k

k
∑

j=1

P(Xw j
=1|xS∪A) +

1

k+ 1
P(Xwk+1

=1|xS∪A)

=
1

k+ 1

k+1
∑

j=1

P(Xw j
=1|xS∪A) ,

which shows that the result holds also for i = k+ 1.
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We can now show that for any strategy∆ its expected utility E∆(X v) w.r.t.L ′
equals the associated expected utility E∆(U) w.r.t. L . Let S′′ = S′ \ {oq}. By
definition,

E′∆(X v) =
∑

xS′∪A

P∆(xS′∪A)E(X v|xPa(v))

=
∑

xS′∪A

P∆(xS′∪A)E(X v|xoq
)

=
∑

xS′′∪A

P∆(xS′′∪A)
�

qe1P(Xoq
=1|xS′′∪A) + qe0P(Xoq

=0|xS′′∪A)
�

= qe0+
∑

xS′′∪A

P∆(xS′′∪A)q(e1− e0)P(Xoq
=1|xS′′∪A)

= qe0+ q(e1− e0)
∑

xS∪A

P∆(xS∪A)P(Xoq
=1|xS∪A)

= qe0+ q(e1− e0)
∑

xS∪A

P∆(xS∪A)
1

q

q
∑

i=1

P(Xwi
=1|xS∪A)

= qe0+ q
e1− e0

q

∑

xS∪A

P∆(xS∪A)
q
∑

i=1

P(Xwi
=1|xPa(vi))

= qe0+ (e1− e0)
∑

xS∪A

P∆(xS∪A)
q
∑

j=1

E(X vi
|xPa(vi))− e0

e1− e0

= qe0+
e1− e0

e1− e0

∑

xS∪A

P∆(xS∪A)
q
∑

i=1

�

E(X vi
|xPa(vi))− e0

�

= qe0− qe0+
∑

xS∪A

P∆(xS∪A)
q
∑

i=1

E(X vi
|xPa(vi)) ,

which is equal to
∑

xS∪A
P∆(xS∪A)E(U |xS∪A) = E∆(U).

The hardness of solving multiply connected LIMIDs over binary variables
follows directly from the result above.

Corollary 3.1. Given a LIMID of bounded treewidth over binary state and action
variables and containing a single value node, deciding whether there is a strategy
with expected utility greater than a given rational number k is NP-complete.

Proof. Membership in NP holds since the diagram has bounded treewidth. By
Theorem 3.4, we can reduce any singly connected LIMID of treewidth two
(hence bounded) over binary variables (potentially with with multiple value
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nodes) into a multiply connected LIMID of bounded treewidth over binary vari-
ables and a single value node. The NP-hardness of the latter class of diagrams
follows from the NP-hardness of the former class of diagrams proved in Theorem
3.2.

We finally show the only positive result of this section.

Theorem 3.5. Singly connected LIMIDs with binary state and action variables and
a single value node can be solved in polynomial time.

Proof. Consider a singly connected LIMID L with binary variables and a single
value node, and assume w.l.o.g that the diagram is minimal. Since the diagram
is singly connected, there is a single path between any node and the value node;
since it is minimal, every node has a single child (otherwise we would have
either barren nodes or a cycle), and action nodes have no parents (otherwise
we would have nonrequisite arcs). Since all action nodes are parentless, the
diagram is single-stage, and a strategy ∆= {δ j : j ∈ A} is a multiset of values
for the action variables. Cooper [1988] showed that any influence diagram
with a single value node can have its utility function normalized without loss
of generality. Accordingly, we assume that the value variable X v=U associated
with the (unique) value node v assumes values in a (finite) subset of [0, 1].
We will prove the result by adapting the 2U algorithm of Fagiuoli and Zaffalon
[1998b], which solves updating tasks in credal networks, to solve LIMIDs of the
type assumed. This is an immediate consequence of the decision-theoretic view
of credal networks given by Antonucci and Zaffalon [2008], which correlates
LIMIDs and credal networks and will be discussed in the next chapter.

For each node i, let A(i)
def
= A∩ ({i} ∪An(i)) denote its ancestor action nodes

including i itself if i is an action node (and not including it otherwise), that is,
A(i) denote the action nodes j ∈ A from which there is a directed path to i in the
graph of L plus i itself in case i is an action node. Since L is singly connected,
the ancestors of any two parents of a variable form disjoint sets. Hence, it follows
for any strategy ∆ that

E∆(U) =
∑

xPa(v)

E(X v|XPa(v)=xPa(v))
∏

i∈Pa(v)

P(X i= x i|XA(i)=δA(i)) ,

where δA(i) ∈ ∆ denotes the policies associated with nodes in A(i). Let ∆∗ be
an optimal strategy. We will show that the terms P(X i = x i|XA(i) = δ∗A(i)) in the
equation above satisfy

P(X i= x i|XA(i)=δ
∗
A(i)) =max

δA(i)

P(X i= x i|XA(i)=δA(i)) , (3.9)
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for some value x i ∈ {0, 1}. To this end, consider a state node i in Pa(v). Since X i

is binary, we have that minδA(i)
P(X i=1|XA(i)=δA(i)) = 1−maxδA(i)

P(X i=0|XA(i)=
δA(i)). Suppose, to show a contradiction, that Equation (3.9) is false for some
X i. Hence,

min
δA(i)

P(X i=0|XA(i)=δA(i))< P(X i=0|XA(i)=δ
∗
A(i))<max

δA(i)

P(X i=0|XA(i)=δA(i)) ,

and

min
δA(i)

P(X i=1|XA(i)=δA(i))< P(X i=1|XA(i)=δ
∗
A(i))<max

δA(i)

P(X i=1|XA(i)=δA(i)) .

The expected utility of ∆∗ can be written as

E∆∗(U) = E∆∗(X v|X i=0)+
�

E∆∗(X v|X i=1)− E∆∗(X v|X i=0)
�

P(X i=1|XA(i)=δ
∗
A(i)),

where

E∆∗(X v|X i= x i) =
∑

xPa(v)\{i}

E(X v|XPa(v)=xPa(v))
∏

j∈Pa(v)\{i}
P(X j= x j|XA( j)=δ

∗
A( j)) .

Note that E∆∗(X v|X i = x i) is constant with respect to policies in δ∗A(i), and that
E∆∗(X v|X i = 1) = E∆∗(X v|X i = 0) implies that E∆(U) is constant with respect to
δA(i) (so that Equation (3.9) is trivially satisfied). If E∆∗(X v|X i=1)> E∆∗(X v|X i=
0) then

�

E∆∗(X v|X i=1)− E∆∗(X v|X i=0)
�

P(X i=1|XA(i)=δ
∗
A(i))

<
�

E∆∗(X v|X i=1)− E∆∗(X v|X i=0)
�

max
δA(i)

P(X i=1|XA(i)=δA(i)) ,

which implies that the strategy ∆=∆∗ \ {δ∗A(i)}∪ {δ′A(i)} that we obtain from ∆∗

by replacing δ∗A(i) with

δ′A(i) = argmax
δA(i)

P(X i=1|XA(i)=δA(i))

is better than ∆∗ itself (a contradiction). If, on the other hand, E∆∗(X v|X i=1) <
E∆∗(X v|X i=0) then

�

E∆∗(X v|X i=1)− E∆∗(X v|X i=0)
�

P(X i=1|XA(i)=δ
∗
A(i))

<
�

E∆∗(X v|X i=1)− E∆∗(X v|X i=0)
�

min
δA(i)

P(X i=1|XA(i)=δA(i)) ,
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and the strategy ∆ obtained from ∆∗ by substituting δ∗A(i) with

δ′A(i) = argmin
δA(i)

P(X i=1|XA(i)=δA(i)) = argmax
δA(i)

P(X i=0|XA(i)=δA(i))

is a better strategy (another contradiction). Therefore, Equation (3.9) is true.
Let L x i

i be the diagram obtained from L by removing all variables that are
not an ancestor of i or i, dropping their associated probabilities and expected val-
ues, reassigning i as a value node, and specifying E(X i|XPa(i)) = P(X i= x i|XPa(i)).
The diagram L x i

i can be obtained in time polynomial in the size of L . Sup-
pose an optimal strategy δx i

A(i) for each L x i
i , i = 1, . . . , |Pa(v)| could be ob-

tained in time polynomial in the size of L . Then, by Equation (3.9) an opti-
mal strategy ∆∗ for L can be obtained by exhaustively evaluating the 2|Pa(v)|

strategies ∆ = {δx i
A(i) : i ∈ Pa(v)} that we obtain by different combinations

of x i ∈ {0, 1}. Since L encodes E(X v|XPa(v)), which requires 2|Pa(v)| values,
the exhaustive search takes time polynomial in L . Since each L x i

i is singly
connected, contains only binary variables, and a single value node, its opti-
mal strategy can be obtained similarly, by enumeration of the 2|Pa(i)| strategies
∆i = {δx j

A( j) : j ∈ Pa(i)}. And since the specification of L requires P(X i|XPa(i)),
this step too takes time polynomial in L . Finally, if i is a root note, than i is an
action node an and optimal policy forL x i

i is simply δi = x i, which is obtained in
constant time. By applying this reasoning inductively on the nodes of L in any
topological order, we obtain an optimal strategy ∆∗ for L using O(

∑

i 2|Pa(i)|),
which is polynomial in the size of L .

Any singly connected LIMID can be efficiently transformed into an equivalent
singly connected LIMID with binary action variables.13 Thus, the above result re-
mains valid if we lift the constraint on binary action variable. The results in this
section fully characterize the fixed-parameter complexity of solving LIMIDs
with respect to topology, variable cardinality and number of value nodes:
singly connected diagrams over binary state variables with a single value
node are polynomial-time solvable, and relaxing any of these conditions
creates diagrams which are potentially NP-hard to solve. This is summarized
in Table 3.1. In the next section, we analyze the complexity of the problem if
the requirement of exactness is relaxed.

13We can replace any requisite non-binary action variable taking on v values with dlog2 ve
binary action variables, obtain an arbitrary surjection from joint configurations of the new vari-
ables into values of the original variable, and redefine the probability distribution of its child
variable so that it equals the original distribution when configurations of new variables are
mapped back onto values of the original variable. One can verify that this transformation pre-
serves the value of the maximum expected utility.
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Table 3.1. Parametrized complexity of solving LIMIDs.

topology number of
value nodes

max. variable
cardinality

complexity

polytree one two P
polytree unbounded two NP-complete
polytree one three NP-complete
polytree one unbounded NP-complete
loopy one two NP-complete
loopy unbounded bounded NP-complete

3.5 The complexity of approximately solving LIMIDs

The results in the previous section relate to the difficulty of provably obtaining
an optimal solution, that is, a strategy whose expected utility is maximal. In
practice, one is usually satisfied with approximate solutions, that is, with strate-
gies that achieve a high but not necessarily maximum utility, provided that it
can be obtained efficiently. In this section, we investigate the fixed-parameter
complexity of approximately planning with LIMIDs. First, we define what we
intend by approximately solving a LIMID.

The most usual measure of the quality of an approximate solution in com-
plexity theory is the so-called performance ratio, which in the context of solving
LIMIDs is defined for any strategy ∆ with positive expected utility as

pf(∆) =
E∆(U)

max∆′ E∆′(U)
. (3.10)

Note that the performance ratio is a number between zero and one, and it equals
one if and only if the strategy is optimal. To apply the above measure to evalu-
ating approximate algorithms, we need to constrain the inputs to LIMIDs where
min∆′ E∆′(U) > 0, so that the function is well-defined and behave properly (i.e.,
so that the higher the performance ratio of a solution the better it is). Since for
any positive number β we have that

E∆(βU)
max∆′ E∆′(βU)

=
E∆(U)

max∆′ E∆′(U)
,

the performance ratio of any strategy remains unchanged if we scale the utilities
by a positive number. This, in conjunction with the constraint that min∆′ E∆′(U)>
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0, allows us in the following discussion to focus on LIMIDs whose value variables
take values in [0, 1], without any loss of generality.14

A closely related measure of the quality of a strategy is the relative error,
given by

re(∆) =
max∆′ E∆′(U)− E∆(U)

max∆′ E∆′(U)
. (3.11)

We have that re(∆) = 1− pf(∆), and therefore re(∆) ∈ [0, 1] and is also invari-
ant to positive scalings of the utilities.

The following result shows that it is unlikely that an efficient procedure can
be devised that constructs strategies whose relative error is bounded by a con-
stant, even in structurally simple diagrams.

Theorem 3.6. Unless P equals NP, there is no polynomial-time algorithm that for
any given LIMID finds a strategy whose relative error is at most ε, for any fixed
ε < 1, even if we admit only singly connected diagrams of bounded treewidth and
a single value node.

Proof. Suppose there exists a polynomial-time algorithm for solving singly con-
nected LIMIDs of bounded treewidth, which outputs a strategy whose relative
error is at most ε < 1. We will show that we could use such an algorithm to
decide an NP-complete problem, implying that P equals NP. In particular, we
will use a reduction from the CNF-SAT problem [Garey and Johnson, 1979] into
singly connected LIMIDs of bounded treewidth.

Before stating CNF-SAT, we need to introduce some concepts regarding CNF
Boolean formulas. A clause is a disjunction of literals, each literal being either
a Boolean variable or its negation. We say that a clause is satisfied if, given an
assignment of truth-values to its variables, at least one of the literals evaluates
to 1. We can decide if a truth-value assignment satisfies a clause in time linear
in the number of variables. The CNF-SAT problem is stated as follows.

Given a set of clauses C1, . . . , Cm over (subsets of) Boolean variables
Z1, . . . , Zn, is there an assignment of truth-values to the variables that
satisfies all the clauses?

Let q be a positive integer defined as q = (m+ 1)d− ln(1− ε)e. Note that
q is a polynomial in m, since ε is considered fixed. We reduce an arbitrary in-
stance of CNF-SAT into the LIMID whose graph structure is shown in Figure 3.7,
and whose variables and parameters are specified as follows. For each Boolean

14The restriction to LIMIDs with positive maximum expected utility is necessary, as the perfor-
mance ratio is not invariant to a translation of the utility values.
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s11
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s0q

s1q

...

snq

bq v· · ·

Figure 3.7. LIMID used in the proof of Theorem 3.6.

variable Zi there are q action nodes di1, . . . , diq whose associated variables are bi-
nary and take values in {0,1}, and q state nodes si1, . . . , siq whose associated vari-
ables take values in {0, 1, . . . , m}. Additionally, there are q state nodes s01, . . . , s0q

whose associated variables also take values in {1,2, . . . , m}. Finally, there are q
state nodes b1, . . . , bq associated with binary variables, and a value node v with
bq as parent. The DAG of the LIMID thus consists of q replicas of a singly con-
nected diagram over d1 j, . . . , dn j, s0 j, . . . , sn j, b j. In any replica j ∈ {1, . . . , q}, the
node s0 j act as a clause selector, that is, X s0 j

= k denotes that clause Ck is being
“processed”, and by summing out X s0 j

we process all clauses. The action node
di j, i = 1, . . . , n, represents an assignment of truth-value for the Boolean variable
Zi. Let us specify the numerical parameters. For all j, we assign uniform proba-
bilities to the variable associated with s0 j, that is, P(xs0 j

) = 1/m. The conditional
probabilities of the variable associated with si j are defined as follows:

P
�

xsi j

�

�

�xdi j
, xs(i−1) j

�

=















1, if xsi j
= xs(i−1) j

= 0 ,

1, if xsi j
= 0, xs(i−1) j

= k ≥ 1, Zi = xdi j
satisfies Ck ,

1, if xsi j
= xs(i−1) j

= k ≥ 1, Zi = xdi j
does not satisfy Ck ,

0, otherwise.

Note that for i = 1 the first condition in the definition of the probability function
above is never met since X s0 j

takes values in {1, . . . , m}. The probabilities of the
variables associated with nodes b1, . . . , bq are chosen so as to make the expected
utility of any strategy equal the product of the expected utilities of each replica:

P
�

xb j

�

�

�xsn j
, xb j−1

�

=







1, if xb j
= xb j−1

and xsn j
= 0 ,

1, if xb j
= 0 and xsn j

6= 0 ,

0, otherwise.
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The specification of P(xb1
|xsn1
) is identical to the above by assuming that xb0

=
1. The single value variable X v is defined as X v = X bq

. The LIMID contains
q(2n + 2) + 1 variables, each requiring the specification of at most 2(m + 1)2

numerical parameters taking values in {0,1/m, 1}. So t, the number of numer-
ical parameters in the diagram, is at most q(m + 1)2(4n + 4) + 2, which is a
polynomial poly(n, m) in m and n, since q itself is a polynomial in m.

It remains to show that a polynomial-time algorithm that finds approximate
strategies with provably good relative error can solve the CNF-SAT problem. It
follows from the specification of the LIMID for any strategy ∆ that

E∆(X v) =
1

mq

q
∏

j=1

SAT j(∆) ,

where SAT j(∆) denotes the number of clauses satisfied by the truth-value as-
signment of Z1=δd1 j

, . . . , Zn=δdn j
, δdi j

∈∆.
If the CNF-SAT problem is satisfiable then there is an optimum strategy ∆

such that SAT j(∆) = m for all j, and therefore max∆ E∆(X v) = 1. On the other
hand, if the problem is not satisfiable, then we have for all j and strategy ∆ that
SAT j(∆) ≤ m− 1, and hence max∆ E∆(X v) ≤ (m− 1)q/mq. It follows from the
inequality m+ 1/2> 1/ ln(1+ 1/m) [Mauá et al., 2012, Lemma 25] that

q ln(1+ 1/m)>− ln(1− ε) ,
which is equivalent to

� m

m+ 1

�q

< 1− ε .

If the CNF-SAT instance is satisfiable, any provably good approximate algorithm
for solving LIMIDs returns a strategy ∆ which for some constant ε satisfies

E∆(X v)≥ (1− ε)max
∆′

E∆′(X v)>
� m

m+ 1

�q

>

�

m− 1

m

�q

,

where the rightmost inequality follows from m/(m+ 1) > (m− 1)/m. On the
other hand, if the CNF-SAT instance is not satisfiable, then for any ∆:

E∆(X v)≤max
∆′

E∆′(X v)≤
�

m− 1

m

�q

.

Hence, we can use the approximate algorithm to obtain a strategy ∆ with rel-
ative error at most ε and decide CNF-SAT by verifying whether E∆(X v) > (m−
1)q/mq, which can be done efficiently since the diagram has bounded treewidth,
and the threshold (m− 1)q/mq can be computed in time polynomial in m.
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d1 d2 dn

s0 s1 s2 · · · sn v

Figure 3.8. A chain structured LIMID with n action nodes.

The above result shows that approximately solving LIMIDs within any con-
stant performance ratio is impossible, unless P equals NP. In the spirit of the proof
of inapproximability of maximum a posterior inference in Bayesian networks in
Park and Darwiche [2004, Theorem8], the result can be strengthened to show
that even strategies whose relative error is at most 1−2γt are NP-hard to obtain,
where t is the number of numerical parameters in the input and γ is an arbi-
trary fixed constant between zero and one. In other words, no polynomial-time
algorithm exists that can provably obtain solutions with sub-exponential relative
error (unless P equals NP).

According to Theorem 3.6, polynomial-time algorithms for solving LIMIDs
like Single Policy Update (SPU) [Lauritzen and Nilsson, 2001] or Mini-Bucket
Elimination [Dechter, 2000] cannot guarantee that the relative error of the
strategies they return will be bounded for all diagrams, even if only singly con-
nected diagrams of bounded treewidth and a single value node are considered.
This result is however a worst-case scenario, and it is possible that these al-
gorithms perform near optimally in almost all input instances. To refute such
a claim, we evaluated the accuracy of SPU on randomly generated singly con-
nected LIMIDs with topology as in Figure 3.8. Each diagram was generated
by independently sampling each conditional distribution associated to a chance
node from a symmetric Dirichlet distribution with parameter 1/m, where m is
the number of variable states. This has the effect of favoring low entropy dis-
tributions, which are arguably more realistic. The expected utility of the value
variable is an identity function on some value of X sn

selected arbitrarily.
The plots in Figure 3.9 show the relative error of the strategies returned

by SPU on each experiment, organized according to the cardinality of variable
domains and number of action nodes. The maximum expected utility of each di-
agram was computed using the Multiple Policy Update (MPU) algorithm [Mauá
and de Campos, 2011; Mauá et al., 2012], which despite having exponential
worst-case time complexity finished in at most three seconds in each of these ex-
periments.15 Each circle in the plots depicts the relative error of SPU on a given

15The MPU algorithm operates very similarly to the FACTOR-SET-ELIMINATION algorithm de-
scribed in Chapter 2, except that it discards only dominated factors and it propagates pairs
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LIMID. The solid line indicates the third quartile of each fixed configuration,
that is, 75% of the vertically aligned experiments appear below the line. The
diagrams in the left-hand side plot were obtained with the number of states per
variable fixed at 15, while the diagrams on the right had the number of action
nodes fixed at ten. We see from the third quartile line on the right-hand side
plot that in 25% of the chain diagrams of 20 states and ten decision variables,
SPU returned a strategy whose relative error was greater than 10%. Also, there
were cases where SPU obtained up to 70% relative error, and a non-negligible
amount of cases where SPU returned strategies with relative error greater than,
say, 40%. On the other hand, we see that in the majority of the cases the so-
lution returned by SPU achieved a relative error of less than 10%, and that the
performance of SPU improved with less nodes and smaller variable cardinalities.
The latter remark seems to suggest that the problem is considerably easier if the
variable domain cardinalities are bounded by a small constant. We show in the
following that indeed there exists a procedure for solving LIMIDs of bounded
treewidth and bounded variable domain cardinality that takes a LIMID L and
a constant ε between zero and one, and outputs in time polynomial in the size
of L (measured as the number of symbols in a reasonable encoding of the dia-
gram) and in 1/ε a strategy with relative error at most ε, for any given ε. Such
an algorithm is known as a fully polynomial-time approximation scheme (FPTAS)
for approximately solving LIMIDs.

Theorem 3.7. There is a fully polynomial-time approximation scheme for solving
LIMIDs of bounded treewidth and bounded variable domain cardinality.

Proof. We prove the result constructively, that is, by designing an FPTAS for
the problem. The algorithm we devise is a generalization of the MPU algo-
rithm [Mauá and de Campos, 2011; Mauá et al., 2012], and it relies on the
FACTOR-SET-ELIMINATION algorithm described in Chapter 2 (Algorithm 2) to com-
pute provably good strategies by propagating functions over a tree decomposi-
tion of the diagram.

Consider a LIMID L of treewidth bounded by w and whose variables have
cardinality bounded by v, and assume without loss of generality that L is single
stage, and contains a single value variable X v taking values in [0,1]. For each
action node j in L , let K j denote the set of indicator functions corresponding to
policies for X j. Hence, K j is a set containing D j functions I(x j = x̃ j), one for each
policy state of X j, where D j is the cardinality of X j ’s domain. For each state node

of functions. This makes it an exact solver for LIMIDs which can directly handle multiple value
nodes.
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Figure 3.9. Accuracy of SPU on randomly generated chain diagrams. Each
circle depicts an experiment, and the dashed and solid lines depict, respectively,
the average and third quartile (i.e., 25% of the instances are above the line).

i, let Ki be the singleton containing the conditional probability distribution of X i

given XPa(i). Finally, let Kv be the singleton containing the conditional expected
utility function E(X v|XPa(v)). Note that each set Ki, i ∈ N , is a set of nonnegative
real-valued functions of a subset of X (called factors in Chapter 2). Let be a
minimal T binary tree-decomposition for L whose nodes are associated to sets
C1, . . . , Cm (T can be obtained in linear time as the treewidth of the diagram is
assumed bounded, Bodlaender [1996]). Without loss of generality, assume that
Ci ⊇ Fa(i). For every Ci with i /∈ N , let Ki be a singleton containing the identity
function over XCi

. Also, for every i ∈ N with Ci ⊃ Pa(i), redefine the functions in
Ki so that they have domain XCi

and return the same values when restricted to
XFa(i) (i.e., replace every function ψ of XFa(i) in Ki with a function φ of XCi

such
that φ(xCI

) = ψ(xFa(i))). Consider a sequence of functions φ1, . . . ,φm such that
φi ∈ Ki, i = 1, . . . , m. By design, we have that

∑

xS∪A

m
∏

i=1

φi(xCi
) = E∆(X v) ,

for some strategy ∆, and for every strategy ∆ there is a sequence of functions
φ1, . . . ,φm taken, respectively, from K1, . . . , Km, that satisfies the equation above.
Thus, running the FACTOR-SET-ELIMINATION on sets K1, . . . , Km and tree decompo-
sition T thus defined produces a strategy ∆ and numbers Zl and Zu such that
E∆(X v) = Zl ≤ max∆′ E∆′(X v) ≤ Zu. Recall that FACTOR-SET-ELIMINATION runs in
time polynomial in the constants k1, . . . , km that set the maximum cardinality of
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propagated sets Li, and that

Zl

max∆′ E∆′(X v)
≥ Zl

Zu
≥ 1
∏m

i=1η(Mi, Li)
,

where η(Mi, Li) = maxφ∈Mi
minψ∈Li

maxxCi
φ(xCi

)/ψ(xCi
). Thus, to obtain a

strategy ∆ with pf(∆) ≥ 1 − ε, it suffices to run FACTOR-SET-ELIMINATION with
constants k1, . . . , km such that

m
∏

i=1

η(Mi, Li)≤
�

1+
ε/(1− ε)

2m

�m

≤ 1+
ε

1− ε =
1

1− ε ,

where we used the known inequality (1+ x/2k)k ≤ 1+ k, valid for every pos-
itive integer k and real x in [0, 1] (the inequality assumes that ε ≤ 1/2; if this
is not the case we use a constant error bound 1/2, which obtains the desired
relative error and is still polynomial in 1/ε). Moreover, if k1, . . . , km are poly-
nomially bounded in the size of the input and in 1/ε, the algorithm finishes in
polynomial time in these quantities. This can be done by a suitable initializa-
tion of the greedy clustering scheme performed to obtain the sets L1, . . . , Lm.
Recall that in Chapter 2 we obtained the set Li, i = 1, . . . , m, by performing
a greedy search on an initial set of representatives that was obtained by the K-
MEDOIDS procedure (Algorithm 3). To guarantee the bound η(Mi, Li), we instead
select an initial set of representatives as follows. For an arbitrary node i in T ,
let t = minφ∈Mi

minxCi
φ(xCi

) be the smallest positive number in the image of a
function in Mi and q be the number of assignments to XCi

(i.e., the cardinality
of the domain of the functions). Consider the partition of the q-dimensional
hypercube [0,1]q into hyper-rectangles [l1, u1]× · · ·× [lq, uq] such that for each
j = 1, . . . , q either [l j, u j] = [0, t) or [l j, u j] = [t,α−k] or [l j, u j] = (αk,αk−1],
where k is some nonnegative integer, and

α= 1+
ε/(1− ε)

2m

is the upper bound on η(Mi, Li). There are (1−blogα tc)q such hyper-rectangles,
and each contains zero or more functions φ in Mi. Figure 3.10 illustrates such a
partition for the case of q = 2 and set Mi. Let ki = (1− blogα tc)q and construct
an initial set Li of representatives by selecting at most one function ψ in each
hyper-rectangle. This can be done in time linear in ki and q. Since each function
φ in Mi is obtained by a polynomial number of multiplications and additions of
the numerical parameters in the input, the number t is greater than 2−bn, where
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Figure 3.10. A partition of functions according to hyper-rectangles [l1, u1]×
[l2, u2] such that l j/u j = α, j = 1,2. t is the smallest value returned by a
function in the set.

b is the size of the bit-string encoding the LIMID. Hence,

1− blogα tc ≤ − logα t ≤ bn

lnα
≤ bmn

1− 1/α
=

2bnm2

ε
,

where we have used the inequality ln(x)≥ 1−1/x , valid for any x ≥ 1. Thus, ki

is O([bnm2/ε]q), which is polynomial in b and 1/ε, since q is at most vw, which
is assumed constant, and there is always a minimal tree decomposition with a
polynomial number of nodes in the number of variables n.

The asymptotic analysis in the proof of Theorem 3.7 guarantees only that the
worst-case running time of the FPTAS is bounded by a polynomial with a very
high exponent and huge constants, much too high to enable practical application
of the algorithm. For example, for a LIMID of treewidth five and maximum
variable cardinality four, the polynomial has exponent 45 = 1024. Moreover, if
the smallest value in a function in a set Li is t = 0.05 and ε and m are such that
α = 1.1, the bound on the maximum cardinality of Li is ki ≤ (1− logα t)4

5
>

3245
= 25120. Hence, computing such a set would be prohibitively expensive

for any current computer. This worst-case analysis however does not prevent
us from applying the same reduction used in the proof and heuristically apply
FACTOR-SET-ELIMINATION to solve LIMIDs.

To test the applicability of such an approach, we measured the running time
of the procedure described with relative error upper bound of ε = 0.1 on a set
of 1620 LIMIDs randomly generated as follows. Each LIMID is parametrized by
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the number of action nodes a, the number of state nodes s, the maximum car-
dinality of the domain of the family of a state variable ωS, and the maximum
cardinality of the domain of the family of a action variable ωA. Given a con-
figuration of the parameters, we obtain a LIMID as follows. First, we specify
c + d + v variables taking values in sets containing from 2 to 4 elements (the
actual cardinality is randomly chosen). Then we create the DAG structure as
follows. We start with an empty graph and connect each action node to a value
node. This guarantees that all actions are relevant for the computation of the
maximum expected utility. Then we repeatedly insert arcs in a way that neither
makes the domain of the family of a variable greater than the given bounds nor
makes the treewidth more than 10, until no such arcs can be added.16 The gen-
erated diagram contains action and state nodes with at most log2ωA − 1 and
log2ωS − 1 parents, respectively. Once the DAG is obtained, we randomly sam-
ple the probability mass functions and utility functions associated to state and
value variables, respectively.

We generated 33 different classes of diagrams by selecting different param-
eter configurations in the ranges 5 ≤ a ≤ 50, 8 ≤ s ≤ 50, 8 ≤ ωA ≤ 64 and
16 ≤ωS ≤ 64 (we set v = a+ 2). The procedure was able to finish with a solu-
tion within a time limit of 12 hours (of CPU usage) in approximately 96% of the
cases. To attempt to test the performance of the procedure on difficult instances,
we kept only the class of diagrams in which at most 10% could be solved exactly
within the same time limit of 12 hours by the CR algorithm of de Campos and
Ji [2008], which recasts the problem of solving LIMIDs as a mixed-integer lin-
ear program.17 The results (average running time in seconds and percentage of
solved instances) for each class of “hard” instances are shown in Table 3.2. We
see that the FPTAS was able to solve a large number of instances containing up to
150 variables and 1064 strategies in which CR could not solve, but that it failed to
solve any instances with ωA = 64. The latter quantity, together with the number
of action nodes, determines the number of strategies in the diagram, and hence
the size of the search space. To better visualize the correlation between size of
the search space (which corresponds to the difficult of a brute-force approach)
and performance, we plot the running time of the FPTAS in every instance (i.e.,

16Since current algorithms for checking whether the treewidth of a graph exceeds a fixed k are
too slow for k ≥ 5 Bodlaender [1996], we resort to the minimum fill-in heuristic that resulted
in diagrams whose actual treewidth ranged from 5 to 10.

17We used the CR implementation available at http://www.idsia.ch/~cassio/id2mip/ and
CPLEX (http://www.ilog.com) as mixed-linear integer programming solver. An instance was
consider “solved” by CR if the upper and lower bounds provided by CPLEX within the allowed
time limit differed by less than 0.0001.

http://www.idsia.ch/~cassio/id2mip/
http://www.ilog.com
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Table 3.2. Runtime performance of the FPTAS on “hard” instances.

N a s v ωA ωS % SOLVED RUNTIME

30 50 48 52 8 16 100 0.5 ± 0.09
30 30 38 32 16 16 100 2 ± 10
30 10 28 12 16 64 96 47 ± 142
30 30 88 32 12 16 100 230 ± 1027
60 10 28 12 32 32 93 905 ± 2847
60 20 8 22 32 32 78 938 ± 1417
30 20 8 22 32 64 76 1592 ± 3402
30 50 48 52 12 16 96 1753 ± 7405
30 10 28 12 32 64 86 2440 ± 7606
30 10 28 12 64 64 0 —
30 20 8 22 64 64 0 —

not only those in the “hard” classes) against number of strategies. The result is
shown in Figure 3.11, where we also show for each instance the maximum car-
dinality of a set Li generated during the procedure. These plots suggest that the
procedure complexity grows sub-exponentially with the number of strategies in
diagrams, at least in medium-sized diagrams as the ones we generated (the plots
in Figure 3.11 are in log-scale, so line-like appearance indicates sub-exponential
behavior).

3.6 Conclusion

Influence diagrams are widely used models for decision making under uncer-
tainty. Typically, they represent situations involving a single non-forgetful agent.
This leads to computational difficulties, as an agent acting on a partially observ-
able domain with perfect recall has to store an ever growing amount of infor-
mation regarding previous actions and observations. Limited memory influence
diagrams (LIMIDs) remedy this situation by explicitly modeling which actions
and observations are to be remembered at each decision step.

This chapter provided a deep analysis of the theoretical complexity of plan-
ning with LIMIDs (i.e., of finding mappings from observations to actions that
attempt to maximize expected utility). The outcome of this study shows that
optimal polynomial-time algorithms are unlikely to exist even for diagrams rep-
resenting the most simple decision scenarios. In particular, we have shown that
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Figure 3.11. Performance of the FPTAS on all instances.
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singly connected LIMIDs of bounded treewidth with binary variables and a sin-
gle value node are “easy” to solve, but relaxing any of these conditions can lead
to intractable problems (i.e., NP-hard).

The situation is slightly improved if we consider approximate algorithms with
provably good outputs. In this case, we showed that bounded treewidth LIM-
IDs whose variables take on a bounded number of values can be approximately
solved in polynomial time for any given accuracy. On the other hand, relaxing
any of these conditions leads to inapproximability. In more technical terminol-
ogy, we have shown that the bounded treewidth, bounded variable cardinality
LIMIDs admit a fully polynomial-time approximation scheme, but there are no
approximate algorithm with sub-exponential approximation factor for diagrams
of unbounded variable cardinality (unless P equals NP).

The theoretical results we developed were corroborated by empirical anal-
ysis. We showed that local search procedures are unable to achieve a good
approximation factor in a large number of problem instances (say 25%) involv-
ing diagrams with chain-like structure and a single value node, especially when
the variable cardinality was increased above thirty. On the other hand, the ap-
proximation algorithm we devised, in spite of being too slow to run on large
instances, was able to solve a significantly number of medium-sized diagrams
of bounded treewidth and bounded variable cardinality in feasible time. Thus,
variable cardinality seems to play a major role in the difficulty of planning with
influence diagrams. To our knowledge, this correlation has not been noticed in
the literature before, despite being of practical relevance for people interested
in applying influence diagrams in real world problems.



Chapter 4

Updating credal networks

Bayesian networks are probabilistic graphical models where irrelevance assess-
ments between sets of variables are represented by a directed acyclic graph
(DAG) whose nodes are identified with variables [Pearl, 1988]. They have been
successfully applied to a wide range of data and knowledge-based applications,
from computer vision tasks to decision support systems [Jensen and Nielsen,
2007; Koller and Friedman, 2009]. In addition to its DAG, the specification of a
Bayesian network requires the specification of a conditional probability distribu-
tion for every variable and every configuration of its parents. When information
is costly to acquire, specifying these conditional probabilities can be a daunting
task, whether they are estimated from data or elicited from experts. This causes
the inferences drawn with the model to contain imprecisions and arbitrarinesses
[Kwisthout and van der Gaag, 2008].

An arguably more principled approach to coping with the imprecision in
the numerical parameters is by incorporating it into the formalism. One way
of doing so is by means of closed and convex sets of probability distributions,
which are called credal sets [Levi, 1980]. Other approaches include random
sets [Kendall, 1974], Dempster-Shafer theory [Shafer, 1976; Shenoy and Shafer,
1988], possibility theory [Zadeh, 1978] and coherent lower previsions [Walley,
1991], the last one being largely equivalent to credal sets (there is a one-to-one
correspondence between credal sets and coherent lower previsions). Bayesian
networks whose numerical parameters are specified by conditional credal sets
are known as credal networks [Cano et al., 1994; Cozman, 2000, 2005]. Credal
networks have been successfully applied to robust pattern recognition [Zaffalon
et al., 2003; Zaffalon, 2005; de Campos et al., 2009; Antonucci et al., 2009;
Corani et al., 2010; Antonucci et al., 2011; de Campos and Ji, 2011], and
knowledge-based systems, where it has been argued that allowing parameters
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to be imprecisely specified facilitates elicitation from experts [Walley, 2000; An-
tonucci et al., 2007; Salvetti et al., 2008; Antonucci et al., 2009; Piatti et al.,
2010; Antonucci et al., 2013c].

A Bayesian network provides a concise representation of the (single) joint
probability distribution that is consistent with the network parameters and sat-
isfies (at least) the set of stochastic independences encoded in the graph. Anal-
ogously, a credal network provides a concise representation of the credal set of
joint distributions that are consistent with the local credal sets and satisfy (at
least) the irrelevances encoded in the graph. The precise characterization of this
joint credal set depends however on the concept of irrelevance adopted.

The two most commonly used irrelevance concepts in the literature are strong
independence and epistemic irrelevance. Two variables X and Y are strongly in-
dependent if the joint credal set of X and Y can be regarded as originating from
a number of precise probability distributions under each of which the two vari-
ables are stochastically independent. Strong independence is thus closely related
to the sensitivity analysis interpretation of credal sets, which regards an impre-
cisely specified model as arising out of partial ignorance of an ideal precisely
specified one [Walley, 1991; Kwisthout and van der Gaag, 2008; Antonucci and
Piatti, 2009; Zaffalon and Miranda, 2009]. If a piece of uncertain knowledge is
considered poorly represented by any precise probability distribution, then any
irrelevance concept that is based on precise probability models might not be very
suited for the task. Arguably, a proper notion of irrelevance between events in
such a case should be a property of the conditional credal sets. Epistemic irrel-
evance is one such possible notion. A variable X is epistemically irrelevant to a
variable Y if the marginal credal set of Y according to our model is the same
whether we observe the value of X or not [Walley, 1991]. Intuitively, variable X
is epistemically irrelevant to Y if our beliefs about the value of latter is unaltered
by the disclosure of the value of former. Unlike strong independence, epistemic
irrelevance is an asymmetric concept and cannot in general be characterized by
the properties of the elements of the credal set alone [de Cooman et al., 2010].
Moreover, strong independence implies epistemic irrelevance, whereas the con-
verse might not hold.

If on the one hand the flexibility provided by credal sets arguably facilitates
model building, on the other, it imposes a great burden on the computation of
inferences. For example, whereas computing the posterior probability of a vari-
able is polynomial-time computable in polytree-shaped Bayesian networks, the
analogous task in credal polytrees, that is, computing upper and lower bounds
on the posterior probability of a given variable is an NP-hard task [de Campos
and Cozman, 2005]. There are however exceptional cases, such as the case of



85

credal polytrees with binary variables, which can be solved in polynomial time.
Like in Bayesian networks, the theoretical and practical tractability of inferences
in credal networks depends strongly on the network topology and the cardinality
of the variable domains. Credal networks however include another dimension
in the parametrized complexity of inference, given by the type of irrelevance
concept adopted, which in the Bayesian case is usually fixed. For instance, com-
puting probability bounds in credal trees under the concept of epistemic irrele-
vance can be performed in polynomial time [de Cooman et al., 2010], whereas
we show here that the same task is NP-hard under strong independence.

From an algorithmic perspective, drawing inferences from credal networks
under strong independence shares a great deal of similarity with planning in
limited memory influence diagrams and performing maximum a posteriori in-
ference in Bayesian networks. In fact, one of the common approaches to updat-
ing probability bounds in credal networks under strong independence is to re-
duce the problem to the computation of a MAP inference in a properly designed
Bayesian network [Cano et al., 1994; Cozman, 2000]. The converse also holds,
that is, any MAP assignment task can be reduced to the computation of proba-
bility bounds in a credal network under strong independence [de Campos and
Cozman, 2005]. Antonucci and Zaffalon [2008] showed the correspondence be-
tween inference in credal networks and planning with LIMIDs. Particularly, they
showed that the computation of probability bounds in credal networks under
strong independence can be given a decision-theoretic interpretation, in which
one selects extreme distributions of the local conditional credal sets in order
to maximize (or minimize) a posterior probability, and thus be reduced to the
computation of an optimal strategy in a LIMID.

Although these reductions and equivalences between these seemingly dif-
ferent problems allow us to derive many complexity results and algorithms
for one task from the others, they are often inconclusive with respect to the
parametrized complexity, as the reductions often produce models with topology
or variable cardinalities others than that of the original model. For instance, the
known reductions map an inference in a credal tree into a MAP inference in a
Bayesian polytree, or into solving a multiply connected LIMID. Furthermore, all
these equivalences assume strong independence of the credal network, and it
is not clear how results concerning epistemic irrelevance could be derived from
them.

In the rest of this chapter, we define credal networks (Section 4.1), formalize
the updating problem (Section 4.2), and investigate the parametrized theoret-
ical computational complexity of inferences in credal networks (Section 4.3),
both under strong independence and epistemic irrelevance. We show that a par-
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ticular type of inference in imprecise hidden Markov models (i.e., HMMs with
uncertainty quantified by local credal sets) is invariant to the choice of either ir-
relevance concept, being thus polynomial-time computable (as this is known to
be the case under epistemic irrelevance. We also show that even in credal trees
inferences are NP-hard if we assume strong independence, and that this is the
same complexity of inference in credal polytrees for both irrelevance concepts,
even if we assume that all variables are ternary. We prove that the so-called lin-
ear vacuous models, that is, credal networks that can be seen as a mixture of a
vacuous prior and a precise likelihood, lead to the same inferences whether we
assume epistemic irrelevance or strong independence. Finally, we show the exis-
tence of a fully polynomial-time approximation scheme for inferences in credal
networks of bounded treewidth and bounded variable domain cardinality under
strong independence.

Most of the material presented here appeared in References [Mauá et al.,
2011], [Mauá et al., 2012b] and [Mauá et al., 2013].

4.1 Credal networks

Consider a finite set of variables X= {X i : i ∈ N}, each variable taking values in a
finite set. A credal set is a closed and convex set of probability distributions of the
same set of variables [Levi, 1980]. The vacuous credal set of a set of variables
XS ⊆ X is the largest credal set of probability distributions of those variables,
and is denoted by V (XS). A conditional credal set is a credal set of conditional
probability distributions of the same set of variables, and all conditioned on the
same event. The lower expectation LM( f ) of a real-valued function f of a subset
of variables XS under a fixed credal set M of probability distributions of XS is the
minimum expectation of f under any distribution in the credal set, that is,

LM( f )
def
= min

p∈M
Ep( f )

def
= min

p∈M

∑

xs

f (xS)p(xS) , (4.1)

where Ep( f ) denotes the expectation of f under a given probability distribution
p of XS in M . One can verify that lower expectations under the same credal set
are positive homogeneous and superlinear, and avoid sure loss, that is, LM(a f ) =
aLM( f ) if a ≥ 0, LM( f + g) ≥ LM( f ) + LM(g), and LM( f ) ≥ min f for any real-
valued functions f and g and number a. Thus, lower expectations thus defined
are equivalent to Walley’s definition of coherent lower previsions [Walley, 1991,
Chapter 3.3].
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An extreme distribution of a credal set is an element of the set that cannot
be written as a convex combination of other elements in the same set. We de-
note the set of extreme distributions of a credal set M by ext M . A credal set is
finitely generated if it contains a finite number of extreme distributions. A finite
representation of a finitely generated credal set by means of its extreme distri-
butions is called vertex based. Any finitely generated (conditional) credal set of a
subset of variables XS in X defines a (bounded) polytope in the probability sim-
plex of distributions of XS, and can therefore be written as a finite set of linear
inequalities in p(xS) of the form [Cozman, 2000]

∑

xS

f (xS)p(xS)≤ 0 , (4.2)

where f is any real-valued function of XS. The converse is also true: any finite
set of linear inequalities of the form above determines a (bounded) polytope in
the probability simplex [Boyd and Vandenberghe, 2004, Chapter 2], and hence
a finitely generated credal set. Thus, an alternative finite representation of a
credal set is by means of a finite set of functions defining linear inequalities of
the type above. Such a representation is called constraint based. Vertex- and
constraint-based representations of the same credal set can have very different
sizes. To see this, consider a single variable X taking values in {0, 1, . . . , m} =
{0} ∪ [m], and let M = {p ∈ V (X ) : p(k) ≤ 1/(m + 1), k = 1, . . . , m}. The
set M is isomorphic to an m-dimensional hypercube, and therefore has 2m ex-
treme distributions,1 whereas the same set can be represented in constraint-
based form by m degenerate functions of X translated by 1/(m + 1). Moving
from a vertex-based to a constraint-based representation can also result in an
exponential increase in the size of the input. Consider a variable X taking
values in [m] and let M = co{e1, . . . , em, 1− e1, . . . , 1− em}, where co denotes
the convex hull operator, and ek the degenerate distribution placing all mass
at X = k. It can be shown that M is affinely equivalent to the m-dimensional
cross-polytope { f (X ) :

∑

x | f (x)| ≤ 1}, which is the dual of the m-dimensional
hypercube and whose constraint-based representation requires 2m inequalities,
whereas its vertex-based representation needs only 2m distributions [Kalai and
Ziegler, 2000, page 11]. Tessem [1992] and de Campos et al. [1994] stud-
ied the representation of credal sets defined by linear constraints of the form

1For any nonnegative integer k not greater than m and any (potentially empty) subset S
of [m] of cardinality k, any distribution that assigns mass (m+ 1− k)/(m+ 1) to p(0), mass
1/(m+ 1) to p( j) such that j is in S, and zero mass elsewhere, is in M , since it satisfies all the
constraints in M and is a valid distribution. There are 2m such distributions, and each one cannot
be written as a convex combination of any other distribution in the set, since each “touches” an
inequality in at least one dimension.
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lx ≤ p(x) ≤ ux , where lx and ux are real numbers, and showed that these
credal sets can have exponentially many extreme distributions in the number
of constraints. Wallner [2007] proved an attainable upper bound of m! extreme
distributions on credal sets more generally defined by a coherent lower probabil-
ity function of an m-ary variable. More recently, Miranda and Destercke [2013]
investigated the number of extreme distributions in credal sets defined by linear
constraints of the form p(x) ≤ p(x ′) for x 6= x ′, and proved an attainable up-
per bound of 2m−1 for the case of an m-ary variable. Importantly, both vacuous
credal sets (of variables of any cardinality) and credal sets of binary variables
can be succinctly represented in either vertex- or constraint-based form. The
next example is supposed to clarify the terminology and concepts.

Example 4.1. Consider X = {X1, X2}, where X1 takes values in {0, 1,2}, and X2

takes values in {0,1}. The conditional vacuous set for X1 given X2 is the probability
simplex on the plane, drawn as a triangles with vertices p(1), p(2) and p(3) in
Figure 4.1. Let

M(X1|X2=0) = {p ∈ V (X1) : p(k)≤ 1/3, k = 1,2}

and

M(X1|X2=1) = {p ∈ V (X1) : p(0)≤ p(1)≤ p(2)}
be conditional credal sets for X1 given X2, and M(X2) be the singleton containing
the distribution p of X2 such that p(0) = p(1) = 1/2. The first two sets are depicted
in Figure 4.1. Let us represent a generic function f on {0, . . . , m} by the m-tuple
( f (0), . . . , f (m)), and define

p1 = (1, 0,0) , p2 = (2/3,1/3, 0) ,

p3 = (1/3,1/3, 1/3) , p4 = (2/3,0, 1/3) ,

p5 = (1/2,1/2, 0) , f1 = (−1,2,−1) ,

f2 = (−1,−1,2) , f3 = (1,−1,0) ,

f4 = (0, 1,−1) , f5 = (1,−1) .

Then the set M(X1|X2 = 0) can be represented in vertex- and constraint-based
form, respectively, as M(X1|X2 = 0) = co{p1, p2, p3, p4} and M(X1|X2 = 0) =
{p ∈ V (X1) : Ep( f1) ≤ 0, Ep( f2) ≤ 0}, while the set M(X1|X2 = 1) is repre-
sented in vertex- and constraint-based forms as M(X1|X2 = 1) = co{p1, p3, p5}
and M(X1|X2=1) = {p ∈ V (X1) : Ep( f3) ≤ 0,Ep( f4) ≤ 0}, respectively. Similarly,
M(X2) can be represented as M(X2) = {(1/2, 1/2)} in vertex-based form, and as
M(X2) = {p ∈ V (X2) : Ep( f5)≤ 0, Ep( f5)≥ 0} in constraint-based form.
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Figure 4.1. Barycentric coordinate-system visualization of the conditional
credal sets in Example 4.1 (hatched regions) and their corresponding extreme
distributions (black circles).

A separately specified credal network is a triple (X, G, M), where G = (N , A) is
a DAG, and M is a set of “local” credal sets M(X i|xPa(i)) of conditional probability
distributions of X i, one set for each variable X i in X and each configuration xPa(i)

of its parents. A node i and its associated variable X i are said to be precise if the
corresponding conditional credal sets M(X i|xPa(I)) are all singletons, otherwise
they are said to be imprecise. If all local credal sets are vacuous, the node is said
to be vacuous. A Bayesian network is simply a credal network with all nodes
precise. The following example contains a simply separately specified credal
network.

Example 4.2. Consider the credal network N over variables X1, X2 and X3 that
take values in {0,1}, and with DAG as shown in Figure 4.2. The local credal sets
are

M(X1) = {p ∈ V (X1) : 0.5≤ p(1)≤ 0.6}= co{(0.4, 0.6), (0.5, 0.5)} ,
M(X2) = {p ∈ V (X2) : 0.5≤ p(1)≤ 0.6}= co{(0.4, 0.6), (0.5, 0.5)} ,

and M(X3|X1 = i, X2 = j) = {pi j} for any i and j, where pi j is the probability
distribution of X3 such that pi j(1) = 0 if i = j and pi j(1) = 1 otherwise.

The local credal sets in a credal network are represented either in constraint-
or vertex-based form. When represented by vertices, it is also common to allow
for the specification of logical constraints on the extreme distributions of the
local credal sets of a variable. This is usually accomplished by replacing the col-
lection of local conditional credal sets with a collection of conditional probability
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1 2

3

Figure 4.2. DAG of the credal network in Example 4.2.

potentials p(X i;XPa(i)), one for each variable X i, where a probability potential
is simply a function of both X i and XPa(i) that returns a conditional probability
distribution p(X i;xPa(i)) for every assignment xPa(i). A conditional probability po-
tential p(X i;XPa(i)) is a collection of statements that the simultaneous selection
of extreme distributions p(X i;xPa(i)) and p(X i;x′Pa(i)) from different local credal
sets M(X i|xPa(i)) and M(X i|x′Pa(i)), with xPa(i) 6= x′Pa(i), is valid or feasible, implying
that missing combinations are inadmissible. A node whose local model is rep-
resented by probability potentials is said to be extensively specified. Credal net-
works whose nodes are extensively specified are called also extensively specified.
By definition, when represented in vertex-based form the unconditional credal
sets associated to root nodes of the network are both extensively and separately
specified.2 Thus, vertex-based credal networks whose non-root nodes are pre-
cise are both extensively and separately specified. In the literature, extensively
specified local credal sets have only been considered when strong independence
is assumed. We follow the literature and implicitly assume separate specifica-
tion of local credal sets when discussing epistemic irrelevance. The following
example illustrates a simple extensively specified credal network.

Example 4.3. Consider the separately specified credal network N in Example 4.2,
and redefine the local credal sets associated to X3 as vacuous credal sets. Note
that for any values of x1 and x2, the extreme distributions of the local credal sets
M(X3|x1, x2) are the distributions p00 and p01 as defined in Example 4.2. Specify
logical constraints on extreme distributions of M(X3|x1, x2) by the two potentials

X1 X2 p1(X3; X1, X2) p2(X3; X1, X2)
0 0 p00 p01

0 1 p00 p01

1 0 p00 p01

1 1 p00 p01

In other words, X3 is a vacuous node with the extensive constraint that the same
degenerate distribution ought to be selected on each of the local credal sets corre-
sponding to different configurations of the parents.

2We say that a node i is separately specified if there are no logical constraints on the distri-
butions of any two conditional credal sets M(X i |x j) and M(X i |x ′j), with x j 6= x ′j .
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The DAG G of a credal network specifies a set of conditional irrelevancies be-
tween sets of variables which generalize the Markov condition in Bayesian net-
works. More specifically, for any node i in G, the set XNd(i)\Pa(i) of non-descendant
non-parent variables of X i is assumed irrelevant to X i conditional on its parent
variables XPa(i). The precise definition of this statement requires the definition
of an irrelevance concept. For instance, if stochastic independence is adopted
as irrelevance concept, then the DAG G describes a set of Markov conditions as
a Bayesian network. In the credal network formalism, the two most common
irrelevance concepts used are strong independence and epistemic irrelevance.

Any joint probability distribution p ∈ V (X) induces a probability measure Pp

on the sigma-field of all subsets of assignments of X. If K is a credal set of joint
probability distributions of X, we define, for any two subsets XS and XR, and
assignment xR, the conditional credal set of Xs given XR=xR induced from K as

K(XS|xR) =
¦

p′ ∈ V (XS) : p′(xS) = Pp(xS|xR), Pp(xR)> 0, p ∈ K(X)
©

. (4.3)

In other words, K(XS|xR) is the set of conditional distributions obtained by apply-
ing the standard definition of conditional probability to every joint distribution p
in K(X) whenever that operation is well-defined (i.e., whenever it assigns posi-
tive probability to the event xR). We say that a set of variables XR is strongly inde-
pendent of a set of variables XS given variables XT if XS and XR are stochastically
independent conditional on XT under every extreme distribution P ∈ ext K(X),
which implies for every xR and xT that K(XS|xR,xT ) = K(xS|xT ). We say that a set
of variables XR is epistemically irrelevant to a set of variables XS conditional on
variables XT if K(XS|xR,xT ) = K(XS|xT ) for all assignments of xR and xT . Hence,
strong independence implies epistemic irrelevance (and the converse is not nec-
essarily true) [Cozman, 2000; de Cooman and Troffaes, 2004]. Variables XS and
XR are epistemically independent conditional on XT if, given any assignment xT ,
XR and XS are epistemically irrelevant to each other [Walley, 1991, Ch. 9].

The strong extension of a credal network (X, G, M) is the largest credal set
KS of distributions of X that satisfies the strong independence assessments in
G (viz. that every variable is strongly independent of its non-descendant non-
parents given its parents), and whose induced conditional credal sets KS(X i|xPa(i))
equal the local credal set M(X i|xPa(i)) for any X i and xPa(i). The strong extension
can be equivalently defined as

KS = co

(

p ∈ V (X) : p(x) =
∏

i∈N

p
xPa(i)

i (x i), p
xPa(i)

i ∈ ext M(X i|xPa(i))

)

. (4.4)

By generating a probability potential for every possible combination of extreme
distributions of every local credal set associated to a variable, a vertex-based,
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separately specified credal network can be reduced to an extensively specified
credal network that induces the same strong extension. Such a transformation
preserves the topology of the network, but takes time exponential in the number
of parents. On the other hand, any extensively specified credal network can
be efficiently reduced to a separately specified credal network that induces the
same strong extension, although the reduction inserts new root nodes which
causes trees to be mapped into polytrees [Antonucci and Zaffalon, 2006, 2008].
Also, any vertex-based (separately specified) credal network can be efficiently
reduced to a constraint-based network that induces the same strong extension,
but the reduction inserts loops (i.e., cycles in the subjacent undirected graph) in
the network.3 It is unclear whether constraint-based networks can be efficiently
reduced to vertex-based form by inserting new variables, but we conjecture that
this is true.

The epistemic extension of a credal network is the largest joint credal set KE(x)
that satisfies the epistemic irrelevance assessments in G (viz. the non-descendant
non-parents are irrelevant to a variable given its parents), and whose induced
local credal set sets agree with the local credal sets in M . Equivalently, the
epistemic extension is the credal set KE such that

KE(X i|xNd(i)) = M(X i|xPa(i)) , (4.5)

for every variable X i and assignment xNd(i) of XNd(i). Equation 4.5 is equivalent
to the constraints

∑

x i

f (x i)Pp(x i|xNd(i))≥min
∑

x i

f (x i)q(x i|xPa(i)) , (4.6)

for all functions f of X i, assignment xNd(i), and distribution p ∈ KE with positive
Pp(xNd(i)), where the minimization is performed over q ∈ M(X i|xPa(i)). Note that
these inequalities can be turned into linear inequalities of the form (4.2) by
multiplying both sides by Pp(xNd(i)) and rearranging terms.

Example 4.4. Consider the network in Example 4.2, and represent a function
f of a binary variable as the pair ( f (0), f (1)). The strong extension KS is the

3Let X i be a variable whose local credal set M(X i |xPa(i)) is specified by the extreme distri-
butions p1, . . . , pm, for a given configuration of the parents. Insert a new vacuous variable Xα
taking values in [m], and with X i as its child and XPa(i) as its parents, and redefine M(X i |xPa(i))
as the singleton that contains the conditional distribution p(x i |xPa(i), xα= k) = pk(x i). One can
verify that the strong extension of the new network after marginalizing Xα coincides with the
original strong extension.
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credal set whose extreme distributions are the four joint probability distributions
p ∈ V (X1, X2, X3) such that

p(x1, x2, x3) = p1(x1)p2(x2)p
x1 x2
3 (x3) [x1, x2, x3 = 0, 1] ,

where

p1 ∈ {(0.4, 0.6), (0.5, 0.5)} , p2 ∈ {(0.4,0.6), (0.5,0.5)} ,
p00

3 = p11
3 = (1,0) , p01

3 = p10
3 = (0, 1) .

The epistemic extension KE is the set of joint probability distributions p ∈ V (X1, X2, X3)
that satisfy the system of linear inequalities

0.5= min
q∈M(X1)

q(X1=1)≤ Pp(X1=1|x2)≤ max
q∈M(X1)

q(X1=1) = 0.6 [x2 = 0, 1] ,

0.5= min
q∈M(X2)

q(X2=1)≤ Pp(X2=1|x1)≤ max
q∈M(X2)

q(X2=1) = 0.6 [x1 = 0, 1] ,

Pp(X3=1|X1= x , X2= x) = 0 [x = 0, 1] ,

Pp(X3=1|X1=0, X2=1) = Pp(X3=1|X1=1, X2=0) = 1 .

One can verify that the set KE has six extreme distributions, of which two are not
in the strong extension.

The example above shows an interesting and well-known relation between
epistemic and strong extensions, namely, that the latter is always contained in
the former, and thus produces more precise results [Walley, 1991, Chapter 9.2].

4.2 Belief updating

A credal network can be seen as a complete (although imprecise) quantification
of the decision maker’s beliefs about certain scenarios involving local domains,
specifically, about the likely value of any variable conditional on its parents.
These beliefs are quantified by the local credal sets that specify the network.
A typical application of probabilistic reasoning is to prescribe what the beliefs
about scenarios other than those already specified ought to be if the decision
maker is to behave rationally. This inferential task is generally called belief up-
dating. In precise models (e.g. Bayesian networks), it is performed by applying
Bayes’ rule with likelihood and prior distributions induced by the single joint
probability distribution that is consistent with the network constraints. The gen-
eralized Bayes’ rule (GBR) extends this inference to credal networks. Let Xq be a
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variable of interest, f be a function of Xq, and XO be a set of evidence variables
which we know to be x̃O. Then the GBR is the solution µ of the identity

min
p∈K

∑

x:xO=x̃O

�

f (xq)−µ
�

p(x) = 0 , (4.7)

where K is either the epistemic or strong extension of the network. Assuming
that minp∈K(XO) p(x̃O)> 0, it follows that

µ= LK(Xq|XO=x̃O)( f ) , (4.8)

that is, µ is the lower posterior expectation of f with respect to the (strong or
epistemic) extension of the network. In particular, when K includes a single
distribution, the GBR is equivalent to Bayes’ rule. For the rest of this chapter, we
assume that the lower probability of the evidence is positive whenever the GBR
is applied. For a recent treatment of the zero probability case, see Ref. [de Bock
and de Cooman, 2013].

Example 4.5. Consider again the network in Example 4.2, and assume that Xq =
X3, f = (1,0) and XO is the empty set. Then applying the GBR is equivalent
to finding the lower marginal probability µ = minp∈K(X3) p(0) induced by some
network extension. Assuming strong independence (hence considering the strong
extension KS in Example 4.4), the outcome of the GBR is

µ=min
∑

x1,x2

p1(x1)p2(x2)p
x1 x2
3 (0)

= 1+min{2p1(0)p2(0)− p1(0)− p2(0)}
= 1− 1/2= 1/2 ,

where the minimizations are performed over p1 and p2. The outcome of the GBR
under epistemic irrelevance is the value of the solution of the linear program µ =
min{p(0, 0,0) + p(1,1, 0) : p ∈ KE} = 5/11 < 1/2, where KE is the epistemic
extension defined in Example 4.4.

The fact that the outcome of the GBR under epistemic irrelevance in the ex-
ample above is smaller than under strong independence is a direct consequence
of the fact that the strong extension is contained in the epistemic extension.

Computing the GBR is notoriously a hard task, whose complexity strongly
depends on the topology of the DAG, the cardinality of the variable domains,
and the irrelevance concept adopted. Cozman et al. [2004] showed that un-
der strong independence, the problem is NPPP-hard. De Campos and Cozman
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Table 4.1. Parametrized complexity of the GBR.

MODEL STRONG EPISTEMIC

Imprecise HMM (query on last node) P P
Imprecise HMMs Unknown P
Credal trees NP-hard P
Credal polytrees with binary variables P Unknown
Credal polytrees with ternary variables NP-hard NP-hard
Bounded treewidth networks NP-hard NP-hard
Credal networks NPPP-hard NPPP-hard

[2005] studied the fixed-parameter complexity under strong independence and
concluded that the problem is NP-hard even on polytree-shaped networks of
bounded treewidth. We show here that the problem remains NP-hard in polytree-
shaped credal networks if we constraint variables to take on at most three values.
When instead epistemic irrelevance is assumed, no polynomial-time algorithm
for the task is known. Indeed, we show later on this chapter that a polynomial-
time algorithm for this case implies that P equals NP, and is therefore unlikely.
Under strong independence, a long-known positive result is the 2U algorithm
of Fagiuoli and Zaffalon [1998b], which solves the problem in polynomial time
if the DAG is a polytree and all variables are binary. A positive result under
epistemic irrelevance was more recently given by de Cooman et al. [2010], who
developed a polynomial-time algorithm for GBR computations in credal trees.
No analogous algorithm is known to exist under strong independence, and in
fact we show here that also this problem variant is NP-hard. A credal hidden
Markov model (HMM) is a particular type of tree-shaped credal network com-
monly used to represent time-dependent processes. Since an HMM is a tree, the
GBR can be computed efficiently under epistemic irrelevance. It remains un-
known whether the same task is NP-hard under strong independence. However,
we show here that at least for a particular type of inference (viz. when there is
no node succeeding the queried variable in the topological ordering), the GBR
under strong independence can be computed efficiently in HMMs. These results
are summarized in Table 4.1.

In terms of approximate results, de Campos and Cozman [2005] showed
that computing provably good approximations under strong independence is NP-
hard, even if we consider only credal polytrees of bounded treewidth. Recently,
we showed the existence of a fully polynomial-time approximation scheme for
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credal networks of bounded treewidth and bounded variable cardinality under
strong independence [Mauá et al., 2012b]. It is still unknown whether an anal-
ogous result can be obtained under epistemic irrelevance. In spite of such neg-
ative results of the problem, several algorithms have been developed that either
sacrifice accuracy or runtime performance. Under strong independence, the
A/R algorithm of Tessem [1992] extends Pearl’s belief propagation algorithm
for Bayesian networks to allow probability intervals to be propagated, which led
to an efficient but highly inaccurate algorithm. Cano et al. [1994] and Cano and
Moral [1996] used greedy approaches to solve the problem that sample extreme
distributions from the local credal sets using standard combinatorial optimiza-
tion techniques. De Campos and Cozman [2004] reduced the computation of
the GBR under strong independence to a multilinear program, which was then
solved by a custom-made software. Their algorithm runs in exponential-time in
the worst case, but often finds the solution in feasible time, and can be stopped
with an approximate answer at any time. Da Rocha and Cozman [2005] im-
proved on the A/R algorithm, giving rise to the A/R+ algorithm, and combined
its improved version with local search methods to reach an exact solution (in ex-
ponential time in the worst case) by branch-and-bound. Cano et al. [2007] used
probability trees and local search to arrive at a branch-and-bound procedure.
De Campos and Cozman [2007b] showed that it is possible to efficiently reduce
the computation of the GBR in bounded treewidth networks to a mixed integer
linear program, which can then be solved using standard solvers. As with any
mixed integer linear program, the solver can be run until a desired accuracy is
achieved (which might take exponential time), and stopped at any moment to
produce a solution within known error bounds (which can be arbitrarily loose
for any sub-exponential time interval). The GL2U algorithm [Antonucci et al.,
2010] generalizes 2U to multiply connected networks with non-binary variables,
and runs in polynomial time on any network (i.e., its running time does not de-
pend on the network treewidth). GL2U’s efficiency comes at the expense of
accuracy in the results, as the algorithm does not provide any guarantees on the
quality of the solutions it returns. Recently, Antonucci et al. [2013b] devised
an algorithm that computes the GBR by solving a sequence of linear programs
obtained by fixing the local distributions of all but one variable in the network.
They report significant improvements in accuracy with respect to GL2U and the
iterated local search devised by da Rocha and Cozman [2005].

Not so many algorithms have been developed for epistemic irrelevance. We
have already mentioned the exact polynomial-time algorithm for tree-shaped
networks of de Cooman et al. [2010]. De Bock and de Cooman [2011] devel-
oped an algorithm to compute a particular type of the GBR inference with the
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intent of finding the maximal assignments of the hidden variables in imprecise
hidden Markov models under epistemic irrelevance (these models are special
types of tree-shaped credal networks defined in Section 4.3.2). Perhaps the only
practical algorithm for networks with structure more complex than trees is the
one developed by de Campos and Cozman [2007a], which recasts the compu-
tation of the GBR under epistemic irrelevance as a multilinear program. Their
method is able to cope with mixed epistemic and strong irrelevance assessments.
On the other hand, the method comes with no performance guarantees, which
is not surprising in the light of the NP-hardness results we show later on.

4.3 Parametrized complexity of the GBR

In this section, we study the complexity of computing the GBR in credal net-
works with different assumptions about the network topology and the variable
domain cardinality. We start with a result that shows the equivalence between
epistemic irrelevance and strong independence is a special class of networks.
This equivalence is important as it allows us to use known results about the
hardness of computing the GBR under strong independence to derive hardness
of the GBR under epistemic irrelevance.

Proposition 4.1. Consider a credal network whose root nodes are vacuous and
non-root nodes are precise. Then the result of the GBR for an arbitrary function
f of a variable Xq associated to a non-root node q and no evidence is the same
whether we assume epistemic irrelevance or strong independence.

Proof. Let XR be the vacuous variables associated to root nodes (hence to vacu-
ous local credal sets), and XI denote the remaining variables (which are associ-
ated to singleton local credal sets). For every precise node i in I , let p

xPa(i)

i (x i) be
the single distribution in the associated credal set. Consider an arbitrary distri-
bution p in the epistemic extension KE, and let < be a topological ordering of the
nodes. For every node i the set { j ∈ N : j < i} is a subset of Nd(i), and it follows
from the definition of epistemic extension that Pp(x i|x j<i) = p

xPa(i)

i (x i) for every
precise node i and assignments x i and x j<i. By the chain rule of probability we
have that

(∀x) Pp(x) = Pp(xR)
∏

i∈I

Pp(x i|x j<i) = q(xR)
∏

i∈I

p
xPa(i)

i (x i) ,

where q is any distribution of XR (since these nodes are vacuous, any distribution
satisfies the constraints in KE for them). The result of the GBR under epistemic
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irrelevance is thus given by

µ=min
p∈KE

Ep( f ) = min
q∈V (XR)

∑

x

q(xR)
∏

i∈I

p
xPa(i)

i (x i) f (xq)

= min
q∈V (XR)

∑

xR

q(xR)
∑

xI

∏

i∈I

p
xPa(i)

i (x i) f (xq)

= min
q∈V (XR)

∑

xR

q(xR)Ep(XI |xR)( f |xR) ,

where p(xI |xR)
def
=
∏

i∈I p
xPa(i)

i (x i). According to the last equality, µ is a convex
combination of Ep(XI |xR)( f |xR) (which is a function of xR only). Hence,

µ≥min
xR

g(xR) =min
xR

∑

xI

∏

i∈I

p
xPa(i)

i (x i) f (xq) .

The rightmost minimization is exactly the value of the GBR under strong inde-
pendence, and since the strong extension is contained in the epistemic extension,
the inequality above is tight.

The class of networks considered in the result above might seem restrictive at
first sight. However, Antonucci and Zaffalon [2008] showed that the computa-
tion of the GBR for any credal network of bounded treewidth whose local credal
sets are represented in vertex-based form can be reduced in polynomial time to
the computation of the GBR in a credal network whose non-root nodes are all
precise and whose imprecise variables are all vacuous. The hardness of the GBR
under epistemic irrelevance in such credal networks follows immediately from
the result above, since the same is true for under strong independence, and one
can efficiently reduce one problem to another.

Corollary 4.1. Computing the GBR under epistemic irrelevance is NPPP-hard.

Proof. Cozman et al. [2004] used a reduction from E-MAJSTAT to show that the
computing the GBR under strong independence in a credal network whose root
nodes are vacuous and non-root nodes are precise is NPPP-hard. Since according
to Proposition 4.1, the result of the GBR is the same under epistemic irrelevance,
the result holds.

Note that the result holds irrespective of how the local credal sets are repre-
sented, since vacuous and precise nodes can be mapped from constraint-based
to vertex-based form in polynomial time (and vice-versa).

Another direct consequence of Proposition 4.1 is the NP-hardness of the GBR
in singly connected credal networks under epistemic irrelevance, as the same
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task is NP-hard under strong independence, even if we admit imprecision only
on root nodes. The proof of NP-hardness of the GBR under strong independence
provided by de Campos and Cozman [2005] requires the variable domain car-
dinalities to be unbounded. The next result presents a stronger result in that we
admit only networks where imprecise variables are binary and precise ones are
at most ternary.

Theorem 4.1. Computing the GBR is NP-hard whether we assume epistemic ir-
relevance or strong independence, even if the network is singly connected and has
treewidth at most two, all imprecise variables are binary, and all precise variables
are (at most) ternary.

Proof. Consider a minimal singly connected LIMID over binary action variables,
ternary state variables, and a single value variable X r . By Theorem 3.3, deciding
whether the maximum expected utility of any strategy exceeds a given threshold
is an NP-complete task. As the LIMID is minimal, action nodes have no parents.
Obtain a credal network from that LIMID by discarding the value node, replac-
ing the action nodes with vacuous nodes, and leaving the rest unchanged (i.e.,
converting state variables into precise variables). The network can be obtained
in time linear in the size of the diagram, as the precise nodes are represented
in the same way, and the representation of vacuous binary nodes requires either
two degenerate distributions in vertex-base form or two vacuous constraints in
constraint-based form. Note that the credal network is polytree-shaped, contains
only binary imprecise nodes and ternary precise nodes. Let f be the function of
X sn

that returns −1 if X sn
=1 and zero otherwise. The outcome of the GBR is

min
p∈K(Xq)

Ep( f ) =− max
p∈K(Xq)

Ep(− f ) =min
∆

E∆(X r) ,

where K is either the epistemic or the strong extension, and the rightmost ex-
pression is the maximum expected utility of the LIMID. Thus, computing the
GBR decides the maximum expected utility problem.

4.3.1 Credal trees

The previous complexity results showed that, from a theoretical standpoint,
computing the GBR under epistemic irrelevance is just as difficult as under
strong independence. When the DAG is a tree, de Cooman et al. [2010] showed
that the GBR can be computed efficiently under epistemic irrelevance, and it was
previously unknown whether a similar result could be obtained under strong in-
dependence. We shall show that in this case the equivalence on the tractability
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under the two different irrelevance concepts is highly unlikely. To accomplish
this, we first need to obtain a result concerning networks whose numerical pa-
rameters are more generally given by (polynomial-time) computable numbers,
which might not all be encodable trivially as rational numbers. A number r is
computable if there exists a Turing machine Mr that, for input b, runs in at most
time poly(b) (the notation poly(b) denotes an arbitrary polynomial function of
b) and outputs a rational number t such that |r − t|< 2−b. Of special relevance
are numbers of the form 2t1/(1+ 2t2), with |t1|, |t2| being rationals no greater
than two, for which we can build a machine that outputs a rational t with the
necessary precision in time poly(b) as follows: compute the Taylor expansions
of 2t1 and 2t2 around zero with sufficiently many terms (depending on the value
of b), and then compute the fractional expression. The following lemma en-
sures that, assuming strong independence, the result of the GBR on any function
computed with respect to a network specified with computable numbers can be
approximated arbitrarily well by computing the GBR using a network specified
only with rational numbers.

Lemma 4.1. Consider a vertex-based credal network N whose numerical param-
eters are specified with computable numbers encoded by their respective machines,
and let b be the size of the encoding of the network. Given any rational number
ε ≥ 2−poly(b), we can construct in time poly(b) a vertex-based credal network N ′

over the same variables whose numerical parameters are all rational numbers, and
such that there is a polynomial-time computable bijection (p, p′) that associates any
extreme p of the strong extension of N with an extreme p′ of the strong extension
of N ′ satisfying

max
xS
|Pp′(xS)− Pp(xS)| ≤ ε ,

for any subset XS of the variables.

Proof. TakeN ′ to be equal toN except that each computable number r used in
the specification ofN is replaced by a rational t such that |t− r|< 2−(n+1)(v+1)ε,
where n is the number of variables, and v is the maximum cardinality of the
domain of any variable in N . Because ε ≥ 2−poly(b), we can run the Turing
machine Mr used to represent r on input poly(b) + (n + 1)(v + 1) to obtain
t in time O(poly(poly(b) + (n+ 1)(v+ 1))) = O(poly(b)). Exactly one of the
probability values in each distribution used to represent an extreme of a local
credal set in N ′ is computed as one minus the sum of the other numbers to
ensure that the distribution adds up exactly to one; its error is at most (v − 1) ·
2−(n+1)(v+1)ε < 2−n(v+1)ε.
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Let qi(x i|xPa(i)) and q′i(x i|xPa(i)) denote, respectively, the parameters of N
and N ′ (i.e. they are corresponding extreme distributions of the local credal
sets M(X i|xPa(i)) in the two networks), and consider an assignment x to all vari-
ables in N (or in N ′). Let also p be an extreme of the strong extension of N .
Then p factorizes as p(x) =

∏

i∈N qi(x i|xPa(i)), for some combination of extreme
distributions qi(·|xPa(i)) from M(X i|xPa(i)), i ∈ N . Finally, let p′ be an extreme dis-
tribution in the strong extension of N ′ that satisfies p′(x) =

∏

i∈N q′i(x i|xPa(i)).
By design, |q′i(x i|xPa(i))− qi(x i|xPa(i))| ≤ 2−n(v+1)ε. It follows from the binomial
expansion of the factorization of p′(x) on any x that

p′(x) =
∏

i∈N

q′i(x i|xPa(i))≤
∏

i∈N

�

2−n(v+1)ε+ qi(x i|xPa(i))
�

=
∑

S⊆N

∏

i∈S

qi(x i|xPa(i))(2
−n−vnε)n−|S|

≤ 2n2−n−vnε+
∏

i∈N

qi(x i|xPa(i))

= p(x) + 2−nvε .

The second inequality follows from the fact that there is one term for p(x) in
the expansion and 2n − 1 terms that can be written as a product of 2−n(v+1)ε by
nonnegative numbers less than or equal to one. With a similar reasoning, we
can show that

p′(x)≥
n
∏

i=1

�

qi(x i|xPa(i))− 2−n(v+1)ε
�

≥ p(x)− 2−nvε .

Thus, maxx |p′(x)−p(x)| ≤ 2−nvε. Now consider a subset of the variables XS and

an assignment xS to XS. Since Pp′(xS)
def
=
∑

x′:x′S=xS
p′(x′), each term p′(x′) in that

sum satisfies p′(x′)≤ p(x′)+2−nvε, and there are less than vn ≤ 2vn terms being
summed, we have that

Pp′(xS)≤
∑

x′:x′S=xS

�

p(x) + 2−vnε
�≤ Pp(xS) + ε .

An analogous argument can be used to show that Pp′(xS)≥ Pp(xS)− ε.
The above lemma has the following direct consequence on the computation

of the GBR.

Corollary 4.2. Consider a vertex-based credal networkN whose numerical param-
eters are specified with computable numbers encoded by their respective machines,
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and let b be the size of the encoding of the network. Given any rational number
ε with 2−poly(b) ≤ ε < 1, evidence XO=xO on some set of variables XO in N , and
function f of a variable Xq in N such that maxxq

| f (xq)| ≤ 1, we can construct
in time poly(b) a vertex-based credal network N ′ over the same variables whose
numerical parameters are all rational numbers, and such that

|µ′−µ| ≤ ε ,

where µ and µ′ are the outcomes of the GBR on N and N ′, respectively.

Proof. According to Lemma 4.1, there is a polynomial-time computable network
N ′ whose parameters are rational numbers and a polynomial-time computable
bijection (p, p′) such that p and p′ are, respectively, extreme distributions of the
strong extension of N and N ′, and satisfy |Pp′(xS)− Pp(xS)| ≤ rnε2/(2v) for all

XS ⊆ X and xS ∼ XS, where n
def
= |X| is the number of variables, v is the cardinality

of variable Xq (v ≥ 2), and r is the smallest strictly positive rational number in
the specification of N ′. It follows that

Pp(xq|xO) =
Pp(xq,xO)

Pp(xO)
≥ Pp′(xq,xO)− rnε2/(2v)

Pp′(xO) + rnε2/(2v)
,

where p′ is the image of p according to the bijection. By Lemma 7 of [de Campos
and Cozman, 2013], we have that

Pp′(xq,xO)− rnε2/(2v)

Pp′(xO) + rnε2/(2v)
≥ Pp′(xq|xO)− 2

rnε2/(2v)
rnε/4

= Pp′(xq|xO)− ε/v .

The other side of the inequality is obtained by switching p and p′ in the inequal-
ities above. Hence, |Pp′(xq|xO)− Pp(xq|xO)| ≤ ε/v. Let p be an extreme distri-
bution in the strong extension of N for which µ =

∑

xq
f (xq)Pp(xq|x0), that is,

p is a distribution that attains LKS(Xq|xO)( f ). Define f +(xq) = max{ f (xq), 0} and
f −(xq) =min{ f (xq), 0}. Thus,

µ=
∑

xq

f +(xq)Pp(xq|xO) +
∑

xq

f −(xq)Pp(xq|xO)

≥
∑

xq

f +(xq)
�

Pp′(xq|xO)− ε/v
�

+
∑

xq

f −(xq)
�

Pp′(xq|xO) + ε/v
�

=−ε
v

∑

xq

| f (xq)|+
∑

xq

f (xq)Pp′(xq|xO)

≥−ε+ min
p′′∈K ′S(Xq|xo)

∑

xq

f (xq)Pp′′(xq|xO) =−ε+µ′ ,
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where p′ in the first inequality is the image of p′ according to the bijection, and
K ′S in the last inequality is the strong extension of N ′. It follows that µ′−µ≤ ε.
If p is instead the extreme distribution that attains LK′S(Xq|xO)( f ), then the same
argument shows that µ−µ′ ≤ ε, whence the result follows.

We can now use the result above to show the NP-hardness of the GBR in
credal trees under strong independence.

Theorem 4.2. Computing the GBR in credal trees under strong extension is NP-
hard, even if only one variable is ternary and all the rest are binary.

Proof. We show hardness by a reduction from the partition problem, which is the
NP-hard problem of deciding, given positive integers z1, . . . , zn, whether there is

S ⊆ N
def
= {1, . . . , n} such that

∑

i∈S zi =
∑

i /∈S zi, where the notation i /∈ S denotes

that i ∈ N \ S. We define vi
def
= zi/z, i = 1, . . . , n, where z

def
=
∑

i zi/2, and work

w.l.o.g. with the partition problem using vi instead of zi. Let vS
def
=
∑

i∈S vi. Then,
it follows for any S that vS = 2−∑i /∈S vi. Also, if an instance of the partition
problem is a yes-instance, there is S for which vS = 1, whereas if it is a no-
instance, then for any S, it follows that |vS − 1| ≥ 1/(2z). Consider the function

h(vS) =
2−(vS−1)+ 2vS−1

2
.

Seen as a function of a continuous variable vS ∈ [0,2], the function above is
strictly convex, symmetric around one, and achieves the minimum value of one
at vS = 1. Thus, if the partition problem is a yes-instance, then minS h(vS) = 1,
while if it is a no-instance, then minS h(vS) ≥ 2−1/(2z)−1 + 21/(2z)−1 ≥ 2(2z)−4

>

1+(2z)−4/2= 1+1/(32z4), where the second inequality is due to Lemma 24 in
[Mauá et al., 2012], and the strict inequality follows from the first-order Taylor
expansion of 2(2z)−4

.
Given an instance of the partition problem, we build a credal tree over vari-

ables X0, . . . , X2n with DAG as in Figure 4.3. The root variable X0 takes values in
{1,2, 3}, and is precise and uniformly distributed (i.e., its local credal set con-
tains only the distribution p0(x0) = 1/3). The remaining variables are all binary
and take values in {0, 1}. For i = 1, . . . , n, we specify the local conditional credal
sets M(X i|x0) as singletons {px0

i } such that

px0
i (1) =







2−vi/(1+ 2−vi), if x0 = 1,

1/(1+ 2−vi), if x0 = 2,

1/2, if x0 = 3.
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Finally, for i = 1+n, . . . , 2n we specify for all x i−n the local credal sets M(X i|x i−n) =
{p ∈ V (X i) : ε ≤ p(1) ≤ 1}, where ε = 2−n−3/(64z4). Each of these local credal
sets can be represented either in vertex-based form by two extreme distributions
or by a single constraint.

Consider the computation of the GBR on the function f of X0 that returns
−1 if X0 = 3 and zero otherwise, and with evidence Xn+1 = 1, . . . , X2n = 1. By
definition, any extreme distribution p in the strong extension Ks satisfies for x
such that xn+1=1, . . . , x2n=1 the equality

p(x) = p0(x0)
∏

i∈[n]
px0

i (x i)δ
x i
i ,

where each δx i
i is in [ε, 1]. Hence, the GBR returns the value of µ that solves

min
∑

x0,...,xn

�

f (x0)−µ
�

p0(x0)
∏

i∈[n]
px0

i (x i)δ
x i
i = 0 ,

where the minimizations are performed on δ0
i ,δ1

i , for i = 1, . . . , n. Consider
j ∈ [n] and let

βx j

def
=

∑

x0,...,x j−1,x j+1,...,xn

�

f (x0)−µ
�

p0(x0)p
x0
j (x j)

∏

i∈[n],i 6= j

px0
i (x i)δ

x i
i .

Then,

min
∑

x0,...,xn

�

f (x0)−µ
�

p0(x0)
∏

i∈[n]
px0

i (x i)δ
x i
i =min

�

δ0
jβ0+δ

1
jβ1

�

.

Since δ0
j and δ1

j are both positive, the minimization on the right-hand side above
equals zero only if either β0 and β1 have different signs or both are zero. In the
former case, we have that δ0

j and δ1
j are minimized at values such that δ0

j 6= δ1
j ,

with δ0
j < δ

1
j if and only if β0 > β1. In the latter case, any assignment to

variables δ0
j and δ1

j minimizes the expression, and we can assume that δ0
j 6= δ1

j .
Since we selected j arbitrarily, the result holds for all j. Thus, the minimization
is equivalent to selecting, for i = 1, . . . , n, a value yi in {0,1} such that δ0

i = ε
1−yi

and δ1
i = ε

yi . It follows that

min
∑

x0,...,xn

�

f (x0)−µ
�

p0(x0)
∏

i∈[n]
px0

i (x i)δ
x i
i =

min
y∈{0,1}n

∑

x0,...,xn

�

f (x0)−µ
�

p0(x0)
∏

i∈[n]
px0

i (x i)ε
(1−x i)(1−yi)εx i yi .



105 4.3 Parametrized complexity of the GBR

By rearranging terms, we obtain

min
y∈{0,1}n

∑

x0

�

f (x0)−µ
�

p0(x0)
∏

i∈[n]

�

px0
i (0)ε

1−yi + px0
i (1)ε

yi
�

,

which by design equals

min
y∈{0,1}n

−
�

µ

3

∏

i∈[n]

1

1+ 2−vi
(ε1−yi + 2−viεyi) +

µ

3

∏

i∈[n]

1

1+ 2−vi
(2−viε1−yi + εyi)

+
1+µ

3

∏

i∈[n]

1

2
(1+ ε)

�

.

The binary vector y can be seen as the characteristic vector of a subset S ⊂ [n].
Define

bS
def
=
∏

i∈S

(2−vi + ε)
∏

i /∈S

(1+ 2−viε)

for every subset S of [n]. The optimization on y can be rewritten as the following
optimization over subsets:

−1+µ
3

�

1+ ε
2

�n

+ min
S⊆[n]

−µ
3

�

bS + b[n]\S
�
∏

i∈[n]

1

1+ 2−vi
.

Solving the expression above for µ, we get to

µ=−


1+
�

2

1+ ε

�n

min
S

�

bS + b[n]\S
�
∏

i∈[n]

1

1+ 2−vi





−1

=− 1

minS g(aS)
,

where

g(a)
def
= 1+ (1+ a)

�

2

1+ ε

�n
∏

i∈[n]

1

1+ 2−vi

is defined for any real number a, and aS
def
= bS + bN\S − 1 for any S ⊆ N . Note

that g(aS)> 1+ (1+ aS)2−n. It follows from the Binomial Theorem that

2−vS ≤ bS ≤ (2−vS + 2nε)(1+ ε)n

≤ (2−vS + 2nε)(1+ 2nε)

≤ 2−vS + 2n+2ε
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0

1 2 3 · · · n

n+1 n+2 n+3 · · · 2n

Figure 4.3. DAG of the credal tree used to prove Theorem 4.2.

where we use the inequality (1+ r/k)k ≤ 1+2r valid for r ∈ [0, 1] and positive
integer k [Mauá et al., 2011, Lemma 37]. Thus,

h(vS)− 1≤ aS ≤ h(vS) + 2n+3ε− 1 .

Now if the partition problem is a yes-instance, then aS ≤ 1/(64z4), while if it
is a no-instance, we have that aS > 1/(32z4). Hence, there is a gap of at least
1/(64z4) in the value of aS between yes- and no-instances, and we can decide

the partition problem by verifying whether µ≤−1/g(α), where α
def
= 3/(128z4).

This proof shall be completed with the guarantee that we can approximate in
polynomial time the irrational numbers used to specify the credal tree and g(a)
well enough so that −1/g(α) falls in the gap between the values of µ for yes-
and no-instances. First, note that

g
�

1

32z4

�

− g
�

1

64z4

�

=
1

64z4

�

2

1+ ε

�n n
∏

i=1

1

1+ 2−vi
,

which is greater than 2−n/(64z4). The gap in the value of µ is at least

1

g(1/(64z4))
− 1

g(1/(32z4))
=

g(1/(32z4))− g(1/(64z4))
g(1/(64z4))g(1/(32z4))

>
g(1/(32z4))− g(1/(64z4))

g(1/(32z4))2

>
2−n/(64z4)

(1+ (1+ 1
32z4 )2−n)2

>
2−n

4 · 64z4 .

So we apply Corollary 4.2 with ε = 1
2

2−n

4·64z4 and use the same rational numbers
p2

i (1) as in the specification of the new network instead of the irrational values
1/(1+ 2−vi) to approximate g(α), which guarantees that the gap will continue
to exist.

The credal network used in the reduction that proves the previous result is
in a sense the simplest structure on which performing the GBR is hard, since the
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problem would become polynomial-time solvable if the root node were replaced
with a binary variable. It is also interesting as it describes a naive Bayes structure
with a single layer of latent variables, a useful topology for robust classification
problems on non-linearly separable feature spaces.

4.3.2 Imprecise hidden Markov models

An imprecise hidden Markov model (HMM) is a credal tree whose nodes can
be partitioned into hidden and manifest nodes such that the hidden nodes form
a chain (i.e., a sequence of nodes with one node linking to the next and to no
other in the sequence), and each manifest node is a leaf with a single hidden
node as parent. HMMs are widely used to represent discrete dynamic systems
whose output at any given time step can be stochastically determined by the
current state of the system, which is assumed to be only partially observable.

Since an HMM is simply a credal tree, the algorithm of de Cooman et al.
[2010] can be used to efficiently compute the GBR in HMM under epistemic
irrelevance, while 2U can be used in the case of strong independence if all vari-
ables all binary. For network with variables taking on more than two values,
no polynomial-time is known for GBR inference under strong independence. In
this section, we show that when the evidence variables topologically precede
the queried variable, the result of the GBR is the same whether we consider
epistemic irrelevance or strong independence. On these cases, we can run the
algorithm for inference under epistemic irrelevance to obtain the GBR under
strong independence in polynomial time. This is however not always true, that
is, there are cases in which the result of the GBR depends on the irrelevance
concept adopted, as the following example shows.

Example 4.6. Consider an HMM of length two whose topology is depicted in Fig-
ure 4.4. All variables are binary and take values in {0,1}. Variables X1 and X2

are hidden, while variables X3 and X4 are manifest. The local credal sets are given
by M(X1) = M(X2|0) = M(X4|0) = {p ∈ V (X4) : p(1) = 1/4}, M(X2|1) =
M(X4|1) = {p ∈ V (X4) : p(1) = 3/4}, and M(X3|0) = {p ∈ V (X3) : 1/2 ≤ p(1) ≤
3/4} and M(X3|1) = {p ∈ V (X3) : 1/4 ≤ p(1) ≤ 1/2}. Thus, variable X3 is im-
precise, and the remaining variables are precise. Consider the function f of X4 that
returns one at X4= 0 and zero elsewhere, and the evidence X3= 0. Under strong
independence, the GBR is to solve for µ the equation

min
∑

x2

px2
3 (0)gµ(x2) =

∑

x2

min px2
3 (0)gµ(x2) = 0 ,
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1 2

4 3

Figure 4.4. DAG of the HMM in Example 4.6.

where the minimizations are performed over px2
3 ∈ M(X3|x2), x2 = 0, 1, and

gµ(x2) =
∑

x1,x4

�

f (x4)−µ
�

p1(x1)p
x1
2 (x2)p

x1
4 (x4) ,

with p1 = p0
2 = p0

4 = (3/4, 1/4) and p1
2 = p1

4 = (1/4,3/4). The values of px2
3 (0)

depend only on the signs of gµ(0) and gµ(1), which ought to be different for the
expression to vanish. Solving for µ for each of the four possibilities, and taking the
minimum value of µ, we find that µ=min{p(0) : p ∈ KS(X4|X3=0)}= 4/7.

Under epistemic irrelevance, the GBR is equal to

min
∑

x1,x2,x4

p1(x1)p
x1
2 (x2)p

x1
4 (x4)px1,x2,x3

(0)hµ(x4) =

(1−µ)
∑

x1,x2

p1(x1)p
x1
2 (x2)p

x1
4 (0)min px1,x2,0(0)

−µ
∑

x1,x2

p1(x1)p
x1
2 (x2)p

x1
4 (1)max px1,x2,1(0) = 0 ,

where hµ(x4) = f (x4)− µ, p1, px1
2 and px1

4 are defined as before, and px1,x2,x4
∈

M(X3|x2) for every x1, x2, x4. Solving the equation above for µ we get that µ =
13/28.

The above example shows that the outcome of the GBR might depend on
the irrelevance concept adopted, even in the simple case of HMMs with binary
variables. It is currently unknown whether this type of inference is hard under
strong independence. The following result shows that at least for a particular
case, computation of the GBR in HMMs under strong independence is easy, as it
reduces to the GBR under epistemic irrelevance in trees.

Theorem 4.3. Consider a separately specified HMM over variables X0, . . . , Xn. The
variables associated to odd numbers are manifest, and the remaining variables are
hidden (see Figure 4.5). Consider also a function f of the hidden node Xn, and
some evidence x̃O on a subset O of the manifest nodes. The outcome of the GBR is
the same whether we assume epistemic irrelevance or strong independence.
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Proof. Consider the distribution p in the epistemic extension KE that minimizes
∑

x:xO=x̃O
fµ(xn)p(x), where fµ(xq) = f (xn)− µ for some given µ. Let < be any

topological ordering of the nodes. By the chain rule of probability, we have for
all x that p factorizes as p(x) = Pp(x0)

∏

i∈[n] Pp(x i|x j<i). Assume that for some
nonnegative i integer less than n it holds that

∑

x:xO=x̃O

fµ(xn)p(x)≥
∑

x:xO=x̃O

fµ(xn)
∏

j≤i

Pp(x j|xk< j)
∏

j>i

p
xPa( j)

j (x j) ,

where each p
xPa( j)

j is recursively defined as the extreme distribution of the local
credal set M(X i|xPa( j)) that minimizes either

∑

x j

p
xPa( j)

j (x j)
∑

xk> j

fµ(xn)
∏

k> j

p
xPa(k)

k (xk) ,

if j is not in O, or
p

xPa( j)

j ( x̃ j)
∑

xk> j

fµ(xn)
∏

k> j

p
xPa(k)

k (xk) ,

if j is in O, where x̃ j is the value of X j compatible with x̃O. We will show by
induction in i = n, . . . , 0 that the assumption is true. If i is not in O then
∑

x:xO=x̃O

fµ(xq)
∏

j≤i

Pp(x j|xk< j)
∏

j>i

p
xPa( j)

j (x j) =

∑

x j<i :xO=x̃O

∏

j<i

Pp(x j|xk< j)
∑

x i

Pp(x i|x j<i)
∑

x j>i

fµ(xn)
∏

j>i

p
xPa( j)

j (x j)≥
∑

x j<i :xO=x̃O

∏

j<i

Pp(x j|xk< j) min
q∈M(X i |xPa(i))

∑

x i

q(x i)
∑

x j>i

fµ(xn)
∏

j>i

p
xPa( j)

j (x j) =

∑

x:xO=x̃O

fµ(xn)
∏

j<i

Pp(x j|xk< j)
∏

j≥i

p
xPa( j)

j (x j) ,

where the inequality follows from the definition of epistemic extension, which
implies that

∑

x i
h(x i)Pp(x i|xNd(i)) ≥minq∈M(X i |xPa(i))

∑

x i
h(x i)Pp(x i|xNd(i)) for any

function h′ (note that Nd(i) ⊇ { j < i} and that q
xPa(i)

i is indeed a function of
xPa(i) only, as the minimization is constant w.r.t. values x j<i: j /∈Pa(i)). The case of a
node i in O is analogous with the sum substituted by a single term. For i = n, it
follows that

∑

x:xO=x̃O

fµ(xq)p(x) =
∑

x j<n:xO=x̃O

∏

j≤n

Pp(x j|xk< j)
∑

xq

fµ(xn)Pp(xq|xk<n)

≥
∑

x:xO=x̃O

fµ(xn)p
xn−2
n (xn)

∏

j<n

Pp(x j|xk< j) ,
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Figure 4.5. DAG of the HMM considered in Theorem 4.3.

so that the basis of the induction holds. For i = 0, we have that
∑

x:xO=x̃O

fµ(xq)p(x)≥
∑

x:xO=x̃O

fµ(xn)p0(x0)
∏

i∈[n]
p

xPa( j)

j (x j) ,

which is the lower expectation of fµ under strong independence. Thus, since the
epistemic extension contains the strong extension, the inequality above is tight.
In particular, the equality holds if µ is the outcome of the GBR under epistemic
irrelevance, so that

min
p∈KS

∑

x:xO=x̃O

fµ(x)p(x) =min
p∈KE

∑

x:xO=x̃O

fµ(x)p(x) = 0 ,

where KS denotes the strong extension. Thus, µ is also the outcome of the GBR
under strong independence.

The previous result shows that at least for the particular case where one seeks
the lower posterior expectation of the “last” variable, the GBR can be computed
in polynomial time. It is not known whether other type of inferences under
strong independence have different complexity. Although restrictive, this type
of inference is highly relevant, as it corresponds to predicting the future state of
a partially observable dynamic system whose future state depends in some level
only on its current (unknown) state.

4.3.3 Imprecise Markov chains

The simplest DAG structure forming a connected graph is that of a chain, that
is, of a network in which each variable has at most one parent and one child.
Credal chains are more usually known as (imprecise) Markov chains. As a chain
is also a tree, computing the GBR under epistemic irrelevance can be done in
polynomial time; this is also the case for chains of binary variables under strong
independence. As the following result shows, a chain can be seen as an HMM
where the values of the manifest variables are deterministically determined by
the values of the hidden variables.
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Corollary 4.3. Consider a function f of the single leaf variable of a separately
specified (imprecise) Markov chain, and some evidence x̃O on arbitrary non-leaf
variables. The result of the GBR on f with evidence x̃O is the same whether we
assume epistemic irrelevance or strong independence.

Proof. The proof is analogous to the proof of Theorem 4.3.

The result above implies that computing the GBR under strong indepen-
dence in separately specified networks can be done in polynomial time, if the
queried variable succeeds the evidence variables (or, equivalently, if there is no
evidence). Recall that under strong independence the GBR can be computed
efficiently in the case of credal polytrees with binary variables, whether the lo-
cal credal sets are separately or extensively specified [Antonucci and Zaffalon,
2008]. The following result shows that this computational equivalence between
separately and extensively specified networks under strong independence is un-
likely to hold if we consider networks whose structure is simpler than polytrees.

Theorem 4.4. Computing the GBR in extensively specified credal chains under
strong independence is NP-hard, even if all variables are ternary.

Proof. Consider an instance of the partition problem with integers z1, . . . , zn

and let vi
def
= zi/z and z

def
=
∑

i zi/2. Build a credal chain of ternary variables
X0, X1, . . . , Xn, with X i−1 as parent of X i, i = 1, . . . , n. The variable X0 is pre-
cise and uniformly distributed. The local conditional credal sets M(X i|X i−1=1),
i = 1, . . . , n, have each two extreme distributions q1 and q2 such that

q1(1) = 2−vi , q1(2) = 0, q1(3) = 1− 2−vi ,

and

q2(1) = 1, q2(2) = 0, q2(3) = 0 .

The local conditional credal sets M(X i|X i−1 = 2), i = 1, . . . , n, have each two
extreme distributions q3 and q4 such that

q3(1) = 0, q3(2) = 2−vi , q3(3) = 1− 2−vi ,

and

q4(1) = 0, q4(2) = 1, q4(3) = 0 .

The local conditional credal sets M(X i|X i−1=3) are singletons and contain the
distribution that places all mass on X i=3. Additionally, we include constraints
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that forbid Pp(X i|x i−1) to equal both q1 and q3 at the same time (for different
values of x i−1), and forbid Pp(X i|x i−1) to equal both q2 and q4 at the same time.
In other words, for each variable, the selection of q1 forces the selection of q4

(and vice-versa), and the selection of q2 forces the selection of q3.
Consider an extreme distribution p of the strong extension of the network.

By design, p implies for i = 1, . . . , n that

Pp(X i=1) =
∑

x i−1

Pp(X i=1|x i−1)Pp(x i−1)

= qk1
(1)Pp(X i−1=1) + qk2

(1)Pp(X i−1=2) + q(1)Pp(X i−1=3) ,

where k1 ∈ {1, 2} and k2 ∈ {3, 4} and q is the degenerate distribution assigning
all mass on X i=3 (thus q(1) = 0). It follows that

Pp(X i=1) = 2−yi vi Pp(X i−1=1) ,

where yi ∈ {0, 1}. Similarly, we have that

Pp(X i=2) =
∑

x i−1

Pp(X i=2|x i−1)Pp(x i−1) = 2−(1−yi)vi Pp(X i−1=2) .

The term 1− yi in the exponent guarantees that the logical constraints on the
local distributions are satisfied. In particular, we have that

Pp(X1=1) = 2−y1v1/3 , Pp(X1=2) = 2−(1−y1)v1/3 .

Hence, it follows from induction on i = 1, . . . , n that

Pp(Xn=1) = 2−
∑

i∈[n] vi yi/3 , Pp(Xn=2) = 2−
∑

i∈[n] vi(1−yi)/3 .

Let f be a function of Xn that returns 0 at Xn=3 and 3 elsewhere. The result of
the GBR is then

µ=min
p∈KS

3Pp(Xn=1) + 3Pp(Xn=2)

= min
y∈{0,1}n

2−
∑

i∈[n] vi yi + 2−
∑

i∈[n] vi(1−yi)

= min
S⊂[n]

2−(vS−1)+ 2vS−1

2
=min

S
h(vS) .

If the partition problem is an yes-instance, then µ = 1, whereas if it is a no-
instance then µ≥ 1+1/(32z4). According to Corollary 4.2, we can use that gap
to reduce the problem to a credal network quantified by rational numbers that
preserves the distinction of yes- and no-instances of the partition problem.
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4.3.4 Approximate results

De Campos and Cozman [2005] showed that approximating the value of the
GBR under strong independence is NP-hard, even if we consider only credal
polytrees of bounded treewidth. This is however not the case if variables are
binary, as in this case we can run the 2U algorithm to obtain the exact value.
We show here that there is a polynomial-time approximation algorithm for com-
puting the value of GBR within any given relative error for any model whose
variables take values in a small enough domain whose size is assumed constant
(but not necessarily binary). To simplify the proof of the existence of the ap-
proximation algorithm, we need the following result.

Lemma 4.2. Let µ be the outcome of the GBR under strong independence on a func-
tion f of a variable Xq in a credal network N of bounded treewidth and arbitrary
evidence x̃O. We can obtain in polynomial time a credal network N ′ of bounded
treewidth for which the GBR on the same f and with evidence on a single binary
variable returns µ.

Proof. Let Xo1
, . . . , Xom

denote the evidence variables in N . Without loss of gen-
erality [Cozman, 1999; Antonucci and Zaffalon, 2008], assume that these vari-
ables are associated to leaf nodes in the DAG and take values in {0,1} and that
the evidence is x̃O = {Xo1

= 1, . . . , Xom
= 1}. Consider the deterministic variable

Z = Xo1
Xo2
· · ·Xom

, that is, Z evaluates to zero unless all evidence variables are
set to one, in which case Z evaluates to one. since the variable Z determines a
symmetric and decomposable function of binary variables, it can be succinctly
represented by a sequence of binary deterministic variables X e1

, . . . , X em
satisfy-

ing X ei
= X ei−1

Xoi
, i > 1, and X e1

= Xo1
[Koller and Friedman, 2009, Chapter

9.6.1.2]. One can easily verify that X em
= Z . Each of these variables can in

turn be represented by a conditional probability distribution requiring only eight
numbers. Consider the network N ′ obtained from N by inserting the precise
variables X ei

, i = 1, . . . , m, each having X ei−1
and Xoi

are parents (X e1
is the single

parent of X e1
). By the same argument used to prove Theorem 3.4, we can show

that treewidth of N ′ exceeds the treewidth of N in at most three. Specify the
conditional distributions p

xei−1
,xoi

ei
(1) associated with each X ei

, for i = 1, . . . , m,

such that p
xei−1

,xoi
ei

(1) = xei−1
xoi

(with p
xo1
e1
(1) = xo1

). Let p be an extreme dis-
tribution of the strong extension of N ′, and define E = {e1, . . . , em−1}. We have
that

Pp(xq, X em
=1) =

∑

xO

Pp(X em
=1|xO)Pp(xq,xO) = Pp(xq, x̃O) .

Now the joint probability on the right factorizes as a product of extreme distri-
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butions taken from the local credal sets associated to variables in N . Thus, the
right-hand side is attained by an extreme distribution p in the strong extension
of N . The converse is also true, that is, given an extreme distribution of N , its
product by distributions p

xo1
e1

and p
xei−1

,xoi
ei

is an extreme distribution of the strong
extensionN ′ satisfying the identity above. Since the minimization in the GBR is
solved by an extreme distribution of the strong extension, the result follows.

Theorem 4.5. There is a fully polynomial-time approximation scheme to compute
the GBR under strong independence in credal networks of bounded treewidth whose
variables take values in domains of bounded cardinality.

Proof. The proof is very similar to the proof of Theorem 3.7, except that we cope
with the existence of evidence in the query. Once more, we show the existence
of an FTPAS constructively, and using the FACTOR-SET-ELIMINATION algorithm.

Consider a credal network N of treewidth bounded by w and whose vari-
ables have cardinality bounded by v, and let ε be the desired relative error of the
output. Any local credal set M(X i|xPa(i)) in N defined by m linear constraints in
variables p ∈ V (XFa(i)) has at most mvw

extreme distributions, and these can be
found in time O(mvw

), which is polynomial in the input, as v and w are assumed
constant [Avis, 2000]. Thus, a constraint-based network can be transformed
into vertex-based form in polynomial time. Moreover, any vertex-based network
can be mapped into an equivalent network whose non-root nodes are all precise,
where equivalence means equality of the outcome of the GBR on common vari-
ables [Antonucci and Zaffalon, 2008]. Given such equivalences, we assume in
the following that N is specified in vertex-based form, with all non-root notes
precise, and, in the light of Lemma 4.2, that the task is to compute the GBR on
a function f of a variable Xq with a single binary evidence variable X e. We also
assume that f is a nonnegative function, so that the relative error of any solu-
tion (i.e., a number µ that attains a posterior expectation of f ) is well-defined.
Since the relative error measure is invariant to positive scalings of the solutions,
the quality of a solution remains the same if we normalize the function f , which
is equivalent to introducing a new binary precise variable x i as a child of Xq

whose conditional distribution is defined as P(X i=1|xq)
def
= f (xq)/maxx ′q f (x ′q).

Thus, we assume with no loss of generality that f is an indicator function so that
computing the GBR amounts to calculating a posterior probability.

For each imprecise root node j in N , let K j denote the set of degenerate
distributions of V (X j). Hence, K j is a set containing O(v) functions δ j. For
each precise node i 6= e, let Ki be the singleton containing the corresponding
conditional probability distribution of X i given XPa(i). Finally, let Ke be the sin-
gleton containing the conditional distribution of X e with zero mass assigned to
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values X e 6= 1. Note that each set Ki, i ∈ N , is a set of nonnegative real-valued
functions of a subset of X (called factors in Chapter 2). Obtain a minimal binary
tree-decomposition T forN whose nodes are associated to sets C1, . . . , Cm+1, and
assume that there is a set Ci = {q} for some i ∈ [m+1] with a single child (such
T can be obtained in linear time as the treewidth of the diagram is assumed
bounded, Bodlaender [1996]). Without loss of generality, assume that Ci ⊇ Fa(i)
and that Cm+1 = {q, e}. For every Ci with i /∈ N , let Ki be a singleton contain-
ing the identity function of XCi

. Also, for every i ∈ N with Ci ⊃ Pa(i), redefine
the functions in Ki so that they have domain XCi

and return the same values
when restricted to XFa(i) (i.e., replace every function ψ of XFa(i) in Ki with a func-
tion φ of XCi

such that φ(xCI
) = ψ(xFa(i))). Run FACTOR-SET-ELIMINATION on sets

K1, . . . , Km+1, tree decomposition T , and constants k1, . . . , km+1 = Θ(bnm2/ε),
select m+ 1 as the root node, and initialize the clusterings in each pruning step
with the same partitioning of the functions into hyper-rectangles as in the proof
of Theorem 3.7. Then FACTOR-SET-ELIMINATION finishes in time polynomial in the
input size (given as the number of bits b) and produces a set Lm during its ex-
ecution. By construction, and according to Theorem 2.1, any function p in Lm

satisfies
(∀xq) p(xq) =

∑

x′:x ′q=xq ,x ′e=1

∏

i∈[n]
p

x′Pa(i)

i (x ′i) ,

where each p
x′Pa(i)

i is an extreme distribution of M(X i|x′Pa(i)). Thus, p is an el-
ement of the credal set KS(Xq, X e = 1). Let µ∗ be the (true) outcome of the
GBR, and p∗ be a joint distribution that solves the minimization in the GBR for

that value of µ∗, that is, µ∗ =
∑

xq
f (xq)p∗q(xq)/

∑

x ′q
p∗q(x

′
q), where p∗q(xq)

def
=

∑

x′:x ′q=xq ,x ′e=1 p∗(x′). Since p∗q is an element of KS(Xq, X e= 1), and each Li is an

α-covering of Mi with α
def
= 1+ε/(1−ε)/4m, we have that pα−m ≤ p∗q ≤ αmp for

some p in Lm, which implies that

µp

µ∗
=

p(xq)
∑

x ′q
p(x ′q)

∑

x ′q
p∗q(x

′
q)

p∗(xq)
≥ p(xq)

p∗q(xq)
≥ 1

α2m ,

where xq is the support of f (assumed unique), and

µp
def
=

p(xq)
∑

x ′q
p(x ′q)

.

Since p is a member of KS(Xq, X e=1) and µp is a linear function of p, it follows
that µp is a member of the posterior credal set KS(Xq|X e=1) [Boyd and Vanden-
berghe, 2004, Chapter 2.3.3]. Thus, µp is a (feasible) solution to the GBR with
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relative error at most ε, since

1

α2m =
�

1+
ε/(1− ε)

4m

�m

≤ 1+
ε

1− ε =
1

1− ε ,

and the result follows.

Like the FPTAS for solving LIMIDs we described in Chapter 3, the worst-case
running time of the approximation algorithm described in the proof of the re-
sult above is a polynomial with very high exponent and constants, too high for
practical computation on current computers. Nevertheless, we can use the same
described procedure to compute the GBR in credal networks by a single call of
FACTOR-SET-ELIMINATION. To verify the tractability of such an approach, we com-
pared its performance against the mixed linear integer programming reformula-
tion approach of de Campos and Cozman [2007b] on a collection of 1860 ex-
tensively specified credal networks randomly generated using the BNGen pack-
age [Ide et al., 2004]. The networks were generated containing treewidth no
greater than four, 10 to 30 nodes, 2 to 4 states per variable, and 2 to 16 extreme
distribution potentials in each local extensive credal set. For each network, we
set some evidence to every leaf node (i.e., the set of evidence variables e cor-
respond to set of leaves of the network) and arbitrarily chose a node with no
parents as query. The FTPAS was run with a relative error of ε = 0.1. The tree
decompositions were found using the fill-in heuristic.

For each network, we granted each algorithm 12 hours of CPU time and
2GB of RAM on a fast computer. Figure 4.6 compares the running times of
both methods on a log-log scale according to the network topology (each point
in the plot represents a network, and only networks which both methods were
able to solve within the time and memory limits are shown). Since the MILP
method implements an anytime procedure, we ran it in each problem until the
difference between lower and upper bounds were smaller than 0.0001. Hence,
we considered a problem unsolved by MILP if the CPLEX mixed linear integer
solver was not able to meet such a requirement within the time and memory
limits we set. The FPTAS and MILP methods solved, respectively, 805 and 357
out of the 1860 problem instances. Thus, while the FTPAS can be considered
a state-of-the-art method for computing the GBR, it still fails to solve a large
number of cases in feasible time. Interestingly, MILP performs relatively worse
on loopy networks than in credal polytrees.
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Figure 4.6. Comparison of the running times (in sec) of the FPTAS and MILP
approaches on randomly generated networks.
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4.4 Conclusion

Credal networks generalize Bayesian networks to allow for the representation of
uncertain knowledge in the form of credal sets, closed and convex sets of prob-
ability distributions. The use of credal sets arguably facilitates the constructions
of complex models, but presents a challenge to the computation of inferences
with the model.

In this chapter, we studied the theoretical complexity of inferences in credal
networks, in what concerns the topology of the network, the semantics of the
arcs (i.e., whether epistemic irrelevance or strong independence is assumed),
and the cardinality of variable domains. In a nutshell, computing with credal
networks is NP-hard except in the cases of tree-shaped models under epistemic
irrelevance, and polytree-shaped models under strong independence. A notable
exception is the computation of probability bounds on the value of the last vari-
able in a imprecise hidden Markov models, in which case we have shown that
inferences under epistemic irrelevance and strong independence coincide, which
implies that the latter is polynomial-time computable. Also, we showed that up-
dating extensively specified credal networks is NP-hard, even if the DAG is a tree.
Finally, we proved that for the case of bounded treewidth networks with vari-
ables taking values in bounded domains, there exists a fully polynomial-time ap-
proximation scheme for updating under strong independence. Experiments on
randomly generated networks showed that the FPTAS is not only a theoretical
result but a competitive approach for computing inferences in such networks.

We left as an open question the complexity of generic inferences in imprecise
HMMs under strong independence.



Chapter 5

Conclusions

This thesis addressed three hard computational problems that arise in tasks in-
volving probabilistic reasoning, namely, the problems of

• maximum a posteriori (MAP) inference in probabilistic graphical models
(Bayesian and Markov networks),

• planning with limited memory influence diagrams (LIMIDs), and

• belief updating in credal networks (credal belief updating).

These problems address somewhat very different situations. Roughly speaking,
the MAP inference problem aims at finding the most probable explanation of a
complex phenomenon represented as a graphical model. The problem of plan-
ning with (or solving) influence diagrams consists in selecting a course of actions
that maximizes expected utility. Finally, belief updating in credal networks can
be described as the problem of assessing the sensitivity of probabilistic inference
in Bayesian networks to global changes in the model parameters.

At first sight, these three problems might seem connected only by means of
their combinatorial or optimization nature, or yet their use of graphs as a con-
cise representational device. Nevertheless, correspondences between instances
of these problems have long been noticed in the literature. For instance, it has
been shown that credal belief updating can be reduced to MAP inference in
Bayesian networks [Cano et al., 1994] and vice-versa [de Campos and Cozman,
2005]. De Campos and Ji [2008] showed that planning with influence diagrams
can be reduced to belief updating in credal networks, and the converse was also
shown by Antonucci and Zaffalon [2008] to be true. These correspondences are
depicted in Figure 5.1. The diagram makes it more clear the missing correspon-
dences, namely, the direct reductions from MAP inference problems into solving
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solving
LIMIDs

credal
belief

updating
MAP inference

de Campos and
Cozman [2005]

Cano et al. [1994] de Campos
and Ji [2008]

Antonucci and
Zaffalon [2008]

Figure 5.1. Correspondences between instances of the three class of problems
considered.

LIMIDs and vice-versa. The latter can be obtained by applying the sequence of
results derived in Chapter 3 and graphically shown in Figure 5.2. The former
reduction remains as an item for future work.

The previously known correspondences between instances of these problems
focused either on its practical side or on its semantic implications. Cano et al.
[1994] reduced credal belief updating in order to be able use the available algo-
rithms for MAP inference. De Campos and Ji [2008] reduced planning in influ-
ence diagrams to belief updating in credal networks so that the former problem
could be solved using algorithms designed for the latter. Antonucci and Zaffalon
[2008] reduced belief updating in credal networks to planning in influence dia-
grams in order to provide a decision-theoretic view of credal networks.

To our knowledge, the only work that exploited such correspondences in
order to derive results regarding the theoretical computational complexity of
these problems is the work of de Campos and Cozman [2005], which showed
hardness of credal belief updating by a reduction from MAP inference. By fol-
lowing their approach, we showed in this work that a certain class of planning
problems on LIMIDs can be solved in polynomial time, by reducing them into
instances of credal belief updating that are known to be polynomial-time com-
putable (Theorem 3.5). Using the converse reduction, we were able to show the
NP-hardness of credal belief updating even in polytrees with binary imprecise
variables and ternary precise ones (Theorem 4.1). Additionally, the reductions
allowed us to use the previously result of fully polynomial-time approximabil-
ity of MAP inference proved by de Campos [2011] to show that also planning
in influence diagrams and credal belief updating admit fully polynomial-time
approximations (Theorems 3.7 and 4.5). These are the first results concerning
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solving single-stage LIMIDs

solving single-value node LIMIDs

MAP inference

Theorem 3.1

Theorem 3.4

Cooper’s [1988] transformation

Figure 5.2. Steps in the reduction from planning with LIMIDs to MAP infer-
ence.

approximability of these problems of which we are aware.

The complexity of these three classes of problems is better understood by
assuming certain structure to be present, or conversely, by looking into the com-
plexity of subclasses of those problems. However, the reductions from one prob-
lem into another do not preserve all of the structure present in a problem. An
example is the reduction from MAP inference into planning with influence dia-
grams, which maps tree-shaped Bayesian networks into multiply connected in-
fluence diagrams. Thus, many of the several NP-hardness results developed in
Chapters 3 and 4, which regard subclasses of the problems of solving LIMIDs
and credal belief updating, are necessary in that they could not be obtained
immediately from similar hardness results in the other problem class. For in-
stance, since polytree-shaped instances of MAP inference problems are reduced
into loopy instances of LIMIDs, we cannot use the known NP-hardness result of
MAP inference in polytree-shaped Bayesian networks to show NP-hardness of
solving polytree-shaped LIMIDs, which warrants the proof of the latter that we
provide in Chapter 3.

Although the result of fully polynomial-time approximability of MAP infer-
ence in models was obtained constructively (i.e., by designing a fully polynomial-
time approximation scheme) by de Campos [2011] for the case of bounded
treewidth graphs and bounded cardinality variables, the asymptotic analysis he
provides hides huge constants which hinders it practical applicability. To over-
come such inefficiency while still preserving some of the theoretical performance
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guarantees, we developed in Chapter 2 a routine for approximate MAP inference
based on the propagation of set-valued messages in a clique-tree. Our approx-
imate algorithm allows for specification by the user of the trade-off between
accuracy and speed. This trade-off is most likely necessary, as approximating
any of the three problems we address here within a sub-exponential factor is
known to be NP-hard, as shown by Park and Darwiche [2004] for the case of
MAP inference, by de Campos and Cozman [2005] for the case of credal belief
updating, and by Theorem 3.6 in this work for the case of solving LIMIDs. More-
over, benefiting from the aforementioned correspondences between instances of
three problems considered in this thesis, the approximate algorithm can be easily
extended to the other two problems. Empirical comparisons with state-of-the-art
algorithms especially designed for each class of problems have shown that the
approximate algorithm is competitive in any of the problems, and often finds
optimal solutions in feasible time, which is remarkable in light of the theoretical
complexity results derived (most of them in this work).

Although many previously open questions have been answered by this work,
and in spite of the promising results obtained in the empirical evaluation of
the approximate algorithm developed here, this work leaves many open av-
enues to pursue, both on the practical and theoretical sides. On the practical
side, the approximate algorithm developed has complexity exponential on the
treewidth of the underlying graph, what prevent us from using it in models
of high treewidth, which arise in many real applications. Overcoming such a
limitation is a non-trivial but important contribution of future work. On the
theoretical side, there are subclasses of problem with still unknown theoretical
complexity. A non exhaustive list includes MAP inference in Bayesian trees over
binary variables, credal belief updating under strong independence in HMM-
like trees, and approximate credal belief updating under epistemic irrelevance
in bounded treewidth networks (e.g., polytrees with bounded in-degree) over
binary variables.
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