
Scalable Space-Time Adaptive
Simulation Tools for Computational

Electrocardiology

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Dorian Krause

under the supervision of

Prof. Rolf Krause

October 2013

Dissertation Committee

Prof. Rolf Krause Università della Svizzera italiana, Switzerland

Prof. Illia Horenko Università della Svizzera italiana, Switzerland

Prof. Igor Pivkin Università della Svizzera italiana, Switzerland

Prof. Mark Potse Università della Svizzera italiana, Switzerland

Prof. Luca F. Pavarino Università degli Studi di Milano, Italy

Prof. Thomas Schulthess Eidgenössische Technische Hochschule Zürich, Switzerland

Dissertation accepted on 4 October 2013

Research Advisor PhD Program Director

Prof. Rolf Krause Prof. Antonio Carzaniga

i

I certify that except where due acknowledgement has been given, the work presented in this

thesis is that of the author alone; the work has not been submitted previously, in whole or in part, to

qualify for any other academic award; and the content of the thesis is the result of work which has

been carried out since the official commencement date of the approved research program.

Dorian Krause

Lugano, 4 October 2013

ii

Abstract

This work is concerned with the development of computational tools for the solution of reaction-

diffusion equations from the field of computational electrocardiology. We designed lightweight

spatially and space-time adaptive schemes for large-scale parallel simulations.

We propose two different adaptive schemes based on locally structured meshes, managed ei-

ther via a conforming coarse tessellation or a forest of shallow trees. A crucial ingredient of our

approach is a non-conforming mortar element discretization which is used to glue together individ-

ually structured meshes by means of constraints. For the solution of variational problems in the

proposed trial spaces we investigate two diametrically opposite approaches. First, we discuss the

implementation of a matrix-free scheme for the solution of the monodomain equation on patch-wise

adaptive meshes. Second, an approach to the construction of standard linear algebra data structures

on tree-based meshes is considered. In particular, we address the element-wise assembly of stiffness

matrices on constrained spaces via an algebraic representation of the inclusion map. We evaluate

the performance of our adaptive schemes for small- and large-scale problems and demonstrate their

applicability to the design of realistic large-scale heart models.

In order to enable local time stepping in the context of (semi-)implicit integration schemes, we

present a space-time discretization based on the proposed lightweight adaptive mesh data structures.

By means of a discontinuous Galerkin method in time, the solution of the linear or non-linear

system of equations is reduced to a sequence of smaller systems of adjustable size. We discuss

the stabilization of the arising discrete problems and present extensive numerical evaluations of the

space-time adaptive solution of the (1+1)-, (2+1)- and (3+1)-dimensional heat equation as well

as the monodomain reaction-diffusion equation. Our results show both feasibility and potential of

adaptive space-time discretizations for the solution of reaction-diffusion equations in computational

electrocardiology.

iii

iv

Acknowledgements

First and foremost I want to thank my advisor Prof. Rolf Krause for the support over the last

years, for the patient supervision and for providing me with the opportunity to contribute to the

development of the PROPAG code which was the starting point of this thesis work. The possibility

to present my work at various international conferences is greatly appreciated.

I am thankful to Prof. Mark Potse for the many interesting and insightful conversations and the

close cooperation.

I also want to express my gratitude to the other members of my dissertation committee, Prof.

Illia Horenko, Prof. Luca Pavarino, Prof. Igor Pivkin and Prof. Thomas Schulthess, for their time

and interest.

I am grateful to my fellow colleagues for their help at countless occasions and for the friendly

working atmosphere.

Thanks to Dr. Daniel Ruprecht, Dr. Robert Speck and Dr. Thomas Dickopf for finding time to

proofread parts of this work despite their busy schedule.

Last but not least I want to thank my family for their support and my parents for encouraging

and actively backing my intellectual pursuits.

This work was partially funded by the “Swiss Platform for High-Performance and High-

Productivity Computing” (HP2C) and profited from the funding for the project “A High Perfor-

mance Approach to Cardiac Resynchronization Therapy” within the context of the “Iniziativa Ti-

cino in Rete”. Computational resources were generously provided by the University of Lugano,

grants by the Swiss National Supercomputing Centre (CSCS) under the project IDs 268 and 397 as

well as a preparatory project grant by PRACE.

This thesis was typeset with LuaTEX, Version beta-0.70.2-2012052410 (TeX Live 2012). Plots

were prepared using METAPOST 1.504 (TeX Live 2012), PARAVIEW
76 3.98.1 and MATPLOTLIB

87

1.2.1.

v

vi

Contents

Contents vii

List of Figures xi

List of Tables xvii

List of Algorithms xvii

1 Introduction 1

2 Computational Modeling in Electrophysiology 5

2.1 Modeling Electrical Properties of Cardiac Cells 5

2.1.1 Hodgkin-Huxley Type Models . 6

2.1.2 Membrane Models for Human Ventricular Cells 8

2.1.3 The Fitz-Hugh Nagumo Model . 8

2.1.4 The Bernus Model . 8

2.2 Modeling Electrical Properties of Cardiac Tissue 9

2.2.1 The Bidomain equation . 9

2.2.2 The Monodomain equation . 10

2.2.3 Conductivity Tensors . 10

2.2.4 Summary of Governing Equations . 11

2.3 Numerical Methods . 12

2.3.1 Spatial Discretization . 12

2.3.2 Temporal Discretization . 15

2.4 Adaptive Computational Methods . 18

2.4.1 Motivation . 18

2.4.2 Background . 19

3 Parallelization of the PROPAG Heart Model for Large-Scale Simulations 25

3.1 Characterization of PROPAG-4 . 25

3.2 Algorithms for Large-Scale Simulations . 27

3.2.1 Implicit-Explicit Euler Time Integration 28

vii

viii Contents

3.2.2 Parallel Setup . 28

3.3 Hybrid Parallelization . 29

3.3.1 MPI Parallelization . 30

3.3.2 MPI Threading Support . 31

3.4 Results . 32

3.4.1 Performance of Single-Threaded Execution 33

3.4.2 Benefits of Hybrid Execution . 34

3.4.3 Weak Scaling of Monodomain Solver . 35

3.4.4 Performance of Parallel Setup . 37

3.5 Discussion . 38

4 A Lightweight Adaptive Scheme for the Monodomain Equation 41

4.1 Introduction . 41

4.1.1 Overview . 41

4.2 Lightweight Adaptive Meshes . 42

4.3 Mortar Discretization . 44

4.3.1 Mortar Constraints . 45

4.3.2 Mortar Projection . 46

4.3.3 Dual Lagrange Multipliers . 47

4.3.4 Saddle-Point Formulation . 49

4.3.5 A Basis for the Subspace . 49

4.4 Linear Solver and Preconditioning . 50

4.5 Transfer Operators . 51

4.5.1 L2-Transfer . 51

4.5.2 Local Transfer . 52

4.6 Adaptivity Control . 52

4.6.1 Error Estimation . 52

4.6.2 Marking Strategy . 53

4.7 Implementation and Parallelization . 53

4.7.1 Implementation Aspects . 54

4.7.2 Parallelization . 56

4.7.3 Measuring Depolarization Times . 57

4.8 Results . 57

4.8.1 Convergence Studies . 59

4.8.2 Small-Scale Problem . 60

4.8.3 Large-Scale Problem . 65

4.8.4 Parallel Scalability . 66

4.9 Related Work . 67

4.10 Discussion . 72

ix Contents

5 Spatial Adaptivity Using Forests of Shallow Trees 75

5.1 Introduction . 75

5.2 Adaptive Meshes on Forests of Shallow Trees . 76

5.3 Discretization . 77

5.3.1 Geometrically Non-Conforming Mortar Discretization 77

5.3.2 The Subspace of Continuous Functions 79

5.3.3 Assembly Strategy . 80

5.4 Implementation and Parallelization . 82

5.4.1 Mesh Datastructure . 82

5.4.2 Finite Element Spaces and Linear Algebra 85

5.4.3 Assembly Strategy . 88

5.4.4 Transfer Operators . 89

5.5 Results . 90

5.5.1 Small-Scale Problem . 90

5.5.2 Large-Scale Problem . 91

5.5.3 Bidomain Equation . 96

5.5.4 Heart Model . 100

5.6 Discussion . 103

6 Adaptivity Using Space-Time Finite Elements 111

6.1 Introduction . 111

6.2 Space-Time Discretization . 112

6.2.1 Discretization with Continuous Finite Elements 113

6.2.2 Discontinuous Galerkin Methods . 114

6.2.3 Discretization on Non-Conforming Meshes 115

6.2.4 Space-Time Transfer Operator . 115

6.2.5 Discretization of Monodomain and Bidomain equations 116

6.3 Results . 117

6.3.1 (1+1)-dimensional Heat Equation . 118

6.3.2 Stabilization of the Space-Time Mortar Element Method 121

6.3.3 (2+1)-dimensional Heat Equation . 124

6.3.4 (3+1)-dimensional Heat Equation . 128

6.3.5 (1+1)-dimensional Monodomain Equation 128

6.3.6 (2+1)-dimensional Monodomain Equation 135

6.4 Related Work . 138

6.5 Discussion . 139

7 Conclusion 141

A Assembly of the Mortar Projection 145

Bibliography 147

x Contents

Figures

2.1 Behavior of the Hodgkin-Huxley model. The upper plots show the dependency

of the steady-state values and relaxation times on V . The lower plots show the

solution of equation (2.3) with an initial voltage difference of +15 mV relative to

the equilibrium value of -65 mV. 7

2.2 Solution of equation (2.3) with an initial voltage difference of +30.272 mV (relative

to the equilibrium value of -90.272 mV) using the Bernus membrane model. 7

2.3 Contour plot of the solution of the monodomain equation in a two-dimensional do-

main Ω =(0,1)2 at three different times. Lines represent the level-sets {V (x, t) =V0}
for V0 = -90 mV, -80 mV, . . . , 30 mV, 40 mV. 19

3.1 Scaling of PROPAG-4 in a monodomain run with breakdown of runtime. 27

3.2 Comparison of the timing for computing Idif in PROPAG-4 and PROPAG-5. 27

3.3 Scaling of explicit Euler (left) and implicit-explicit Euler (right) on the Cray XT5.

Problem M requires at least 24 cores for implicit-explicit or explicit Euler with one

thread per process. X requires at least 132 cores for execution (96 when using 12

threads per process). The starting point for the strong scaling study for problem XL

is 2112 cores. 36

3.4 Improvement through hybrid execution for explicit (left) and implicit-explicit Euler

(right) relative to pure MPI for different problem sizes on the Cray XT5. 36

3.5 Comparison of the improvement through hybrid execution and the efficiency of the

pure MPI code. Data points are taken from both explicit and implicit-explicit Euler

runs and include all four considered problem sizes. 37

3.6 Quality of the “best-effort” bootstrapping in PROPAG-5 when using one (top) and

twelve (bottom) threads per process on the Cray XT5. 38

4.1 Two-dimensional sketch of the geometric setup. 44

4.2 Contour plot of the dual Lagrange multiplier function ψα̇ . The left shows the basis

function corresponding to an interior node. The right plot shows the basis function

corresponding to the right lower corner of γ+m , i.e., the right and lower boundary of

the shown rectangle are on ∂γ+m . 48

xi

xii Figures

4.3 Error with respect to the exact solution and error indicator efficiency for Experi-

ments A – G. 58

4.4 Depolarization times computed for the small-scale problem. A projected view of

the domain Ω ⊂ R3 is shown for clarity. 62

4.5 Relative energy error of the adaptive method with respect to the result of the struc-

tured method. Shown is the spatial error at the end of each lap. 62

4.6 Wireframe plot of the mesh Tℓℓℓ(t) (left) and the unstructured adaptive mesh (right)

at times t = 0.5, 5, 10, 15 ms for the small-scale problem. 63

4.7 Measured execution times for the small-scale problem. The upper graph shows the

walltime for the execution of a lap of 20 time steps. Note that in the adaptive code

each lap is repeated up to four times (cf. Figure 4.8). The lower plot shows the

accumulated execution time. 64

4.8 Number of linear solver iterations per lap (upper plot) and number of passes for the

integration of a lap (lower plot) for the small-scale problem. 64

4.9 Number of mesh nodes over time for the small-scale problem. 65

4.10 Execution time of the adaptive code in comparison to a structured code for A. The

upper graph shows the walltime for the execution of a lap of 20 time steps. The

lower plot shows the accumulated execution time. 67

4.11 Execution time of the adaptive code in comparison to a structured code for B. The

upper graph shows the walltime for the execution of a lap of 20 time steps. The

lower plot shows the accumulated execution time. 68

4.12 Number of linear solver iterations for A (upper plot) and B (lower plot). 68

4.13 Distribution of the execution time for problem A. The time measurements are summed

over all passes over each lap. 69

4.14 Depolarization times tdepol (in ms) for the problem A. To simplify the visualization,

the mesh has been downsampled by a factor four in each direction. The two plots

on the right are rotated by 180◦ to visualize the back of the ventricle. 69

4.15 Membrane voltage (in mV) and adaptive mesh at t = 50, 100, 150, 200 ms for A.

The two plots on the right are rotated by 180◦ to visualize the back of the ventricle. 70

4.16 Strong scaling results. 71

5.1 Sketch of a quadtree. The leaves are ordered by their Morton index starting at the

left lower leaf with key 000001. For leaves with level ≤ 2 the binary representation

of the Morton index is shown. 78

5.2 Schematic description of the construction of a shallow tree mesh. The left drawing

shows the coarse tessellation of the simulation domain Ω . A tree τi ∈ (Z≥0)
∗

is

assigned to each patch Ωi ⊂ Ω (middle drawing). Finally, a structured mesh is

assigned to each tree leaf according to the level (right drawing). 78

5.3 Assignment of master and slave nodes for the mortar method (left) and the conform-

ing subspace (right). Circles represent interior nodes, crosses identify master nodes

and triangles represent slave nodes. 79

xiii Figures

5.4 Contours of the membrane voltage (in mV) and adaptive mesh at t = 0.5, 1, 7.5 ms

(top to bottom) for the small-scale problem. The left plots show results obtained

using our shallow tree adaptive approach. The right plots show results obtained

with the lightweight adaptive approach (see Section 4.8.2). 92

5.5 Measured execution times. The upper graph shows the walltime for the execution

of a lap of 20 time steps. Note that in the adaptive code each lap is repeated up to

four times (cf. Figure 5.6). The lower plot shows the accumulated execution time. . 93

5.6 The upper graph shows the number of linear solver iterations per lap. The lower

graph shows the number of passes for the integration of a lap. 93

5.7 Number of mesh nodes over time for the small-scale problem. 94

5.8 Distribution of the execution time for the small-scale problem. The time measure-

ments are summed over all passes over each lap. 94

5.9 Execution time of the adaptive code in comparison to a structured code. The upper

graph shows the walltime for the execution of a lap of 20 time steps. The lower plot

shows the accumulated execution time. 97

5.10 Number of linear solver iterations (upper plot) and number of degrees of freedom

(dimension of the mortar subspace) over time (lower plot). 97

5.11 Membrane voltage (in mV) and adaptive mesh at t = 50, 100, 150, 200 ms. The

two plots on the right are rotated by 180◦ to visualize the back of the ventricle. . . . 98

5.12 Execution time of the adaptive code in comparison to uniform mesh methods. . . . 99

5.13 Distribution of the execution time for the large-scale problem A. 99

5.14 Number of degrees of freedom for the large-scale problem B. 99

5.15 Distribution of the execution time for the solution of the bidomain equation. The

time measurements are summed over all passes over each lap. 100

5.16 Extra-cellular potential ϕe (in mV) and adaptive mesh at t = 50, 100, 150, 200 ms.

The two plots on the right are rotated by 180◦ to visualize the back of the ventricle. 101

5.17 Membrane voltage (in mV) during the depolarization phase at times t = 15, 30, 50,

75 ms. The two plots on the right are rotated by 180◦ to visualize the back of the

heart. The color bar limits are set to −90 mV and 20 mV. 104

5.18 Adaptive meshes at times t = 15, 30, 50, 75 ms (cf. Figure 5.17). The two plots on

the right are rotated by 180◦ to visualize the back of the heart. 105

5.19 Membrane voltage (in mV) during the repolarization phase at times t = 200, 300,

400, 500 ms. The two plots on the right are rotated by 180◦ to visualize the back of

the heart. The color bar limits are set to −90 mV and 20 mV. 106

5.20 Execution time of the adaptive code in comparison to uniform mesh solution meth-

ods. The upper graph shows the walltime for the execution of a lap of 20 time steps.

The lower plot shows the accumulated execution time. 107

5.21 Strong scaling results. 107

xiv Figures

6.1 Convergence of uniform and adaptive discretizations for the approximation of the

(1+1)-dimensional heat equation. In the left plot we vary both the time step size τ

and the spatial resolution (controlled by the depth of the trees τττ). 119

6.2 Contours of the exact solution V ∗. The vertical axis equals the time. 120

6.3 Space-time representation of the spatially adapted mesh. For the visualization the

mesh is downsampled by a factor of two in each direction. 120

6.4 Space-time adaptive mesh. For the visualization the mesh is downsampled by a

factor of two in each direction. 120

6.5 Plot of the numerical solution Vτττ (left) and the corresponding local time steps τ for

x =−0.5, x = 0 and x = 0.5. 120

6.6 Comparison of the discrete solution Vτττ ∈Ym
τττ without (left plot) and with (right plot)

stabilization. 123

6.7 Comparison of the error of the mortar element solution in the L2(H1)- and H1(Q)-semi-

norms with and without stabilization. 123

6.8 Comparison of the convergence of uniform and adaptive discretizations of the (2+

1)-dimensional heat equation. 125

6.9 Comparison of the linear solver performance. The left plot shows the accumu-

lated number of iterations required by the GMRES solver with restricted additive

Schwarz preconditioner. The right plot shows the total time spent in the solver. The

line styles are the same as in Figure 6.8. 125

6.10 Projected view of the contours of the discrete solution using space-time finite ele-

ments (left) and an implicit Euler time discretization (right). 128

6.11 Space-time contour plot of the discrete solution using space-time finite elements

(left) and an implicit Euler time discretization (right). The wireframe of the mesh

on leaves with level ≥ 3 is overlayed to indicate the structure of the adaptively

refined meshes. 129

6.12 Comparison of the convergence of uniform and adaptive discretizations of the (3+

1)-dimensional heat equation. 130

6.13 Contours of the solution of the (1+ 1)-dimensional monodomain equation using

an implicit-explicit Euler (left), implicit Euler (middle) and space-time (right) dis-

cretization. The vertical axis equals the time. For the visualization, the simulation

domain has been scaled in time direction. 131

6.14 Number of Newton iterations (left) and functional evaluations (right) in the depen-

dence of the extent E/64 ms in time direction. 132

6.15 Non-conforming adaptively refined space-time mesh on (−1,1)×(3.75,7.75) using

a standard maximum-based refinement strategy (left) and weighted error indicators

(right). The vertical axis equals the time. 134

6.16 Number of degrees of freedom relative to the dimension 33,345 of a conforming

ansatz space on a uniform mesh. For the implicit Euler method, accumulated num-

ber of degrees of freedom are shown. For the space-time discretization results with

standard and modified marking strategy are shown. 135

xv Figures

6.17 Number of Newton iterations (left) and functional evaluations (right). The plot

shows the number of iterations and evaluations accumulated (blue) and averaged

(red) over all passes. 136

6.18 Number of degrees of freedom relative to the dimension 282,897 of a conforming

ansatz space on a uniform mesh. 136

6.19 Space-time contour plot of the membrane voltage on (0,1)×
(

1
2
,1
)
× (0,12) com-

puted using space-time finite elements. The wireframe of the mesh on leaves with

level≥ 2 is overlayed to indicate the structure of the adaptively refined meshes. The

time direction is scaled by a factor 1
4

for the visualization. 137

xvi Figures

Tables

3.1 Problem sizes for experiments. 32

3.2 Breakdown of communication time for S using explicit and implicit-explicit inte-

gration with one thread per process. 33

3.3 Characteristics of the node distribution during scale-out of M. 33

3.4 Breakdown of communication time for S using explicit and implicit-explicit Euler.

TPt2Pt and TColl denote point-to-point and collective communication time, respectively. 34

3.5 Percentage increase in #nodes for M with 1, 6, and 12 threads per process. 35

3.6 Weak scalability of the implicit-explicit Euler in PROPAG-5. 37

3.7 Normalized throughput obtained from the lowest timing measured in Section 3.4. . 39

6.1 Comparison of the total number of degrees of freedom and the measured error in the

|·|L2(H1) semi-norm for a uniform implicit Euler discretization, a spatially adaptive

and a space-time adaptive discretization. 119

6.2 Quotient of the number of degrees of freedom (in millions) and the measured dis-

cretization error for the uniform and adaptive implicit Euler discretization and the

adaptive space-time discretization of the (2+ 1)-dimensional heat equation. Each

row corresponds to a data point from Figure 6.8. 125

6.3 Scaling behavior of a GMRES linear solver with restricted additive Schwarz pre-

conditioner for an implicit Euler (top) and space-time (bottom) discretization. . . . 126

6.4 Scaling of a conjugate gradient solver with BoomerAMG preconditioner for an im-

plicit Euler discretization. 126

6.5 Quotient of the number of degrees of freedom (in millions) and the measured dis-

cretization error for the uniform and adaptive implicit Euler discretization and the

adaptive space-time discretization of the (3+ 1)-dimensional heat equation. Each

row corresponds to a data point from Figure 6.12. 130

6.6 Number of Newton iterations and evaluations of the functional for a selection of the

time laps. For the implicit Euler, average and accumulated numbers are shown. . . 132

xvii

xviii Tables

Algorithms

3.1 Monodomain solver in PROPAG-4. 26

3.2 Bidomain solver in PROPAG-4. 26

3.3 Bootstrap and mesh distribution algorithm. 29

3.4 Parallel monodomain solver in PROPAG-5. 31

4.1 Time integration algorithm (schematic). 43

4.2 Implementation of the sparse matrix-vector multiplication Vℓℓℓ = KYm
ℓℓℓ Uℓℓℓ using the

product space matrix KXℓℓℓ =
⊕N

i=1 KXℓi . 55

5.1 Assembly of the matrix Q mapping the mortar element space Ym
τττ into the product

space Xτττ . 86

5.2 Assembly of the matrix Q mapping the conforming ansatz space Yc
τττ into the product

space Xτττ . 87

5.3 Assembly of the stiffness matrix AY and right-hand side bY. 89

6.1 Time integration algorithm (schematic). 115

xix

xx List of Algorithms

1 Introduction

The study of the electrophysiology of the human heart is an important field in modern medicine and

life sciences. As in most branches of science nowadays, computational modeling plays an important

and increasingly pervasive role in electrophysiological studies126. In order to support these efforts,

the community of computational mathematicians and computer scientists faces the challenge of de-

veloping computational tools for use by the domain scientists. Due to the fast-paced changes in

computational hardware, these tools and the underlying methods and techniques need to be adapted

or re-designed continuously for optimal performance.

This thesis is concerned with efficient (space-time) adaptive tools for computational electro-
cardiology targeted at current and next-generation supercomputing systems. We designed, im-

plemented and experimentally evaluated novel adaptive schemes for the solution of non-linear

reaction-diffusion equations. The research hypothesis underlying the presented work was that non-
conforming discretizations provide an excellent framework for the design of scalable adaptive al-
gorithms based on lightweight data structures.

In the first part of this thesis (Chapters 4 and 5) we consider spatially adaptive techniques with a

focus on the monodomain equation97. The monodomain equation is a non-linear reaction-diffusion

equation used extensively in computational electrocardiology (see, for example, Potse et al. 127). In

practice, this equation is often solved using low-order, semi-implicit time discretization schemes

that can be implemented very efficiently due to a weak diffusion term. Therefore we expect cur-

rent state-of-the-art parallel adaptive techniques (see, for example, Burstedde et al. 35), which were

developed for strongly non-linear and ill-conditioned problems, to be unsuited for our use case.

Instead, we pay particular attention to the cost per degree of freedom and the underlying mesh

data structures. Non-conforming discretization techniques, in particular the mortar element method 25

that is used throughout this thesis, allow for the flexible construction of adaptive meshes (or, to

be more precise, approximation spaces) by “gluing” together local pieces. Our basic building

blocks are structured/tensor meshes, a data structure that is equally well suited for current latency-

optimized processing units (such as standard x86 central processing units) and for throughput-

optimized processing units (such as graphical processing units).

In this thesis we propose two different adaptive schemes based on locally structured meshes,

managed either via a conforming tessellation (Chapter 4) or a forest of shallow trees (Chapter 5).

1

2

These mesh data structures are characterized by their low memory footprint. We present two dia-

metrically opposite approaches to the design of the parallelized algebra data structures. On the one

hand, we propose a matrix-free implementation that allows us to fully exploit the special mesh struc-

ture but is limited to the solution of reaction-diffusion equations using semi-implicit time stepping

and block preconditioning. On the other hand, we discuss an approach based on standard linear al-

gebra data structures that cannot take advantage of the local structure of the non-conforming meshes

but are flexible and can be combined with a variety of preconditioning techniques.

We assess the performance of our solution schemes in several numerical experiments and demon-

strate the applicability of the proposed adaptive techniques for the design of realistic large-scale

heart models.

In the second part of this thesis (Chapter 6) we discuss combined space-time adaptivity. In many

cases of interest, global time step control is inefficient because the time step is globally adjusted to

the local features of the solution166. Local time stepping67 on the other hand is not easily combined

with implicit or semi-implicit time discretizations. We consider space-time discretizations as a

means to enable local time stepping in the context of (semi-)implicit discretizations.

We employ a hybrid space-time discretization that combines non-conforming finite elements

within a space-time slab with a discontinuous Galerkin method92 in time in order to decouple in-

dividual space-time slabs. This discretization scheme allows us to reuse the adaptive mesh data

structures and discretization schemes developed in Chapters 4 and 5 for a combined space-time

adaptive solution scheme. Since we employ quadrilateral or hexahedral tessellations and local tensor

meshes, our mesh data structures naturally generalize to arbitrary dimensions. Our long-term goal

is the space-time adaptive solution of (3+ 1)-dimensional large-scale problems. The lightweight

nature of the employed mesh data structures is crucial for the feasibility of such simulations on

supercomputers with their limited amounted of main memory per core.

We present extensive numerical experiments that prove the feasibility of our approach and high-

light challenges that need to be addressed in future work.

Contributions

Our work contributes, on the one hand, to the on-going exploration of the design space of adaptive

methods on contemporary high performance platforms and, on the other hand, to research efforts

on fast solution techniques for computational electrocardiology. We present adaptive strategies that

combine the performance advantages of structured meshes with the flexibility of non-conforming

mortar discretizations in a novel and original fashion. These methods can be used for both space

and space-time adaptive simulations of non-linear reaction-diffusion equations.

In this thesis we take a holistic approach to the design of adaptive solution schemes that com-

bines the design of the mesh data structures, the definition of appropriate ansatz spaces as well as

considerations about implementation and parallelization. In addition, we present insightful numer-

ical experiments to assess the performance of our designs.

3

Outline

This thesis is organized as follows. In Chapter 2 we introduce the governing equations used for

modeling the electrical properties of cells and tissue. We review discretization techniques for these

equations and discuss the spatial discretization using a symmetric Galerkin method as well as dif-

ferent low-order time discretizations. Finally, we motivate the study of adaptive techniques for the

solution of the bidomain and monodomain equations and review the state of the art in this field.

In Chapter 3 we discuss the hybrid parallelization of the PROPAG heart model. This chapter

serves two purposes. On the one hand we present a state-of-the-art computational heart model on

uniform meshes and thus show the performance level that our adaptive schemes are to compete

with. On the other hand we present a performance analysis of the new hybrid OpenMP+MPI paral-

lelization in PROPAG-5, which is of interest in its own right.

In Chapter 4 we present a lightweight adaptive discretization scheme for the monodomain equa-

tion. We introduce the mortar element method in the context of a geometrically conforming tes-

sellation and propose a matrix-free implementation. Numerical experiments are discussed and a

comparison with related work is drawn.

In Chapter 5 we present an alternative scheme based on forests of shallow trees. This design al-

lows for a finer control over the refined regions compared to the lightweight scheme from Chapter 4.

We discuss the construction of approximation spaces and the assembly of mass and stiffness matri-

ces on these meshes and present numerical experiments to assess the performance of this approach.

In Chapter 6 we discuss the extension of our previous work to space-time adaptivity by means of

a hybrid finite element/discontinuous Galerkin space-time discretization. We present extensive nu-

merical experiments that show the effectiveness of space-time adaptive discretizations and demon-

strate the feasibility of the approach, even for (3+1)-dimensional problems.

4

2 Computational Modeling in

Electrophysiology

In this chapter we introduce the governing equations used to simulate the activation sequence of the

human heart. The focus of our presentation will be on the mathematical aspects. For more details on

the physiological background we refer the reader to the books by Keener and Sneyd 96,97 on which

the following introduction is largely based.

We start by discussing models for the ionic current through cell membranes by looking at single

cells. In particular, we introduce the membrane model developed by Bernus et al. 27 which we use

in most of our numerical studies. We then introduce the bidomain and monodomain equations for

modeling cardiac tissue and discuss numerical methods for the solution of these equations. Finally,

we motivate the use of adaptive techniques for this problem class and review the existing literature.

2.1 Modeling Electrical Properties of Cardiac Cells

Cells maintain an ion concentration difference between the interior and exterior of the cell by means

of active pumps (such as the Na+-K+ ATPase pumps96). In consequence, a difference between the

intra-cellular potential ϕi and the extra-cellular potential ϕe exists. By convention the membrane
voltage V equals ϕi−ϕe and is usually measured in mV.

The cell membrane can be considered an insulator with capacitance Cm, i.e.,

Cm ·V = ∆Q (2.1)

where ∆Q denotes the charge difference between the intra- and extra-cellular domain. For our

purposes Cm = 1 µF/cm2. In the cell membrane of excitable cells, millions of ion channels are

embedded which actively transport ions through the cell membrane upon activation. This creates a

current

Iion =−
d∆Q

dt
. (2.2)

Since the activity of ion channels is steered by the membrane potential V , the ionic current Iion

depends on the membrane potential. Combining equations (2.1) and (2.2) we find that the capacitive

and ionic current balance each other, i.e.,

Cm
dV

dt
+ Iion(V) = 0 . (2.3)

5

6 2.1 Modeling Electrical Properties of Cardiac Cells

From a modeling point of view, the challenge is to derive an analytic expression for the dependence

of Iion on the membrane voltage and potentially other variables that model the state of ion channels

or time-dependent ionic concentrations. The current generated by the transport of ions of type S is

often expressed as

IS = gS (V −VS)

with the conductance gS and the constant Nernst potential VS. Note that for a given ion type S, both

inward and outward currents might contribute to Iion. As gS depends on the state of the ion channels

that pump ions in or out of the cell, the value of gS will be time-dependent and be implicitly coupled

to the membrane voltage V .

2.1.1 Hodgkin-Huxley Type Models

In 1952 Hodgkin and Huxley 78 proposed a model for Iion for giant squid axons. This work had

profound impact on many branches of physiology, earning them a Nobel prize in physiology or

medicine in 1963. Despite its inadequacy for the modeling of cardiac cells we shortly discuss the

model because of its profound impact on the development of membrane models. The Hodgkin-

Huxley equations state that

Iion(V,n,m,h) = gKn4 (V −VK)+gNam3h(V −VNa)+gL (V −VL) (2.4)

where the gating variables (n,m,h) obey linear differential equations with voltage-dependent steady

states and relaxation times. More precisely, each gating variable u ∈ {n,m,h} obeys the equation

•
u =

u∞(V)−u

τu(V)
. (2.5)

For constant membrane voltage V on the time interval (0, t), this equation is solved by

u(t) = u∞(V)−
(
u∞(V)−u(0)

)
e−t/τu(V) . (2.6)

Note that equation (2.5) can be reformulated as

•
u = αu(V)(1−u)+βu(V)u (2.7)

with

u∞(V) =
αu(V)

αu(V)+βu(V)
and τu(V) =

1

αu(V)+βu(V)
.

The variables αu(V), βu(V) can be interpreted as rates of the opening and closing of ion channel

gates.

The variable n controls the activation and deactivation of potassium channels. The activation and

deactivation of sodium channels is controlled by m and h, respectively. Because the gating variables

m and h have different kinetics (m being a fast variable and h a slow variable) the experimentally

measured sodium conductance cannot be modeled with a single gating variable.

7 2.1 Modeling Electrical Properties of Cardiac Cells

−60 −40 −20 0 20 40

V [mV]

0.0

0.2

0.4

0.6

0.8

1.0

n∞

m∞

h∞

−60 −40 −20 0 20 40

V [mV]

0

1

2

3

4

5

6

7

8

9

T
im

e
[m

s]

τn

τm

τh

0 5 10 15 20

Time [ms]

−80

−60

−40

−20

0

20

40

60

P
o
te

n
ti

a
l

[m
V

]

V

n

m

h

0 5 10 15 20

Time [ms]

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.1. Behavior of the Hodgkin-Huxley model. The upper plots show the dependency of the
steady-state values and relaxation times on V . The lower plots show the solution of equation (2.3)

with an initial voltage difference of +15 mV relative to the equilibrium value of -65 mV.

0 100 200 300 400 500

Time [ms]

−100

−80

−60

−40

−20

0

20

40

60

P
o
te

n
ti

a
l

[m
V

]

V

m

v

f

to

X

0 100 200 300 400 500

Time [ms]

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.2. Solution of equation (2.3) with an initial voltage difference of +30.272 mV (relative to
the equilibrium value of -90.272 mV) using the Bernus membrane model.

8 2.1 Modeling Electrical Properties of Cardiac Cells

In the upper plot in Figure 2.1 the voltage dependency of n∞, m∞, h∞ and τn, τm, τh is shown.

The membrane voltage and gating variable values created by an initial clamped membrane voltage

is shown in the lower part of Figure 2.1. Parameters for gK, VK, gNa, VNa, gL and VL were taken from

Keener and Sneyd 96 .

Equation (2.4) itself is not appropriate for modeling the ionic current in cardiac cells. However,

in many models for Iion the conductance is expressed as a monomial in the state vector s∈RS similar

to the Hodgkin-Huxley model.

2.1.2 Membrane Models for Human Ventricular Cells

A large number of membrane models with different complexities and different applicability are

available in the literature42. A first generic model for mammalian ventricular cells was published

by Beeler and Reuter 15 . A generalized version was published by Luo and Rudy 106 which used

more recent experimental information from guinea pigs. This membrane model is known as the

phase-1 Luo-Rudy model. In 1994, Luo and Rudy 107,108 published an improved version of their

membrane model which is known as the phase-2 Luo-Rudy model. Priebe and Beuckelmann 129

adapted the phase-2 Luo-Rudy model using human data. In 2002, Bernus et al. 27 developed a

reduced version of the Priebe-Beuckelmann model to lower the computational cost. We will discuss

the Bernus membrane model in Section 2.1.4. A different model for human ventricular cells was

proposed by ten Tusscher et al. 151 in 2004 with an update in 2006, see Ref. 150.

The Priebe-Beuckelmann membrane model features nine gating variables and four time de-

pendent ion concentrations. The reduced Bernus model features five gating variables and no ion

concentrations. The model by ten Tusscher et al. requires integration of thirteen gating variables

and four time-dependent ion concentrations. Newer models might feature even more state variables.

For example, Iyer et al. 91 developed a membrane model, based on a Markov state approach, with a

total of 65 state variables.

2.1.3 The Fitz-Hugh Nagumo Model

The Fitz-Hugh Nagumo model is a simplified model that is useful for testing new numerical meth-

ods. The Fitz-Hugh Nagumo model contains a single slow gating variable w. Several different

versions of the model can be found in the literature. During early testing of the techniques devel-

oped in this thesis, we used the following version of the model:

Iion =V · (1− (V/13)) · (1− (V/100))+4.4w ,
•
w = 0.012 · (V/100−w) .

2.1.4 The Bernus Model

In large parts of this work we will make use of the Bernus membrane model because it has moderate

computational cost but is still able to produce realistic results127.

9 2.2 Modeling Electrical Properties of Cardiac Tissue

As stated earlier, the Bernus membrane model is a reduced version of the Priebe-Beuckelmann

model developed with the goal of faster two- and three-dimensional simulations of reentrant ar-

rhythmia27. The model contains five state variables

s = (m,v, f , to,X)

that regulate the fast Na+ current (variables m and v), the slow Ca2+ current (variable f), the tran-

sient outward current (variable to) and the inward delayed rectifier K+ current (variable X). The

model features no time-dependent ionic concentrations. The ionic current equals

Iion = INa + ICa + Ito + IK + IK1 + INa,b + ICa,b + INaK + INaCa

with the fast Na+ inward current INa, the slow Ca2+ inward current ICa, the transient outward current

Ito, the outward delayed rectifier K+ current IK, the inward rectifier K+ current IK1, the Ca2+ and

Na+ background currents INa,b and ICa,b, as well as the pump and exchange currents INaK and INaCa.

In Figure 2.2 the solution of equation (2.3) with initially clamped membrane voltage

V =−60mV is shown. This plot illustrates the differences in length scale between the fast de-

polarization and slow repolarization that is characteristic for cardiac myocytes.

2.2 Modeling Electrical Properties of Cardiac Tissue

The purpose of the electrical activation of the heart tissue is the initiation of a mechanical contraction

in order to pump blood through the heart chambers. A coordinated contraction is a prerequisite for

an efficient pumping functionality. The action potentials originate at the sinoatrial node from where

they spread via cell-to-cell conduction98. The action potentials enter the ventricles through the

atrioventricular node which is connected to the bundle of His, followed by the left and right bundle
branches that end in a complicated network known as the Purkinje system. The conduction velocity

in the Purkinje system is about eight times higher than the conduction velocity in the surrounding

ventricular myocyte tissue that is excited through the connection to the Purkinje fibers. In order to

accurately model the electrophysiology of the heart it is therefore important to study the propagation

of the action potential through excitable tissue.

2.2.1 The Bidomain equation

The bidomain equation158 is generally accepted as the governing equation for the electrical prop-

agation in cardiac tissue97. It is based on a two-phase representation of the cardiac tissue, i.e.,

intra-cellular and extra-cellular domain occupy the same space. Assuming Ohmic materials, con-

servation of the total current (in absence of external currents) states

∇∇∇ · (Gi∇∇∇ϕi)+∇∇∇ · (Ge∇∇∇ϕe) = 0 (2.8)

where Gi and Ge denote the conductivity tensors in the intra- and extra-cellular domain, respec-

tively. The membrane current Im, i.e., the sum of the capacitive and ionic current, equals the current

10 2.2 Modeling Electrical Properties of Cardiac Tissue

leaving the intra-cellular space up to a multiplicative factor χ , the surface-to-volume ratio. In the

following we will always assume χ = 1000 cm−1. Hence,

χ
(
Cm∂tV + Iion(V)

)
= ∇∇∇ · (Gi∇∇∇ϕi) =−∇∇∇ · (Ge∇∇∇ϕe) (2.9)

Inserting V = ϕi−ϕe we obtain the bidomain reaction-diffusion equation

χ
(
Cm∂tϕi−Cm∂tϕe + Iion (ϕi−ϕe)

)
= ∇∇∇ · (Gi∇∇∇ϕi) ,

χ
(
Cm∂tϕe−Cm∂tϕi− Iion (ϕi−ϕe)

)
= ∇∇∇ · (Ge∇∇∇ϕe) .

(2.10)

This equation is known as the parabolic-parabolic formulation of the bidomain equation. An al-

ternative formulation, known as the parabolic-elliptic formulation of the bidomain equation, is ob-

tained as follows. By definition of V and equation (2.8) one finds that the extra-cellular potential

and the membrane voltage are related by

∇∇∇ · (Gi∇∇∇V)+∇∇∇ · ((Gi +Ge)∇∇∇ϕe) = 0 . (2.11)

Similarly, by inserting ϕi =V +ϕe in equation (2.9) we find

χ
(
Cm∂tV + Iion(V)

)
= ∇∇∇ · (Gi∇∇∇(V +ϕe)) . (2.12)

The coupled system constituted by equation (2.12) and equation (2.11) is known as the parabolic-
elliptic formulation of the bidomain equation.

It is worth noting that a more rigorous derivation of the bidomain equation using mathematical

homogenization techniques is possible, see, for example, Keener and Sneyd 97 .

2.2.2 The Monodomain equation

An important simplification of the bidomain equation is the monodomain equation

χ
(
Cm∂tV + Iion(V)

)
= ∇∇∇ · (Gmono∇∇∇V) , (2.13)

where (component-wise)

Gmono =
Gi ·Ge

Gi +Ge

.

Formally, equation (2.13) is obtained from (2.8) and (2.9) by assuming the intra- and extra-cellular

conductivity tensors to be linear dependent. Even though this assumption is usually not valid,

monodomain simulations can approximate bidomain simulations well for large-scale models, see

Bordas et al. 31 , Potse et al. 127 . Note that it is possible to compute the extra-cellular (and therefore

also the intra-cellular potential) by solving equation (2.11) with the membrane voltage V obtained

as the solution of the monodomain equation.

2.2.3 Conductivity Tensors

The conductivity tensors Gi, Ge and Gmono are usually expressed as

G = Gl al⊗al +Gt at⊗at +Gn an⊗an

in units of mS/cm. The local orthonormal basis (al(x),at(x),an(x)) describes the orientation of the

fibers in the cardiac muscle. Usually, the diffusion coefficient Gl along the fibers is dominant.

11 2.2 Modeling Electrical Properties of Cardiac Tissue

2.2.4 Summary of Governing Equations

For the purpose of future referencing we now list the strong forms of the governing equations

considered in this thesis. Let Ω ⊂ Rd be a bounded domain and (0,T) the time interval of interest.

By Iapp : Ω × (0,T)→ R we denoted the applied current. By s and Z we denote the vector of state

variables of our membrane model and the right-hand sides of the governing ordinary differential

equations for the state variables, respectively.

Bidomain equation (parabolic-parabolic). Find (ϕi,ϕe) ∈ C1
(
(0,T),C2 (Ω)

)2
such that

Cm∂tϕi−Cm∂tϕe =
1

χ
∇∇∇ · (Gi∇∇∇ϕi)− Iion(ϕi−ϕe,s)+ Iapp

Cm∂tϕe−Cm∂tϕi =
1

χ
∇∇∇ · (Ge∇∇∇ϕe)+ Iion(ϕi−ϕe,s)− Iapp

in Ω × (0,T) ,

∂ts = Z(ϕi−ϕe,s) in Ω × (0,T) ,

n ·Gi∇∇∇ϕi = 0 on ∂Ω × (0,T) ,

n ·Ge∇∇∇ϕe = 0 on ∂Ω × (0,T) .

(2.14)

Bidomain equation (parabolic-elliptic). Find (V,ϕe)∈ C1
(
(0,T),C2 (Ω)

)
×C0

(
(0,T),C2 (Ω)

)
such

that

Cm∂tV =
1

χ
∇∇∇ · (Gi∇∇∇(V +ϕe))− Iion(V,s)+ Iapp

∇∇∇ · (Gi∇∇∇V)+∇∇∇ · ((Gi +Ge)∇∇∇ϕe) = 0

in Ω × (0,T) ,

∂ts = Z(V,s) in Ω × (0,T) ,

n ·Gi∇∇∇(V +ϕe) = 0 on ∂Ω × (0,T) ,

n ·Gi∇∇∇V +n · (Gi +Ge)∇∇∇ϕe = 0 on ∂Ω × (0,T) .

(2.15)

Monodomain equation. Find V ∈ C1
(
(0,T),C2 (Ω)

)
such that

Cm∂tV =
1

χ
∇∇∇ · (Gmono∇∇∇V)− Iion(V,s)+ Iapp in Ω × (0,T) ,

∂ts = Z(V,s) in Ω × (0,T) ,

n ·Gmono∇∇∇V = 0 on ∂Ω × (0,T) .

(2.16)

Note that no boundary conditions for s are enforced as the equations for s are spatially decoupled.

These equations are further augmented with appropriate initial conditions. In this work we

usually use constant initial conditions with V (0) equal to the rest potential and ϕe = 0. Note that,

depending on the simulation, different boundary conditions are used in the literature120.

The bidomain equation is a degenerate reaction-diffusion equation since the potentials ϕi, ϕe

are only well defined up to constants, i.e., the equations are invariant under the transformation

ϕi(x, t)← ϕi(x, t)−β (t) ,

ϕe(x, t)← ϕe(x, t)−β (t) ,

12 2.3 Numerical Methods

for β ∈ C1 ((0,T),R). A common approach to deal with the degenerate nature of the equations is to

search for solutions with zero mean, i.e.,

∫

Ω
ϕi(x, t) dx =

∫

Ω
ϕe(x, t) dx = 0 for all t ∈ (0,T) .

2.3 Numerical Methods

In this section we review popular numerical schemes for the solution of the mono- and bidomain

equations.

2.3.1 Spatial Discretization

In the literature, finite difference, finite volume and finite element methods have been used to dis-

cretize the bidomain or monodomain equations162. For realistic whole-heart simulations, an im-

portant requirement for the spatial discretization is the ability to cope with discontinuities in the

conductivity values that result from the differences in tissue type.

Saleheen and Ng 138 proposed a finite difference method particularly for dealing with jumps

in the conductivity tensors Gi, Ge or Gmono. A realistic heart model using this discretization has

been developed by Potse et al. 127 . Finite volume discretizations have been used, for example, by

Harrild and Henriquez 73 . The most popular discretization scheme for the bidomain and mono-

domain equations, however, is the finite element method which is used in several computational

models28,46,113,156. Finite elements (and, to some extend, finite volume) methods have the advan-

tage of a flexible handling of unstructured meshes for complicated domains and can naturally cope

with discontinuous conductivity values as long as the jumps are aligned with element faces. An

important advantage of finite difference discretizations is that they naturally lead to uncoupled or-

dinary differential equations for the membrane state variables. In standard finite element methods,

in contrast, the state variables are coupled via the non-vanishing off-diagonal entries in the mass

matrix.

With the exception of Chapter 3, where we discuss the parallelization of the finite differences-

based PROPAG model, the work presented in this thesis is focused on finite element discretizations.

In the following, we shortly review the weak formulation of the bidomain and monodomain equa-

tions and the resulting coupled ordinary differential equations when using the method of lines.

The weak formulation of equations (2.14)–(2.16) is obtained by testing the equations with func-

tions U ∈ H1(Ω). By applying integration by parts to the diffusion terms, the regularity require-

ments for the solution can be reduced to the existence of a first weak derivative. Note that, by

definition of the free Neumann boundary conditions in equations (2.14)–(2.16), the boundary inte-

grals that results from applying the divergence theorem vanish. We consider the symmetric Galerkin

approximation of the resulting equations using a conforming approximation space Y⊂H1(Ω) with

basis πππ = {πα}. In equations (2.17)–(2.19) below we state the weak formulation of the bidomain

equation in parabolic-parabolic and parabolic-elliptic form, as well as the weak formulation of the

monodomain equation.

13 2.3 Numerical Methods

Bidomain equation (parabolic-parabolic). Find (ϕi,ϕe) ∈ C1 ((0,T),Y/R)2
such that

(Cm∂tϕi−Cm∂tϕe,U)L2(Ω) =−
1

χ
(Gi∇∇∇ϕi,∇∇∇U)L2(Ω)−

(
Iion(ϕi−ϕe,s)− Iapp,U

)
L2(Ω) ,

(Cm∂tϕe−Cm∂tϕi,U)L2(Ω) =−
1

χ
(Ge∇∇∇ϕe,∇∇∇U)L2(Ω)+

(
Iion(ϕi−ϕe,s)− Iapp,U

)
L2(Ω) ,

(∂ts,U)L2(Ω) = (Z(ϕi−ϕe,s),U)L2(Ω) ,

(2.17)

for all U ∈ Y.

Bidomain equation (parabolic-elliptic). Find (V,ϕe)∈ C1 ((0,T),Y)×C0 ((0,T),Y/R) such that

(Cm∂tV,U)L2(Ω) =−
1

χ
(Gi∇∇∇(V +ϕe) ,∇∇∇U)L2(Ω)−

(
Iion(V,s)− Iapp,U

)
L2(Ω) ,

((Gi +Ge)∇∇∇ϕe,∇∇∇U)L2(Ω) =−(Gi∇∇∇V,∇∇∇U)L2(Ω) ,

(∂ts,U)L2(Ω) = (Z(V,s),U)L2(Ω) ,

(2.18)

for all U ∈ Y.

Monodomain equation. Find V ∈ C1 ((0,T),Y)2
such that

(Cm∂tV,U)L2(Ω) =−
1

χ
(Gmono∇∇∇V,∇∇∇U)L2(Ω)−

(
Iion(V,s)− Iapp,U

)
L2(Ω) ,

(∂ts,U)L2(Ω) = (Z(V,s),U)L2(Ω) ,

(2.19)

for all U ∈ Y.

The quotient space Y/R ⊂ H1(Ω)/R is canonically isomorphic to the space of functions in Y

with zero mean value.

As indicated above, the weak formulation of the bidomain and monodomain equations has two

major drawbacks compared to the strong form. First, the evaluation of the non-linear term using

summed quadrature

(Iion(V,s),U)L2(Ω) ≈
∑

i

wi · Iion(V (xi),s(xi))U(xi)

requires the evaluation of Iion at multiple quadrature points per element, which is potentially costly.

Second, since Z is a non-linear function, the term (Z(V,s),U)L2(Ω) cannot be expressed as a product

of a mass matrix times a vector in such a way that the ordinary differential equations decouple after

canceling the mass matrices on both sides of the equation.

14 2.3 Numerical Methods

A commonly used approximation (see, for example, Colli Franzone and Pavarino 46) that ad-

dresses these two issues replaces the non-linear functions by appropriate approximations. More

precisely, we replace

Iion (
∑

α Vαπα ,
∑

α sαπα) −→
∑

α

Iion(Vα ,sα)πα ,

Z(
∑

α Vαπα ,
∑

α sαπα) −→
∑

α

Z(Vα ,sα)πα .
(2.20)

If πππ is a nodal basis, the replacement functions are the nodal interpolations of the original functions.

Inserting equation (2.20) into equations (2.17)–(2.19) we find that the non-linear terms require only

dim(Y) evaluations of the functions Iion and Z, respectively. Similarly, the ordinary differential

equations governing the state variables s decouple naturally.

With this approximation, and using the notations M, Ai, Ae and Amono for the mass matrix, the

discretized intra-cellular, extra-cellular and monodomain diffusion operator, respectively, we obtain

the following equations in matrix-form.

Bidomain equation (parabolic-parabolic). Solve

Cm

[
M −M

−M M

][•
ϕi
•

ϕe

]
=− 1

χ

[
Ai 0

0 Ae

][
ϕi

ϕe

]
−
[

M −M

−M M

][
Iion− Iapp

0

]
(2.21)

coupled to a decoupled system of ordinary differential equations
•
sα = Z((ϕi)α − (ϕe)α ,sα)

(one for each basis function of Y).

Bidomain equation (parabolic-elliptic). Solve

CmM
•

V =
−1

χ
Ai (V +ϕe)−M

(
Iion− Iapp

)
,

(Ai +Ae)ϕe =−AiV
(2.22)

coupled to ordinary differential equations
•
sα = Z(Vα ,sα).

Monodomain equation. Solve

CmM
•

V =− 1

χ
AmonoV −M

(
Iion− Iapp

)
(2.23)

coupled to ordinary differential equations
•
sα = Z(Vα ,sα).

Note that in equation (2.21) we padded the current vector on the right-hand side by 0 such that

the mass matrices on the left and right side of the equation coincide. Using this trick only a single

mass matrix needs to be assembled. The same idea is applied in the subsequent section in equations

(2.28)– (2.31).

15 2.3 Numerical Methods

2.3.2 Temporal Discretization

In this section we discuss time discretization schemes that will be used in the later chapters. We

present the discretization schemes within a finite element setting using the notation from the pre-

vious section. However, the same methods can be easily applied in the context of, e.g., a finite

difference spatial discretization by replacing the mass matrix with the identity matrix.

The bidomain and monodomain equation can be solved using explicit, semi-implicit or implicit

time discretization schemes. In general, low-order (first- or second-order) integration schemes

appear to be the most popular choice in the literature. An exception is the use of higher-order

Rosenbrock-type methods by Colli Franzone et al. 47 . Ethier and Bourgault 60 analyzed different

time integration schemes for the bidomain equation (in parabolic-elliptic form) and found higher-

order implicit-explicit methods to be the best choice when considering stability and accuracy crite-

ria.

In this thesis we concentrate on first-order integration schemes based on explicit or implicit

Euler schemes. Most of our results in Chapter 4 and Chapter 5 can be directly generalized to

higher-order time discretization schemes.

An explicit Euler discretization for the bidomain equation in parabolic-elliptic form or the

monodomain equation has been used, e.g., by Vigmond et al. 161 or Potse et al. 127 . The advan-

tage of such a time discretization is its implementational simplicity and the possibility to achieve an

overlap of communication and computation in parallel implementations100,114. However, due to the

parabolic nature of the bidomain and monodomain equations, explicit discretization schemes are

bound to the stability constraint

τ . δ 2 ,

where τ denotes the time step size and δ the minimal mesh width of the spatial discretization. This

restriction renders explicit schemes inapplicable for studies relying on very high spatial resolution.

Explicit (and semi-implicit) low-order schemes are usually only applied for equations with de-

coupled state variable equations obtained by applying the “variational crime” (2.20). In this setting,

the time discretization scheme is often combined with a first-order splitting between the parabolic-

elliptic or parabolic equation and the governing equations for the state variables. Such a splitting

allows for a flexible choice of the explicit integration scheme for the latter. In particular, the explicit

Euler update for the gating variables can be replaced by a better alternative. One such option, that

will be used throughout this thesis, is to employ Rush-Larsen integration135 for gating variables.

This integration scheme exploits the special form of the Hodgkin-Huxley equations to compute the

updated gating variable by following the solution trajectory with a fixed membrane voltage. The

Rush-Larsen update reads (cf. equation (2.6))

ui+1 = u∞(V
i)−

(
u∞(V

i)−ui
)

e−τ/τu(V i) . (2.24)

Note that one recovers an explicit Euler update of u by using a two-term expansion of the expo-

nential. The Rush-Larsen update is therefore more expensive than an explicit Euler update but

enjoys better stability and accuracy properties. For time-dependent ionic concentrations, explicit

integration schemes such as Runge-Kutta methods can be applied.

16 2.3 Numerical Methods

Below we state the formulas for an explicit Euler update from time step i to step i+1. Note that

explicit integration is usually combined with mass lumping such that M is replaced by a diagonal

matrix.

Bidomain equation (parabolic-elliptic). Update

CmV i+1 =CmV i− τ

χ
M−1Ai

(
V i +ϕ i

e

)
− τ

(
Ii
ion− Ii

app

)
(2.25)

and subsequently solve

(Ai +Ae)ϕ i+1
e =−AiV

i+1 . (2.26)

Update sα as in equation (2.24).

Monodomain equation. Update

CmV i+1 =CmV i− τ

χ
M−1AmonoV i− τ

(
Ii
ion− Ii

app

)
. (2.27)

Update sα as in equation (2.24).

In contrast to explicit methods, the stability constraint of an implicit time discretization is in-

dependent of the spatial discretization. However, implicit models require the solution of high-

dimensional, non-linear systems in each step. Fully implicit schemes have been used, for example,

by Pavarino and Scacchi 121 and Colli Franzone et al. 47 . Note that in Ref. 47, the employed time-

integration scheme allows for replacing the non-linear solver by a single Newton step. In order

to lower the computational cost of a fully implicit scheme, Munteanu and Pavarino 116 proposed a

decoupled scheme where only the membrane voltage is treated implicitly.

Below we state the formulas for an implicit Euler update from time step i to step i+ 1. To

simplify the notation, we use matrix notation with the assumption that the non-linear terms have

been approximated as specified in equation (2.20). This assumption, however, is made solely to

simplify the notation.

Bidomain equation (parabolic-parabolic). Solve the non-linear system F
(

ϕ i+1
i ,ϕ i+1

e ,si+1
)
= bi

with

F(ϕi,ϕe,s) =

CmM −CmM 0

−CmM CmM 0

0 0 M

+

τ

χ

Ai 0 0

0 Ae 0

0 0 0

ϕi

ϕe

s

+ τ

M −M 0

−M M 0

0 0 M

Iion (ϕi−ϕe,s)

0

−Z(ϕi−ϕe,s)

 ,

bi =

M −M 0

−M M 0

0 0 M

Cmϕ i
i

Cmϕ i
e

si

+ τ

Ii+1
app

0

0

 .

(2.28)

17 2.3 Numerical Methods

Bidomain equation (parabolic-elliptic). Solve the non-linear system F
(
V i+1,ϕ i+1

e ,si+1
)
= bi with

F(V,ϕe,s) =

CmM 0 0

0 0 0

0 0 M

+

τ

χ

Ai Ai 0

−Ai (Ai +Ae) 0

0 0 0

V
ϕe

s

+ τ

M 0 0

0 0 0

0 0 M

Iion (V,s)
0

−Z(V,s)

 ,

bi =

M 0 0

0 0 0

0 0 M

CmV i

0

si

+ τ

Ii+1
app

0

0

 .

(2.29)

Monodomain equation. Solve the non-linear system F
(
V i+1,si+1

)
= bi with

F(V,s) =

([
CmM 0

0 M

]
+

τ

χ

[
Amono 0

0 0

])[
V
s

]
+ τ

[
M 0

0 M

][
Iion (V,s)
−Z(V,s)

]
,

bi =

[
M 0

0 M

]([
CmV i

si

]
+ τ

[
Ii+1
app

0

])
.

(2.30)

Semi-implicit integration schemes strive for combining the advantages of explicit schemes (sim-

plicity and low cost per time step) with the advantages of implicit schemes (stability). In the fol-

lowing we will consider an implicit-explicit (IMEX) Euler scheme. For different semi-implicit dis-

cretizations we refer to Ethier and Bourgault 60 . In the implicit-explicit Euler discretization we

present, the stiff diffusion operator is treated implicitly, while the non-linear current is treated ex-

plicitly. Moreover, the scheme is combined with a first-order splitting and Rush-Larsen integration

for the gating variables. In case of the parabolic-elliptic formulation of the bidomain equation we

also treat the extra-cellular potential explicitly in the parabolic equation. Therefore we need to solve

two linear systems with block size one, instead of a single system with block size two.

Bidomain equation (parabolic-parabolic). Solve
([

CmM −CmM

−CmM CmM

]
+

τ

χ

[
Ai 0

0 Ae

])[
ϕ i+1

i

ϕ i+1
e

]
=

[
M −M

−M M

]([
Cmϕ i

i

Cmϕ i
e

]
− τ

[
Ii
ion− Ii

app

0

])

(2.31)

and update sα as in equation (2.24).

Bidomain equation (parabolic-elliptic). Solve
(

CmM+
τ

χ
Ai

)
V i+1 =CmMV i− τ

χ
Aiϕ

i
e− τM

(
Ii
ion− Ii

app

)
(2.32)

and subsequently solve

(Ai +Ae)ϕ i+1
e =−AiV

i+1 . (2.33)

Update sα as in equation (2.24).

18 2.4 Adaptive Computational Methods

Monodomain equation. Solve

(
CmM+

τ

χ
Amono

)
V i+1 =CmMV i− τM

(
Ii
ion− Ii

app

)
. (2.34)

Update sα as in equation (2.24).

Note that the diffusion current is scaled by the inverse surface-to-volume ratio χ−1 in equa-

tions (2.31)–(2.34). Due to the size of χ and of the measured strength of the conductivity tensors

in cardiac tissue, the mass-matrix terms are dominant for reasonable time step sizes τ . Therefore,

the system matrices in equation (2.31), equation (2.32) and equation (2.34) are well conditioned

and do not require complicated preconditioning techniques. Note, that this does not apply to equa-

tion (2.33). For this reason solving the parabolic-parabolic equation can be computationally less

expensive even though the system matrix is larger143.

2.4 Adaptive Computational Methods

In the previous section we have introduced numerical methods for the solution of the bidomain and

monodomain equation. In this chapter we discuss the motivation for augmenting these techniques

with adaptive control and review the current state of the research in this field.

2.4.1 Motivation

Adaptive solution techniques that adapt the computational mesh and/or the time step to the features

of the solution are of interest for several reasons. They may allow for a more robust approximation

of the considered phenomena, speed up the solution by reducing the required operations (e.g., by

reducing the dimension of the ansatz/test spaces) or reduce the memory requirements, and hence

allow for solving the same problem on smaller clusters of computers.

However, adaptive techniques incur an overhead due to the dynamic changes in the computa-

tional meshes and the need to iteratively improve meshes from an initial guess. Moreover, the need

to use more complicated (unstructured) meshes or different discretization techniques can increase

the memory requirements per degree of freedom compared to a uniform simulation. Hence, adap-

tive strategies can only be effective if the reduction in the degrees of freedom is sufficiently high.

This, in turn, can only be the case if the (analytical) solution of the problem at hand exhibits lo-

calized features in space or time that need to be resolved by the numerical solution for an accurate

approximation.

In Figure 2.3 we plot the solution of the monodomain equation at three different times. In this

plot, each line corresponds to a level-set {V (x, t) =V0}. Hence, regions of steep up-/or down-stroke

are characterized by a high density of contour lines. From the visualization it is apparent that V
features a high gradient in a relatively localized region (around the so-called depolarization front)
but is smooth in the rest of the domain. Due to the (anisotropic) diffusion, the depolarization

front moves through the domain. This “wave-like” shape of the solution motivates research into

19 2.4 Adaptive Computational Methods

t = 2 ms

t = 6 ms

t = 12 ms

Figure 2.3. Contour plot of the solution of the monodomain equation in a two-dimensional domain
Ω = (0,1)2 at three different times. Lines represent the level-sets {V (x, t) =V0} for V0 = -90 mV,
-80 mV, . . . , 30 mV, 40 mV.

spatial-adaptivity for the solution of the monodomain (and bidomain) equation. We will address this

challenge in Chapter 4 and Chapter 5. Concerning temporal adaptivity, we already noted in Section

2.1.4 that the solutions of equation (2.3) exhibit fast changes during depolarization phase, followed

by slow changes during the plateau and repolarization phase. Hence, adaptive time integration of

(2.3) can be very effective since a much larger time step size τ can be used during the repolarization

compared to the depolarization phase. However, when using a reaction-diffusion model with a

spatial component, the depolarization front propagates through the domain such that global time

step control is ineffective166. In Chapter 6 we address this problem by studying local time step

control mechanisms.

2.4.2 Background

Over the past decades a vast number of adaptive discretization techniques have been developed so

that an exhaustive discussion of the literature on this topic seems impossible. Instead, in the fol-

lowing we discuss several prominent methods that show different point of views on the problem

of constructing adaptive methods and stand exemplarily for a subset of the research literature on

adaptivity.

20 2.4 Adaptive Computational Methods

Block-structured adaptive mesh refinement (AMR) based on nested uniform meshes was first

introduced by Brandt 33 in 1977. Berger and Oliger 22 and Berger and Colella 21 describe a prac-

tical algorithm for the solution of hyperbolic partial differential equations using block-structured

adaptive meshes. The construction of finer meshes is based on the clustering of tagged elements

into patches that are aligned with the elements of the coarser mesh. A finite volume discretization

allows for an easy handling of the interface between coarse and fine meshes due to the flux-based

formulation of the discrete equations. An estimate of the local truncation error, obtained by com-

paring the solutions on the fine and coarse mesh, is used to guide the adaptive refinement. Since

1989 block-structured adaptive mesh have been used in many publications (see Diachin et al. 56 and

the references therein).

The parallelization and implementation of the Berger-Oliger-Collela method in high-quality

software libraries has been discussed by several groups, see Refs. 45,81,131,169. Block-structured

AMR algorithms have been shown to perform well on contemporary architectures and to be weakly

scalable159,169.

Due to the underlying assumption of a Cartesian grid, the handling of complicated geometries

is not straightforward but possible, for example, by using an embedded boundary approach142.

A related technique that also falls under the umbrella of structured adaptive mesh refinement

techniques is tree-based AMR139,157. In contrast to the overlapping patch-based mesh handling,

tree-based adaptive methods use binary space partitioning (BSP) trees to construct an adaptive mesh.

Usually, quadtrees (in two dimensions) or octrees (in three dimensions) are used to organize the

mesh. Tree-based AMR methods are mostly employed in the context of finite volume, discontinuous

Galerkin or finite element methods with a one-to-one correspondence between tree leaves and mesh

elements. Most publications use balanced trees that restrict the differences in levels of neighboring

leaves to one, such that the differences in mesh width is at most a factor two.

Similar to block-structured AMR techniques, tree-based AMR methods cannot be directly ap-

plied to complicated geometries unless a suitable parametrization of the geometry over the unit

cube is known. To address this problem, Burstedde et al. 35,36,38 developed algorithms for the man-

agement of forests of octrees built on conforming coarse tessellations of the computational domain

via hexahedra. Recently this approach was implemented in the general purpose finite element code

deal.II13. Tree-based structured AMR has been shown to scale well up to peta-scale class super-

computers37,139.

Unstructured AMR algorithms take a different approach centered around the construction of

conforming locally refined meshes and (usually nested) multi-level ansatz spaces. These methods

often employ tetrahedral meshes and finite volume or finite element discretizations. Mesh refine-

ment is steered by a posteriori error estimators, such as residual-based59 or hierarchical101 estima-

tors. To obtain conforming finite elements in the presence of local refinement, special refinement

rules are used to split neighbors of marked elements (closures). The finite element spaces built on

refined meshes are naturally nested and can be used to implement multi-level solution methods.

21 2.4 Adaptive Computational Methods

Conforming unstructured AMR methods usually require complicated mesh management code (see,

for example, Bastian et al. 14) and tend to exhibit only low sustained performance and scalability on

contemporary architectures.

Besides local mesh refinement, the approximation quality of the finite element spaces on un-

structured meshes can also be adaptively controlled by varying the polynomial degrees (p adaptiv-
ity7) or by moving mesh nodes (anisotropic adaptivity84).

Recently, discontinuous Galerkin discretizations on non-conforming unstructured meshes have

been investigated (see, for example, Gassner et al. 68) as a way to achieve high performance and

good scalability on unstructured adaptive meshes.

A different class of adaptive techniques uses compression algorithms to reduce the number of

degrees of freedom required to achieve the desired accuracy. Harten 75 introduced a multiresolution

algorithm based on a wavelet decomposition of the numerical solution. The solution is expanded

into a linear combination of wavelet basis functions using the fast wavelet transformation and then

truncated by dropping basis functions for which the coefficient is below a predefined tolerance.

Since each basis function is associated with a grid node, this method results in an adaptive mesh

that can be described via trees44 or block-structured meshes133. Multiresolution analysis is usually

used with finite volume or finite difference discretizations and explicit time integration schemes. A

single integration step consists of a refinement step, where a grid is constructed that approximates

the current and the next step with sufficient accuracy, the numerical integration and a compression

step. Multiresolution analysis on block-structured meshes has been shown to perform well on multi-

core architectures and to be well suited for acceleration via graphics processing units133,134. As is

the case for structured AMR methods, multiresolution analysis cannot be applied to complicated

geometries straightforwardly.

A different approach, which is mostly used for high-dimensional problems, is based on sparse
grids178. Sparse grids are constructed from tensor grids by dropping (nodal) basis functions with

small support according to specific rules. One can show that for certain function classes, the trun-

cation of the basis leads to only a small reduction in accuracy but a large reduction in the degrees

of freedom. Ma and Zabaras 109 present an adaptive sparse-grid discretization for the solution of

stochastic differential equations in the context of uncertainty quantification.

Adaptive mesh refinement techniques in cardiac simulation have been covered by a large num-

ber of publications. In the following we provide an overview about the literature.

Cherry et al. 40,41 use the Berger-Oliger-Collela AMR algorithm for solving the monodomain

equation on two- and three-dimensional rectangular geometries. Speedups between 5 and 20 are re-

ported for two-dimensional problems and a speedup of 50 is measured for a simple three-dimensional

test problem.

Lines et al. 104 combine multi-level finite elements with wave-front tracking to solve the bido-

main equation in parabolic-elliptic form. A semi-implicit time integration scheme is used and a

multi-grid method is employed for solving the arising elliptic problems. For a two-dimensional test

22 2.4 Adaptive Computational Methods

problem, a speedup of about 2.2 is measured. This speedup appears to be caused by the reduction

of the time required for the integration of the state variable ordinary differential equations in the

phase-1 Luo-Rudy model which dominates the execution time.

Bendahmane et al. 20 use wavelet-based multiresolution analysis in combination with local time

stepping to solve the monodomain and bidomain equations. The equations are discretized with

a finite volume method and an explicit Euler or Runge-Kutta-Fehlberg time discretization for the

parabolic problem. The elliptic problem in the parabolic-elliptic formulation of the bidomain equa-

tion is solved via Cholesky factorization. Speedups of 30 and 26 are reported for the solution of the

two-dimensional monodomain and bidomain equation, respectively.

Whiteley 167 describes a two-level adaptive method for the solution of the bidomain equation in

parabolic-elliptic form. Spatial refinement is controlled by the gradient of the extra-cellular potential

or the membrane voltage. The high coarse-to-fine ratio is handled by imposing interpolated coarse

values as Dirichlet boundary condition to the fine mesh.

Pennacchio 122,123 analyzes the mortar element method for the computation of extra-cellular

potentials on statically refined non-conforming meshes.

Trangenstein and Kim 155 present a structured AMR algorithm for the solution of the mono-

domain equation with phase-1 Luo-Rudy membrane model. A second-order splitting is employed

and the state variables are integrated with a singly diagonally implicit Runge-Kutta scheme. The

parabolic equation is integrated with a Crank-Nicolson scheme and a multiplicative domain de-

composition solver. The coarse-to-fine ratio is restricted to two and hanging nodes are handled via

algebraic constraints. Local time stepping is used for the integration of the state variables. For a

two-dimensional test problem, a speedup of up to 4.35 is reported.

Ying and Henriquez 175 describe an extension of this work to two- and three-dimensional body-

fitted hexahedral finite elements. In this work the same second-order splitting is used but with an

implicit integration scheme for the state variable ordinary differential equations that requires local

Newton solves. The parabolic problem is solved at different time steps but always on the whole

domain Ω . For a three-dimensional simulation of a dog ventricle, a speedup of 16.9 is reported.

Belhamadia 17 describes the use of anisotropic mesh adaptation for the bidomain equation with

the FitzHugh-Nagumo membrane model (see Section 2.1.3). An implicit Euler time discretization

is used. The mesh adaptation is driven by a hierarchical error estimator. The linear system is solved

with a GMRES solver and ILU preconditioner. Belhamadia et al. 18 present results from three-

dimensional simulations, including a realistic heart geometry. Speedup numbers are not mentioned

for the heart geometry. For a simple three-dimensional geometry a speedup of 6.4 is reported.

Southern et al. 144,145 implemented anisotropic mesh adaptation in the CHASTE code and re-

ported a speedup of 5–13 for the solution of the bidomain equation in parabolic-elliptic form on a

realistic heart geometry using a Ruo-Ludy I membrane model. The authors also discuss the paral-

lelization and report scaling results for the parallel code on up to 64 processes.

Colli Franzone et al. 47 , Deuflhard et al. 55 , Weiser et al. 166 study multi-level adaptive finite

23 2.4 Adaptive Computational Methods

elements for the solution of the monodomain and bidomain reaction-diffusion equations using the

KARDOS code101. Low-order finite elements are used for the spatial discretization and a linear

implicit time discretization of Rosenbrock type. In contrast to, e.g., an implicit Euler method these

time discretization schemes require only the solution of a single linear system per time step. A

hierarchical error estimator is used to guide the spatial adaptivity and global time step control is

achieved via an embedded formula. Weiser et al. 166 report that for a fibrillation study, a reduction

in the number of degrees of freedom by 150 is achieved but no gain in computing time was mea-

sured.

Despite the progress made in the field of adaptive discretizations for the mono- or bidomain

equation, many open issues remain. Among the work listed above, only four groups (Refs. 18,145,

166,175) considered complicated three-dimensional geometries. Only Southern et al. 145 discuss

the parallelization of their adaptive method. In many cases one notices a discrepancy between the

numerical methods of choice in state-of-the-art computational models and the methods employed

in the adaptive algorithms. Thus, it is unclear if the same reported speedup numbers hold in com-

parison to optimized uniform mesh solution methods.

In this thesis we compare the developed adaptive techniques to optimized uniform mesh solvers.

In fact, in Chapter 4 and Chapter 5 we use a uniform mesh solver on a structured mesh for the

comparison of execution times where possible. While structured mesh solvers are arguably less

relevant for practical applications in computational electrocardiology, they provide an upper bound

for the performance of computational heart models in practice. Throughout the text we promote the

use of the execution time of a single or multiple time steps rather than end-to-end execution times

for comparison of adaptive and uniform methods. Due to varying behavior of the solution process

during the depolarization and repolarization phases we argue that accumulated execution times only

provide an incomplete picture of the performance of an adaptive solution strategy.

We draw comparisons between our work and the work of others repeatedly in the discussion

sections throughout the thesis.

24 2.4 Adaptive Computational Methods

3 Parallelization of the PROPAG Heart

Model for Large-Scale Simulations

In this chapter, we discuss selected features of the PROPAG-5 cardiac simulation code.

PROPAG
79,127,128 is a state-of-the-art computational heart model developed originally at the Uni-

versité de Montréal. In the newest version of PROPAG several new features were introduced that

allowed us to perform large scale simulations of unprecedented size. Here, we present and analyze

two contributions by the author, namely the hybrid parallelization of the code and a parallel setup

mechanism. Using PROPAG-5 we have been able to perform monodomain simulations with up to

1.5 billion mesh nodes, which is among the largest problem sizes reported in the literature for this

scientific problem.

This chapter is an extended version of an article published in the proceedings of the second

“Facing the multicore challenge” conference (see Ref. 100).

3.1 Characterization of PROPAG-4

The original code PROPAG-4 had been developed to solve both mono- and bidomain models on

complicated geometries obtained from CT or MRI images of the heart. It was designed to run

efficiently on shared-memory machines such as the SGI Altix family, using 16 to 128 cores. Paral-

lelization had therefore been done with OpenMP directives in a NUMA-aware fashion (taking care

of memory placement). In practice, PROPAG-4 can run heart models up to 100 million nodes in a

reasonable amount of time and with good parallel performance. Strong scaling has a fixed limit of

about 4 ·105 model nodes per core.

PROPAG works with semi-structured finite-difference meshes, i.e., many of the possible node

positions are not occupied. The heart or torso anatomy is input as a Cartesian array storing the cell

types (tissue type, blood, or void). We refer to the elements of this Cartesian box as voxels whereas

non-void voxels are called cells. Based on the cell types of surrounding voxels, the vertices of the

mesh receive types as well. Vertices that are not completely surrounded by void are referred to as

(mesh) nodes. In PROPAG-4, connectivity is computed on the fly.

The code can run in three different modes. First, it can solve the monodomain equation (2.16)

using an explicit Euler integration scheme (equation (2.27)). The control flow of the monodomain

solver in PROPAG-4 is shown in Algorithm 3.1. The main loop is decomposed into so-called laps,

25

26 3.1 Characterization of PROPAG-4

which are usually 10–50 time steps.

1: while t < T do

2: for i = 1, . . . ,Llap do

3: Evaluate Ii
dif = χ−1∇∇∇ ·Gmono∇∇∇V i

4: Evaluate Ii
app

5: Call ion_step to compute Ii
ion and to advance the state variables to the next time step

using Rush-Larsen integration for the gating variables and an explicit Euler step for ionic con-

centrations

6: Update V i+1 =V i + τ
(

Ii
dif− Ii

ion + Ii
app

)

7: end for

8: Write the (downsampled) solution to disk

9: t← t + τ ·Llap

10: end while

Algorithm 3.1. Monodomain solver in PROPAG-4.

In bidomain mode, PROPAG-4 solves the bidomain equation (2.15) in parabolic elliptic form

using operator splitting and an explicit Euler method for the parabolic equation. The control flow

of the bidomain solver is shown in Algorithm 3.2.

1: while t < T do

2: for i = 1, . . . ,Llap do

3: Evaluate Ii
dif = χ−1∇∇∇ ·Gi∇∇∇

(
V i +ϕ i

e

)

4: Evaluate Ii
app and call ion_step

5: Update V i+1 =V i + τ
(

Ii
dif− Ii

ion + Ii
app

)

6: Solve ∇∇∇ ·
(
(Gi +Ge)∇∇∇ϕ i+1

e

)
=−∇∇∇ ·

(
Gi∇∇∇V i+1

)

7: end for

8: Write the (downsampled) solution to disk

9: t← t + τ ·Llap

10: end while

Algorithm 3.2. Bidomain solver in PROPAG-4.

In the third (forward) mode, PROPAG-4 reads either the membrane voltage V or the current

Irhs =−∇∇∇ · (Gi∇∇∇V) and computes the extra-cellular potential from the equation

∇∇∇ · ((Gi +Ge)∇∇∇ϕe) = Irhs .

27 3.2 Algorithms for Large-Scale Simulations

1 2 6 12 24

Number of threads

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

al
iz

ed
ex

ec
u
ti

o
n

ti
m

e

Scaling of PROPAG-4

Membrane model

Diffusion current

Rest

0.0

0.2

0.4

0.6

0.8

1.0

E
ffi

ci
en

cy

Figure 3.1. Scaling of PROPAG-4 in a mono-
domain run with breakdown of runtime.

1 2 6 12 24

Number of threads

0

20

40

60

80

100

120

140

E
x
ec

u
ti

o
n

ti
m

e
[m

s]

Comparison of PROPAG-4 and PROPAG-5

0

20

40

60

80

100

S
lo

w
-d

o
w

n
in

p
er

ce
n
t

PROPAG-4

PROPAG-5

Relative slow-down

Figure 3.2. Comparison of the timing for com-
puting Idif in PROPAG-4 and PROPAG-5.

This mode is useful to compute the extra-cellular potential from a monodomain run. In many cases

it is sufficient to compute ϕe on a coarser mesh than required for the propagation run.

PROPAG-4 implements multiple membrane models and allows for assigning different membrane

models to different spatial regions. In this chapter all results will be presented using the ten Tusscher

2006 model, see Section 2.1.2. Note that PROPAG-4 uses tabulation to reduce the computational

cost of the evaluation of the ionic current and the parameters in the Hodgkin-Huxley equations

governing the evolution of the gating variables. In monodomain mode, the computation of Iion and

the state-variable update (both, in ion_step) dominate the runtime, see Figure 3.1.

The arising linear systems are solved using a Bi-CGSTAB solver (with restart capabilities)

and an ILU(1) preconditioner. PROPAG-4 has been parallelized with OpenMP using mostly the

parallel for worksharing construct. The ILU(1) preconditioner is implemented using a one-

dimensional domain decomposition and parallel sections.

In Figure 3.1, an analysis of the runtime of PROPAG-4 is shown. The graph shows a breakdown

of the runtime of a monodomain simulation on one 24-core node of a Cray XE6 (equipped with two

AMD Opteron 2.1 GHz “Magny Cours” processors). Due to the NUMA-aware memory allocation

and since runtime is distributed over only few scalable tasks of large granularity, the OpenMP paral-

lelization is very efficient and OpenMP management overhead is negligible. The parallel efficiency

on 24 cores is 86.9% for this rather small example (422,091 mesh nodes).

3.2 Algorithms for Large-Scale Simulations

Solving very large problems introduces challenges that often require special care in the implemen-

tation or even changes in the (numerical) algorithms. In this section we describe two developments

in PROPAG-5 that allowed us to perform monodomain production runs with systems in excess of

one billion degrees of freedom.

28 3.2 Algorithms for Large-Scale Simulations

3.2.1 Implicit-Explicit Euler Time Integration

As discussed in Section 2.3.2, explicit time integration schemes are limited in their applicability to

high-resolution models due to the stability condition. Depending on the spatial resolution required

for a specific simulation, implicit integration can thus be advantageous132,168.

In PROPAG-5 we have implemented an implicit-explicit Euler time discretization which can

be used as drop-in replacement for the explicit Euler integration scheme in PROPAG-4. We refer

to Section 2.3.2 for a discussion of the implicit-explicit Euler discretization of the bidomain and

monodomain equation. In our experience, the matrix in the arising linear system is well-conditioned

for sufficiently small (but reasonable) time step sizes τ so that a few steps of the Bi-CGSTAB with

Jacobi or Block-Jacobi ILU(0) preconditioner reduce the (relative) residual norm to the tolerance

ε = 10−8.

3.2.2 Parallel Setup

For an efficient end-to-end workflow, it is important to eliminate serial portions that can become

bottlenecks during scale-out. A particular task that is frequently not parallelized in mesh-based

codes is the initial I/O and mesh partitioning process. One reason for this is that in many cases it is

hard to find a good initial distribution of the data. To address potential bottlenecks in the setup of

PROPAG, we developed the following parallel “bootstrapping” algorithm.

The input to PROPAG are four files: One file stores voxel types and three files store the ori-

entation of the tissue fibers (al,an,at) used to compute the conductivity tensor fields Gi, Ge and

Gmono. Each file describes a three-dimensional block of voxels with size X× Y× Z. To partition

this block before loading it, i.e., before knowing the actual distribution of the nodes, we use a

three-dimensional Cartesian decomposition of the block. With calls to MPI_File_set_view and

MPI_Type_create_subarray we change the views of the processes on the file so that the data can

be read by means of a collective call to the function MPI_File_read_all. To simplify the boot-

strapping procedure, each process reads an additional halo layer. Based on the voxel types, the list

of mesh cells and mesh nodes are computed in parallel on each process. Since each process holds a

Cartesian sub-tile of the X×Y×Z-domain, it is trivial to compute connectivity information locally.

Using these data we call PARMETIS to compute a new partition mapping part (or read a partition

from a fifth input file).

Once the mapping of cells to the processes is known, the data is redistributed. The repartition

algorithm in PROPAG-5 does not require any global numbering of the mesh entities but relies on a

mapping from the current local indices to the local index on the target process. The Cartesian nature

of the bootstrap decomposition provides the necessary communication mechanisms to exchange

data between neighboring processes without the need to set up a convention for identifying local

and remote mesh entities.

While it is possible to set up connectivity tables (node-to-node and node-to-cell) on the boot-

strap mesh and exchange them during redistribution, we found this approach to be complex and

error-prone. A much easier alternative with a negligible performance penalty is the use of an oc-

tree39 to compute connectivity information after redistribution. This is possible due to the voxel

29 3.3 Hybrid Parallelization

structure of the mesh. The octree in PROPAG-5 is built in integer-coordinate space and does not

require floating-point operations.

The individual steps of the bootstrap and mesh distribution algorithm in PROPAG-5 are collected

in Algorithm 3.3.

1: Read voxel-types using MPI_File_read_all and extract mesh entities

2: Compute connectivity between mesh cells and mesh nodes and compute part using

ParMETIS_V3_PartMeshKway

3: Extend part to an array defined on all voxels in the local (to the process) sub-tile and exchange

boundary values to fill in the halo

4: Compute number of peers and set up a mapping from cells to peers and from nodes to the list

of peers

5: Identify nodes on inter-process boundaries and store their index after redistribution and the

ranks of the processes storing a copy

6: Exchange data

7: Assign (consistently between processes) owners and mark inter-process connections as “in” and

“out”

8: Build communication traces for in-going and out-going communications (Section 3.3)

9: Reorder the nodes in the communication trace according to coordinates to ensure consistency

10: Compute connectivity information using an octree

11: Reorder mesh entities locally (according to coordinates)

Algorithm 3.3. Bootstrap and mesh distribution algorithm.

Using this approach we have been able to bootstrap a mesh with 1.56 billion nodes (X =

2176,Y = 1920,Z = 3024) in less than 79 seconds on 4224 cores of the Cray XT5 at CSCS (see

Section 3.4). Roughly 19 seconds where required for Step 1 of the algorithm (corresponding to

a read performance exceeding 0.6 GiB/s). The partition was read from a file (as PARMETIS was

unable to partition such a large mesh, we computed part in a pre-processing step by interpolation

from a coarser mesh) in about 47 seconds. The remaining portions of Algorithm 3.3 took about 12

seconds.

3.3 Hybrid Parallelization

The currently largest shared-memory machines are limited to a few thousand cores per machine

while the largest distributed-memory architectures scale to millions of cores. To efficiently utilize

these resources, we ported PROPAG-4 to an MPI code that can run on distributed-memory archi-

tectures. Such systems usually consist of a large number of multi-socket compute nodes connected

by a high-speed interconnect. In recent years, the number of cores per socket has increased signifi-

30 3.3 Hybrid Parallelization

cantly. Within a compute node, memory is shared between cores, usually with NUMA architecture.

Therefore, we retained the existing OpenMP parallelization, which is efficient for intra-node paral-

lelization, and added an MPI layer for inter-node parallelism. Such a hybrid parallelization approach

has been used for a variety of codes and has proven beneficial for several reasons:

1. It simplifies adding new levels of concurrency beyond what is easily accomplished with MPI

and hence can be used to overcome algorithmic scaling limitations (e.g., GTC61).

2. It allows to mitigate efficiency loss in applications that are limited by the scaling of all-to-all

communication (e.g., PARATEC119 and CPMD88) or where communication time is a signif-

icant part of the runtime.

3. Since the shared memory often renders halo (or overlap) zones unnecessary, hybrid codes

can use less memory. If additional work must be performed on the halo, scalability can be

enhanced by increasing the number of threads per process (e.g., FISH94).

4. It simplifies the load balancing of applications with dynamic or complicated structure since

intra-process load balancing is possible using dynamic or guided loop scheduling (e.g., NPB

BT-MZ Benchmark130).

It is worth noting, though, that hybrid parallelization is not always beneficial. Mahinthakumar

and Saied 111 report no improvement in a hybrid implicit finite element solver. In general, there

are many factors contributing to the performance of hybrid execution and results can vary between

simulation setups105.

3.3.1 MPI Parallelization

For the MPI parallelization of the code, we exploited techniques that have proven to be very effi-

cient for the parallelization of general (unstructured) finite element applications. Hence, we use a

cell-wise distribution of the geometry. The decomposition is computed through an interface to exist-

ing graph-partitioning libraries (e.g., PARMETIS
95) as described in Section 3.2.2. Differently than

previous versions of PROPAG, all arrays range only over cells and nodes and connectivity informa-

tion is stored explicitly. Hence, the stencil-based computation of Idif is replaced by a sparse-matrix

vector multiplication. We use an ELLPACK-ITPACK format136 that is suitable for vectorization

by the compiler. In Figure 3.2 the impact of this change on the time required for computing Idif is

shown. The additional indirect addressing and the corresponding increase in memory bandwidth

usage reduces performance which, however, is compensated for by better scalability of the MPI

layer.

Since the mesh in PROPAG-5 is distributed cell-wise, nodes are duplicated on multiple processes.

One of these processes is distinguished as the owner of the node. For inter-process communication,

we use the notion of communication traces introduced by Sahni et al. 137 . In PROPAG-5 a commu-

nication trace consists of a set of nodes (located on an inter-process boundary) and the rank of a

peer process. On the peer, a matching communication trace is built with a consistent ordering of

the interface entities. Hence, by means of a communication trace, inter-process communication is

31 3.3 Hybrid Parallelization

possible without the need for a global numbering of mesh entities. All communication is based on

two primitives: The function sumup_at_owner gathers data on the owner and copy_to_others

overwrites the data at each copy by the data at the owner (scatter). These communication steps

are implemented on top of non-blocking MPI send/receive calls and an extended interface (start,

test, wait) is provided to overlap these operations with computations.

Using these communication primitives, we can rewrite Algorithm 3.1 as shown in Algorithm

3.4. The algorithm is written in such a way that it allows for overlapping communication of the

diffusion currents with the computation of Iapp (to hide the communication in sumup_at_owner)

and with the evaluation of Iion for the interior nodes (to hide copy_to_others), assuming the

necessary hardware capabilities. In our tests, we have not seen improvements in scalability or

runtime due to overlap. Nevertheless, by construction, all receive calls are pre-posted timely before

the wait call. This is important for good MPI performance on many systems including the targeted

Cray XT5.

1: while t < T do

2: for i = 1, . . . ,Llap do

3: Evaluate Ii
dif = χ−1∇∇∇ ·Gmono∇∇∇V i locally

4: Call sumup_at_owner_start(Ii
dif)

5: Evaluate Ii
app

6: Call sumup_at_owner_wait(Ii
dif)

7: Call copy_to_others_start(Ii
dif)

8: Compute Ii
ion and integrate state variables for all owned nodes ⊲ In ion_step

9: Call copy_to_others_wait(Ii
dif) ⊲ In ion_step

10: Compute Ii
ion and integrate state variables for all other nodes ⊲ In ion_step

11: Update V i+1 =V i + τ
(

Ii
dif− Ii

ion + Ii
app

)

12: end for

13: Gather statistics using collective communication

14: Write the (downsampled) solution to disk

15: t← t + τ ·Llap

16: end while

Algorithm 3.4. Parallel monodomain solver in PROPAG-5.

3.3.2 MPI Threading Support

The intra-process parallelization via OpenMP was retained and extended to new code segments. As

in PROPAG-4, we mostly use parallel for worksharing constructs. This approach (in compari-

son to the use of large parallel sections) incurs some overhead but simplifies the implementation.

Experiments with PROPAG-4 (Figure 3.1) show that OpenMP overhead does not significantly affect

32 3.4 Results

the scalability of the explicit solver.

All MPI calls in PROPAG are performed outside the parallel sections. Therefore, the minimal

level of thread support an MPI implementation must provide is MPI_THREAD_FUNNELED. As defined

by the standard, this level of thread support suits applications where it is ensured that only the main

thread makes MPI calls. In comparison to higher levels of thread support, this does not incur

overhead due to locks/mutexes in the MPI implementation.

We do not anticipate savings in communication time by having multiple threads performing

communication since the code is limited by latency rather than bandwidth. Using multiple threads

for communication can be advantageous if a single thread is incapable of saturating the network

interface130.

3.4 Results

All experiments were performed on a Cray XT5 machine operated by the Swiss National Super-

computing Centre. The system consisted of 1844 nodes with two 6-core AMD Opteron 2.6 GHz

“Istanbul” processors per node (22,128 cores in total). The nodes were connected through a Seastar

2+ interconnect. Due to an interconnect congestion problem at the time of the testing, we could not

perform test on more than 8,448 cores.

For our experiments, we considered approximations of a model anatomy (based on CT data of a

human heart obtained at autopsy127) at different spatial resolutions. We summarize the description

of the four considered problem sizes (small, medium, large and extra-large) in Table 3.1.

Table 3.1. Problem sizes for experiments.

Name Resolution #cubes #nodes

S 0.5 mm 3,024,641 3,200,579

M 0.25 mm 24,197,121 24,900,671

L 0.125 mm 193,576,968 196,390,842

XL 0.0625 mm 1,548,615,744 1,559,870,636

We studied strong scaling for the problem sizes S, M, L and XL, varying both the number of

processes and the number of threads per process, the latter between 1 (one MPI process per core),

6 (one MPI process per socket), and 12 (one MPI process per node). For all setups we started

with at least 12 threads. We measured the average time required to perform ten explicit Euler or

implicit-explicit Euler steps, respectively. Every tenth step, an MPI_Allreduce was performed to

sum up statistics that had been accumulated locally. For the purpose of our tests, we did not perform

significant I/O. For the IMEX runs, we used the Bi-CGSTAB solver with a Jacobi preconditioner

and a fixed time step size τ = 0.02 ms.

33 3.4 Results

Table 3.2. Breakdown of communication time for S using explicit and implicit-explicit integration
with one thread per process.

#cores

% of walltime % of walltime

in point-to-point in collective

communication communication

Explicit Euler

132 4.91% 2.31%

1,056 20.10% 10.07%

#cores

% of walltime % of walltime

in point-to-point in collective

communication communication

Implicit-Explicit Euler

132 13.04% 12.31%

1,056 32.57% 48.09%

Table 3.3. Characteristics of the node distribution during scale-out of M.

#procs 12 24 528 1,056 4,224 8,448

% Increase
1.58 2.33 10.14 13.25 22.55 29.67

in #nodes

3.4.1 Performance of Single-Threaded Execution

In Figure 3.3, the time per run for the different problem sizes is plotted against the number of

threads (i.e., number of processes times threads per process). The code scales well up to 8,448

cores for the larger problem sizes. In general, the scaling of the explicit Euler is much better than

the implicit-explicit Euler as the latter requires multiple MPI_Allreduce calls per time step and

additional point-to-point communication for sparse matrix-vector multiplications.

For S on 1,056 cores (one thread per process), the implicit-explicit Euler requires about 169×
more MPI_Allreduce calls than explicit Euler. At this scale, the code spends 48.0% of the compute

time in the calls to MPI_Allreduce (compared to 9.7% for the explicit Euler). Hybrid execution

can improve this situation, see Section 3.4.2. Nevertheless, for this small problem size, the code still

achieves an efficiency of 56.5% and 21.9% on 1,056 cores using the explicit Euler and implicit-

explicit Euler, respectively. For larger problems, such as L, the parallel efficiency on 8,448 cores

relative to 132 cores (the minimum required to run the problem) is 81.6% and 53.2% for explicit

Euler and implicit-explicit Euler, respectively.

The limits in (strong) scalability of PROPAG can be linked to two major sources of inefficiency:

A relative increase in communication time and a sub-optimal decrease in the degrees of freedom

per process.

In Table 3.2, we report the relative percentage of the average walltime of communication in the

main computational loop as reported by the Integrated Performance Monitor (IPM)90. The data

show that the relative communication time (both point-to-point and collective) increases by a factor

of approximately 4 when increasing the number of cores by a factor of 8.

In Table 3.3 we show the increase in the total number of nodes due to the overlap between

subdomains. Due to the cell-based decomposition, nodes on inter-process boundaries must be du-

34 3.4 Results

Table 3.4. Breakdown of communication time for S using explicit and implicit-explicit Euler. TPt2Pt

and TColl denote point-to-point and collective communication time, respectively.

#cores
procs ×

TPt2Pt TColl
threads/proc

Explicit Euler

132×1 5.12 s 2.41 s

132 22×6 3.99 s 1.37 s

11×12 4.87 s 2.34 s

1,056×1 3.90 s 1.95 s

1,056 176×6 2.43 s 0.95 s

88×12 2.25 s 0.76 s

#cores
procs ×

TPt2Pt TColl
threads/proc

Implicit-Explicit Euler

132×1 35.53 s 33.55 s

132 22×6 20.86 s 25.89 s

11×12 12.18 s 14.99 s

1,056×1 38.13 s 56.29 s

1,056 176×6 13.73 s 39.81 s

88×12 10.52 s 33.46 s

plicated so that the total number of nodes (where copies are accounted for) grows with the number

of processes. As can be seen in Table 3.3, the number of nodes has grown by almost 30% on 8,448

cores. Using an argument similar to that of Amdahl’s law, we can derive an upper bound for the

parallel efficiency as the ratio between the total number of nodes in serial and parallel. In our ex-

ample, the maximum attainable efficiency when scaling from 12 to 8,448 cores is 78.3%. A similar

finding was reported by Sahni et al. 137 in the context of an unstructured finite element solver.

3.4.2 Benefits of Hybrid Execution

In the previous section, we have identified two major sources of scalability loss in PROPAG-5. In

this section we will analyze how hybrid execution, using multiple threads per process, allows to

mitigate these inefficiencies.

In Table 3.4, we present a breakdown of the communication time for the problem size S. The

results for runs with one thread per process correspond to the results in Table 3.2. Unlike before,

Table 3.4 contains absolute communication times (for 1010 time steps) to allow for comparing

the results from different runs. Our results show that the use of multiple threads per process can

significantly reduce the communication time. Using 6 or 12 threads per process reduces the time in

MPI_Allreduce by 22–52% or up to 61%, respectively. Similarly, TPt2Pt is decreased by 22–64%

or 5–72% for 6 or 12 threads. Interestingly though, a smaller number of processes does not always

imply lower communication cost since the TPt2Pt for 11×12 threads is larger than for 22×6 threads.

Using more threads per process leads to larger buffer sizes. This results in an improved bandwidth

utilization but also increased latency.

In Section 3.4.1, we have noted that a strict upper limit for the parallel efficiency in PROPAG

exists due to the growth of node copies on inter-process boundaries. For the intra-process paral-

lelization based on OpenMP worksharing constructs, no overlap is required. When keeping the

total number of threads constant, using more threads per process will result in fewer node copies.

In Table 3.5, we show that this results in a strong reduction of the number of additional nodes.

Consequently, the theoretical upper bound for the efficiency improves: When using 12 threads per

35 3.4 Results

Table 3.5. Percentage increase in #nodes for M with 1, 6, and 12 threads per process.

#cores
12 24 528 1,056 4,224 8,448

threads

1 1.58 2.33 10.14 13.25 22.55 29.67

6 0.40 0.84 4.82 6.55 11.31 14.87

12 0.00 0.40 3.33 4.82 8.79 11.31

process, efficiency when going from 12 to 8,448 cores is bounded by 89.8% (rather than 78.3%,

cf. Section 3.4.1). We measure an efficiency of 74% for the explicit Euler solver which seems to be

practically impossible to achieve with a pure MPI version.

The actual, measured improvement of the hybrid code (running with 6 or 12 threads per process,

respectively) is shown in Figure 3.4. For problem size M and an explicit Euler discretization,

threaded execution is beneficial starting at 96 cores. For the implicit Euler, which is more strongly

limited by communication time, execution with 6 threads per process is advantageous already at 24

cores; execution with 12 threads per process is advantageous for 528 cores or more. When 2,112

cores or more are used, running with 12 threads per process is faster than running with 6 threads per

process.

From Figure 3.5 the clear correlation between the efficiency of the pure MPI code and the

improvement in performance due to hybrid execution is apparent. The correlation coefficient for

this dataset is −0.915. On the other hand, hybrid execution (in particular when threading is used

within a socket) can give a significant boost even in the range where the pure MPI code exhibits

good parallel efficiency.

3.4.3 Weak Scaling of Monodomain Solver

In Table 3.6 we show weak scaling results for the implicit-explicit Euler discretization in PROPAG-5

when scaling from 132 cores with about 24 M nodes up to 8,448 cores and approximately 1.5 G

nodes. These results show that preconditioning with a Block-Jacobi ILU(0) does not improve per-

formance for modest system sizes but is crucial at large scale. For XL, the time per step is decreased

by more than 40% and the parallel efficiency is 56.4% rather than 32.9%.

The loss of efficiency can be partially explained by the increase in the number of iterations: On

132 cores, 28 time steps (of the first 90 steps) required a single Bi-CGSTAB iteration per step and 62

time steps required two iterations each. On 8,448 cores, 80 steps required three solver iterations each

and the 10 remaining steps required four iterations per step. While it might be possible to improve

the parallel efficiency of the time integration scheme by using more scalable preconditioners (e.g.,

domain decomposition preconditioners), it is unlikely that the actual runtime would be improved at

this level of concurrency.

36 3.4 Results

12 48 132 528 2112 8448

Number of threads

10−3

10−2

10−1

100

101

102
T

im
e

[s
]

S

M L

Explicit Euler

Ideal

1 T/P

6 T/P

12 T/P

12 48 132 528 2112 8448

Number of threads

10−3

10−2

10−1

100

101

102

T
im

e
[s

] S

M

L XL

Implicit-Explicit Euler

Figure 3.3. Scaling of explicit Euler (left) and implicit-explicit Euler (right) on the Cray XT5.
Problem M requires at least 24 cores for implicit-explicit or explicit Euler with one thread per
process. X requires at least 132 cores for execution (96 when using 12 threads per process). The
starting point for the strong scaling study for problem XL is 2112 cores.

0

25

50

75

S

Explicit Euler

6 T/P

12 T/P

−25

0

25

M

12 48 132 528 2112 8448

Number of threads

−25

0

25

Im
p
ro

v
em

en
t

[%
]

L

−25

0

25

50

75
S

Implicit-Explicit Euler

−25

0

25

50

75
M

−25

0

25

L

12 48 132 528 2112 8448

Number of threads

−50

−25

0

25

XL

Figure 3.4. Improvement through hybrid execution for explicit (left) and implicit-explicit Euler
(right) relative to pure MPI for different problem sizes on the Cray XT5.

37 3.4 Results

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Efficiency (one thread/process)

−40

−20

0

20

40

60

80

Im
p
ro

v
em

en
t

[%
]

Improvement through hybrid execution and parallel efficiency

6 T/P

12 T/P

Figure 3.5. Comparison of the improvement through hybrid execution and the efficiency of the pure
MPI code. Data points are taken from both explicit and implicit-explicit Euler runs and include all
four considered problem sizes.

Table 3.6. Weak scalability of the implicit-explicit Euler in PROPAG-5.

#cores
problem Time per step Time per step

size w/o BJ ILU(0) with BJ ILU(0)

132 M 0.43 s 0.44 s

1,056 L 0.61 s 0.49 s

8,448 XL 1.30 s 0.78 s

3.4.4 Performance of Parallel Setup

To assess the quality of the bootstrapping algorithm (Algorithm 3.3), we collected information about

the bootstrap mesh for M on 12 to 8,448 cores on the Cray XT5.

Since the geometry data can be used for different simulation types (monodomain, bidomain

or forward simulations), the simulation box sizes are not optimized for this monodomain run and

only about 12% of voxels in the simulation box are mesh cells. For example, the heart geometry

contains atrial blood masses which are not taken into account in a monodomain simulation. Hence,

our setup can be viewed as a worst-case scenario for the bootstrap algorithm; however, it is the most

relevant case for production runs with PROPAG. Figure 3.6 depicts an indicator for the quality of

the bootstrap distribution. We bin processes into four classes: Idle processes which own no cells;

Underutilized processes which own less than 0.75× the optimal value; Overburdened processes

which own more than 1.25× the optimal value and optimally loaded processes.

The quality of the bootstrap distribution deteriorates at increasing parallelism. As can be ex-

pected from geometric considerations, the number of idle threads grows quickly but reaches steady

38 3.5 Discussion

24 48 96 132 264 528 1056 2112 4224 8448

Number of threads

0

20

40

60

80

100

P
er

ce
n
ta

g
e

Bootstrapping results (one thread per process)

overburdened

optimal

underutilized

idle

24 48 96 132 264 528 1056 2112 4224 8448

Number of threads

0

20

40

60

80

100

P
er

ce
n
ta

g
e

Bootstrapping results (12 threads per process)

Figure 3.6. Quality of the “best-effort” bootstrapping in PROPAG-5 when using one (top) and
twelve (bottom) threads per process on the Cray XT5.

state at 2,112 cores. Since the percentage of overburdened threads reaches a constant state, the mem-

ory imbalance is not prohibitive, i.e., PROPAG will still be able to bootstrap the mesh on higher core

counts. When running with 8,448 processes, 76.8% of processes are idle. In turn, this means that

1,956 processes are involved in the process: an improvement of more than two orders of magnitude

compared to a serial alternative.

As can be seen from Figure 3.6, the use of more threads per process helps to mitigate the

quality deterioration since the intra-process (thread level) distribution is not based on a Cartesian

distribution but can be chosen optimally. However, because PARMETIS cannot use multiple threads

per process, the hybrid code usually does not speed up the bootstrapping and mesh distribution

phase in PROPAG-5.

3.5 Discussion

PROPAG-5 is a state-of-the-art computational heart model designed for efficient execution on cur-

rent homogeneous architectures which nowadays feature intra-node parallelism through the use of

multicore chips and inter-node parallelism through (high-speed) interconnection of multiple nodes.

PROPAG-5 can efficiently utilize these systems by adapting the number of threads per process de-

pending on the hardware characteristics.

39 3.5 Discussion

Table 3.7. Normalized throughput obtained from the lowest timing measured in Section 3.4.

Problem size Normalized throughput

Explicit Euler

S 0.0217

M 0.0502

L 0.0594

XL -

Problem Size Normalized throughput

Implicit-Explicit Euler

S 0.0029

M 0.0103

L 0.0100

XL 0.0079

While PROPAG-5 is competitive to other state-of-the-art implementations (see, for example,

Refs. 115,118,125,160) it is unique in its ability to solve high-resolution models.

Recently, Mirin et al. 114 have demonstrated scalability of the CARDIOID model to 1M cores on

the BlueGene/Q Sequoia at Lawrence Livermore National Laboratory. This work exploits low-level

optimizations targeted at the BG/Q architecture but also several optimizations that are implemented

in PROPAG-5.

In this article, the authors publish a comparison of the throughput of several codes, including

PROPAG-5. To compare different results from the literature, they used a normalized throughput
defined as

normalized throughput = (60s) ·
(

500ms

τ
· 370 ·106

cells
· (time per step [s])

)−1

. (3.1)

When using the timings for problem size XL on 8,448 cores with the implicit-explicit Euler integra-

tor, PROPAG-5 achieves a normalized throughput of only 0.0079 (which is close to the number used

by Mirin et al. 114). This number, however, is not representative for the performance of PROPAG-5

in production. On the one hand, our benchmark results where obtained with a time step size of

0.02 ms for both, the explicit and implicit-explicit Euler. For the latter, however, a larger time step

size is advisable for production runs and would increase the normalized throughput. Moreover,

our scaling runs where constrained to a maximum of 8,448 cores. For solving XL a larger num-

ber of cores would be employed when available. Our data suggest that PROPAG-5 could scale to

at least 33,792 cores for this problem size. A more accurate representation of the performance of

PROPAG-5 can obtained when using the other measurements from Section 3.4. In Table 3.7 we

report the normalized throughput, as computed from equation (3.1) for explicit and implicit-explicit

Euler for the different problem sizes. Note that Mirin et al. 114 report a normalized throughput of

0.018 for CARP
118. In contrast to the data published by Niederer et al. 118 , however, our timings do

not include I/O overhead.

Besides the parallel bootstrapping algorithm and the hybrid parallelization discussed in this

40 3.5 Discussion

chapter, PROPAG-5 moreover includes an optimized Lustre-aware I/O scheme and a new interface

to PETSC
11 through which a variety of new preconditioners (e.g., the algebraic multi-grid BOOMER-

AMG 53,62) can be used for solving the elliptic equation in the parabolic-elliptic formulation of the

bidomain equation.

4 A Lightweight Adaptive Scheme for the

Monodomain Equation

In this chapter we present a novel lightweight adaptive algorithm for solving the monodomain equa-

tion that was designed to exhibit good performance on contemporary homogeneous supercomputers.

We present the results of several numerical experiments that allow to assess the performance of the

proposed solution scheme.

4.1 Introduction

In Section 2.4.1 we motivated the study of adaptive techniques for the approximation of the mono-

domain equation. In the previous chapter we have presented performance and scalability results

for a state-of-the-art uniform grid code. The fact that full heart simulations on uniform meshes

require between O(106) and O(108) degrees of freedom and O(104) time steps clearly provides an

incentive for studying adaptive strategies. At the same time, however, the good performance and

excellent scalability of uniform grid codes present a challenge for adaptive methods that is not met

by standard adaptive mesh refinement techniques166.

We propose an adaptive scheme for time-dependent non-linear reaction-diffusion equations

(with a focus on the monodomain equation) that was designed to exhibit a low memory footprint,

to be well suited for contemporary central processing units and to be relatively simple to imple-

ment and parallelize. To this end we use non-conforming locally structured adaptive meshes and

matrix-free block preconditioning. The use of a non-conforming discretization is central as it gives

flexibility in the choice of the local mesh widths.

4.1.1 Overview

We consider the discretization of the monodomain equation (2.16) using finite elements and an

implicit-explicit integration scheme as discussed in Section 2.3.2. Hence, the approximation V i+1

at the next time step is obtained as the solution of the variational problem: Find V i+1 ∈ Y so that

a
(
V i+1,U

)
= b(U) for all U ∈ Y , (4.1)

41

42 4.2 Lightweight Adaptive Meshes

where Y denotes the spatial approximation space and

a(V,U) =Cm (V,U)L2(Ω)+
τ

χ
(Gmono∇∇∇V,∇∇∇U)L2(Ω)

b(U) =Cm

(
V i,U

)
L2(Ω)

− τ
(

Iion

(
V i,si

)
− Ii

app,U
)

L2(Ω)
.

(4.2)

The state variables s ∈ C1
(
(0,T),YS

)
are explicitly integrated.

We employ a time window-based dynamic adaptation procedure36,148. Instead of constructing

new spatial approximation spaces in each time step we fix the approximation space over one so-

called lap, which consists of 1 ≤ Llap ∈ Z time steps. The adaptation of the space is then based

on accumulated error indicators. The integration over a lap is repeated multiple times to find an

optimal approximation space that captures the solution behavior.

The advantage of this approach is that the overhead of the adaptive strategy (construction of

a new approximation space and transfer of dynamic variables between spaces) is reduced. On the

downside, however, this scheme typically leads to approximation spaces with higher dimensions.

In Algorithm 4.1 we present a schematic of the time integration scheme used in this chapter.

This chapter is organized as follows. In Section 4.2 we introduce the mesh data structure that

is the foundation of the presented adaptive scheme. In the following Section 4.3 we discuss how to

build (non-conforming) approximation spaces on these meshes. In Section 4.4 we present a tailored

preconditioner for the system (4.1). Section 4.5 is concerned with transfer operators as used in

Algorithm 4.1. Finally, in Section 4.6 we discuss error estimation and marking strategies.

4.2 Lightweight Adaptive Meshes

In classical h-adaptive unstructured (multi-level) finite element methods, the approximation space is

usually chosen as piece-wise polynomials on a conforming mesh. Adaptation of the approximation

space is achieved through local refinement and coarsening of the underlying mesh. This fine-grained

control however comes at the expense of complex and inefficient data structures. Here, we follow an

approach which trades control over the refinement process with the efficiency of the data structures.

This is done by grouping mesh elements into batches that are collectively refined and coarsened.

By using locally structured meshes and appropriate data structures we can efficiently handle these

meshes.

In the following we assume that the computational domain Ω permits a conforming (in the sense

of finite element meshes) tessellation

Ω =
N⋃

i=1

Ωi (4.3)

into a finite number of patches Ωi. Each patch shall be equivalent to (0,1)3 up to translation and a

trilinear mapping, i.e., there exists an invertible transformation from the unit cube to the patch, and

43 4.2 Lightweight Adaptive Meshes

1: t← 0

2: Y← coarse approximations space

3: while t < T do

4: Construct a smaller approximation space Y′ by coarsening

5: Transfer dynamic variables V , s to Y′ (See Section 4.5) and update Y← Y′

6: Save all dynamic variables

7: for j = 1, . . . ,nrep+1 do

8: Clear all error indicator values.

9: for i = 1, . . . ,Llap do

10: Evaluate right-hand side b as defined in equation (4.2)

11: Integrate state variables s

12: Solve for membrane voltage V (see Section 4.4)

13: Accumulate error indicators (see Section 4.6.1)

14: end for

15: if j < nrep+1 then

16: Construct a larger approximation space Y′ by refinement (see Section 4.6.2)

17: break if Y′ equals Y or if the estimated error is small enough

18: Restore the saved variables V , s and transfer them to Y′. Update Y← Y′

19: end if

20: end for

21: t← t +Llap · τ
22: end while

Algorithm 4.1. Time integration algorithm (schematic).

hence Ωi has the shape of a hexahedron. We moreover assume that this transformation has positive

determinant.

In our adaptive scheme, each patch inherits a structured mesh from the unit cube via the trans-

formation (0,1)3→Ωi. However, each patch is individually meshed with no regards to conformity

on the interface between adjacent patches. More precisely, let (δℓ)ℓ≥1 ⊂ (0, 1
2
], be an arbitrary (but

fixed) sequence of admissible mesh widths. Each δℓ defines a structured mesh T̂δℓ on (0,1)3 with

edge length δℓ. In our adaptive algorithm we choose a level 1 ≤ ℓi ∈ Z,1 ≤ i ≤ N, individually on

each patch, allowing us to resolve spatial features of the PDE solution at the optimal resolution. We

obtain a tensor-structured mesh Tℓi on Ωi as the image of T̂δℓi
under the transformation from (0,1)3

to Ωi. In the following we always assume δℓ = 2− j for some 1 ≤ j ∈ Z but our approach could be

generalized to other choices.

In this setting, the mesh Tℓℓℓ is uniquely defined by the vector ℓℓℓ = (ℓi)
N
i=1 of patch levels or

equivalently by the local mesh widths δδδ = (δℓi)
N
i=1. In a time-dependent simulation, ℓℓℓ and δδδ are

piece wise constant time-dependent functions.

44 4.3 Mortar Discretization

Figure 4.1 shows a sketch of the mesh creation process starting from the coarse tessellation, the

assignment of a level to each patch and the mapping of structured meshes to each patch.

(a) Decomposition of Ω

into patches Ωi.

3
3
2
1

2
2

3 1 2 2 3 2
1

3
2

1
3
3
3
3

1
3

3
3

212233
2

3
1

3
2
1

3
2
3

3
1

2 3
1

1
3

1
2
1
3
3

2

1
1231

2
32

3

2
3

2
2

2
2

2
2

1
1
1
2
2

2
133333

3
2
2

3 1 3 3
3
2

3
222

3 3 3
1

2 2

2
3

1
3

1 1
31

3
1

1
3

1
2

32
3

1 2
2 2

2

2
3

1
1

(b) Assignment of levels
1≤ ℓi ≤ 3 to patches.

(c) Patch-wise structured
non-conforming mesh.

Figure 4.1. Two-dimensional sketch of the geometric setup.

4.3 Mortar Discretization

Associated with the mesh Tℓi on Ωi we define a local approximation space

Xℓi =
{

u ∈ C
0(Ωi)

∣∣ u|E ∈Q1(E) for all E ∈Tℓi

}
,

where Q1(E) denotes the space of functions on the element E whose pull-backs are trilinear poly-

nomials on the reference element59.

Using the spaces Xℓi we form the product space

Xℓℓℓ =
N∏

i=1

Xℓi .

We modify the definition of the bilinear form a by replacing the L2-scalar product with a broken

L2-product for the second-order term, i.e.,

a(V,U) =
N∑

i=1

Cm (V,U)L2(Ωi)
+

τ

χ

N∑

i=1

(Gmono∇∇∇V,∇∇∇U)L2(Ωi)
(4.4)

The definition of a in equation (4.4) and equation (4.2) are equivalent for functions in H1 (Ω) but

the former is also well defined for the non-conforming space Xℓℓℓ 6⊂ H1 (Ω).

It is well known that Xℓℓℓ is not well suited for the discretization of equation (4.1) since it provides

no control over the jump of functions on the interface between adjacent patches and hence one

cannot bound the consistency error in terms of the mesh size172.

More precisely, according to Strang’s second lemma

‖V i+1−V i+1
ℓℓℓ ‖. inf

Uℓℓℓ∈Xℓℓℓ

‖V i+1−Uℓℓℓ‖+ sup
Uℓℓℓ∈Xℓℓℓ

|b(Uℓℓℓ)−a(V i+1,Uℓℓℓ)|
‖Uℓℓℓ‖

. (4.5)

45 4.3 Mortar Discretization

Since, Xℓℓℓ 6⊂H1(Ω) the second term (the consistency error) does not vanish, even with exact evalu-

ation of the bilinear form a. The solution V i+1 ∈ H1(Ω) of equation (4.1) satisfies

N∑

i=1

[
Cm

(
V i+1,Uℓℓℓ

)
L2(Ωi)

+
τ

χ

(
Gmono∇∇∇V i+1,∇∇∇Uℓℓℓ

)
L2(Ωi)

]
+

∫

S

(n ·Gmono∇∇∇)V i+1 [Uℓℓℓ] dS(x) = b(Uℓℓℓ) ,

(4.6)

where [·] denotes the jump of a function across an interface, Γi j denotes the interior of ∂Ωi∩ ∂Ω j

and

S =
N⋃

i, j=1

Γi j (4.7)

denotes the skeleton of codimension one. Inserting (4.6) into (4.5) we obtain

sup
Uℓℓℓ∈Xℓℓℓ

|b(Uℓℓℓ)−a(V i+1,Uℓℓℓ)|
‖Uℓℓℓ‖

= sup
Uℓℓℓ∈Xℓℓℓ

∫

S

(n ·Gmono∇∇∇)V i+1 [Uℓℓℓ] dS(x)

‖Uℓℓℓ‖
. (4.8)

This term cannot be bounded as a (non-trivial) function of the mesh size δδδ .

The mortar finite element method25 introduces constraints that define a subspace of Xℓℓℓ suitable

for the discretization of elliptic problems, even in the presence of large variations in the mesh

width. These constraints state that the jump of trial functions, tested against functions in a multiplier

space, must vanish. In view of equation (4.8) this multiplier space must be chosen so that it can

approximate the trace of (n ·Gmono∇∇∇)V on the skeleton. In the following we briefly review the key

aspects of the mortar element method as we employ it. For more information we refer to Bernardi

et al. 26 .

4.3.1 Mortar Constraints

On the interface Γi j, two potentially different hyper-surface meshes are induced by the adjacent

patches. For each Γi j = Γji we designate one side as mortar (or master) side whereas the other side

is termed non-mortar (or slave). This choice induces non-overlapping decompositions

S =
M⋃

m=1

γ−m and S =
M⋃

m=1

γ+m

of the skeleton into the mortars and non-mortars, respectively. Here, γ−m = Γi j and γ+m = Γji or vice

versa. In our method, the mortar side is always associated with the finer mesh, i.e., γ−m = Γi j if

δℓi < δℓ j . If δℓi = δℓ j we make an arbitrary (but fixed) choice.

46 4.3 Mortar Discretization

The following sets of mesh nodes are used subsequently. Note that throughout this chapter we

use small Greek letters for mesh nodes and use a dot to identify nodes on slave sides.

Nℓi = Mesh nodes of Tℓi ,

N
◦
ℓi

= Interior mesh nodes of Tℓi ,

Nγ−m = Mesh nodes on γ−m (induced by master side) ,

Nγ+m
= Mesh nodes on γ+m (induced by slave side) ,

N
◦

γ+m
=
{

α̇ ∈Nγ+m

∣∣ α̇ ∈ γ+m \∂γ+m
}
,

N
∂

γ+m
= Nγ+m

\N ◦
γ+m

.

By θθθ = (θα)α∈
⋃N

i=1
Nℓi

we denote the nodal basis of Xℓℓℓ.

To define a suitable subspace Ym
ℓℓℓ ⊂Xℓℓℓ, we choose a discrete Lagrange multiplier space Mγ+m

⊂
L2(γ+m) for each non-mortar γ+m . We define

Mγ+m
= span

{
ψα̇
}

α̇∈N ◦
γ+m

,

i.e., we associate one basis function with each mesh node located in the interior of the non-mortar

side. As we retain the degrees of freedom associated with mesh nodes on the wire basket
⋃M

m=1 ∂γ+m ,

the space Mγ+m
has the correct dimension. To compensate for the fact that no multipliers are associ-

ated with the nodes on ∂γ+m , we need to modify the basis functions in boundary elements in order

to preserve the approximation properties of the multiplier space. The choice of the basis functions

{ψα̇} is discussed in Section 4.3.3.

We call a function Uℓℓℓ ∈ Xℓℓℓ admissible if
∫

γ+m

[Uℓℓℓ] ·µ dS(x) = 0 for all µ ∈Mγ+m
and m = 1, . . . ,M . (4.9)

For the discretization of (4.1) we use the following constrained space (space of admissible func-

tions) as ansatz and test space:

Ym
ℓℓℓ = {Uℓℓℓ ∈ Xℓℓℓ | Equation (4.9) holds for Uℓℓℓ } .

For our choice of Mγ+m
we have Ym

ℓℓℓ ⊂ C0(Ω) only in case of ℓi = ℓ j for all i, j.

4.3.2 Mortar Projection

Let us briefly discuss the algebraic representation of the constraints (4.9). For a mortar γ−m = Γi j

we can write the values of Uℓℓℓ ∈ Xℓℓℓ on the mortar side as Uℓℓℓ|γ−m =
∑

α (Uℓℓℓ)
m
α θα . Similar, on the

non-mortar side, we can write Uℓℓℓ|γ+m =
∑

α̇ (Uℓℓℓ)
nm
α̇ θα̇ . Inserting µ = ψβ̇ in equation (4.9) we obtain

0 =

∫

γ+m

(∑

α̇

(Uℓℓℓ)
nm
α̇ θα̇ −

∑

α

(Uℓℓℓ)
m
α θα

)
ψβ̇ dS(x)

=

∫

γ+m

∑

α̇

(Uℓℓℓ)
nm
α̇ θα̇ψβ̇ dS(x)+

∫

γ+m

(∑

α̇∈N ∂

γ+m

(Uℓℓℓ)
nm
α̇ θα̇ −

∑

α

(Uℓℓℓ)
m
α θα

)
ψβ̇ dS(x) .

47 4.3 Mortar Discretization

We introduce the matrices D, R, C with

Dα̇β̇ =

∫

γ+m

ψα̇θβ̇ dS(x) , (4.10a)

Rα̇ε =

∫

γ+m

ψα̇θε dS(x) , (4.10b)

Cα̇ν̇ =−
∫

γ+m

ψα̇θν̇ dS(x) , (4.10c)

for α̇, β̇ ∈N ◦
γ+m

, ε ∈Nγ−m and ν̇ ∈N ∂
γ+m

. The mortar projection is represented by P = D−1
[
R C

]
.

Introducing US = ((Uℓℓℓ)
nm
α̇)α̇∈N ◦

γ+m

and

UM =

((Uℓℓℓ)

m
ε)ε∈N

γ−m
((Uℓℓℓ)

nm
ν̇)ν̇∈N ∂

γ+m

 ,

we can rewrite equation (4.9) as US = PUM.

4.3.3 Dual Lagrange Multipliers

The first multiplier spaces used in the mortar element method25 were standard nodal functions (with

modifications at the boundary). The disadvantage of this choice for Mγ+m
is that D−1 is a full matrix

for three-dimensional problems and hence the mortar projection is full as well.

In this work, we use dual Lagrange multipliers171,172 to span the multiplier space Mγ+m
which

have the advantage that the mortar projection is sparse and (equivalently) that the resulting nodal

basis functions of Ym
ℓℓℓ have local support. Dual multipliers are characterized by the biorthogonality

condition ∫

γ+m

ψα̇θβ̇ dS(x) = δα̇β̇

∫

γ+m

θβ̇ dS(x) for α̇, β̇ ∈N
◦

γ+m
. (4.11)

Biorthogonality does not hold for β̇ ∈ ∂γ+m . Inserting equation (4.11) into the definition of D we

obtain

Dα̇β̇ = δα̇β̇

∫

γ+m

θβ̇ dS(x) ,

which is a diagonal matrix.

Since γ+m is the image of (0,1)2 under a bilinear mapping (up to translation) and the surface mesh

induced by Tℓ j is a structured mesh, we can define the basis functions in terms of one-dimensional

dual multiplier functions172. In the case that the parametrization

ϕ+
m : R2 ⊃ (0,1)2 −−→ γ+m ⊂ R3

is an affine linear function we can define ψα̇ as ψ1
α̇1
⊗ψ1

α̇2
, where α̇ = (α̇1, α̇2). On (0,1), the

one-dimensional Lagrange multiplier shape functions are given by

ψ̂1
0 = 2−3 · x , ψ̂1

1 = 3 · x−1 .

48 4.3 Mortar Discretization

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0

-2

-1.6

-0.8

0

0.8

1.6

2.4

3.2

4

Figure 4.2. Contour plot of the dual Lagrange multiplier function ψα̇ . The left shows the basis
function corresponding to an interior node. The right plot shows the basis function corresponding
to the right lower corner of γ+m , i.e., the right and lower boundary of the shown rectangle are on
∂γ+m .

On elements that touch the boundary of the non-mortar we set ψ̂1
0 = 1 or ψ̂1

1 = 1. In Figure 4.2

two dual Lagrange multiplier functions with support in the interior (left) and at the boundary of γ+m
(right) are plotted.

Since, in general, γ+m is a curved surface with non-constant area element, we need to modify

the basis functions to ensure that the biorthogonality condition (4.11) also holds for the transformed

basis functions if the area element

√
det
(
(∇∇∇ϕ+

m)T ∇∇∇ϕ+
m

)
is not constant. We follow Flemisch and

Wohlmuth 64 in rescaling the dual Lagrange multipliers by the inverse area element, i.e., we define

ψα̇ =
wα̇√

det
(
(∇∇∇ϕ+

m)T ∇∇∇ϕ+
m

) ψ̃α̇ ◦
(
ϕ+

m

)−1
, wα̇ =

∫

γ+m

θα̇ dS(x)
∫

(0,1)2
θ̂α̇ dx

. (4.12)

Here, ψ̃α̇ denotes the unscaled Lagrange multiplier defined on the structured mesh on (0,1)2 not

the multiplier functions on the reference element.

When assembling the matrix R on an interface Γi j we have to take into account the potentially

different orientations of the structured meshes on the interface induced by Tℓi and Tℓ j . Because of

this difference in the orientations, the parametrizations on the master and slave side can differ (up to

an affine mapping) and thus it is not straightforwardly possible to transform the integral in equation

(4.10b) to the reference element. In the Appendix A we discuss the assembly of R in detail. Note

that the biorthogonality condition (4.11) is fulfilled independently of the relative orientation of slave

and master faces.

49 4.3 Mortar Discretization

4.3.4 Saddle-Point Formulation

One possibility to incorporate the mortar constraints (4.9) is to re-formulate the elliptic problem

(4.1) as a saddle-point problem16. Hence, we search for a tuple (Vℓℓℓ,λℓℓℓ) ∈ Xℓℓℓ×
(∏M

m=1Mγ+m

)
such

that

a(Vℓℓℓ,Uℓℓℓ)+ c(Uℓℓℓ,λℓℓℓ) = b(Uℓℓℓ)

c(Vℓℓℓ,µℓℓℓ) = 0 ,
(4.13)

for all test tuples (Uℓℓℓ,µℓℓℓ) ∈ Xℓℓℓ×
(∏M

m=1Mγ+m

)
and

c(Vℓℓℓ,µℓℓℓ) =
M∑

m=1

∫

γ+m

[Vℓℓℓ]µℓℓℓ dS(x) .

4.3.5 A Basis for the Subspace

An alternative approach to a saddle-point formulation is to construct a basis of the subspace Ym
ℓℓℓ and

assemble the stiffness matrix of a with respect to this basis. In this case, the elliptic nature of the

problem is retained.

We obtain a basis of the constrained space Ym
ℓℓℓ by eliminating the basis functions associated

with nodes in the interior of the non-mortar side of each interface. More precisely, we categorize

all mesh nodes as follows: The inner nodes are mesh nodes located in the interior of a patch Ωi.

Master nodes are mesh nodes located on a mortar or at the boundary of a non-mortar (i.e., on the

wire basket). The remaining slave nodes are precisely mesh nodes in
⋃M

m=1 N ◦
γ+m

. Starting from the

nodal basis θθθ we construct a new basis πππ of Ym
ℓℓℓ ⊂ Xℓℓℓ as follows:

• Basis functions associated with inner nodes are not modified, i.e., πα = θα for α ∈N ◦
ℓi

.

• Basis functions associated with slave nodes are dropped. The number of slave nodes is exactly

the codimension of Ym
ℓℓℓ ⊂ Xℓℓℓ.

• Basis functions associated with master nodes are modified in the following way: If α ∈Nγ−m

and α̇ ∈N ∂
γ+m

, we define

πα = θα +
∑

β̇∈N
γ+m

Rβ̇αD−1

β̇ β̇
θβ̇ ,

πα̇ = θα̇ +
∑

β̇∈N ◦
γ+m

Cβ̇αD−1

β̇ β̇
θβ̇ .

Since D is diagonal, πα and πα̇ have local support.

50 4.4 Linear Solver and Preconditioning

In shorthand notation we can write πππ = QTθθθ with

QT =

[
1 0 0

0 1 PT

]
.

Here, we ordered the degrees of freedom in Xℓℓℓ and Ym
ℓℓℓ so that inner nodes come first, then master

nodes, and finally all slave nodes. For more details we refer to Maday et al. 110 and Bernardi et al. 26 .

Because the basis functions in πππ are linear combinations of basis functions of Xℓℓℓ, we can easily

express the stiffness matrix of a on Ym
ℓℓℓ in terms of the block-diagonal stiffness matrix on Xℓℓℓ. A

short calculation reveals that

AYm
ℓℓℓ = QTAXℓℓℓQ . (4.14)

We use equation (4.14) to implement the sparse matrix-vector multiplication by AYm
ℓℓℓ without as-

sembling the matrix. In fact, we only assemble AXℓℓℓ (which can be easily done in parallel on all

patches) and implement multiplication by AYm
ℓℓℓ in a matrix-free fashion. Due to the fixed bandwidth

we can efficiently store and manipulate the product stiffness matrix. Since AXℓℓℓ can be decomposed

as

AXℓℓℓ =
N⊕

i=1

AXℓi

we moreover can locally reassemble AXℓℓℓ only on those patches where the level changes.

4.4 Linear Solver and Preconditioning

We use a preconditioned conjugate gradient solver in the constrained space Ym
ℓℓℓ to solve the linear

systems arising in the implicit-explicit Euler time discretization (Equation (4.1)) and the application

of the L2-transfer ΠΠΠ (Equation 4.16 in the next section).

For conforming discretizations, block Jacobi ILU preconditioners have proven to be efficient

and exhibit good strong scalability in the number of subdomains, see Chapter 3. This motivates the

use of the same preconditioning strategy for the adaptive method. However, a block decomposition

of the stiffness matrix on the product space Xℓℓℓ is insufficient as we have verified experimentally.

Hence, we need to use a block decomposition of the basis πππ of Ym
ℓℓℓ . Here, again, explicit assembly

of the local blocks of AYm
ℓℓℓ is to be avoided as they feature a relatively high bandwidth in rows cor-

responding to master nodes and are cumbersome to handle efficiently with commonly used sparse

matrix formats. Therefore, we prefer to refrain from constructing a local ILU decomposition.

Here, we propose to apply a fixed number of steps of a conjugate gradient solver to the local

system A
Ym
ℓℓℓ

i z = r starting from a zero initial guess. Our experiments have shown that a very small

number of iterations (e.g., four) is optimal in terms of the time to solution for this preconditioner.

The sparse matrix-vector multiplication is implemented as follows. Considering the patch Ωi,

1 ≤ i ≤ N, let us write V =
[
VI VM

]T
, i.e., we order the degrees of freedom such that interior

51 4.5 Transfer Operators

nodes come first. Then we can write the square sub-block of AYm
ℓℓℓ corresponding to the degrees of

freedom in Ωi as

A
Ym
ℓℓℓ

i =

[
1 0 0 0

0 1 CTD−1 CTR−1

][
A
Xℓℓℓ
i 0

0 A
Xℓℓℓ
op,SS

]

1 0

0 1

0 D−1C

0 D−1R

 , (4.15)

where A
Xℓℓℓ
i itself is a 3×3 block matrix according to a decomposition of nodes into interior, master

and slave nodes. By A
Xℓℓℓ
op,SS we denote the slave-slave matrix entries on the non-mortar side opposite

to the mortar face. Comparing equation (4.15) with equation (4.14) we find that applying A
Ym
ℓℓℓ

i

requires one additional sparse matrix-vector multiplication on the mortar side of patch faces.

4.5 Transfer Operators

The transfer of dynamic variables (membrane voltage and state variables) between two approxima-

tion spaces Ym
ℓℓℓ(t) and Ym

ℓℓℓ(t ′) at two different times t and t ′ is needed in Algorithm 4.1 to obtain a

representation of the discrete solution in a new tailored approximation space.

The choice of mortar and non-mortar sides of an interface Γi j = Γji depends on the level and

hence differs for Ym
ℓℓℓ(t) and Ym

ℓℓℓ(t ′). Consequently, even though the meshes Tℓi(t) and Tℓi(t ′) are nested

for every patch Ωi (with either one being the finer or the coarser) there is no simple relationship (in

the sense of an interpolation operator or alike) between the basis functions πππ and πππ ′. In particular,

patch-wise local transfer defines a mapping Xℓℓℓ(t)→Xℓℓℓ(t ′) that usually does not map Ym
ℓℓℓ(t) into Ym

ℓℓℓ(t ′).

In the context of a finite element discretization, the transfer via an L2-projection is a natural

choice. However, since the L2-projection is a non-local operator, its evaluation requires the solution

of a linear system for (1+S) right-hand sides (one for each dynamic variable). For this reason we

consider a second local transfer operator.

4.5.1 L
2-Transfer

We realize the transfer between the approximation spaces Ym
ℓℓℓ(t) and Ym

ℓℓℓ(t ′) by means of an L2-orthogonal

projection, ignoring the embedding into the product spaces for the time being. Hence, Π : Ym
ℓℓℓ(t)→

Ym
ℓℓℓ(t ′) is characterized by

(ΠVℓℓℓ,Uℓℓℓ)L2(Ω) = (Vℓℓℓ,Uℓℓℓ)L2(Ω) for all Uℓℓℓ ∈ Ym
ℓℓℓ(t ′) .

In contrast to a patch-wise local transfer operator, the L2-projection Π is a global operator, the

evaluation of which requires the solution of a linear system (unless Ym
ℓℓℓ(t) ⊂ Ym

ℓℓℓ(t ′)). Precisely, with

respect to the bases πππ and πππ ′, Π is represented by

ΠΠΠ = T−1
1 T2 . (4.16)

52 4.6 Adaptivity Control

Here, T1 is the standard mass matrix on the space Ym
ℓℓℓ(t ′), i.e., the matrix representation of the

L2-scalar product with respect to basis πππ ′ and

(T2)αβ =

∫

Ω
π ′απβ dx .

Using the definition of πππ and πππ ′ in terms of the standard nodal basis functions, we can implement

multiplication by T1 and T2 via multiplication of block matrices, see equation (4.14).

We use a (preconditioned) conjugate gradient method for solving T1 (ΠΠΠz) = T2z. The size of

this linear system depends on the number of dynamic variables (e.g., the number of gating variables

and ionic concentrations in the chosen membrane model) and hence the solution can be expensive.

4.5.2 Local Transfer

To reduce the cost of the transfer operator, we consider the following alternative operator

Π̃ΠΠ = Q̃T
(∏N

i=1 Ti
3

)
Q , Q̃T =

[
1 0 0

0 1 0

]
.

Here, Ti
3 denotes a local interpolation or projection operator Xℓi(t)→ Xℓi(t ′). The matrix Q̃T maps

Xℓℓℓ(t ′) to Ym
ℓℓℓ(t ′) by simply omitting slave values. We note that Π̃ΠΠ is a local operator similar to the

interpolation and projection operators used in unstructured adaptive finite element methods.

4.6 Adaptivity Control

Our adaptive scheme is controlled by patch-wise accumulated error indicators and a maximum-

based refinement strategy, as detailed in the following.

4.6.1 Error Estimation

We use the residual error indicator

η2
E = O(δ 2)+

∑

F⊂∂E
F 6⊂∂Ωi

δF

2g
‖
[
nE ·Gmono∇∇∇V i+1

ℓℓℓ

]
‖2

L2(F)

+
∑

F⊂∂E
F⊂∂Ωi

δF

g
‖nE ·Gmono∇∇∇V i+1

ℓℓℓ −λℓℓℓ‖2
L2(F)

+
∑

F⊂∂E
F⊂∂Ωi non-mortar side

g

δF
‖
[
V i+1
ℓℓℓ

]
‖2

L2(F)

(4.17)

where E ∈Tℓℓℓ, δF = diam(F) and g equals the largest eigenvalue of Gmono. λℓℓℓ denotes the Lagrange

multiplier obtained as the residual on the slave side scaled by the matrix D−1, i.e.,

λℓℓℓ =
∑

α̇

D−1
α̇α̇

(
b(θα̇)−a(V i+1

ℓℓℓ ,θα̇)
)

ψα̇ .

53 4.7 Implementation and Parallelization

This estimator was introduced by Wohlmuth 170 and proven to be reliable and efficient on two-

dimensional triangulations. Our implementation omits the higher-order volume term and uses mid-

point quadrature (instead of high-order or exact quadrature) to reduce the cost of evaluating the

error indicators.

Since we employ a time-window approach (see Section 4.1.1) we use accumulated error indi-

cators for the refinement and coarsening. Moreover, since we mark patches (instead of individual

elements) we are only interested in to the total estimated error per patch. Hence, refinement and

coarsening is based on the accumulated errors
(
ηΣ

i

)N
i=1

where

(
ηΣ

i

)2
=
∑

E∈Tℓi

Llap∑

j=1

η2
E(t + j · τ) .

4.6.2 Marking Strategy

In this work we only consider marking strategies as used in multi-level finite element methods, in

particular a maximum-based strategy which marks patches for refinement (ℓi→ ℓi+1) or coarsening

(ℓi→ ℓi−1) based on the ratio ηΣ
i /max j ηΣ

j :

ℓi←

ℓi +1 if ηΣ
i ≥ b

(
max j ηΣ

j

)

ℓi−1 if ηΣ
i ≤ a

(
max j ηΣ

j

)

ℓi else

for some chosen values 0 ≤ a < b ≤ 1. Hence, the patch level ℓi changes by at most one level in

each mesh adaptation step. An average-based strategy is applicable as well but was found to be less

efficient in early tests.

We use a weighted estimated error101 for comparison against a given tolerance:

(∑
i

(
ηΣ

i

)2
)1/2

atol+ rtol · ‖Vℓℓℓ‖L2(Ω)

≤ tol . (4.18)

A mesh is accepted (i.e., no further passes are performed) if either (a) equation (4.18) is fulfilled,

(b) no elements are marked for refinement or (c) the maximal number of repetitions is reached in

Algorithm 4.1. Note that it might not be possible to satisfy equation (4.18), e.g., due to a bound on

the level ℓi ≤ ℓmax.

4.7 Implementation and Parallelization

One of the design goals of the presented adaptive scheme was the simplicity of the implementation

and parallelization. In this section we comment on the structure of our reference implementation

employed in Section 4.8.

54 4.7 Implementation and Parallelization

4.7.1 Implementation Aspects

By design, the data structures required for the implementation of Algorithm 4.1 are straightforward

extensions of data structures used in standard conforming finite element codes. In the implementa-

tion used in this work, we maintain an array of pointers (with fixed length N) pointing to instances

of a structure storing

• the coefficients of the dynamic variables V , s with respect to the product space nodal basis;

• local product space mass and stiffness matrices;

• projection matrices D, C and R for each of the six faces; as well as

• auxiliary (temporary) variables.

Note that since modifications to this data structure happen only during the regridding, we can avoid

costly memory allocation and deallocation during the integration of a lap by keeping temporary

arrays alive.

Only a minimal amount of metadata must be maintained. Each patch stores, for each of its

neighbors, the index of the patch on the other side of the face, the level of this patch and the choice

of the master/slave side.

The mass and stiffness matrix blocks on Xℓi have a fixed maximal bandwidth of 27 correspond-

ing to the direct nearest neighbors. Hence, the multiplication can be efficiently implemented as a

stencil operation with variable coefficients provided the input vectors are (at allocation time) padded

with an additional halo layer. In comparison to other matrix storage schemes this approach is both

SIMD (single-instruction multiple-data) friendly and memory efficient.

Similarly, we only store the coefficients of the projection matrices C and R on a face F and

implement the matrix-vector product as a stencil operation. This is possible since the coarse-to-fine

ratio on F is fixed (for at least one lap) and known prior to the assembly of the mortar projection.

Since D is diagonal, it is stored as a vector on F .

In Algorithm 4.2, the implementation of the sparse-matrix vector product with a matrix KYm
ℓℓℓ

(which can be either the stiffness or the mass matrix) is described in detail. Note that we use the

same storage location for the representation of a function Uℓℓℓ ∈ Ym
ℓℓℓ with respect to the basis of the

subspace and with respect to the basis of the product space. We set the coefficients corresponding to

eliminated basis functions θα̇ to zero so that the application of Q and QT are idempotent operations.

In general, the code needs to take into account the different relative orientations of neighboring

elements that induce different orientations of the structured meshes on the interface. Our test im-

plementation is build on the assumption of a structured coarse tessellation and therefore assumes

matching orientations. We refer to Section 5.4 for a discussion of this problem in the context of a

different implementation.

Note that our implementation does not use a numbering of the global degrees of freedom but

only requires local patch-wise numbering of the mesh nodes. Due to the tensor structure of the mesh

55 4.7 Implementation and Parallelization

1: for i = 1, . . . ,N do ⊲ Uℓℓℓ←QUℓℓℓ

2: for all slave-side faces F = Γji of Ωi do

3: Copy values of Uℓℓℓ

∣∣
Ω j

on F to a two-dimensional buffer B1 ⊲ Gather

4: Rotate B1 entries according to the relative orientation

of the patches ⊲ not implemented (see text)

5: Copy values of Uℓℓℓ

∣∣
Ωi

on F to B2 ⊲ Gather

6: B3← D−1 (RB1 +CB2)

7: Replace Uℓℓℓ

∣∣
F by B3 ⊲ Scatter

8: end for

9: end for ⊲ Uℓℓℓ is now represented with respect to the basis of Xℓℓℓ

10: for i = 1, . . . ,N do ⊲ Vℓℓℓ←KXℓℓℓUℓℓℓ

11: Vℓℓℓ
∣∣
Ωi
←KXℓi

(
Uℓℓℓ

∣∣
Ωi

)

12: end for ⊲ Vℓℓℓ is now a function in Xℓℓℓ

13: for i = 1, . . . ,N do ⊲ Vℓℓℓ←QTVℓℓℓ
14: for all faces F of Ωi do

15: if F is a master-side face then

16: Copy values of Vℓℓℓ
∣∣
Ω j

on F to B1 ⊲ Gather

17: Rotate B1 entries according to the relative orientation

of the patches ⊲ not implemented (see text)

18: B2← RTD−1B1

19: Add B2 to Vℓℓℓ
∣∣
F ⊲ Scatter

20: else ⊲ F is a slave-side face

21: Copy (interior) values of Vℓℓℓ
∣∣
F to B1 ⊲ Gather

22: B2← CTD−1B1

23: Add B2 to Vℓℓℓ
∣∣
F ⊲ Scatter

24: Set interior value of Vℓℓℓ
∣∣
F to zero

25: end if

26: end for

27: end for ⊲ Vℓℓℓ is now represented with respect to the basis of Ym
ℓℓℓ

Algorithm 4.2. Implementation of the sparse matrix-vector multiplication Vℓℓℓ = KYm
ℓℓℓ Uℓℓℓ using the

product space matrix KXℓℓℓ =
⊕N

i=1 KXℓi .

56 4.7 Implementation and Parallelization

Tℓi on Ωi, a column-major or row-major ordering is a natural choice. In fact, in our implementation

we make use of the support of multi-dimensional arrays in Fortran for storing and working with

matrices and vectors.

The absence of a global numbering scheme allows us to perform local reassembly of the stiff-

ness and mass matrices confined to patches where the level changes.

For fine level patches containing on the order of 163 or 323 elements, the proposed data structure

naturally leads to “blocked” traversal of the degrees of freedom. In particular, the working set of

the local block preconditioner discussed in Section 4.4 potentially fits into the level-three (or even

level-two) cache of contemporary central processing units.

4.7.2 Parallelization

Our adaptive scheme permits parallelization using techniques well known in the finite element com-

munity. The presented parallelization scheme is optimized for moderately large systems (up to sev-

eral hundreds of processing elements) but not for massively parallel processing, cf. Section 4.8.4.

For the parallelization of the method we use a non-overlapping decomposition of the coarse

tessellation. Hence, each patch Ωi is assigned to one processing element. The patch data structure

discussed above can be reused without much modification. Only the metadata must be extended

to store the owner processing element (identified by its rank) and the local index of neighboring

patches.

An effective load balancing scheme must take into account weights (wi)
N
i=1 ∈ RN that are as-

signed to each patch to account for the differences in computational intensity. A natural choice for

these weights is the number of elements δ−3
ℓi

. In our implementation we augment this estimate for

the load per patch by measured timings to improve the load estimation.

We use a Knapsack solver131 to compute a well balanced partition of the coarse tessellation.

This load balancing algorithm takes into account the weights but not the topology of the tessella-

tion. Previous numerical experiments have shown that both, space-filling curve- and graph-based,

partitioning algorithms perform significantly worse than Knapsack in terms of the achieved balance

(and in consequence also lead to substantially worse scaling) due to the large coarse-to-fine ratios

that lead to high variation in the weights.

Point-to-point communication is required for the repartitioning of the mesh, i.e., to exchange

patch data when patches migrate, and in the implementation of the mortar operations, i.e., for the

application of the operators Q and QT used for mapping between constrained and product space.

In our implementation we exchange one message per patch per face. Messages can be distin-

guished by using the local patch index and face number as message tag. By storing the projection

matrices D, C and R for the same mortar on both processing elements we can tune the implementa-

tion to only communicate slave values (of which there are fewer on the interface) and hence reduce

the communication volume. For example, in the computation of Pz we first apply D−1R locally on

the master side and then send the result to the slave side. In the computation of PTz on the other

hand we first exchange the values of z and then apply RTD−1 on the master side.

57 4.8 Results

4.7.3 Measuring Depolarization Times

The depolarization time is an important observable in electrophysiological simulation. Usually it is

defined as

tdepol(x) = min{ time t | si(x, t)≥ q} ,

for a given (membrane model-dependent) index 1≤ i≤ S and threshold q. For the Bernus membrane

model we use i = 1 (the m gate) and q = 0.98.

In practice, tdepol is measured at mesh nodes and interpolated between them. Since tdepol is

not time-dependent, however, it is not possible to treat the depolarization time like other dynamic

variables in a monodomain simulation. In particular, the approximation space Ym
ℓℓℓ(t) is not well suited

to approximate tdepol since Ym
ℓℓℓ(t) will have by design low approximation quality far away from the

depolarization front.

Here, we propose to use a second approximation space for the depolarization front. Since tdepol

is an observable, we are flexible in the choice of the space. We use a product space

Xdepol = X(ℓdepol,ℓdepol,...,ℓdepol)

with a fixed level 1≤ ℓdepol on all patches. The level ℓdepol is chosen a priori.

In many cases, it is sufficient to capture tdepol on a coarser mesh than required for the compu-

tation of V and s. However, even for moderate ℓdepol, the memory required for storing tdepol can

be a significant portion of the total memory usage, defying the purpose of an adaptive approach.

Fortunately it is not necessary to hold all components of tdepol in memory at all times since cells

depolarize only once during the depolarization phase. The array storing tdepol
∣∣
Ωi

is allocated on

demand when the first mesh node in the patch Ωi depolarizes and is removed from main memory

(and written to disk) when all nodes in Ωi are depolarized. In this way, memory has to be committed

only for relatively few patches. The reduction of the memory usage achieved by this out-of-core

implementation is directly proportional to the reduction in the number of degrees of freedom due to

the adaptive strategy.

4.8 Results

The following tests have been performed on the Cray XE6 “Monte Rosa” at the Swiss National

Supercomputing Centre, featuring dual-socket nodes with AMD Interlagos CPUs, 32 GiB main

memory per node and a Gemini interconnect. To avoid a negative impact of the shared floating

point units in the Bulldozer microarchitecture, in all experiments we placed only one process per

Bulldozer module.

Our codes are written in Fortran 90 and compiled with the PGI 12.5-0 compiler.

58 4.8 Results

101 102 103 104 105 106 107 108

Degrees of freedom

10−6

10−5

10−4

10−3

10−2

10−1

100

E
rr

o
r

Error in L
2-Norm

2nd order

Exp. A

Exp. B

Exp. C

Exp. D

Exp. E

Exp. F

Exp. G

(a) Convergence of the solution in the L2-norm.

101 102 103 104 105 106 107 108

Degrees of freedom

10−2

10−1

100

101

E
rr

o
r

Error in H
1-Norm

1st order

Exp. A

Exp. B

Exp. C

Exp. D

Exp. E

Exp. F

Exp. G

(b) Convergence of the solution in the H1-norm.

101 102 103 104 105 106 107 108

Degrees of freedom

10−3

10−2

10−1

E
rr

o
r

Multiplier error

1st order

Exp. B

Exp. C

Exp. D

Exp. E

Exp. F

Exp. G

(c) Convergence of the Lagrange multiplier in the
mesh-dependent norm.

101 102 103 104 105 106 107 108

Degrees of freedom

10−1

100

101

E
ffi

ci
en

cy
in

d
ex

Error estimator efficiency

Exp. A

Exp. B

Exp. C

Exp. D

Exp. E

Exp. F

Exp. G

(d) Efficiency of the residual error estimator.

Figure 4.3. Error with respect to the exact solution and error indicator efficiency for Experiments
A – G.

59 4.8 Results

4.8.1 Convergence Studies

In this section we analyze the convergence of the implemented mortar element method in the L2-

and H1-norm as well as in the mesh-dependent multiplier norm

‖λℓℓℓ‖2
ℓℓℓ =

∑

γ+m

∑

F element

face ⊂γ+m

δ−1
F ‖λℓℓℓ‖2

L2(F) .

For the numerical experiment, we considered the domain Ω =
(

1
2
, 3

2

)3
and chose the right-hand

side as well as Neumann values on ∂Ω such that the exact solution to the linear system in equation

(4.1) is given by

V (x) =
2

π
atan

(
(|x|−1.732) ·250

)
.

This solution features a steep wavefront similar to the solutions of the monodomain equation. For

the following experiments we use Gmono = 1 and τ = 0.05.

We compare the results of following seven setups.

Experiment A. Conforming discretizations on a structured mesh of size 23 up to 5123 elements.

Experiment B. Mortar discretization with 32 patches organized as a structured mesh of size 43 and

23 to 643 elements per patch.

Experiment C. Mortar discretization with 83 elements per patch and 23 up to 643 patches orga-

nized as a structured mesh.

Experiment D. Mortar discretization with 43 patches and a random assignment of levels ℓ∈ {1,2}.
The number of elements per patch is increased from 23 on level one and 83 on level two up to

163 on level one and 643 on level two.

Experiment E. Mortar discretizations with 23 and 83 elements per patch on level one and two,

respectively. The number of patches is increased from 43 up to 643. The assignment of

levels ℓ ∈ {1,2} is chosen randomly for the 43-patches configuration. Patches in the finer

tessellations inherit the level from the parent patch.

Experiment F. Mortar discretization with 43 patches and a random assignment of levels ℓ∈{1,2,3}.
The number of elements per patch is increased from 23 on level one, 83 on level two and 323

on level three up to 163 on level one and 643 on level two and 2563 on level three.

Experiment G. Mortar discretizations with 23, 83 and 323 elements per patch on level one, two and

three, respectively. The number of patches is increased from 43 up to 163. The assignment of

levels ℓ ∈ {1,2,3} is chosen randomly for the 43-patches configuration. Patches in the finer

tessellations inherit the level from the parent patch.

In Figures 4.3a–4.3c we show the norm of the error V −Vℓℓℓ in the L2- and H1-norm as well as the

error n ·Gmono∇∇∇V −λℓℓℓ in the mesh-dependent norm ‖−‖ℓℓℓ. When the number of patches is fixed,

60 4.8 Results

we observe the expected second- and first-order convergence in the L2 and H1-norm, respectively,

as well as first-order convergence of the Lagrange multiplier as predicted by the theory.

When increasing the number of patches with fixed number of elements per patch (Experiments

C, E and G) we observe a reduced convergence order when the coarse-to-fine ratio is bigger than

one. Note that in this case the number of degrees of freedom grows faster than the third power of

the inverse mesh width and hence a sub-linear scaling can be expected.

Since the assignment of levels to patches is random in Experiments D – G, the distribution of

patches with higher level (and, hence, finer local mesh) is not aligned with the position of the wave

front. Therefore we observe a higher error for the same number of degrees of freedom in these

experiments.

In Figure 4.3d we plot the ratio between estimated and actual error. For the conforming dis-

cretization we use a standard residual error estimator, omitting the first high-order term as we did in

the definition of ηE in equation (4.17).

4.8.2 Small-Scale Problem

In this section we analyze the performance of the presented adaptive scheme for a model problem

as used by Colli Franzone et al. 47 . We considered the domain Ω = (0,1)2× (0, 1
16
) (in units of

centimeters) and fibers oriented in the xy plane with an angle of 45◦ with respect to the axes, i.e.,

al =

[
1√
2
,

1√
2
,0

]T

, at = [0,0,1]T , an =

[
1√
2
,− 1√

2
,0

]T

and

Gmono = 2 ·al⊗al +0.25562 · (at⊗at +an⊗an) mS/cm .

We applied a stimulation current of Iapp = 250 µA/cm2 for 1
4

milliseconds in (3
8
, 5

8
)2× (0, 1

16
)⊂Ω .

The coarse tessellation consisted of 16× 16× 1 hexahedra (N = 162). We set ℓmax = 3 and chose

(δℓ)
3
ℓ=1 so that level one corresponded to 43 elements/patch, level two to 83 elements/patch and level

three to 163 elements/patch. The mesh width on the finest level corresponded to a 256× 256× 16

structured mesh on Ω . We used a time step size τ = 0.025 ms, Llap = 20 and an absolute tolerance

of 10−8 for the linear solver. The mesh adaptation was driven by the marking strategy described in

Section 4.6.2 with parameters a = 0.2, b = 0.5, atol = 10−3, rtol = 1 and tol = 10−2. We compared

our adaptive solution method to a structured grid solution method on a 256×256×16 finite element

mesh using a block Jacobi ILU method with 16 subdomains.

Figure 4.4a shows the depolarization time computed by the structured code. In Figure 4.4b we

plot the difference of the depolarization time computed by the adaptive code relative to the result of

the structured code. The adaptive scheme computes the depolarization time within a 4% window.

The peak of the relative difference is attained at the boundary of the activation site. In the remainder

of Ω the difference is below ∼ 1.5%. In particular, the computation of the activation velocity is

feasible with a small deviation. Note that, due to the differences in the discretization, a discrepancy

of ∼ 1% in the depolarization time is found between a 256× 256× 16 conforming discretization

and a mortar discretization using 16× 16× 1 subdomains with structured 163 meshes per patch.

61 4.8 Results

The relative spatial difference in the energy norm attains its highest value of ∼ 13.7% during the

depolarization phase (Figure 4.5).

In Figure 4.7 the execution time per lap is plotted for the adaptive and the structured code. The

red curve shows the speedup (or slowdown) of the adaptive code relative to the structured code.

While the adaptive code is ∼ 18.8× faster during the repolarization phase, it does not achieve a

speedup during the depolarization phase. In fact, during the first 20 ms of simulation time, the

adaptive code is up to ∼ 6.3× slower than the structured code. From the accumulated lap time

shown in Figure 4.7 it is apparent that the overall execution time of the adaptive code during the

depolarization phase from t = 0 to t = 20 ms is 2.3× higher than the execution time of the structured

code.

The number of iterations required per time step is ∼ 2× higher for the adaptive code. Hence,

since multiple repetitions of each lap are required, the total number of iterations per lap is up to 8×
higher. We note that restricting the number of passes would affect the accuracy of the method: In

Figure 4.4c the relative error in tdepol for a simulation with a restriction of two on the number of

passes is shown. In comparison with Figure 4.4b it is apparent that limiting the number of passes

results in a relative error that is up to 3× higher. Moreover, the numerical activation velocity is

affected by this error.

Comparison of L
2 and local transfer

The use of the local transfer operator Π̃ instead of an L2-projection has only minor impact on the

accuracy of the computed depolarization time, see Figure 4.4d. However, significant reduction in

the execution time can be achieved. During the first 20 ms of simulation time, which are highly de-

manding for any adaptive approach, the reduction in execution time amounts to ∼ 28%. Compared

to the structured code we therefore get a lower factor 1.8 (instead of 2.3).

Comparison with Unstructured AMR

To better understand the performance of the presented method in comparison to other state-of-the-art

approaches we implemented an unstructured adaptive monodomain solution method on conforming

tetrahedral meshes. This code is based on the UG mesh manager14 and PETSC
12. For the simulation

we used the same parameters as described above with the exception of a = 2 ·10−3 and b = 5 ·10−3

for the maximum-based marking strategy. A standard residual based error estimator for the Poisson

equation was used. The initial mesh was obtained from a 16× 16× 1 element structured mesh by

subdividing each hexahedron into six tetraheda. The maximal number of refinements was set to

four.

Figure 4.6 shows wireframe plots of the meshes constructed by the non-conforming method and

by the unstructured AMR code at different stages of the simulation. The unstructured AMR algo-

rithm captures the anisotropy of the solution better but it also requires refinement in a broader area

around the depolarization front due to closures. During the simulation time t = 5 ms to t = 15 ms the

non-conforming meshes consist of up to 3.38× more mesh nodes. At the same time, the weighted

estimated error measured by the non-conforming code is 2.4× lower than the estimated error mea-

62 4.8 Results

(a) Depolarization time tdepol (in ms)
computed by the structured code.

(b) Relative difference of adaptive code
in percent.

(c) Relative difference of adaptive code
with maximally two passes (in percent).

(d) Relative error of adaptive code with
local transfer operators (in percent).

Figure 4.4. Depolarization times computed for the small-scale problem. A projected view of the
domain Ω ⊂ R3 is shown for clarity.

0 5 10 15 20 25 30 35 40 45 50

Simulation time [ms]

0

5

10

15

20

25

30

E
rr

o
r

[%
]

Relative error in energy norm

Relative error

Figure 4.5. Relative energy error of the adaptive method with respect to the result of the structured
method. Shown is the spatial error at the end of each lap.

63 4.8 Results

Figure 4.6. Wireframe plot of the mesh Tℓℓℓ(t) (left) and the unstructured adaptive mesh (right) at
times t = 0.5, 5, 10, 15 ms for the small-scale problem.

64 4.8 Results

0 5 10 15 20 25 30 35 40 45 50

Simulation time [ms]

0

1.5 ·102

3 ·102

4.5 ·102

6 ·102
T

o
ta

l
ti

m
e

fo
r

la
p

[s
]

Lap time

10−1

1

10

102

S
p
ee

d
u
p

o
f

ad
ap

ti
v
e

co
d
e

Structured

Adaptive

Speedup

0 5 10 15 20 25 30 35 40 45 50

Simulation time [ms]

0

2 ·103

4 ·103

6 ·103

8 ·103

A
cc

u
m

u
la

te
d

ti
m

e
[s

]

Accumulated lap time

10−1

3.2 ·10−1

1

3.2

10

S
p
ee

d
u
p

o
f

ad
ap

ti
v
e

co
d
e

(20 ms, 1/2.3)

Figure 4.7. Measured execution times for the small-scale problem. The upper graph shows the
walltime for the execution of a lap of 20 time steps. Note that in the adaptive code each lap is
repeated up to four times (cf. Figure 4.8). The lower plot shows the accumulated execution time.

0 5 10 15 20 25 30 35 40 45 50

Simulation time [ms]

0

4 ·102

8 ·102

1.2 ·103

#
it

er
at

io
n
s

Number of linear solver iterations

1

2

5

10

In
cr

ea
se

in
#

it
er

at
io

n
s

Structured

Adaptive

Speedup

0 5 10 15 20 25 30 35 40 45 50

Simulation time [ms]

0

1

2

3

4

5

#
p
as

se
s

Number of passes

Figure 4.8. Number of linear solver iterations per lap (upper plot) and number of passes for the
integration of a lap (lower plot) for the small-scale problem.

65 4.8 Results

0 5 10 15 20 25 30 35 40 45 50

Simulation time [ms]

0

2 ·10−1

5 ·10−1

8 ·10−1

1

1.2
#

m
es

h
n
o
d
es

(i
n

m
il

li
o
n
s)

Number of mesh nodes

1

3.2

10

3.2 ·10

102

A
d
ap

ti
v
it

y
g
ai

n

Structured

Adaptive

Gain

Figure 4.9. Number of mesh nodes over time for the small-scale problem.

sured by the unstructured AMR algorithm. Note, though, that the residual error estimators used in

both algorithms feature different efficiency indices. The unstructured AMR algorithm requires on

average 3.9× more passes over a lap. Even though we use an ILU preconditioner in our unstruc-

tured AMR method (instead of a block version as in the non-conforming adaptive method), we see

an increase to up to 16 iterations per time step (compared to 15 for the non-conforming code), most

likely due to the worsening quality of the finite element mesh.

Since our unstructured AMR implementation is not as well optimized as the non-conforming

adaptive code we refrain from reporting execution times for this example.

4.8.3 Large-Scale Problem

In this section we analyze the performance of the proposed adaptive method on a demanding large-

scale problem. We considered the model of a left ventricle, cropped at base and apex, as presented

in Colli Franzone and Pavarino 46 with the same fiber orientations. The conductivity values were

chosen as in Section 4.8.2; the geometry of Colli Franzone and Pavarino 46 was scaled by 1.4 to

match it to previously applied models, cf. Potse et al. 127 . We applied a stimulation current of

Iapp = 250 µA/cm2 for 1 ms in the image of (0.95,1)× (0.125,0.175)× (0.125,0.175) under the

parametrization of Ω over (0,1)3.

The coarse tessellation consisted of 4× 16× 32 patches and we set ℓmax = 3. We considered

the choices (δℓ)
3
ℓ=1 = (1/4,1/8,1/16) (setting A) and (δℓ)

3
ℓ=1 = (1/2,1/16,1/32) (setting B). The

mesh width on the finest level corresponded to a 64×256×512 and 128×512×1024 (67.1 million

elements) structured mesh on Ω for A and B, respectively.

We used a time step size τ = 0.05 ms, Llap = 20 and an absolute tolerance of 10−8 for the residual

norm in the linear solver. For the marking strategy we used the parameters a = 0.01, b = 0.02,

atol = 1, rtol = 0 and tol = 3. The local transfer strategy from Section 4.5.2 was employed. We

compare the adaptive method to a structured grid finite element method which used a block Jacobi

ILU solver.

All simulations where run in parallel on 128 (adaptive) and 256 (structured) processing ele-

ments. We report timings as the sum of the time measured on each processing element. Under the

assumption of ideal scalability, these timing results correspond to the serial execution time.

66 4.8 Results

In Figure 4.14 the depolarization times computed by the structured code are shown. The com-

puted membrane voltage Vℓℓℓ and the adapted meshes at different steps are shown in Figure 4.15.

The measured execution times (Figures 4.10 and 4.11) show a similar picture as we obtained

for the small-scale problem, i.e., while the adaptive procedure achieves significant speedup during

the repolarization phase, this does not hold for the depolarization phase. During the first ∼ 150 ms

of simulation time, each lap is on average integrated three times, with some laps requiring four or

five passes. At its minimum, the reduction in number of mesh nodes is found to be 4.4 and 5.2 for

A and B, respectively.

As in Section 4.8.2, the number of linear solver iterations per time step is about two times higher

for A than for the structured code. For B, however, the number of solver iterations is very high. In

fact, for some time steps the linear solver did not reach the desired tolerance within 100 iterations

(the maximal number specified).

Finally, for setting A, in Figure 4.13 we analyze the distribution of the execution time over

the individual components of the algorithm. Up to t = 150 ms, the linear solver is a dominant

component of the execution time. Evaluation of Iion, integration of the state variables and the error

estimation take only a small percentage of the computation time. During the depolarization phase,

the majority of the compute time is spent for handling patches with ℓi = ℓmax = 3. Collective and

point-to-point communication account for a large part of the execution time, in particular during the

repolarization phase. The communication time itself is dominated by the time spent in collective

communication (in particular, MPI_Allreduce calls in the linear solver).

4.8.4 Parallel Scalability

In this section we analyze the strong scalability of our implementation. The considered benchmark

solves the monodomain equation on Ω = (0,1)2×(0, 1
4
) (in units of centimeters). We used the same

fiber orientations as Pavarino and Scacchi 121 with the same conductivity tensor as in Section 4.8.2.

A stimulation current of strength Iapp = 250 µA/cm2 was applied for 1 ms in (0, 1
8
)3 ⊂Ω .

The coarse tessellation was a structured 16× 16× 4 mesh on Ω . We set ℓmax = 3 and chose

(δℓ)
3
ℓ=1 = (1/2,1/8,1/32), so that level one corresponds to 23 elements/patch, level two to 83 ele-

ments/patch and level three to 323 elements/patch. The mesh width on the finest level corresponded

to a 512×512×128 structured mesh on Ω . We used a time step size τ = 0.05 ms, Llap = 10 and re-

peated each lap up to nine times (nrep = 9). The mesh adaptation was driven by a maximum-based

marking strategy (see Section 4.6.2) with a = 0.01 and b = 0.1.

In Figure 4.16a we plot the normalized execution times of the adaptive code for different laps.

For comparison, the scaling of a monodomain solver on a structured 5122× 128 mesh is shown

(this solution method used a block Jacobi ILU from the PETSC
12 package). The scaling of the

adaptive code is good up to a certain number of processing elements (which depends on the lap)

where execution time stagnates when adding additional processing elements. The fact that the

execution time stays constant and does not increase thereafter indicates that the loss of scalability is

associated with a poor load balance rather than, e.g., communication inefficiencies. This hypothesis

67 4.9 Related Work

0 25 50 75 100 125 150 175 200 225 250 275 300

Simulation time [ms]

0

103

2 ·103

3 ·103

4 ·103

5 ·103
T

o
ta

l
ti

m
e

fo
r

la
p

[s
]

Lap time

10−1

2.5 ·10−1

6.3 ·10−1

1.6

4

S
p
ee

d
u
p

o
f

ad
ap

ti
v
e

co
d
e

Structured

Adaptive

Speedup

0 25 50 75 100 125 150 175 200 225 250 275 300

Simulation time [ms]

0

105

2 ·105

3 ·105

4 ·105

5 ·105

A
cc

u
m

u
la

te
d

ti
m

e
[s

]

Accumulated lap time

3 ·10−1

4.8 ·10−1

7.7 ·10−1

1.2

2

S
p
ee

d
u
p

o
f

ad
ap

ti
v
e

co
d
e

Figure 4.10. Execution time of the adaptive code in comparison to a structured code for A. The
upper graph shows the walltime for the execution of a lap of 20 time steps. The lower plot shows
the accumulated execution time.

is supported by Figure 4.16b which plots the imbalance measure

maxp=1,...,P #elements assigned to p
1
P

∑P
p=1 #elements assigned to p

=
P maxp=1,...,P #elements assigned to p

#elements

for different numbers of processing elements P. Comparing Figure 4.16a and Figure 4.16b it is

obvious that the loss of scalability is directly related to the increase in load imbalance. By definition,

a linear increase in the imbalance measure is equivalent to a constant maximal load. Since patches

are assigned as a whole to processing elements and since the high coarse-to-fine ratios result in

large differences in their costs (patches Ωi with ℓi = 3 are ∼ 4096× more expensive than patches

Ω j with ℓ j = 1), scalability is lost as soon as the number of processing elements exceeds the number

of patches on the finer levels.

Scalability is however not limited to 128 cores. For lap 27, the code scales up to 512 processing

elements with an efficiency of 90.6% relative to 128 cores.

4.9 Related Work

Bernardi and Hecht 23 , Bernardi and Maday 24 discuss the adaptive discretization of elliptic bound-

ary value problems using a mortar element discretization in two spatial dimensions. In this work,

mortar constraints are imposed on element edges where the triangular mesh is non-conforming. In

68 4.9 Related Work

0 25 50 75 100 125 150 175 200 225 250 275 300

Simulation time [ms]

0

104

2 ·104

3 ·104

4 ·104

5 ·104

T
o
ta

l
ti

m
e

fo
r

la
p

[s
]

Lap time

2 ·10−2

8.0 ·10−2

3.2 ·10−1

1.3

5

S
p
ee

d
u
p

o
f

ad
ap

ti
v
e

co
d
e

Structured

Adaptive

Speedup

0 25 50 75 100 125 150 175 200 225 250 275 300

Simulation time [ms]

0

106

2 ·106

3 ·106

4 ·106

A
cc

u
m

u
la

te
d

ti
m

e
[s

]

Accumulated lap time

3.0 ·10−2

5.3 ·10−2

9.5 ·10−2

1.7 ·10−1

3 ·10−1

S
p
ee

d
u
p

o
f

ad
ap

ti
v
e

co
d
e

Figure 4.11. Execution time of the adaptive code in comparison to a structured code for B. The
upper graph shows the walltime for the execution of a lap of 20 time steps. The lower plot shows
the accumulated execution time.

0 25 50 75 100 125 150 175 200 225 250 275 300

Simulation time [ms]

0

103

2 ·103

3 ·103

#
it

er
at

io
n
s

Number of linear solver iterations

2

6.3

2 ·10

In
cr

ea
se

in
#

it
er

at
io

n
s

Structured

Adaptive

Increase

0 25 50 75 100 125 150 175 200 225 250 275 300

Simulation time [ms]

0

103

2 ·103

3 ·103

4 ·103

5 ·103

#
it

er
at

io
n
s

Number of linear solver iterations

2

6.3

2 ·10

In
cr

ea
se

in
#

it
er

at
io

n
s

Structured

Adaptive

Increase

Figure 4.12. Number of linear solver iterations for A (upper plot) and B (lower plot).

69 4.9 Related Work

0 25 50 75 100 125 150 175 200 225 250 275 300

Simulation time [ms]

0

25

50

75

100

%
o
f

ti
m

e

Distribution of lap execution time

Communication

Error estimator

CG solver (excl.)

Preconditioner

Mortar subroutines

Membrane model

Figure 4.13. Distribution of the execution time for problem A. The time measurements are summed
over all passes over each lap.

Figure 4.14. Depolarization times tdepol (in ms) for the problem A. To simplify the visualization,
the mesh has been downsampled by a factor four in each direction. The two plots on the right are
rotated by 180◦ to visualize the back of the ventricle.

contrast to this work, we use locally structured conforming meshes with weak constraints only on

interfaces between elements of the coarse tessellation. Hoppe et al. 80 present an adaptive method

that combines unstructured AMR with a mortar discretization. A hierarchical error estimator is used

in this work. The authors present a domain decomposition solver for the saddle-point formulation of

the discretized system and discuss the parallel implementation of the method. Feng et al. 63 discuss

a three-dimensional mortar element method on geometrically non-conforming meshes. This study

targets higher-order local approximation spaces and uses a matrix-free approach similar to ours.

The parallelization of the method with OpenMP is discussed.

Linear solvers and preconditioners for mortar element discretizations have been studied by sev-

eral authors. Abdoulaev et al. 1 discuss an iterative linear solver for the saddle point problem arising

from a mortar element discretization. Bjørstad et al. 29 present a two-level additive Schwarz pre-

conditioner for mortar elements. Braess et al. 32 and Wohlmuth and Krause 174 developed multi-

grid solvers for mortar element discretizations. Stefanica 147 studied the finite element tearing

70 4.9 Related Work

Figure 4.15. Membrane voltage (in mV) and adaptive mesh at t = 50, 100, 150, 200 ms for A. The
two plots on the right are rotated by 180◦ to visualize the back of the ventricle.

71 4.9 Related Work

1 8 16 32 128 512

processing elements

10−3

3.2 ·10−3

10−2

3.2 ·10−2

10−1

3.2 ·10−1

1

N
o
rm

al
iz

ed
ti

m
e

fo
r

la
p

Scaling

Ideal

Structured

Lap 1

Lap 3

Lap 8

Lap 11

(a) Normalized execution times of the adaptive code (loga-
rithmic scale) and, for comparison, of a structured mono-
domain solution method on a 5122×128 mesh.

1 8 16 32 128 512

processing elements

1

3.2

10

3.2 ·10

102

Im
b
al

an
ce

m
ea

su
re

Load imbalance

(b) Imbalance in the number of elements per processing
element as a function of the total number of processing
elements (logarithmic scale).

Figure 4.16. Strong scaling results.

and interconnecting (FETI) method for the mortar element method. These works are usually con-

cerned with ill-conditioned elliptic problems. For moderate coarse-to-fine ratios, we do not expect

these methods to be competitive to our simple block preconditioner in terms of time-to-solution

for the mass matrix dominated linear systems that we solve. However, our results show that block-

preconditioning is not robust in the coarse-to-fine ratio and hence more complicated preconditioning

techniques may be advantageous in this case.

The asynchronous fast adaptive composite-grid (FAC) method has been discussed by Hart and

McCormick 74 , Lee et al. 102,103 , McCormick and Quinlan 112 for structured AMR with 2:1 coarse-

to-fine constraints.

Memory-efficient data structures for adaptive mesh refinement have been studied, for example,

by Bader et al. 9,10 . The authors consider the solution of the shallow water equation on adaptive

triangular meshes using a discontinuous Galerkin discretization. The numerical solution is based

on element-wise processing. Triangles are organized in a binary tree and ordered according to a

Sierpinski space-filling curve. A stream- and stack-based system is used to organize the element-

wise processing8. Weinzierl and Mehl 165 discuss a memory-efficient adaptive mesh solver using

binary space partitioning trees.

A list of adaptive methods targeted at the monodomain or bidomain equation has been given in

72 4.10 Discussion

Section 2.4.2. Here, we only compare our approach with those works that considered (semi-)im-

plicit time discretization for three-dimensional problems.

Weiser et al. 166 reported that for a fibrillation study the employed adaptive scheme does not

provide a reduction in the compute time despite a remarkable reduction of degrees of freedom by a

factor of 150.

Belhamadia et al. 18 and Southern et al. 144,145 used anisotropic mesh adaptation to increase the

accuracy of an unstructured finite element code. Speed improvements up to 13× are reported for

the solution of the bidomain equation in parabolic-elliptic form.

Ying and Henriquez 175 reported a 17× speedup for a simulation of a dog heart ventricle. They

used a second-order CBDF scheme for the phase-1 Luo-Rudy membrane model and a geometric

multi-grid solver for the diffusion. Local time stepping was used for integrating the ordinary differ-

ential equations for the membrane model state variables. In our study, we have chosen a first-order

time integration scheme that is currently most popular in computational electrocardiology100,124.

For comparison, our structured code requires about 3.6 µs per time step per degree of freedom on

a 2.1 GHz AMD Interlagos CPU. Based on the parameters given by Ying and Henriquez 175 their

uniform grid solution method requires about 50 µs per time step per degree of freedom on a 3.6 GHz

Intel Xeon. Moreover, we only consider spatial adaptivity to allow for an unbiased assessment of

the efficiency of the non-conforming adaptive scheme.

In contrast to Ying and Henriquez 175 we used timings per time step/lap to assess the per-

formance of the proposed method. In general, we do not consider end-to-end computing time a

good measure for the efficiency of an adaptive scheme since a sufficiently long repolarization phase

can mask potential inefficiencies of the adaptive scheme during the more interesting depolarization

phase.

Only Southern et al. 145 have addressed the parallelization of their method and presented perfor-

mance results up to 64 cores. Our implementation has been shown to scale up to 512 cores. None of

the related studies have addressed the issue of computing depolarization times on adaptive meshes

(see Section 4.7.3).

4.10 Discussion

We have proposed and investigated a novel adaptive scheme for reaction-diffusion equations based

on a geometrically conforming mortar element method. The design goal was a method that is

lightweight in the data structure, is relatively easy to implement and parallelize, and exhibits good

performance on contemporary central processing units. In comparison to unstructured AMR and

octree-based structured AMR, we choose a more complicated non-conforming discretization that

allows us to simplify the mesh data structures. The method is based on patch-wise structured meshes

encoded in a single vector ℓℓℓ ∈ ZN
≥1. Therefore, the memory required to store and modify meshes is

minimal.

When assembled as a sparse matrix, the stiffness matrix on the mortar-constrained space has

a high bandwidth at master nodes on interfaces where patches with fine and coarse local meshes

intersect. Storing this matrix in standard formats (e.g., CRS or CCS), though possible, does not

73 4.10 Discussion

allow for full exploitation of the structure of Tℓℓℓ. For this reason we implemented matrix-vector

multiplications in a matrix-free setup using stencil type operations. Motivated by the success of

block Jacobi ILU preconditioning for conforming discretizations on uniform meshes (see Chapter

3) we have chosen a block Jacobi method for the adaptive scheme as well. By using a local CG

solver for the preconditioner we remain in a matrix-free setup and obtain a very memory-efficient

method.

The combination of a mortar element discretization with dual Lagrange multipliers and our ma-

trix free setup appears to be well suited for the efficient implementation of a monodomain solution

scheme on non-conforming meshes. In particular we would like to stress the advantages of the local

nature of the mortar discretization, which imposes constraints only on degrees of freedom located

in the interior of the interface between neighboring patches.

For the small-scale problem and problem A in Section 4.8.3, our method requires approximately

twice as many iterations as an ILU or block Jacobi ILU preconditioner on a conforming structured

mesh. In Figures 4.8 and 4.12 the total number of iterations (taking into account multiple repe-

titions) are shown. The results for setting B in Section 4.8.3 indicate that the iteration numbers

are influenced by the coarse-to-fine ratio. However, it is well known that also for conforming dis-

cretizations and, e.g., multi-grid solvers, spatial adaptivity can have a negative impact on the solver

efficiency. In fact, the ILU preconditioned CG used in the unstructured AMR algorithm required

more iterations than the linear solver in the non-conforming algorithm, as reported in Section 4.8.2.

To reduce the overhead due to adaptivity, we have applied two optimization techniques in this

study. First, we used a low-order quadrature to approximate the residual error estimator (Section

4.6.1). The error in the estimated error due to this modification is within a few percent. More-

over, we have introduced a local transfer operator (Section 4.8.2) which can be used as a drop-in

replacement for the L2-transfer.

The proposed parallelization scheme has been shown to be effective up to several hundreds of

cores (Section 4.8.4). When the number of patches on the finer mesh levels is too low compared

to the number of processing elements, maintaining the load balance may become difficult. As one

expects in an adaptive scheme with varying number of degrees of freedom, parallel efficiency varies

over the course of a simulation. A hybrid MPI+threads implementation (e.g., using OpenMP for

loop-level parallelism) might be used to improve the scaling at larger core counts.

The design of adaptive numerical algorithms necessitates a trade-off between computational

efficiency and the “optimality” of the constructed approximation spaces. The presented method

represents an edge case in this spectrum of adaptive methods, as it vigorously favors efficiency

of the data structures over a reduction in the degrees of freedom. This choice has two important

consequences that can be observed in our experiments. On the one hand, we measure a relatively

low reduction in the degrees of freedom compared to other unstructured and structured AMR meth-

ods. Considering a two-level method with coarse-to-fine ratio r, a back-of-the-envelope calculation

shows that r3 is an upper bound for the reduction in the degrees of freedom achieved if the depolar-

ization front is an axis-aligned hyperplane and the coarse tessellation is a sufficiently fine structured

mesh. For setting A in Section 4.8.3 this means that the adaptivity gain is bounded by 43 = 64. For

74 4.10 Discussion

a more complicated shape of the depolarization front, the gain by adaptivity will be smaller. This is

in fact what we observe. For A, the reduction in the number of mesh nodes is only about 4.4× at

its minimum. On the other hand, the number of repetitions required to find a tailored mesh (given a

desired error tolerance and a bound on the maximal level) is low compared to, e.g., an unstructured

AMR algorithm (cf. Section 4.8.2). In all our experiments, our marking strategy terminated within

3–5 passes over a time window. Since the mesh Tℓℓℓ is encoded by the vector ℓℓℓ it is possible to adapt

the mesh to the solution disregarding the refinement history. This could be used to develop more

effective problem-tailored marking strategies that would further speed up the adaptive method.

In the presented numerical experiments we have compared our adaptive method to a state-of-

the-art structured solver for the monodomain equation. The observed net slowdown of the adaptive

code relative to a structured code that we measure in Section 4.8.3, is explained by the combination

of a comparably low reduction in the degrees of freedom, the higher solver cost (2×), the need to

repeat laps multiple times, additional overhead (data transfer, matrix reassembly, error estimation)

and differences in the parallel scalability. An improved preconditioner and marking strategy might

help to narrow or close this gap. Let us point out that all comparisons have been made between the

adaptive strategy and a structured uniform monodomain code, which typically outperform unstruc-
tured uniform monodomain codes that are most relevant for practical applications.

As is the case for any adaptive method, in order to deal with complex geometries, a suitable

coarse tessellation has to be constructed. For complicated geometries as obtained from medical

imaging, the construction of a suitable coarse tessellation as used in Section 4.2 might be difficult.

Another aspect is that many models for heart tissue feature jumps in the coefficients and use differ-

ent membrane models in different regions. Also these heterogeneities have to be to be taken into

account when constructing the coarse tessellation.

In the next chapter we will consider a variant of this lightweight adaptive scheme which uses a

forest of shallow trees to manage the local tensor meshes instead of the coarse tessellation employed

in this chapter. The goal of this approach is to address the challenges discussed above by increasing

the flexibility of both the adaptive mesh data structure and the solver technique.

5 Spatial Adaptivity Using Forests of

Shallow Trees

In the previous chapter we have proposed a lightweight scheme for solving the monodomain equa-

tion on adaptive meshes. The goal of this chapter is to extend this method in two important ways.

First, we want to address the challenges faced in the practical application of the lightweight adaptive

scheme, namely the relatively low reduction in the number of degrees of freedom and the scalability

limits. Moreover, we want to extend the approach to a broader class of partial differential equations

and to different time discretization schemes.

In this chapter we present the idea of using forests of shallow trees for spatial adaptivity. We

discuss the construction of ansatz spaces on the resulting mesh data structures and our strategy for

the assembly of mass and stiffness matrices. We present the results of numerical experiments and

demonstrate the potential of the method for large-scale heart models.

5.1 Introduction

For the design of adaptive methods several factors must be taken into account and weighted accord-

ing to importance. For example, one wants to maximize the reduction in the degrees of freedom

while minimizing the overhead (due to data structures or required repetitions of the adaptation pro-

cess) at the same time. In this chapter we propose an extension of the lightweight adaptive scheme

from Chapter 4 which is based on a slightly more expensive mesh data structure (based on shallow

trees) and a more flexible implementation of the linear algebra procedures.

The design goals of the presented method were strongly influenced by the results from Section

4.8. First, we aimed at a method that could achieve a larger reduction in the degrees of freedom

than what can be achieved in practice with the mesh data structure from Chapter 4. Second, the

method should address the scalability limits observed in Section 4.8.4. Third, in order to be able to

use different time integration schemes and solve a larger variety of equations, the method should be

based on a more flexible set of linear algebra routines.

We address the first two design goals by reducing the size of the basic building blocks of our

adaptive schemes. In Chapter 4 a patch Ωi was the basic building block of the discretization as

75

76 5.2 Adaptive Meshes on Forests of Shallow Trees

well as the load balancing. Here, we use the leaves of a 2d-tree (see Section 5.2) as the basic

building block. This allows for a more precise placement of the refined regions and thus increases

the adaptivity gain. Moreover, it increases the number of entities that are available to the load

balancing scheme.

To increase the flexibility of the method we assemble stiffness matrices directly on the sub-

spaces, rather than using a matrix-free approach as in Chapter 4. On the one hand, using this

approach we cannot take advantage of the structure of the product space stiffness matrices for ef-

ficient storage and local reassembly. On the other hand, however, it allows for a flexible choice of

preconditioners, including black box solvers such as an algebraic multi-grid.

5.2 Adaptive Meshes on Forests of Shallow Trees

In Section 4.2 we proposed a lightweight data structure for adaptive meshes which was based on a

fixed tessellation Ω =
⋃N

i=1 Ωi and a vector ℓℓℓ ∈ ZN
≥1 that assigned a level to each patch Ωi. Advan-

tages of such a simple data structure are the minimal storage requirements and the great flexibility

(due to a complete lack of “history”) that allows to resolve strongly varying behavior in time. How-

ever, as discussed in Section 4.10, the adaptivity gain that can be achieved using these meshes is

limited by the width of the elements in the coarse tessellation. When dealing with “sharp” localized

features (e.g., wave fronts) it is desirable to have more control over the shape and position of the

refined regions.

One possible path to facilitate this fine-grained control is to adopt the approach of block-

structured adaptive methods by replacing the single structured mesh Tℓi on the patch Ωi by a set of

floating rectangular blocks, the positions of which are prescribed as integer coordinates with respect

to nested coordinate systems on Ωi. Here, we follow a different approach using a forest of trees ap-

proach as described by Burstedde et al. 35,36,37,38 . Hence, we assign a 2d-tree (binary tree, quadtree,

octree, or 16−tree) to each patch Ωi. The leaves of these trees define the blocks to which we assign

a structured mesh based on the level. Our approach differs from the one by Burstedde et al. 38 in two

important aspects. First, we consider tree leaves as blocks (to which a structured mesh is assigned)

instead of elements. Due to the implicit structure of block meshes, this results in a compactification

of the data structure and should benefit a more flexible handling of the mesh. Second, since leaves

correspond to batches of, e.g., 4d or 8d elements, our focus is on shallow trees with only few levels.

As in Section 4.2, we assume that Ωi is equivalent to (0,1)d up to translation and a linear, bilin-

ear, trilinear or quadlinear mapping for d = 1, . . . ,4, respectively. We provide a purely integer-based

representation of the tree. Geometrically, the corner coordinates of tree leaves can be transformed

from [0,1]d to Ωi using the transformation.

A 2d-tree is obtained by recursively splitting axis-parallel boxes into 2d sub-boxes starting with

[0,1)d as the root. Here, we only consider complete 2d-trees which have the property that each node

in the tree either has 2d children or none (i.e., is a leaf). In such a tree, the coordinates of a child

box with respect to the parent node can be described by a vector i ∈ {0,1}d
or equivalently (using

a lexicographical ordering of the set {0,1}d
) by a number 0≤ i≤ 2d−1. Note that the entries of i

77 5.3 Discretization

equal the digits in the radix-2 representation of the number i. A leaf in the tree is uniquely identified

by its level ℓ and the sequence i1, i2, . . . , iℓ of relative coordinates. Assuming a maximum level of

15 = 24−1 we can combine these natural numbers into a single number

o =
∑ℓ

j=1 i j ·24+d(ℓ− j)+(ℓ−1) ∈ Z≥0

that uniquely defines the tree leaf. o is called the Morton index of the leaf and the induced or-

dering of tree leaves is called Z-ordering (see, for example, Gaede and Günther 66). Note that o
can be stored as a 32-bit integer if ℓ ≤ 15,14,9,7 for d = 1,2,3,4, respectively. Since a 2d-tree is

described completely by its leaves we can use a linear storage and only store the Morton indices

of the leaves. Thus we can identify a tree with an element of (Z≥0)
∗
. Note though that not every

element of (Z≥0)
∗

defines a valid, complete 2d-tree. In Figure 5.1 an example for a 22-tree is shown.

We assign a tree τi ∈ (Z≥0)
∗

to each patch Ωi. On each leaf o of level ℓ in τi, a structured mesh

To is induced by transforming a structured mesh of width δℓ from [0,1)d to the hexahedron in Ωi

that is represented by o. Combining these local structured meshes we obtain the mesh Tτττ which is

uniquely defined by the choice of δδδ and the vector τττ = (τi)
N
i=1. Note that the construction of Tτττ is

completely analogous to that of Tℓℓℓ in Section 4.2. In Figure 5.2 the construction of Tτττ is illustrated

(compare to Figure 4.1).

5.3 Discretization

Similar to the definition of the product space Xℓℓℓ in Section 4.3 we can define a product space

Xτττ =
N∏

i=1

∏

o∈τi

Xτi,o

where Xτi,o denotes the local approximation space on the leaf o ∈ τi built using first-order finite

elements. As proven in Section 4.3 the linear space Xτττ 6⊂ H1 (Ω) is not a suitable approximation

space for use in a Galerkin method. Instead, we construct suitable subspaces that serve as ansatz

and test spaces in a Galerkin method.

5.3.1 Geometrically Non-Conforming Mortar Discretization

In Section 4.3 we discussed the definition of the mortar approximation space Ym
ℓℓℓ build on top of the

mesh Tℓℓℓ. A similar approach allows for defining a non-conforming approximation space Ym
τττ on top

of Tτττ . In comparison with the method detailed in Chapter 4 the construction of Ym
τττ is complicated

by the fact that the decomposition of Ω into tree leaves is generally not conforming, see Figure 5.3a.

Thus, a non-mortar γ+m can correspond to multiple mortars and in particular the number of mortars

and non-mortars differs. We associate the mortar side of a face to the leaves with the lowest level

or, in case the level is equal, to the leaf with the lower key. Due to the hierarchical tree structure it

is guaranteed that the choice of mortar and non-mortar sides is made consistently. In the following

78 5.3 Discretization

000001

01000010 01010010

10000010

10100010 10110010

110001

Figure 5.1. Sketch of a quadtree. The leaves are ordered by their Morton index starting at the left
lower leaf with key 000001. For leaves with level ≤ 2 the binary representation of the Morton index
is shown.

(a) Decomposition of Ω

into patches Ωi.
(b) Assignment of trees τi ∈ (Z≥0)

∗

to patches.
(c) Tree-based block structured
non-conforming mesh.

Figure 5.2. Schematic description of the construction of a shallow tree mesh. The left drawing
shows the coarse tessellation of the simulation domain Ω . A tree τi ∈ (Z≥0)

∗ is assigned to each
patch Ωi ⊂Ω (middle drawing). Finally, a structured mesh is assigned to each tree leaf according
to the level (right drawing).

79 5.3 Discretization

(a) Geometrically non-conforming mortar subspace. (b) Conforming subspace.

Figure 5.3. Assignment of master and slave nodes for the mortar method (left) and the conform-
ing subspace (right). Circles represent interior nodes, crosses identify master nodes and triangles
represent slave nodes.

we assume that the inverse mesh widths δ−1
ℓ are non-decreasing powers of two so that the interface

meshes induced from the non-mortar and mortar side are always nested.

We employ dual Lagrange multipliers as in the geometrically conforming case in order to obtain

a sparse mortar projection. The matrix representation of the projection P is the same as given in

Section 4.3.2. We refer to Appendix A for the discussion of our assembly strategy for the mortar

projection in a geometrically conforming and geometrically non-conforming setting.

The construction of a basis of the subspace Ym
τττ proceeds as in Section 4.3.5 by eliminating

product-space basis functions associated to slave nodes and modifying basis functions associated to

master nodes. The matrix representation of the inclusion Ym
τττ →֒ Xτττ with respect to the basis πππ of

Ym
τττ and the nodal basis θθθ of Xτττ is given by

Q =

1 0

0 1

0 P

 (5.1)

when ordering the degrees of freedom of Ym
τττ and Xτττ according to interior, master and slave nodes.

5.3.2 The Subspace of Continuous Functions

As an alternative to the subspace Ym
τττ obtained by enforcing weak constraints, we also consider the

space

Yc
τττ = Xτττ ∩C

0 (Ω)

80 5.3 Discretization

of continuous functions. Yc
τττ is often employed in the literature (see, for example, Burstedde et al. 36 ,

Sampath et al. 139), usually in combination with a 2:1 constraint on the coarse-to-fine ratio between

adjacent tree leaves.

Similar to the mortar element method, the algebraic representation of the continuity constraints

requires the designation of sets of slave and master nodes as depicted in Figure 5.3b. Note that the

continuity condition glues together not only leaves that share a common codimension-one entity (a

face if d = 3) but also neighboring leaves whose intersection has codimension greater than one. For

a given entity (face, edge or point for d = 3), shared by a set of leaves
{

o j
}

with levels
{
ℓ j
}

, we

designate nodes induced from o
argmin j

(
ℓ j,o j

) as master nodes. All nodes on the entity induced from

other leaves are considered slave nodes. Here, we use a lexicographical order so that o
argmin j

(
ℓ j,o j

)

equals the leaf with the lowest key among all leaves with the lowest level in the set
{

o j
}

.

Let us point out that there are two important differences between the assignment of master and

slave tags between the mortar element and the conforming discretization. First, in the mortar ele-

ment method slave nodes only exist on the interior of codimension-one sub-entities. Second, in our

implementation of the mortar method, master nodes are induced from leaves with higher levels (and

therefore smaller mesh width), whereas in the conforming discretization master nodes are induced

from leaves with lower keys (larger mesh width).

Using the definition of slave and master nodes as above, the continuity condition Uτττ ∈ Yc
τττ can

be written as

(Uτττ)α̇ =
∑

β

(Uτττ)β θβ (xα̇)

for all slave nodes α̇ and master nodes β . Thus, the equivalent of the mortar projection is given by

Pα̇β = θβ (xα̇) . (5.2)

A basis πππ of Yc
τττ can be obtained by eliminating the nodal basis functions θα̇ associated with slave

nodes and by defining

πα = θα +
∑

β̇

Pβ̇αθβ̇

for master nodes. The basis functions associated to interior nodes are not modified. Using the

definition (5.2) for the projection matrix P the matrix representation of the inclusion Yc
τττ →֒ Xτττ is

given by equation (5.1).

5.3.3 Assembly Strategy

Let us consider the assembly of the stiffness matrix corresponding to a bilinear form a. As before

we denote the nodal basis of Xτττ by θθθ and the chosen basis of the subspace Y (which may be either

a mortar or a conforming subspace) by πππ . We can write

πα =
∑

β

Qβαθβ

81 5.3 Discretization

where Q is the matrix representation of the inclusion Y →֒ Xτττ . Hence,

a
(

πα ,πβ

)
=
∑

γ,ε

Qγα a
(
θγ ,θε

)
Qεβ

or, equivalently,

AY = QTAXτττ Q , (5.3)

where AXτττ denotes the stiffness matrix of a on Xτττ with respect to the basis θθθ . The lightweight

adaptive scheme discussed in Chapter 4 uses equation (5.3) to implement the multiplication by AY

in a matrix-free fashion. Hence, only the assembly of AXτττ is required which can be done efficiently

due to the known a priori structure of the stiffness matrix. However, a matrix-free setup complicates

the construction of preconditioners and therefore limits the flexibility of the numerical method.

In the context of multi-level methods (e.g., algebraic multi-grid methods), equation (5.3) is used

to assemble coarse grid stiffness matrix (AY) from a fine grid operator (AXτττ) via the interpolation

operator (Q). This Galerkin procedure has a natural interpretation in terms of summed quadrature

with coefficients given by the entries of Q.

Here, we propose a third approach based on modified local-to-global mappings in the element-

wise assembly of the stiffness matrix. Let us consider the construction of the stiffness matrix AY

from local stiffness matrices

AY =
∑

E∈Tτττ

(
SY

E

)T
AY

E SY
E , (5.4)

where AY
E is the local stiffness matrix with respect to the subspace basis and SY

E the global-to-local

mapping. The dimension of AY
E depends on the number of basis functions whose support intersects

E. Inserting the definition of πππ into equation (5.4) we obtain

AY =
∑

E∈Tτττ

(
QS

Xτττ
E

)T
A
Xτττ
E

(
QS

Xτττ
E

)
. (5.5)

with A
Xτττ
E ∈R2d×2d

and
(

S
Xτττ
E

)
iα
= δαβi

, if the node βi equals the ith corner of E. With the definition

S̃E = QS
Xτττ
E we can rewrite equation (5.4) as

AY =
∑

E∈Tτττ

S̃T
EA

Xτττ
E S̃E . (5.6)

Equation (5.6) allows for constructing the stiffness matrix for an arbitrary subspace Y from the

local stiffness matrix of a with respect to the standard nodal basis independently of the chosen

quadrature rule. In comparison to standard finite elements methods we however have to deal with

more complicated gather-scatter matrices S̃E . Note that
(

S̃E

)
iα
= Qβiα , if the node βi equals the ith

corner of E.

Similarly, we can assemble the right-hand side bY corresponding to the bilinear form (b,U)L2(Ω)

from local contributions as follows:

bY =
∑

E∈Tτττ

(
QS

Xτττ
E

)T
b
Xτττ
E =

∑

E∈Tτττ

(
S̃E

)T
b
Xτττ
E .

82 5.4 Implementation and Parallelization

5.4 Implementation and Parallelization

We implemented the proposed adaptive scheme in a new simulation code. In the following we dis-

cuss key aspects of this implementation and the parallelization scheme.

Our simulation code is written in C++ and Lua89. We use C++ to implement the core data struc-

tures and algorithms and provide a Lua interface to allow for extending and customizing the core

library. For example, all linear solvers are implemented in C++ (or provided by a third-party library)

while the non-linear Newton solver is implemented in Lua. As the individual tasks (assembling Ja-

cobian matrices, solving linear systems and evaluating functionals) are sufficiently heavy-weight,

the reduced speed of the interpreted Lua code does not impact performance. The dynamic features

of the Lua language (including dynamic typing and functional programming support) simplify the

implementation of the high-level logic. In previous work we gathered experience with a Python

interface to a multi-scale simulation code99. Here, we decided to use Lua instead because of its

smaller runtime which simplifies porting between supercomputers.

Our implementation targets homogeneous clusters of multicore chips (see Chapter 3) and thus

uses a combination of message-passing and threading. Since our current implementation of the

linear algebra classes is based on PETSC
11, which does not yet support this type of parallelization,

the hybrid parallelization is (as of this writing) not fully functional and we only report results using

a single compute thread per process. We therefore use the term thread and processing element
interchangeably.

5.4.1 Mesh Datastructure

In our reference implementation the handling of block-structured tree-based meshes is based on

three main classes: Tessellation, Forest and Mesh.

The fixed tessellation Ω =
⋃N

i=1 Ωi underlying the adaptive mesh Tτττ is represented by an object

of type Tessellation which stores the same information that is used to represent uniform unstruc-

tured meshes in standard finite element codes. This includes, for example, nodal coordinates and

corner indices for each patch Ωi. Each node and element has a unique key in Z≥0 which allows

to identify duplicate nodes or elements without using (error-prone) geometric comparisons. These

keys are assigned in the pre-processing phase and do not change during the simulation. In our ex-

periments we use the Morton index of the scaled integer coordinates of the element midpoint to

compute the key. Elements are locally sorted according to their key.

For each patch Ωi we store a list of patches Ω j such that Ωi∩Ω j 6= /0, i.e., the list of all neigh-

bors that share a sub-entity (face, edge, corner, . . .) of codimension greater or equal to one. For

the construction of the mortar subspace Ym
τττ it is sufficient to maintain a list of neighbors across

codimension-one sub-entities (i.e., faces if d = 3), see Section 4.7. However, in order to build a

conforming subspace Yc
τττ we need to identify neighbors across sub-entities of codimension 1, . . . ,d.

The elements of the tessellation are distributed over all processing elements. In general, a patch

Ωi can be stored on an arbitrary number of threads. In order to allow for coordination between

83 5.4 Implementation and Parallelization

holders of a patch we store (for each patch) a list of all holders in a consistent order. In contrast to

Burstedde et al. 35 we decided not to replicate the tessellation but to work with a more complicated,

distributed Tessellation data structure since we target a very lightweight mesh data structure and

want to be able to handle larger 4-dimensional tessellations (see Chapter 6) as well.

The Tessellation class moreover stores a list of SideSet objects that identify a subset of the

boundary ∂Ω , e.g., to impose non-homogeneous Neumann boundary conditions. A SideSet con-

sists of a unique number and a set of pairs (key, i) where i equals the index of the codimension-one

sub-entity. The pairs are sorted according to the element key allowing the assembler to iterate over

patches and side-set entries at the same time. In order to implement the space-time transfer oper-

ator discussed in Section 5.4.4 or to implement periodic boundary conditions we allow for storing

relations over side sets in a SideMap instance. Both, SideSet and SideMap, are replicated across

all processes.

The Forest class contains a Tessellation object and augments it with a list of trees. In

serial, we store a single tree τi for each patch Ωi. As detailed in Section 5.2 we store trees as

ordered vectors of 32-bit integers. By ordering the leaves according to the Morton key we can find

leaves, their parents or siblings with logarithmic complexity. Since we target shallow trees, the use

of 32-bit integers (instead of the more common 64-bit type36,139) is not a restriction. In an early

version of the code we have experimented with hashed trees163 but found the linear storage to be

easier to handle since it can be trivially serialized and de-serialized for message-based exchange.

We distribute trees by means of a one-dimensional decomposition of the key space. As proposed

by Burstedde et al. 38 we use the tuple (k,o) consisting of the key k of the patch and the Morton index

o of the leaf to obtain a unique identifier for a tree leaf. The space of keys (ordered lexicographically)

is decomposed into as many pieces as the number of threads, taking into account positive weights

w(k,o) ∈ R>0. Since both, tessellation patches and tree leaves, are ordered according to the Morton

index, which defines a space-filling curve, this approach generally leads to good load balance and a

good surface-to-volume ratio if the total number of leaves in the forest is sufficiently large compared

to the number of threads and if the spread of weights is not too large.

Each thread stores the leaves assigned to it according to the decomposition of the key space.

Moreover, we store a copy of all trees (attached to the same or a neighboring patch) adjacent to this

local tree. In the current implementation, a thread stores a sorted list of all partitioned trees below

a patch that borders an element to which a local tree is attached. This scheme could be improved

by reducing the number of stored trees to the minimum needed and moreover sparsify the copies of

remote trees by dropping interior leaves. Note that, since we sort tree leaves according to the (k,o)
tuple, all local leaves can conceptually (i.e., not taking into account the actual data storage scheme)

be traversed consecutively. Thus, storing more trees than necessary does not incur a performance

penalty. On the other hand, sparsifying the copies of remote trees can potentially speedup the neigh-

bor search. The partition of the Tessellation is determined by the list of trees (local or copies),

i.e., a thread is designated as the holder of a patch Ωi if and only if the thread stores a tree attached

to this patch.

84 5.4 Implementation and Parallelization

Finally, the Mesh data structure combines a Forest object with the local mesh widths δδδ . The

partition of the mesh is equal to that of the Forest, i.e., the structured mesh on a leaf is not par-

titioned further. This ensures that we can take advantage of the locally structured nature of Tτττ

independently of the decomposition of the mesh.

To separate the mesh data structure from the remaining part of the code we access the mesh

through the IMesh interface. Since the IMesh interface provides direct pointer-based access to the

trees attached to a patch, the traversal of the mesh structure can potentially be implemented with as

few as O(N) virtual function calls, where N equals the number of patches. In early experiments we

did not see a significant performance drop due to the introduction of the IMesh interface.

In order to implement an adaptive scheme using the described mesh data structure, several

mesh modification functions need to be implemented. In general, these functions are written such

that they do not mutate the input mesh but rather return new Mesh instances. Since the storage

requirement for a mesh Tτττ is sufficiently low, we can easily handle multiple meshes in memory at

each point in time. By keeping the original mesh intact we simplify the control flow of the adaptive

simulation since, for example, finite element spaces built on top of the input mesh need not be

updated. We considered alternative approaches, e.g., using events or signals70, but decided in favor

of an explicit management of the finite element spaces in order to avoid communication intense

operations being invoked as side effects. The three fundamental operations for mesh modifications

are Mesh.Adapted, Mesh.FlatCopy and Mesh.Partitioned.

Mesh.Adapted takes a Mesh instance and a vector of marks as inputs and returns an adapted

(i.e., locally coarsened or refined) Mesh. The marks specify whether a tree leaf should be refined

(mark equals +1), kept (mark equals 0) or coarsened (mark equals −1). Since we are dealing with

complete trees, a leaf is only replaced by the parent if all siblings are marked for coarsening as well.

Moreover, we do not replace child leaves by the parent node if the child leaves are distributed across

multiple trees. Hence, the parallel execution of the code can give different results than obtained by

a serial run. The advantage of this approach however is that Mesh.Adapted can be implemented

completely local without need for communication (a similar simplification is used by Burstedde

et al. 38). As in Chapter 4, mesh adaptation is based on accumulated error estimators or indicators

ηΣ
o =

∑

E∈To

ηE .

In contrast to the mesh data structure Tℓℓℓ (see Section 4.2) which can be potentially subjected to

arbitrary adaptations, the tree-based meshes Tτττ implicitly store the refinement history in the trees

{τi}N
i=1 and are therefore less flexible in the adaptation process. By focusing on shallow trees,

however, we minimize this “inertia” of the adaptive meshes.

Mesh.FlatCopy is used to create coarse meshes that serve, for example, as a starting point for

an iterative refinement procedure. For serial execution, Mesh.FlatCopy is functionally equivalent

to repeated coarsening of the input mesh.

The third function Mesh.Partitioned takes an input mesh and a vector of weights and re-

turns a repartitioned version of the mesh. As described above, the data decomposition is based on

85 5.4 Implementation and Parallelization

a decomposition of the key space that approximately balances the accumulated weights across all

threads. Mesh.Partitioned proceeds in three steps. First, the assignment of leaves to the new

owner threads is computed. In a second step, a new Tessellation object is constructed taking

into account the partition of tree leaves. This step is required since we use distributed coarse tessel-

lations. In the third and last step, trees are exchanged between current and new owner threads.

5.4.2 Finite Element Spaces and Linear Algebra

In contrast to the approach from Chapter 4, which can be implemented without reference to a global

numbering of the degrees of freedom, the implementation discussed in this chapter involves the

construction of a mapping from local degrees of freedom (i.e., the index of a shape function on

an element E ∈ Tτττ) to global degrees of freedom. Such a mapping is a prerequisite for the use

of standard linear algebra data structures (e.g., a compressed row storage scheme for the system

matrices).

Standard implementations of a conforming finite element discretization are based on a mapping

(E, i) 7→ α that assigns a global index α to the ith corner of the element E. Since the number of

corners (i.e., the element type) is known, this mapping can be efficiently stored as a table and used to

assemble the stiffness matrix element-wise. In the context of our non-conforming discretization, in

general, no single-valued function mapping local degrees of freedom to global degrees of freedom in

a subspace exists because constraints may couple slave nodes to multiple master nodes. Moreover,

as discussed in Section 5.3.3, a weight is associated with each pair (i,α) corresponding to the entry

in the matrix representation Q of the inclusion. Our implementation is based on the IVectorSpace

interface which provides a set-valued local-to-global mapping

(E, i) 7→
{(

α ,(S̃E)iα

) ∣∣∣ (S̃E)iα 6= 0
}
⊂ Z≥1×R6=0 .

The ProductSpace implementation provides a trivial implementation of IVectorSpace that maps

the tuple (E, i) to a set {(α ,1)} of cardinality one.

The ansatz spaces MortarSubspace and ConformingSubspace implement the IVectorSpace

interface and, additionally, the interface IVectorSubspace. The latter defines the prototypes for

the functions Inclusion, which is used to map a vector from the subspace into the superspace, and

CheapProjection, which maps a vector in the superspace into the subspace by dropping values

corresponding to slave nodes. In our implementation, a subspace is equivalent to a pair (Xτττ ,Q)

where the matrix Q is stored in a sparse-matrix format that allows fast access to the rows (e.g., the

compressed row storage (CRS) format136). Thus, all our ansatz spaces use the same storage scheme

and only differ in their setup (i.e., the assembly of the inclusion matrix Q). Even though it is in

principle possible to build subspaces of arbitrary IVectorSpace instances we restrict ourselves to

the construction of subspaces in a ProductSpace object.

In Algorithm 5.1 the assembly routine for the matrix representation of the inclusion Ym
τττ →֒ Xτττ

is shown. The algorithm proceeds in two steps. First, a representation of the skeleton S is con-

structed and the dimension of the subspace is computed. At the same time, the row length of Q is

86 5.4 Implementation and Parallelization

1: S ←{}
2: for all leaves (k,o) do ⊲ Build skeleton and compute dimension

3: for all faces F of o do

4: Find neighbor leaves {(k′,o′)} across F of the same or higher level

5: if mino′ level(o′)> level(o) or
(

level(o′) = level(o) and (k′,o′)> (k,o)
)

then

6: S ← S ∪{({(k′,o′)} ,(k,o),{F ′} ,F,σ)}
7: Mark interior nodes on F as slaves

8: Estimate row length of Q for slave nodes

9: end if

10: end for

11: end for

12: Allocate storage for Q and fill rows corresponding to master nodes

13: for all s ∈ S do ⊲ Assemble mortar projection

14: Assemble P on the slave side of s
15: Enter P into Q using product space column indices

16: end for

17: Map column indices from the superspace into the subspace ⊲ Via hash map

Algorithm 5.1. Assembly of the matrix Q mapping the mortar element space Ym
τττ into the product

space Xτττ .

estimated. The construction of the skeleton requires the search for neighbor leaves. Within a tree

τi this is done by computing the key of the neighbor (using its coordinates) and a binary search.

If the neighbor lies outside of the local coordinate system of the patch, we transform coordinates

into the local coordinate system of the neighbor patch. Since we attach multiple trees to each patch

(see Section 5.4.1) we search all trees in order. In general, neighboring patches can be oriented

differently. Therefore we need to store the corner permutation σ ∈ S2d−1 that is used to translate

coordinates between coordinate systems on the shared interface of the two patches.

While the construction of the inclusion matrix for the mortar element space can be computa-

tionally expensive due to the required evaluation of surface integrals over curved element faces, it

is algorithmically relatively simple since only nodes on the interior of the codimension-one sub-

entities of leaves are coupled. The construction of the inclusion matrix for the conforming ansatz

space Yc
τττ on the other hand requires little floating point intense calculations (since the entries of Q

are given by baryocentric coordinate values) but is complicated by the structure of the constraints.

Algorithm 5.2 shows the steps used to assemble the inclusion matrix Q for the conforming

ansatz space. In contrast to Algorithm 5.1 this algorithm requires neighbor search across all sub-

entities (of which there are 2, 4, 12 and 32 for d = 1, . . . ,4, respectively). This is necessary to ensure

87 5.4 Implementation and Parallelization

1: S ←{}
2: for all leaves (k,o) do ⊲ Build skeleton and compute dimension

3: for all sub-entities e of codimension ∈ {1, . . . ,d} do

4: Find neighbor leaves {(k′,o′)} across e of the same or lower level

5: end for

6: for all sub-entities e of codimension ∈ {1, . . . ,d} do

7: Find the smallest neighbor leaf (k′,o′) according to the lexicographical

ordering of tuples (level(o),(k,o)) across all sub-entities of e
8: if (level(o′),k′,o′)< (level(o),k,o) then

9: S ← S ∪{((k′,o′),(k,o),e′,e,σ)}
10: Mark mesh nodes on F as slaves

11: Estimate row length of Q for slave nodes

12: end if

13: end for

14: end for

15: Allocate storage for Q̃ and fill rows corresponding to master nodes

16: for all s ∈ S do

17: Assemble P on the slave side of s
18: Enter P into Q̃ using product space column indices

19: end for

20: Q← Q̃ by resolving dependency chains ⊲ Involves communication

21: Map column indices from the superspace into the subspace ⊲ Via hash map

Algorithm 5.2. Assembly of the matrix Q mapping the conforming ansatz space Yc
τττ into the product

space Xτττ .

that we consistently assign the slave/master tag to mesh nodes. However, while we can locally de-

cide if a node is a slave node, we cannot reliably detect master nodes since nodes on neighboring

tree leaves might depend on other nodes across a third sub-entity. Thus, when assembling the ma-

trix Q̃ we also add entries corresponding to slave-slave couplings. This leads to the occurrence

of dependency chains (a path in the connectivity graph of the temporary matrix Q̃ that connects a

slave node, via other slave nodes, to a master node). These dependency chains need to be itera-

tively resolved to obtain the matrix Q. Since dependency chains can cross processor boundaries,

this process requires unstructured communication and repeated updates of the hash maps used to

map product space indices to the corresponding subspace indices.

In contrast to the handling of hanging nodes in the literature (see, for example, Burstedde

et al. 35,36) our implementation is more complicated and potentially slower since we do not as-

sume balanced trees. Moreover, we use constraints not only for hanging nodes but also to eliminate

88 5.4 Implementation and Parallelization

duplicate (geometrically coinciding) nodes.

Algorithm 5.1 and Algorithm 5.2 can be executed in parallel since the Mesh data structure

stores copies of remote trees and thus allows for local neighbor queries. We use the ProductSpace

instance for data exchange (such as the index mapping from the product space into the subspace). By

design, the resulting decomposition of the degrees of freedom in the subspace is non-overlapping

and thus resonates well with the data decomposition used by standard third-party linear algebra

packages12,77.

As mentioned earlier, we use PETSC
12 for the implementation of our linear algebra data struc-

tures so that we can take advantage of the large number of linear solvers and preconditioners im-

plemented in, or available through, PETSC. The disadvantage of this approach is that these data

structures cannot fully exploit the special meshes used in the construction of the approximation

spaces.

5.4.3 Assembly Strategy

Algorithm 5.3 describes the strategy used to assemble the discrete representation of a bilinear and

linear form on an IVectorSubspace instance based on the approach discussed in Section 5.3.3.

A challenge for the efficient implementation of Algorithm 5.3 is the variable row length of

the matrices S̃E . We use a memory pool allocation scheme for storing the matrix column indices

and entries without the performance penalty that a standard heap allocation would incur. A pool
allocator does not keep track of individual allocations but only maintains a pointer to the beginning

of the free memory region. Therefore, allocations can be implemented very efficiently as they only

require the update of a single pointer. At the end of the loop body in Algorithm 5.3, the pool is

collectively freed by resetting the pointer to the beginning of the pre-allocated memory. The size of

the pool is chosen a priori by the user.

We restructure the sparse matrix S̃E as a dense matrix of size 2d×L for some L≥ 2d by padding

with zeroes and storing the corresponding column indices in a separate array of length L. Thus, the

computation of the local contribution requires two dense matrix-matrix operations of dgemm type.

In the implementation used for the experiments in Section 5.5 we use a blocking factor of 2d for our

matrix-matrix multiplication algorithm.

In order to setup the matrix structure, an upper bound for the row lengths is required prior to the

computation of the matrix entries. The accurate estimation of the row lengths is a complicated task

for non-conforming meshes due to the intricate shape of the support of basis functions. In the current

implementation we use an upper bound of
∑

E

(
#
{
(S̃E)iα 6= 0 and i corresponds to β

})2
for the

row length of the β th row. For a three-dimensional test case this bound let to an overestimation of

the total number of non-zero entries by a factor of approximately three.

89 5.4 Implementation and Parallelization

1: Estimate row lengths and preallocate AY

2: for all E ∈Tτττ do

3: Assemble local stiffness matrix A
Xτττ
E and local right-hand side b

Xτττ
E on E

4: Construct S̃E from the rows of Q

5: Compute S̃EA
Xτττ
E S̃E and S̃Eb

Xτττ
E ⊲ Matrix-matrix and matrix-vector multiplication

6: Add results to the global matrix AY and the vector bY ⊲ Stash remote entries

7: end for

8: Finish assembly ⊲ Exchange stashed entries

Algorithm 5.3. Assembly of the stiffness matrix AY and right-hand side bY.

5.4.4 Transfer Operators

The experiments in Chapter 4 showed that a local transfer operator Xτττ(t) → Xτττ(t ′) followed by an

approximate projection onto the subspace is a good alternative to a more expensive L2-projection

between subspaces. Therefore we only implemented the local transfer operator between product

spaces. As defined in Section 4.5.2 this transfer operator uses local interpolation and projection on

each leaf.

Our implementation is capable of transferring data between vector spaces on two arbitrary

meshes as long as the underlying tessellations are identical. In particular, we do not require the

decomposition of the two meshes to be identical. To this end, each thread stores the range of patch

indices {ilow, . . . , ihi} for all threads allowing communication tasks to be set up based on the intersec-

tion between these ranges. In a next step, trees are exchanged between threads. Finally, overlapped

with local computation, the vector data is transferred.

While this approach leads to a high communication volume we found it to be important not to

restrict the transfer to meshes with compatible distribution since this would severely limit the flexi-

bility of the adaptive refinement procedure. For example, in the lightweight adaptive scheme from

Chapter 4 we need to store the saved dynamic variables V,s on the same mesh used for propagation.

Thus, our choices of the initial mesh for the propagation is restricted because a very coarse mesh

would lead to a large approximation error for the initial conditions and thus destroy the accuracy of

the method altogether. The possibility to transfer vectors between incompatible meshes allows us

to store the initial values on a separate mesh and thus aggressively coarsen the mesh used for the

propagation.

In Chapter 6 a second transfer operator is required. Therein we consider domains Q of the

form Ω × (0,T), Ω ⊂ Rd−1, and define an operator T between the trace spaces on Ω ×{T} and

Ω ×{0} that maps the trace Û(x) = Û (x,T) on the upper boundary to the identical trace on the

lower boundary.

To implement this operator during the mesh generation process we create a mapping from the

90 5.5 Results

patch faces on the lower boundary of Q to the corresponding patch faces on the upper boundary of

Q. This relation is stored as a SideMap instance in the Tessellation object. Using this relation,

the transfer operator can be implemented as a local transfer operator between the trace spaces on

the (d−1)-dimensional meshes induced on the upper and lower side of Q. Note that this transfer

operator requires communication due to the d-dimensional space-filling curve data decomposition

we employ.

5.5 Results

The following tests have been performed on the Cray XE6 “Monte Rosa” at the Swiss National

Supercomputing Centre, featuring dual-socket nodes with AMD Interlagos CPUs, 32 GiB main

memory per node and a Gemini interconnect. To avoid a negative impact of the shared floating

point units in the Bulldozer microarchitecture, in all experiments we placed only one process per

Bulldozer module.

Our code is compiled with optimizations using the gcc-4.7.2 compiler. In contrast to the experi-

ments presented in Chapter 4, we used a self-compiled version of the development branch of PETSC

instead of the system installation provided by Cray.

5.5.1 Small-Scale Problem

In this section we discuss the solution of the model problem from Section 4.8.2 by means of a forest

of shallow trees. The monodomain equation was solved on the domain Ω = (0,1)2× (0, 1
16
) with

fibers oriented in the xy plane with an angle of 45◦. A current Iapp = 250 µA/cm2 was applied in the

center of the domain. The coarse tessellation consisted of 16×16×1 hexahedra. In the line with the

choice from Section 4.8.2 we limited the tree depth to three levels and set (δℓ)
3
ℓ=1 = (1/4,1/4,1/4).

Note that this corresponds to the choice of the mesh width from Section 4.8.2, since the diameter

of tree leaves is halved in each refinement step. We employed a conjugate gradient solver with ILU

preconditioner.

In contrast to the residual-based error estimator employed in Section 4.8.2 we used a gradient

error indicator (
ηΣ

o

)2
=

∫ t+τLlap

t
(∇∇∇Vτττ ,∇∇∇Vτττ)

2
L2(o) ds

on the time window
(
t, t + τLlap

)
here. The temporal integral was approximated by a summed

trapezoidal rule and the spatial integral was evaluated via a summed midpoint rule. At the end of

each lap, leaves with accumulated error indicators ηΣ
o ≥ 1

2
maxo′ η

Σ
o′ were marked for refinement.

The mesh adaptation procedure was stopped if no leaf was marked for refinement or if the sum of

all error indicators was less than 1.

Before integrating over a new time window, the mesh was coarsened by cropping all trees by

one level. We implemented this more aggressive coarsening (compared to the approach from Chap-

ter 4) without reducing the accuracy by keeping the initial conditions (i.e., the final solution from

the previous lap) on a separate mesh.

91 5.5 Results

In Figures 5.5–5.7 the measured results are presented in the same form as in Section 4.8.2

(cf. Figures 4.7–4.9). We compare our adaptive solution method to the same structured grid solution

method used in Section 4.8.2. The timings for the adaptive method include time spent in I/O.

In comparison to the lightweight adaptive approach from Chapter 4, the use of shallow trees

reduces the time per lap by up to 7.58× and on average by 2.76×. Even though the adaptive code is

up to 3.4× slower per lap than the structured code, on average the adaptive code is 1.37× faster per

lap during the first 20 ms. The break even point, where the accumulated time of the adaptive code

is lower than that of the structured code, is reached at t = 32.5 ms, i.e., during the repolarization

phase.

Only during the simulation time interval (19 ms,21 ms), consisting of four laps, a slowdown

by a factor 1.5–2.75 with respect to the lightweight adaptive scheme is measured. At this time

the depolarization front leaves the computational domain and our marking strategy triggers mesh

refinement towards the corners of the domain. At the same time, the number of passes and the

accumulated number of iterations in the linear solver (see Figure 5.6) increases. Note that, even

with the same error estimator, we expect different behavior from the same marking strategy due

to the different spectrum of the error indicators
{

ηΣ
i

}
and

{
ηΣ

o

}
for the lightweight adaptive and

shallow trees approaches.

A comparison of Figures 5.7 and Figure 4.9 shows that the use of shallow trees reduces the

number of degrees of freedom required for the integration of the monodomain equation. Note

that in Figure 4.9 the number of mesh nodes is shown whereas we show the number of degrees

of freedom in Figure 5.7. This is reasonable since the implementation in this chapter solves the

discretized equations directly in the mortar element subspace. In Figure 5.4 the adaptive meshes

obtained via the shallow tree approach (left) and lightweight adaptive approach (right) are shown

together with the contours of the discrete solution.

In Figure 5.8 the distribution of the execution time over several components in the implicit-

explicit integration scheme is shown. The solution of the linear system and the computation of the

ionic current together with the integration of the state variables using the Rush-Larsen scheme are

the two most costly operations. The construction of the mortar space (using a second-order Gauss-

Legendre quadrature formula for the surface integrals) and the computation of the error indicators

are comparably inexpensive. The assembly of mass and stiffness matrices requires a significant

percentage of the computing time. In these experiments we use a variant of the algorithm discussed

in Section 5.4.3 which is tailored for the considered scalar problem, avoids any virtual function

calls, and reduces the computations of the Jacobian of the element transfer matrix to a minimum by

reusing the same matrices for all elements on the same tree leaf. Further performance analysis of

the assembly routine shows that the sparse matrix insertion of entries from elements adjacent to a

slave face dominates the assembly time (with a share of more than 60% for most laps) during the

depolarization phase.

5.5.2 Large-Scale Problem

In this section we analyze the performance of the shallow tree approach for the large-scale problem

A from Section 4.8.3. For the experiments described in the following we used a coarse tessellation

92 5.5 Results

Figure 5.4. Contours of the membrane voltage (in mV) and adaptive mesh at t = 0.5, 1, 7.5 ms (top
to bottom) for the small-scale problem. The left plots show results obtained using our shallow tree
adaptive approach. The right plots show results obtained with the lightweight adaptive approach
(see Section 4.8.2).

93 5.5 Results

0 5 10 15 20 25 30 35 40 45 50

Simulation time [ms]

0

1.5 ·102

3 ·102

4.5 ·102

6 ·102
T

o
ta

l
ti

m
e

fo
r

la
p

[s
]

Lap time

10−1

1

10

102

S
p
ee

d
u
p

o
f

ad
ap

ti
v
e

co
d
e

Structured

Adaptive

Speedup

0 5 10 15 20 25 30 35 40 45 50

Simulation time [ms]

0

2 ·103

4 ·103

6 ·103

8 ·103

A
cc

u
m

u
la

te
d

ti
m

e
[s

]

Accumulated lap time

10−1

3.2 ·10−1

1

3.2

10

S
p
ee

d
u
p

o
f

ad
ap

ti
v
e

co
d
e

Figure 5.5. Measured execution times. The upper graph shows the walltime for the execution of a
lap of 20 time steps. Note that in the adaptive code each lap is repeated up to four times (cf. Figure
5.6). The lower plot shows the accumulated execution time.

0 5 10 15 20 25 30 35 40 45 50

Simulation time [ms]

0

4 ·102

8 ·102

1.2 ·103

#
it

er
at

io
n
s

Number of linear solver iterations

1

2

5

10

In
cr

ea
se

in
#

it
er

at
io

n
s

Structured

Adaptive

Increase

0 5 10 15 20 25 30 35 40 45 50

Simulation time [ms]

0

1

2

3

4

5

6

#
p
as

se
s

Number of passes

Figure 5.6. The upper graph shows the number of linear solver iterations per lap. The lower graph
shows the number of passes for the integration of a lap.

94 5.5 Results

0 5 10 15 20 25 30 35 40 45 50

Simulation time [ms]

0

2 ·10−1

5 ·10−1

8 ·10−1

1

1.2

#
d
eg

re
es

o
f

fr
ee

d
o
m

(i
n

m
il

li
o
n
s)

Number of degrees of freedom

1

3.2

10

3.2 ·10

102

A
d
ap

ti
v
it

y
g
ai

n

Structured

Adaptive

Gain

Figure 5.7. Number of mesh nodes over time for the small-scale problem.

0 5 10 15 20 25 30 35 40 45 50

Simulation time [ms]

0

25

50

75

100

%
o
f

ti
m

e

Distribution of lap execution time

Rest

Error indication

Linear Solver

Assembly

Space

Membrane model

Figure 5.8. Distribution of the execution time for the small-scale problem. The time measurements
are summed over all passes over each lap.

consisting of 4×16×32 patches and (δℓ)
3
ℓ=1 = (1/4,1/4,1/4). The simulation was run in parallel

on 64 processing elements. A conjugate gradient solver with Block-Jacobi ILU preconditioner was

used.

The timings for the adaptive code are reported as 64× the time measured on the first processing

element. Barriers have been inserted to synchronize processes prior to time measurements in order

to ensure consistent results. Under the assumption of ideal scalability, these timing results corre-

spond to the serial execution time. We compare our adaptive scheme with the optimized structured

grid code from Section 4.8.3. The execution time for the adaptive code includes the time spent

writing output files used for visualization and checkpointing.

In contrast to the implementation discussed in Chapter 4 we did not evaluate the exact conduc-

tivity tensor Gmono (x) at each quadrature point but instead used an element-wise constant approxi-

mation. This allowed us to precompute the conductivity tensors and reduce the assembly times.

The refinement strategy was based on a gradient error indicator as defined in Section 5.5.1. We

marked a leaf o for refinement if ηΣ
o ≥ 0.1maxo′ η

Σ
o′ . The adaptation procedure was stopped after

the 9th repetition, if no leaf was marked for refinement or if the sum of all error indicators was less

than 102.

95 5.5 Results

Before integrating over a new time window, the mesh was coarsened by cropping all trees by one

level. We implemented this more aggressive coarsening (compared to the approach from Chapter

4) without reducing the accuracy by keeping the initial conditions (i.e., the final solution from the

previous lap) on a separate mesh. This is possible since our implementation of the transfer operator

(see Section 5.4.4) is capable of transferring data between incompatibly distributed meshes.

In Figure 5.9 and Figure 5.10 we report the execution time (per lap and accumulated), the

number of linear solver iterations and the dimension of the ansatz spaces over time. In comparison

to the lightweight adaptive approach, we measure a larger reduction in the number of degrees of

freedom by up to 36.4% during the first 175 milliseconds of simulation time. Note that this reduction

is measured for the exact same number of levels. The refinement procedure terminates after 3–4

passes for most laps. A similar number was measured in Section 4.8.3.

This improved adaptivity gain however is not reflected in the measured execution time which

is slightly higher than the time measured in Chapter 4. First, the assembly of mass and stiffness

matrices on the subspace is expensive (see below) since we cannot perform local reassembly as in

Section 4.8.3. Second, the number of linear solver iterations is relatively large (with some time

steps requiring up to 38 iterations) despite the lower number of blocks for the block preconditioner.

In Figure 5.12 we compare the execution time of the adaptive code with the execution time

of the same code on a uniform mesh (including I/O time). The Block-Jacobi ILU preconditioned

conjugate gradient solver requires 2–3 times as many iterations (11–17 iterations per solver invo-

cation) for conforming discretization of a uniform mesh compared to the structured grid reference

discretization used in Chapter 4. Even more iterations (17–28 iterations per solver invocation) are

required when using a mortar discretization on a uniform mesh. Note that the mortar discretization

is not equivalent to a conforming discretization even on a uniform mesh since we do not enforce

continuity on the wire basket.

Compared to the conforming discretization, the adaptive code is slower during the depolariza-

tion phase and requires about 14.9% longer to finish. In comparison with the mortar discretization

on the uniform mesh however, the accumulated timings (lower plot in Figure 5.12) of the adaptive

code are always lower and an end-to-end speedup of 2.19 is measured.

Figure 5.13 depicts the distribution of the execution time (per lap) over several components

in the implicit-explicit integration scheme. The solution of the linear system and assembly of the

stiffness and mass matrix are the most expensive operations. During the depolarization phase, mesh

management overhead and the transfer of the solution between different meshes does not incur a

significant overhead. Note that in contrast to the results reported in Figure 4.13 we do not report

communication times separately in this figure.

The computed membrane voltage Vℓℓℓ and the adapted meshes at different steps are shown in

Figure 5.11. In comparison to the results from Section 4.8.3 (see Figure 4.15), the shallow tree

approach can track the depolarization front with fewer degrees of freedom due to the tree hierarchy

underlying the mesh data structure.

96 5.5 Results

A different approach to the construction of an initial mesh for a new time window is to start

with a uniform coarse mesh, i.e., a mesh Tτττ with all tree depths equal to zero. Since the initial

conditions are stored on a separate mesh, we can use this approach without affecting the accuracy

of the simulation. In comparison to the setup described above we measure a reduction of up to 7.5%

in the number of degrees of freedom when starting from a coarse mesh. On average, a reduction

by 1.17% is measured over the first 175 ms of simulation time. At the same time, however, the

number of passes increases by 1–2 so that an increase by 13.9% in the end-to-end execution time is

measured.

We can raise the adaptivity gain by increasing the maximal tree depth. To exemplify this claim

we consider the large scale problem B from Section 4.8.3. We use mesh widths

(δℓ)
4
ℓ=1 = (1/2,1/2,1/4,1/4). Note that the setup of from Chapter 4.8.3 corresponds to

(δℓ)
3
ℓ=1 = (1/2,1/8,1/8). The remaining setup is the same as for problem A. Figure 5.14 depicts

the number of degrees of freedom over time. For this setup we measure a reduction by a factor of

at least 13.27 which compares favorably to the results reported in Section 4.8.3. At the same time,

however, in this simulation 7–8 passes are performed over each lap which is considerably larger

than the number of passes measured for the lightweight scheme from Section 4.8.3.

5.5.3 Bidomain Equation

To demonstrate the flexibility of our adaptive scheme and its implementation we consider the solu-

tion of the bidomain equation in parabolic-elliptic form using a first-order splitting and an implicit-

explicit Euler scheme as discussed in Section 2.3.2. We used the same setup as in Section 5.5.2 with

the intra- and extra-cellular conductivity tensors

Gi = 3.3 ·al⊗al +0.35 · (at⊗at +an⊗an) mS/cm ,

Ge = 2.0 ·al⊗al +1.2 · (at⊗at +an⊗an) mS/cm .

A conjugate gradient solver with Block-Jacobi ILU preconditioner was used for the parabolic equa-

tion. The elliptic equation was solved with a Bi-CGSTAB solver preconditioned with the algebraic

multi-grid BOOMERAMG 53,62. A strong threshold value θ = 0.75 was chosen. The simulation was

run in parallel on 128 processing elements.

The adaptive mesh refinement was driven by a gradient indicator and the same marking strategy

used in Section 5.5.2. We used a coarse mesh as the starting point for the refinement process. The

error indicator only took the membrane voltage into account, i.e., the approximation error of the

extra-cellular potential ϕe was not controlled by the adaptive scheme. Let us point out that this

example serves only to demonstrate the feasibility of such simulations in the context of our adaptive

scheme. Further verification is required to assess the accuracy of the employed refinement scheme.

In Figure 5.16 the extra-cellular potential ϕe is shown together with the adaptive meshes. For

97 5.5 Results

0 25 50 75 100 125 150 175 200 225 250 275 300

Simulation time [ms]

0

103

2 ·103

3 ·103

4 ·103

5 ·103
T

o
ta

l
ti

m
e

fo
r

la
p

[s
]

Lap time

10−1

2.7 ·10−1

7.1 ·10−1

1.9

5

S
p
ee

d
u
p

o
f

ad
ap

ti
v
e

co
d
e

Structured

Adaptive

Speedup

0 25 50 75 100 125 150 175 200 225 250 275 300

Simulation time [ms]

0

105

2 ·105

3 ·105

4 ·105

5 ·105

6 ·105

A
cc

u
m

u
la

te
d

ti
m

e
[s

]

Accumulated lap time

2 ·10−1

3.6 ·10−1

6.3 ·10−1

1.1

2

S
p
ee

d
u
p

o
f

ad
ap

ti
v
e

co
d
e

Figure 5.9. Execution time of the adaptive code in comparison to a structured code. The upper
graph shows the walltime for the execution of a lap of 20 time steps. The lower plot shows the
accumulated execution time.

0 25 50 75 100 125 150 175 200 225 250 275 300

Simulation time [ms]

0

103

2 ·103

3 ·103

4 ·103

#
it

er
at

io
n
s

Number of linear solver iterations

3

7.7

2 ·10

In
cr

ea
se

in
#

it
er

at
io

n
s

Structured

Adaptive

Increase

0 25 50 75 100 125 150 175 200 225 250 275 300

Simulation time [ms]

0
1
2
3
4
5
6
7
8
9

#
d
eg

re
es

o
f

fr
ee

d
o
m

(i
n

m
il

li
o
n
s)

Number of degrees of freedom

1

3.2

10

3.2 ·10

102

A
d
ap

ti
v
it

y
g
ai

n

Structured

Adaptive

Gain

Figure 5.10. Number of linear solver iterations (upper plot) and number of degrees of freedom
(dimension of the mortar subspace) over time (lower plot).

98 5.5 Results

Figure 5.11. Membrane voltage (in mV) and adaptive mesh at t = 50, 100, 150, 200 ms. The two
plots on the right are rotated by 180◦ to visualize the back of the ventricle.

99 5.5 Results

0 25 50 75 100 125 150 175 200 225 250 275 300

Simulation time [ms]

0

103

2 ·103

3 ·103

4 ·103

5 ·103

6 ·103
T

o
ta

l
ti

m
e

fo
r

la
p

[s
]

Lap time

3 ·10−1

7.2 ·10−1

1.7

4.2

10

S
p
ee

d
u
p

o
f

ad
ap

ti
v
e

co
d
e

Uniform (conforming)

Uniform (mortar)

Adaptive

Speedup (w.r.t. conf.)

0 25 50 75 100 125 150 175 200 225 250 275 300

Simulation time [ms]

0

106

2 ·106

A
cc

u
m

u
la

te
d

ti
m

e
[s

]

Accumulated lap time

4 ·10−1

7.1 ·10−1

1.3

2.2

4

S
p
ee

d
u
p

o
f

ad
ap

ti
v
e

co
d
e

Figure 5.12. Execution time of the adaptive code in comparison to uniform mesh methods.

0 25 50 75 100 125 150 175 200 225 250 275 300

Simulation time [ms]

0

25

50

75

100

%
o
f

ti
m

e

Distribution of lap execution time

Rest

Error indication

Linear Solver

Assembly

Space

Membrane model

Figure 5.13. Distribution of the execution time for the large-scale problem A.

0 25 50 75 100 125 150 175 200 225 250 275 300

Simulation time [ms]

0

10

2 ·10

3 ·10

4 ·10

5 ·10

6 ·10

7 ·10

#
d
eg

re
es

o
f

fr
ee

d
o
m

(i
n

m
il

li
o
n
s)

Number of degrees of freedom

1

3.2
10

3.2 ·10
102
3.2 ·102
103

A
d
ap

ti
v
it

y
g
ai

n

Structured

Adaptive

Gain

Figure 5.14. Number of degrees of freedom for the large-scale problem B.

100 5.5 Results

0 25 50 75 100 125 150 175 200 225 250 275 300

Simulation time [ms]

0

25

50

75

100

%
o
f

ti
m

e

Distribution of lap execution time

Rest

Linear Solver (E)

Linear Solver (P)

AMG setup

Assembly

Space

Membrane model

Figure 5.15. Distribution of the execution time for the solution of the bidomain equation. The time
measurements are summed over all passes over each lap.

the visualization we have enforced
∫

Ω
ϕe(t) dx = 0 for all t ∈ (0,T).

The distribution of the execution time over the computational steps of the time discretization

scheme is depicted in Figure 5.15. As expected, the solution of the elliptic problem is the most

compute-intense operation. The assembly of the mass and stiffness matrices and the membrane

model compute phases are relatively inexpensive. As in Section 5.5.2, we find no significant over-

head due to the adaptivity (i.e., mesh adaptation and transfer of solutions) during the depolarization

phase.

5.5.4 Heart Model

In this section we consider the solution of the monodomain equation on a realistic heart geometry

with the same model setup used by the PROPAG heart model (see Chapter 3). We use a coarse tessel-

lation consisting of 7,974 hexahedra with an edge length of about 4 mm obtained by downsampling

the PROPAG input by a factor of four in each direction. A Laplacian smoother from the MESQUITE

software package was used to improve the geometry representation of the coarse tessellation. Cell

types C and fiber angles were downsampled accordingly and assumed to be constant per tessellation

patch. We refer to Potse et al. 127 for a detailed description of the geometric setup employed in this

section.

We used a patch-wise constant conductivity tensor

Gmono = 0.857 ·al⊗al +0.273 · (at⊗at +an⊗an) mS/cm .

A current of 200 µA/cm2 was applied for 2 ms at various times to different spatial regions according

to a model of the Purkinje system (see Chapter 2). Precisely, the stimulation current was defined as

Iapp(x, t,V) =

200 µA/cm2 if A(x)≥ 0, t ∈ [A(x),A(x)+2 ms) and V ≤−20 mV

0 µA/cm2 else

101 5.5 Results

Figure 5.16. Extra-cellular potential ϕe (in mV) and adaptive mesh at t = 50, 100, 150, 200 ms.
The two plots on the right are rotated by 180◦ to visualize the back of the ventricle.

102 5.5 Results

where the activation time A(x) equals

A(x) =

Ci−1.95 if x ∈Ωi and 2≤Ci < 98

−1 else
.

We allowed adaptive meshes with up to three tree levels and set (δℓ)
3
ℓ=1 = (1/4,1/4,1/4) cor-

responding to a minimal element edge length of 0.25 mm which is the resolution used for many

simulations with PROPAG (problem size M in Section 3.4).

As in Section 5.5.2, we used a gradient error indicator and a maximum-based marking strategy.

We used a coarse mesh (i.e., all tree depths equal to zero) as the initial mesh for each lap. Refine-

ment was stopped after the 9th repetition, if no leaf was marked for refinement or if the sum of all

error indicators was less than 3 ·102. The simulation was run on 256 processing elements.

In Figure 5.17 and Figure 5.19 the computed membrane voltage Vτττ during the depolarization

and repolarization phase is plotted. Corresponding to the time values from Figure 5.17, the adaptive

mesh is shown in Figure 5.18.

A comparative plot of the execution time of the adaptive code and of uniform mesh solution

methods using either a conforming or mortar discretization is shown in Figure 5.20. The measured

timings include time spent writing output files for visualization and checkpointing. As before we

scale the execution time to a single processing element. In these plots the lap execution time for the

mortar discretization for t ≥ 397 is set constant since the simulation did not finish in the allocated

time frame.

Similar to the results reported in Section 5.5.2 the adaptive scheme is not competitive to the

conforming discretization during the depolarization time. Due to the long repolarization phase, an

end-to-end speedup of 1.62 is measured. In comparison to the mortar discretization however, the

adaptive code is faster over the first 100 milliseconds of simulation time and is faster by a factor of

2.99 end-to-end.

We analyzed the strong scalability of the reference implementation discussed in Section 5.4.

We measured execution times (excluding I/O) with the same setup as presented above. Figure 5.21a

depicts the normalized execution time of the adaptive code. As one expects, the parallel efficiency

depends on the simulation time. In comparison to the lightweight adaptive approach from Chapter 4

the adaptive scheme based on shallow trees can scale to higher core counts due to the larger number

of leaves available for load balancing.

Since the mesh adaptation procedure starts from a coarse initial mesh (corresponding to a

805,779 dimensional mortar space) we cannot expect ideal scalability for large core counts. In

particular for the first considered lap (lap 20), the linear solver does not scale well up to 4,096

cores due to the problem size. For this lap we measure a parallel efficiency of 41.3% for the linear

solver when increasing the core count from 64 to 4,096. Figure 5.21b shows the distribution of the

execution time for the 20th lap. This representation of the measured data shows that the relative

execution time of the assembly of mass and stiffness matrices as well as the mesh partitioning (not

103 5.6 Discussion

separately listed) grows during scale-out. The sub-optimal scaling of the assembly routine is most

likely caused by the increase of remotely computed matrix entries that are stashed and exchanged

at the end of the assembly algorithm (see Algorithm 5.3).

As mentioned in Section 5.4 several optimizations are possible to our current implementation

that potentially improve the scalability of the partitioning algorithm and the construction of the ap-

proximation spaces.

In comparison to the PROPAG heart model, the presented adaptive heart model has two major

shortcomings. First, the use of patch-wise constant cell types affects the accuracy of the model

since it artificially increases the support of the applied current. Similarly, the patch-wise constant

approximation of the fiber angles could affect the accuracy even though we expect a lower impact

due to the smoothness of the angles. Second, the use of a downsampled (smoothed) voxel geometry

leads to a reduced accuracy of the geometry approximation.

The first shortcoming can be addressed by storing the original cell types separately and use a

piece-wise constant interpolation or projection operator to compute the effective cell type on an

adaptive mesh. For the considered heart geometry this requires 43 ·N = 64 ·N bytes (instead of N
bytes) of main memory.

In order to improve the geometry approximation one has to take advantage of the flexibility of

the employed unstructured coarse tessellation and directly create hexahedral meshes from the sur-

face representations obtained by segmenting medical imaging data. Note however that the creation

of high-quality hexahedral meshes for arbitrary geometries is still a complicated and labor intense

task.

Despite the above mentioned model limitations, our results show the viability of shallow tree-

based adaptivity for use in large-scale heart models. We expect that in the coming years, we will

be able to deploy this technology within, for example, the patient-specific pipeline operated by

the Cardiocentro Ticino and the Institute of Computational Science together with several project

partners.

5.6 Discussion

We have discussed the extension of the lightweight adaptive scheme from Chapter 4 by means of a

forest of trees approach. The goal of this work was to increase the flexibility of the method twofold.

On the one hand, we aimed at a more fine grained control over the refinement process to increase

the adaptivity gain and improve the parallel scalability. On the other hand, we targeted an adaptive

scheme that could be applied to a wider variety of partial differential equations and in particular

can be employed with different solution and preconditioning schemes. We combine the advantages

of the lightweight adaptive scheme with the forest of trees approach by Burstedde et al. 35,38 . In

contrast to other tree-based methods we focus on shallow trees with only few levels but structured

tensor meshes attached to the leaves. The maximal tree depth and the width of the structured meshes

provide control over the “granularity” of the adaptive scheme.

104 5.6 Discussion

Figure 5.17. Membrane voltage (in mV) during the depolarization phase at times t = 15, 30, 50,
75 ms. The two plots on the right are rotated by 180◦ to visualize the back of the heart. The color
bar limits are set to −90 mV and 20 mV.

105 5.6 Discussion

Figure 5.18. Adaptive meshes at times t = 15, 30, 50, 75 ms (cf. Figure 5.17). The two plots on the
right are rotated by 180◦ to visualize the back of the heart.

106 5.6 Discussion

Figure 5.19. Membrane voltage (in mV) during the repolarization phase at times t = 200, 300, 400,
500 ms. The two plots on the right are rotated by 180◦ to visualize the back of the heart. The color
bar limits are set to −90 mV and 20 mV.

107 5.6 Discussion

0 50 100 150 200 250 300 350 400 450 500

Simulation time [ms]

0

104

2 ·104

3 ·104

4 ·104

5 ·104

6 ·104

7 ·104
T

o
ta

l
ti

m
e

fo
r

la
p

[s
]

Lap time

10−1

2.9 ·10−1

8.4 ·10−1

2.4

7

S
p
ee

d
u
p

o
f

ad
ap

ti
v
e

co
d
e

Uniform (conforming)

Uniform (mortar)

Adaptive

Speedup (w.r.t. conf.)

0 50 100 150 200 250 300 350 400 450 500

Simulation time [ms]

0

107

2 ·107

A
cc

u
m

u
la

te
d

ti
m

e
[s

]

Accumulated lap time

3 ·10−1

4.8 ·10−1

7.7 ·10−1

1.2

2

S
p
ee

d
u
p

o
f

ad
ap

ti
v
e

co
d
e

Figure 5.20. Execution time of the adaptive code in comparison to uniform mesh solution methods.
The upper graph shows the walltime for the execution of a lap of 20 time steps. The lower plot
shows the accumulated execution time.

64 128 256 512 1024 2048 4096

processing elements

10−4

10−3

10−2

N
o
rm

al
iz

ed
ti

m
e

fo
r

la
p

Scaling

Ideal

Lap 20

Lap 30

Lap 40

Lap 50

(a) Normalized execution times of the adaptive code
(logarithmic scale).

64 128 256 512 1024 2048 4096

processing elements

0

20

40

60

80

100

%
o
f

ti
m

e

Distribution of time

Rest

Linear Solver

Assembly

Space

Membrane model

(b) Distribution of the execution time for the 20th lap in
dependence of the number of processing elements.

Figure 5.21. Strong scaling results.

108 5.6 Discussion

In Section 5.4 we discussed our reference implementation of the shallow tree approach. In this

code, ansatz spaces are constructed as subspaces of the product space and can be represented in

memory by means of the algebraic representation of the inclusion matrix. Our assembly strategy

(see Section 5.3.3) allows us to assemble stiffness matrices on arbitrary subspaces without modifi-

cation of the definition of the bilinear form. This flexibility is used extensively in the next chapter

to study different discretization schemes using conforming and non-conforming ansatz spaces.

Our results reported in Section 5.5 show that the shallow tree approach does meet the design

goals. First, we showed that through an appropriate choice of the maximal tree depth and the local

mesh width, a significant reduction in the number of degrees of freedom compared to the lightweight

adaptive scheme can be obtained. Second, we exemplified the flexibility of the method by consider-

ing the adaptive solution of the bidomain equation. In Section 5.5.4 we demonstrated the potential

of our shallow tree adaptive scheme for use in realistic, large-scale heart models.

Based on the analysis of our results, we identify three directions for future research that have

the biggest potential to significantly lower the execution time: The preconditioning technique, the

marking strategy and the linear algebra data structures.

The results from Section 5.5.2 as well as from Section 4.8.3 clearly show that block-wise

preconditioning, while very efficient on uniform meshes, is not equally well-working for non-

conforming discretizations, even on uniform meshes. Therefore, domain decomposition precon-

ditioners and geometric multi-level schemes should be investigated. Wohlmuth and Krause 173 de-

veloped a multi-grid scheme for mortar element discretizations using a modified interpolation op-

erator. Even though the trees used in our shallow tree mesh implicitly store a hierarchy, the meshes

employed in this chapter have no multi-level structure. Sundar et al. 149 discuss a possible approach

for implementing a multi-grid scheme by using a sequence of meshes. A particular challenge will

be the development of methods that are sufficiently robust while still fast enough to be competitive

to the block preconditioners for conforming discretizations on uniform meshes.

We expect a large impact on the measured execution times (in particular when using deeper

trees) by developing tailored marking strategies. In this work we use a maximum-based strategy

that is well established for unstructured AMR methods. However, the use of spatially accumulated

error estimators or indicators has a profound impact on the distribution of the former. Even though

we have tuned the constants used in the marking strategy, it is likely that a tailored marking strategy

can significantly reduce the number of repetitions required for a time window. In the numerical

experiments reported in Section 4.8 and Section 5.5, the adaptation of the mesh is stopped if either

the error is small enough (which only happens during the depolarization phase due to the upper

bound on the level) or if no patches or leaves are marked for refinement. As we noted in Section

4.8.2, the premature termination of the adaptation process can spoil the accuracy of the method.

Assuming we can provide an approximate measure for the “optimality” of the current mesh with

respect to a structured mesh (in contrast to the comparison with the exact solution, which is the goal

of error estimation), we can control the number of repetitions adaptively. Another potentially viable

109 5.6 Discussion

approach is to use knowledge about the solution, such as the depolarization speed, to estimate the

trajectory of the depolarization front and refine in advance to reduce the number of trial-and-error

steps.

Our current implementation of the linear algebra data structures does not fully exploit the special

structure of the meshes. For example, a compressed row storage scheme for the inclusion matrix Q

allows for a simple implementation of the inclusion operation via a distributed sparse-matrix mul-

tiplication but cannot take advantage of the block structure (and, in particular, the local structure)

of the projection matrix P. In the lightweight adaptive scheme only the matrix entries of P are

stored for each face which eliminates the need to store the unit vector rows of Q for interior and

master nodes and does not require separate storage of the column indices. The generalization of this

scheme to a geometrically non-conforming mortar discretization is however non-trivial. Similarly,

our performance measurements from Section 5.5.1 indicate that a large percentage of the assembly

time is required for the insertion of matrix entries computed on slave faces. Taking into account

the classification of product space degrees of freedom into interior, master, and slave degrees of

freedom it might be possible to improve the sparse-matrix data structures for our use case.

The focus of the techniques presented so far was on spatially adaptive methods. This work can

be combined with step size control for the time discretization. However, global time step control

is often inefficient for problems of interest in computational electrocardiology166. To address this

challenge, in the next chapter we discuss an approach to local time stepping based on a space-time

discretization of the governing equation. We employ a discretization scheme that allows for reusing

the presented mesh data structures.

110 5.6 Discussion

6 Adaptivity Using Space-Time Finite

Elements

In the previous chapters we discussed techniques to solve (non-linear) reaction-diffusion equations

on spatially adaptive meshes. In this chapter we turn our attention to temporal adaptivity as well

as combined space-time adaptivity. As a matter of fact, global time step control is often inefficient

for the equations we are interested in because the global time step is kept low by spatially localized

but propagating features of the solution166. Local time stepping schemes, which utilize spatially

varying time step sizes τ , are not readily compatible with implicit or semi-implicit discretizations

of the considered equations. Here, we propose the use of non-conforming space-time finite element

meshes to enable local time stepping in a rigorous manner and experimentally assess the feasibility

of this approach.

6.1 Introduction

Local time stepping is a standard technique in structured adaptive mesh refinement codes for the

solution of hyperbolic problems using explicit time integration21. To sketch the underlying idea,

we consider the explicit Euler discretization of the ordinary differential equation

•
V = AV (6.1)

obtained by discretizing a partial differential equation on a domain Ω = Ω1 ∪Ω2. We can write

V = [V1,V2]
T

(corresponding to two different domains) and

A =

[
A11 A12

A21 A22

]
.

Assuming that the solution on Ω2 requires a smaller time step, we can state a local time stepping

scheme, which uses half the time step in the second domain, as

Vi+1
1 = Vi

1 + τA11Vi
1 + τA12Vi

1

V
i+ 1

2

2 = Vi
2 +

τ

2
A21Vi

1 +
τ

2
A22Vi

2

Vi+1
2 = V

i+ 1
2

2 +
τ

2
A21

1

2

(
Vi

1 +Vi+1
1

)
+

τ

2
A22V

i+ 1
2

2 .

(6.2)

111

112 6.2 Space-Time Discretization

Note that in the last computation, we use interpolated values from the first domain. This scheme can

be easily generalized to higher coarse-to-fine ratios. Writing equation (6.2) in a matrix-formulation,

we obtain

1 0 0

0 1 0

− τ
2
A21 −

(
1+ τ

4
A22

)
1

Vi+1
1

V
i+ 1

2

2

Vi+1
2

=

Vi
1 + τA11Vi

1 + τA12Vi
2

Vi
2 +

τ
2
A21Vi

1 +
τ
2
A22Vi

2
τ
4
A21Vi

1

Due to the lower-triangular structure of the matrix on the left-hand side, the method can be imple-

mented via multiple explicit updates of V2. Moreover, it is not necessary to store V
i+ 1

2

2 separately.

By introducing the auxiliary variable V
i+ 1

2

2 it is straightforward to state the equivalent to equation

(6.2) for an implicit Euler discretization of (6.1):

Vi+1
1 = Vi

1 + τA11Vi+1
1 + τA12Vi+1

1

V
i+ 1

2

2 = Vi
2 +

τ

2
A21

1

2

(
Vi

1 +Vi+1
1

)
+

τ

2
A22V

i+ 1
2

2

Vi+1
2 = V

i+ 1
2

2 +
τ

2
A21Vi+1

1 +
τ

2
A22Vi+1

2 .

(6.3)

Equation (6.3) can be written as a coupled linear system

1− τA11 0 −τA12

− τ
4
A21 1− τ

2
A22 0

− τ
2
A21 −1 1− τ

2
A22

Vi+1
1

V
i+ 1

2

2

Vi+1
2

=

Vi
1

Vi
2 +

τ
4
A21Vi

1

0

 .

In contrast to the local time stepping scheme (6.3) based on an explicit Euler discretization, local

time stepping in an implicit setting leads to a coupled system of equations which needs to be solved

at once. Hence, local time stepping in an implicit setting naturally leads to a space-time formulation

of the considered equation. Moreover, since the half-step values are only computed for the second

domain, one may interpret the local time stepping as based on non-conforming space-time meshes.

Based on these insights, we propose to use non-conforming space-time meshes to enable lo-

cal time stepping in an implicit setting. By using space-time finite elements on top of these non-

conforming meshes, we have a flexible handling of different equations. In order to decouple the

solution on different time slabs and control the computational cost of the method, we use a combi-

nation of a finite element method with a discontinuous Galerkin method92.

6.2 Space-Time Discretization

In this section we consider the discretization of non-linear, scalar reaction diffusion equations of the

form

∂tV = ∇∇∇ · (a∇∇∇V)+F(x,V,∇∇∇V)+b(x, t) (6.4)

with a∈ C1
(
Rd ,Rd×d

)
and F ∈ C0

(
Rd×R×Rd

)
. We restrict ourselves to scalar equations solely

to simplify the notation. Moreover, we assume homogeneous Neumann boundary conditions on the

113 6.2 Space-Time Discretization

boundary of the domain Ω .

Since we are targeting an implementation using the approach detailed in Chapter 5 we only

discuss methods that can be implemented on meshes Tτττ . In particular we do not cover methods that

build the space-time meshes on the fly (see, for example, Abedi et al. 2).

6.2.1 Discretization with Continuous Finite Elements

Given a spatial approximation space Yspace built on Ω and a temporal approximation space Ytime on

(0,T) we can form a space-time approximation space

Y= Yspace⊗Ytime

on the space-time domain Q = Ω × (0,T). The weak formulation of equation (6.4) reads as: Find

V ∈ Y so that

(∂tV,U)L2(Q)+(a∇∇∇V,∇∇∇U)L2(Q)− (F(·,V,∇∇∇V),U)L2(Q) = (b,U)L2(Q) (6.5)

for all U ∈ Y. Such a formulation has been studied by French and Peterson 65 and Anderson and

Kimn 5 for the approximation of the wave equation (using an auxiliary variable to obtain a first-

order system). Since this formulation requires the solution of the complete system at once solver

cost may be prohibitive, in particular when considering a large end time T .

In order to break the global dependency in the system (6.5) one has to use discontinuous test

functions. Aziz and Monk 6 define Ytime as the space of continuous piece-wise polynomial functions

on a decomposition (0,T) =
⋃

i [ti, ti+1] and use ∂tU (instead of U) as the test functions. Hence, the

weak formulation of equation (6.4) is given by

(∂tV,∂tU)L2(Q)+(a∇∇∇V,∇∇∇∂tU)L2(Q)− (F(·,V,∇∇∇V),∂tU)L2(Q) = (b,∂tU)L2(Q) . (6.6)

This formulation is equivalent to a Petrov-Galerkin method with the test space equal to the image

space ∂tY
time. Since ∂tU can be discontinuous, equation (6.6) can be split into a series of variational

problems

(∂tV,∂tU)L2(Qi)
+(a∇∇∇V,∇∇∇∂tU)L2(Qi)

− (F(·,V,∇∇∇V),∂tU)L2(Qi)
= (b,∂tU)L2(Qi)

. (6.7)

for each space-time slab Qi = Ω × (ti, ti+1) with Dirichlet values

V
∣∣
Qi
(x, ti) =V

∣∣
Qi−1

(x, ti) .

Aziz and Monk 6 provide a stability and convergence analysis of the method and show that several

known time discretization schemes are recovered by applying different quadrature rules to (6.7).

114 6.2 Space-Time Discretization

6.2.2 Discontinuous Galerkin Methods

A different class of discretizations is based on a discontinuous Galerkin (dG) approximation43 in

time. The idea of combining a discontinuous-in-time approximation with a continuous spatial ap-

proximation seems to have been first introduced by Jamet 92 in 1978 with the goal to simplify the

handling of variable domains. The starting point of the derivation is the weak formulation of equa-

tion (6.4) in space which we integrate over (0,T) to obtain

∫ T

0
(∂tV,U)L2(Ω) dt +

∫ T

0
(a∇∇∇V,∇∇∇U)L2(Ω) dt−

∫ T

0
(F(·,V,∇∇∇V),U)L2(Ω) dt =

∫ T

0
(b,U)L2(Ω) dt

(6.8)

for V,U ∈ C1 ((0,T),Yspace). In order to state the dG approximation of equation (6.8) we define

Ytime =
∏

iY
time
i where Ytime

i is a local approximation space on (ti, ti+1). With this definition the

discontinuous Galerkin weak formulation reads as: Find V ∈ Y so that

−(V,∂tU)L2(Qi)
+
(
V̂ ,U

)
L2(Ω)

∣∣∣
ti+1

ti
+

(a∇∇∇V,∇∇∇U)L2(Qi)
− (F(·,V,∇∇∇V),U)L2(Qi)

= (b,U)L2(Qi)
,

(6.9)

for all test functions U ∈Y on all space-time slabs Qi. The choice of the trace V̂ defines the type of

the dG approximation. We use the definition

V̂ (ti) =

V (0) if ti = 0 ,

limtրti V (t) otherwise.
(6.10)

This method has been analyzed by Delfour et al. 54 for the discretization of ordinary differential

equations and by Eriksson et al. 58 , Jamet 92 for parabolic problems.

With the notation V+(t) = limsրt V (s) we can rewrite equation (6.9) as

− (V,∂tU)L2(Qi)
+
(
V+(ti+1),U

)
L2(Ω)+

(a∇∇∇V,∇∇∇U)L2(Qi)
− (F(·,V,∇∇∇V),U)L2(Qi)

= (b,U)L2(Qi)
+
(
V+(ti),U

)
L2(Ω) .

(6.11)

An alternative derivation of equation (6.11) is obtained by applying integration by parts to equation

(6.8) and adding the jump term

([V] ,U)L2(Ω) =

(
lim
tւti

V (t)−V+(ti),U
)

L2(Ω)

which penalizes weak discontinuities across slab boundaries.

Space-time discretizations using ansatz (and test) functions that are discontinuous in time have

been used, for example, in the context of elastodynamics by Hughes and Hulbert 85 , Hulbert and

Hughes 86 and by Sathe et al. 140 , Tezduyar et al. 154 for computational fluid dynamics on moving

domains as well as for fluid-structure interaction.

115 6.2 Space-Time Discretization

6.2.3 Discretization on Non-Conforming Meshes

The tensor structure of the space-time approximation space Y has not been used in the derivation of

equation (6.11). Therefore it is straightforward to extend the discretization to arbitrary approxima-

tion spaces built on a, potentially non-conforming, mesh on the space-time slab Qi = Ω × (ti, ti+1).

We can use the techniques discussed in Chapter 4 and Chapter 5 to construct (d + 1)-dimensional

meshes on the space-time slab Qi that are used to the build trial space in equation (6.11).

In Algorithm 6.1 we sketch an algorithm for the solution of equation (6.4) using non-conforming

space-time meshes. Since the proposed technique is applicable to a large variety of problems, many

details have been left deliberately unspecified here.

1: t← 0 and i← 1

2: while t < T do

3: Construct coarse initial mesh Tτττ on Qi

4: loop

5: Solve equation (6.11) for V ∈ Y for an appropriate subspace Y(Xτττ

built on the non-conforming space-time mesh Tτττ

6: Estimate the local error

7: if total error small enough then

8: break

9: end if

10: Tτττ ← refine(Tτττ)

11: end loop

12: t← t +(ti+1− ti) and i← i+1

13: end while

Algorithm 6.1. Time integration algorithm (schematic).

6.2.4 Space-Time Transfer Operator

For solving equation (6.11) we need to assemble the boundary term (V+ (ti) ,U)L2(Ω). Here, V+ (ti)=
limεց0V (ti− ε) is the restriction of the function V defined on the last space-time slab Qi−1 to

Ω ×{ti}. Thus, V+ (ti) =
∑

α Vαπ i−1
α where

{
π i−1

α

}
denote the set of basis functions of the ansatz

space on Qi−1 which do not vanish on the boundary. The test function U in contrast is defined on

the space-time slab Qi and thus expanded as U =
∑

β Uβ π i
β . Hence,

(
V+ (ti) ,U

)
L2(Ω) =

∑

α,β

VαUβ

(
π i−1

α ,π i
β

)
L2(Ω)

. (6.12)

The resulting mass matrix on the right-hand side cannot be assembled with the strategy discussed

in Section 5.3.3 since two different finite element spaces are involved. In the following we use the

116 6.2 Space-Time Discretization

approximation (
V+ (ti) ,U

)
L2(Ω) ≈

∑

α,β

(TV)α Uβ

(
π i

α ,π
i
β

)
L2(Ω)

, (6.13)

where T maps between the boundary trace spaces on Ω ×{ti} induced by the ansatz spaces on Qi−1

and Qi, respectively. We use a local transfer operator (on the boundary) as discussed in Section

5.4.4.

When using uniform space-time meshes, (or more generally if the target and source bound-

ary meshes are nested), the formulations (6.12) and (6.13) are equivalent. For general space-time

adaptive meshes, however, the map T introduces an error that depends on how well V+ (ti) can

be approximated on the boundary mesh induced by the mesh Tτττ on Qi. One possible approach

to guarantee a sufficient approximation quality of the boundary mesh is the use of weighted error

indicators in order to promote mesh refinement towards the lower boundary of the space-time slab.

This approach is discussed further in Section 6.3.5.

6.2.5 Discretization of Monodomain and Bidomain equations

For the sake of completeness, in the following we state the space-time discretization of the bidomain

(in parabolic-parabolic and parabolic-elliptic form) and monodomain equations.

We denote the stiffness matrices corresponding to the three bilinear forms (Gi∇∇∇·,∇∇∇·)L2(Qi)
,

(Ge∇∇∇·,∇∇∇·)L2(Qi)
and (Gmono∇∇∇·,∇∇∇·)L2(Qi)

by Ai,Ae and Amono, respectively. Note that these differ

from the (d +1)-dimensional Laplacian since ∇∇∇ does not contain the time derivative. In particular,

these operators have a non-trivial kernel in H1(Qi)/R.

Further, by M+ and M− we denote the surface mass matrices on the upper and lower side of the

space-time slab. We define ΣΣΣ ′ as the stiffness matrix corresponding to the non-symmetric bilinear

form (·,∂t ·)L2(Qi)
and ΣΣΣ = −ΣΣΣ ′+M+. In the following M denotes the (d + 1)-dimensional mass

matrix.

With these definitions, the space-time discretization of the bidomain and monodomain equation

reads as follows.

Bidomain equation (parabolic-parabolic). Solve the non-linear system F
(

ϕ i+1
i ,ϕ i+1

e ,si+1
)
= bi

with

F(ϕi,ϕe,s) =

CmΣΣΣ −CmΣΣΣ 0

−CmΣΣΣ CmΣΣΣ 0

0 0 ΣΣΣ

+

1

χ

Ai 0 0

0 Ae 0

0 0 0

ϕi

ϕe

s

 ,

+

M −M 0

−M M 0

0 0 M

Iion (ϕi−ϕe,s)

0

−Z(ϕi−ϕe,s)

 ,

bi =

M− −M− 0

−M− M− 0

0 0 M−

CmTϕ i
i

CmTϕ i
e

Tsi

+

M −M 0

−M M 0

0 0 M

Iapp

0

0

 .

(6.14)

117 6.3 Results

Bidomain equation (parabolic-elliptic). Solve the non-linear system F
(
V i+1,ϕ i+1

e ,si+1
)
= bi with

F(V,ϕe,s) =

CmΣΣΣ 0 0

0 0 0

0 0 ΣΣΣ

+

1

χ

Ai Ai 0

−Ai (Ai +Ae) 0

0 0 0

V
ϕe

s

+

M 0 0

0 0 0

0 0 M

Iion (V,s)
0

−Z(V,s)

 ,

bi =

M− 0 0

0 0 0

0 0 M−

CmTV i

0

Tsi

+

M 0 0

0 0 0

0 0 M

Iapp

0

0

 .

(6.15)

Monodomain equation. Solve the non-linear system F
(
V i+1,si+1

)
= bi with

F(V,s) =

([
CmΣΣΣ 0

0 ΣΣΣ

]
+

1

χ

[
Amono 0

0 0

])[
V
s

]
+

[
M 0

0 M

][
Iion (V,s)
−Z(V,s)

]
,

bi =

[
M− 0

0 M−

][
CmTV i

Tsi

]
+

[
M 0

0 M

][
Iapp

0

]
.

(6.16)

Note that these equations are conceptually very similar to the implicit Euler discretization of the

bidomain and monodomain equation as discussed in Section 2.3.2.

6.3 Results

In the following we present the results of extensive numerical studies of the performance of the

proposed space-time adaptive scheme. In Sections 6.3.1–6.3.4 we study the solution of the heat

equation in (1+ 1), (2+ 1) and (3+ 1) dimensions with the goal to (a) assess the additional gain

that is possible through space-time adaptivity on top of a spatially adaptive discretization with the

method of lines, (b) to study the behavior of linear solvers for the space-time discrete problem and

(c) to show the feasibility of this approach even for large-scale (3+ 1)-dimensional problems. In

Sections 6.3.5 and 6.3.6 we study the space-time discretization of the monodomain equation using

the Bernus membrane model. In contrast to the linear heat equation, the space-time discretization

of the monodomain equation leads to a coupled non-linear system of equations with six degrees of

freedom per mesh node. We study the behavior of the non-linear Newton solver and discuss the role

of stabilization for the solution of the linear problems arising in the Newton iterations.

The experiments presented in the following have been performed using the simulation code dis-

cussed in Section 5.4. All results with reported timings have been performed on the Cray XE6

“Monte Rosa” at the Swiss National Supercomputing Centre, featuring dual-socket nodes with

AMD Interlagos CPUs, 32 GiB main memory per node and a Gemini interconnect. To avoid a

118 6.3 Results

negative impact of the shared floating point units in the Bulldozer microarchitecture, in all exper-

iments we placed only one process per Bulldozer module. The code was compiled with gcc-4.7.2

on this system.

6.3.1 (1+1)-dimensional Heat Equation

We consider the implicit Euler and space-time finite element discretization of the (1+1)-dimensional

heat equation

∂tV −∆V = b (6.17)

for V ∈ C1
(
(0,T),C2 (Ω)

)
. For our experiments, we chose the right-hand side b such that the

analytical solution of equation (6.17) is given by

V ∗(x, t) = A · exp

(
−(x− γ(t))2

2σ2

)
(6.18)

with γ(t) = r · cos(2π · t/p). Here, we used the parameters A = 1, σ = 5 ·10−2, r = 0.5 and p = 5.

We solved the heat equation on the domain Ω = (−1,1) from time zero to T = p = 5. A contour

plot of the exact solution is shown in Figure 6.2.

In the following we analyze the convergence of uniform and adaptive implicit Euler and space-

time finite elements approximations of (6.18) in the L2(H1)-semi-norm which is defined by

|U |2L2(H1) = (∇∇∇U,∇∇∇U)L2(Q) =

∫ T

0
(∇∇∇U,∇∇∇U)L2(Ω) dt . (6.19)

We chose the L2(H1)-norm for the following experiments because on the one hand it is an appropri-

ate semi-norm for steering the adaptive refinement process and on the other hand it can be computed

accurately for both the implicit Euler time discretization and the space-time discretization. In the

former case we use a summed trapezoidal rule to incrementally compute the time integral in equa-

tion (6.19).

In the following experiments we used continuous ansatz and test functions in Yc
τττ built on meshes

Tτττ . Note we used point-wise constraints but did not restrict the coarse-to-fine ratio in our tests. We

started from an initial tessellation of Ω consisting of two equally spaced elements and set δℓ = 1/4

for all levels ℓ. Thus, spatial refinement was achieved solely by refining the trees τττ . The space-time

slabs had length 1
2

in time direction.

In Figure 6.1 the results of the convergence studies are shown. Figure 6.1a shows the measured

error |Vτττ −V ∗|L2(H1) plotted against the total number of degrees of freedom when using uniform

refinement in time, in space or both. The total number of degrees of freedom equals

dofs =

∑
laps

(
Llap +1

)
dimYc

τττ (implicit Euler)
∑

slabs dimYc
τττ (space-time discretization)

.

When refining in time (with a fixed but very fine spatial discretization) or in space (with a fixed

by small time step size τ) we can observe first order convergence as one expects from the first-

order implicit Euler method and from finite element convergence theory. For uniform refinement

119 6.3 Results

103 104 105 106 107 108

Total number of degrees of freedom

10−3

10−2

10−1

1

10

E
rr

o
r

in
|·
| L

2
(H

1
)

se
m

i-
n
o
rm

Convergence of uniform methods

order 1

order 1/2

Implicit Euler (τ)

Implicit Euler (t)

Implicit Euler (τ , t)

Space-time

(a) Convergence of uniform discretizations.

103 104 105 106 107 108

Total number of degrees of freedom

10−3

10−2

10−1

1

10

E
rr

o
r

in
|·
| L

2
(H

1
)

se
m

i-
n
o
rm

Comparison of uniform and adaptive methods

Implicit Euler (uniform)

Implicit Euler (adaptive)

Space-time (uniform)

Space-time (adaptive)

(b) Comparison of convergence of uniform and adap-
tive discretizations.

Figure 6.1. Convergence of uniform and adaptive discretizations for the approximation of the
(1+1)-dimensional heat equation. In the left plot we vary both the time step size τ and the spatial
resolution (controlled by the depth of the trees τττ).

Table 6.1. Comparison of the total number of degrees of freedom and the measured error in the
|·|L2(H1) semi-norm for a uniform implicit Euler discretization, a spatially adaptive and a space-time
adaptive discretization.

dof Error

Implicit Euler (uniform)

1,530 6.3793

5,610 3.8925

21,450 2.0470

83,850 1.0359

331,530 0.5195

1,318,410 0.2600

5,258,250 0.1300

dof Error

Implicit Euler (adaptive)

1,242 6.1987

3,162 4.0703

8,778 2.2530

25,610 1.1195

79,722 0.6267

298,634 0.2972

1,072,170 0.1519

dof Error

Space-Time (adaptive)

1,082 6.3798

1,802 4.2657

4,410 2.4807

13,402 1.1796

44,074 0.5927

141,034 0.3040

494,970 0.1560

120 6.3 Results

Figure 6.2. Contours of the
exact solution V ∗. The verti-
cal axis equals the time.

Figure 6.3. Space-time rep-
resentation of the spatially
adapted mesh. For the visual-
ization the mesh is downsam-
pled by a factor of two in each
direction.

Figure 6.4. Space-time adap-
tive mesh. For the visualiza-
tion the mesh is downsampled
by a factor of two in each di-
rection.

0 1 2 3 4 5

Simulation time

0.00

0.25

0.40

0.60

0.80

1.00

S
o
lu

ti
o
n

V
t

x =−0.5

x = 0x = 0.5

0 1 2 3 4 5

Simulation time

−9

−8

−7

−6

−5

−4

−3

lo
g

2
(τ
)

Figure 6.5. Plot of the numerical solution Vτττ (left) and the corresponding local time steps τ for
x =−0.5, x = 0 and x = 0.5.

121 6.3 Results

in space and time we measure the expected convergence rate of 1/2 for both the method of lines

discretization with an implicit Euler method and the space-time discretization. Note that a scal-

ing of (# dofs)1/2
is equivalent to first-order convergence when substituting the mesh width for the

number of degrees of freedom. From Figure 6.1a we can see that the method of lines approach and

the space-time discretization lead to almost identical errors.

In Figure 6.1b we compare the error measured with uniform discretizations (same data as used

for Figure 6.1a) to the error measured with a spatially adaptive method (using a fixed time step

size) and an adaptive space-time discretization. The adaptive refinement process started from a

coarse mesh in each new lap (on each new time slab, respectively). In each repetition, all leaves

eligible for refinement with a local L2(H1)-error within 25% of the maximum error among all

eligible leaves were marked for refinement. A leaf is eligible for refinement if its level is smaller

than the maximally allowed tree depth. The mesh adaptation was stopped once the error was within

25% of the error measured with a uniformly refined discretization corresponding to the maximal

allowed tree depth. The results presented in Figure 6.1b show that spatially adaptivity can provide a

significant reduction in the number of degrees of freedom required to achieve a given error tolerance.

Using a space-time discretization to enable local time stepping can provide an additional reduction

in degrees of freedom with respect to a spatially adaptive discretization. In Table 6.1 the numbers

of degrees of freedom are presented alongside the measured discretization error. Using a spatially

adaptive discretization, the cost (defined as the quotient of error and the number of degrees of

freedom) can be reduced by a factor of up to 5.6. By employing a space-time discretization this

factor can be improved to 12.7.

Let us point out that in the experiments with the spatially adaptive discretization we increased

Llap in proportion to the decrease in τ so that a lap corresponds to a fixed interval of length 1
2

in

(0,T). Another approach would be to keep Llap fixed which leads to lower dimensional approxi-

mation spaces but also requires more frequent re-assembly of the system matrices. The additional

reduction in the number of degrees of freedom is however low compared to the reduction achieved

through local time stepping.

In Figure 6.5 the values of the solution Vτττ(x, t) and the local time step τ(x, t) along the three

lines {x =−0.5}, {x = 0} and {x = 0.5} are shown. In this example, the time step size varies by a

factor of 26 = 64 between the coarsest and the finest step size and (in contrast to global time step

control) the employed local time step is adjusted to the local behavior of the solution.

Figure 6.3 and Figure 6.4 show the space-time mesh used for the method of lines discretization

and for the space-time discretization. While both approaches allow for tracking the Gaussian peak

with finer meshes, only the space-time mesh can coarsen the mesh in time at points x where the

solution is nearly constant.

6.3.2 Stabilization of the Space-Time Mortar Element Method

Jamet 92 proved first order convergence of the finite element discretization of the space-time heat

equation on conforming meshes under the assumption V ∈ H2(Q)∩C0
(
(0,T),H2 (Ω)

)
. In Section

6.3.1 we have experimentally verified the first order convergence for conforming ansatz spaces.

122 6.3 Results

When dealing with a weak diffusion (i.e., ‖a‖≪ 1 in equation (6.4)), the space-time formulation

becomes convection dominated due to the convective term (V,∂tU)L2(Q). A standard approach for

stabilization is, for example, the streamline upwind Petrov-Galerkin (SUPG) approach30,34 which

is based on the stabilization term
∑

E∈Tτττ

εE

(
(∂tV −∇∇∇ · (a∇∇∇V)−F(x,V,∇∇∇V)−b) ,∂tU

)
L2(E)

that is added to the left hand side of equation (6.9). Here, ε > 0 is an element-wise constant stabi-

lization parameter.

The results from Section 6.3.1 show that stabilization is not necessary for the solution of the

isotropic heat equation (with conductivity coefficient 1) when using continuous ansatz functions.

Unexpectedly, though, the discretization using the non-conforming mortar approximation space Ym
τττ

shows strong oscillations even when employed on an uniform mesh, see Figure 6.6a. As mentioned

in Section 5.5.2 the mortar discretization on an uniform mesh is not equivalent to a conforming

discretization since we do not enforce continuity on the wire basket.

Oscillations can be observed for both large and small diffusion coefficients which indicates that

they are not caused by a dominant first order term. We have verified these results with a second

implementation to rule out programming errors as the source of this instability. In Figure 6.6b the

discrete solution of the stabilized space-time heat equation using a mortar discretization is shown.

This result was obtained by adding an additional diffusion term

∑

E∈Tτττ

1

2
diam(E) (∂tV,∂tU)L2(E) (6.20)

to the left hand side of the discretized equation. Initial experiments with a SUPG discretization

showed that the modification of the right-hand side lead to large overshoots at the upper boundary

{ti+1}×Ω of the space-time slab.

The stabilization term (6.20) introduces a weak artificial diffusion along the time axis. Since the

bilinear form (a∇∇∇·,∇∇∇·)L2(Q) vanishes for all functions with zero spatial gradient (but arbitrary time

evolution) it is not coercive and the standard mortar element theory cannot be applied. By adding

(6.20) we replace the spatial diffusion by a strongly anisotropic space-time diffusion which aids the

stability of the discretization.

Since the observed oscillations only occur along the time axis, the error of the discrete solu-

tion Vτττ ∈ Ym
τττ in the |·|L2(H1) semi-norm differs only slightly between stabilized and non-stabilized

discretization, see Figure 6.7a. The measured error is in both cases of the same order as the error

of a conforming discretization, cf. Figure 6.1b. Since the adaptive refinement is driven by the lo-

cal L2(H1)-error per tree leave, we can observe a similar reduction in the degrees of freedom as

reported in Section 6.3.1. When considering the error in the |·|H1(Q) semi-norm a strong reduction

in the measured error is observed due to the stabilization, see Figure 6.7b. Note that the space-

time discretization of the heat equation with conforming or non-conforming ansatz spaces is not

convergent in the H1-norm.

123 6.3 Results

0 1 2 3 4 5

Simulation time

0.00

0.25

0.40

0.60

0.80

1.00

S
o
lu

ti
o
n

V
t

x =−0.5

x = 0
x = 0.5

(a) Mortar element solution without stabilization.

0 1 2 3 4 5

Simulation time

0.00

0.25

0.40

0.60

0.80

1.00

S
o
lu

ti
o
n

V
t

x =−0.5

x = 0
x = 0.5

(b) Mortar element solution with stabilization.

Figure 6.6. Comparison of the discrete solution Vτττ ∈ Ym
τττ without (left plot) and with (right plot)

stabilization.

103 104 105 106 107 108

Total number of degrees of freedom

10−3

10−2

10−1

1

10

E
rr

o
r

in
|·
| L

2
(H

1
)

se
m

i-
n
o
rm

L
2(H1)-error of mortar discretizations

Uniform (w/o stabilization)

Uniform (with stabilization)

Adaptive (w/o stabilization)

Adaptive (with stabilization)

(a) Error of the mortar element solution in the |·|L2(H1)

semi-norm.

103 104 105 106 107 108

Total number of degrees of freedom

10−1

1

10

102

E
rr

o
r

in
|·
| H

1
se

m
i-

n
o
rm

H
1-error of mortar discretizations

Uniform (w/o stabilization)

Uniform (with stabilization)

Adaptive (w/o stabilization)

Adaptive (with stabilization)

(b) Error of the mortar element solution in the |·|H1

semi-norm.

Figure 6.7. Comparison of the error of the mortar element solution in the L2(H1)- and H1(Q)-semi-
norms with and without stabilization.

124 6.3 Results

6.3.3 (2+1)-dimensional Heat Equation

In this section we study the solution of the (2+1)-dimensional heat equation via space-time finite

elements. As in Section 6.3.1, we chose the right-hand side such that the analytical solution is given

by a moving Gaussian

V ∗(x, t) = A · exp

(
−|x−γγγ(t)|2

2σ2

)
(6.21)

with

γγγ(t) = r
(

cos(2π · t/p)e1 + sin(2π · t/p)e2

)
.

As in Section 6.3.1, we set A = 1, σ = 5 ·10−2, r = 0.5 and p = 5. We solved the heat equation on

the ball B1(0) from time zero to T = p = 5.

We consider the error in the L2(H1)-semi-norm and used the exact error to steer the adap-

tive refinement as in Section 6.3.1. In Figure 6.8 we show a comparison of the measured error

for a uniform and adaptive implicit Euler and space-time discretization. As in the case of the

(1+1)-dimensional heat equation we observe a large gain through the use of spatial adaptivity and

an additional consistent improvement of 2× or more through the use of space-time finite elements.

From the quotient of the number of degrees of freedom and the measured error, as reported in Table

6.2 for different resolutions, we see that a gain of up to 26 is possible through spatial adaptivity and

a gain of up to 66 using space-time finite elements.

In Figure 6.10 and Figure 6.11 the contours of the numerical solution of the heat equation using

space-time finite elements and an implicit Euler discretization are depicted. For the spatially adap-

tive simulation we only show the solution at the end of a lap (with the exception of the first slice

which shows the initial conditions). Note that the same spatial mesh is used for all time steps in

the same lap. Thus the resulting tensor mesh on Ω × (ti, ti+1) is not as sparse as the corresponding

space-time mesh because the latter is not restricted to a tensor structure.

The space-time discretized heat equation differs structurally significantly from the correspond-

ing spatial problem that results from a method of lines discretization. The arising linear system is

non-symmetric and the discretization of the Laplacian is singular on H1 (Q)/R with all spatially

constant functions in the kernel. Thus, efficient linear solvers and preconditioners for the spatial

problem fail for the space-time problem. For example, we performed early experiments with an

algebraic multi-grid53,62, a highly efficient preconditioner for the elliptic spatial problem, without

success. Block preconditioning can be used to precondition the space-time linear system. In the left

plot in Figure 6.9 the number of iterations for the solution of the heat equation with approximately

106 total degrees of freedom is shown. Here, we used a GMRES(30) linear solver with a relative and

absolute tolerance of 10−8 and a restricted additive Schwarz method from the PETSC
11,141 package

with an overlap of two and UMFPACK
49–52 for the solution of the local problem. We used 64 pro-

cessing elements for the implicit Euler discretization and one block per processing element. For the

space-time finite element discretization we used 256 processing elements.

125 6.3 Results

104 105 106 107 108 109

Total number of degrees of freedom

10−2

10−1

1

10

E
rr

o
r

in
|·
| L

2
(H

1
)

se
m

i-
n
o
rm

Comparison of uniform and adaptive methods

Implicit Euler (uniform)

Implicit Euler (adaptive)

Space-time (uniform)

Space-time (adaptive)

Figure 6.8. Comparison of the con-
vergence of uniform and adaptive dis-
cretizations of the (2+ 1)-dimensional
heat equation.

Table 6.2. Quotient of the number of degrees
of freedom (in millions) and the measured dis-
cretization error for the uniform and adaptive im-
plicit Euler discretization and the adaptive space-
time discretization of the (2+1)-dimensional heat
equation. Each row corresponds to a data point
from Figure 6.8.

Implicit Euler Implicit Euler Space-Time

(uniform) (adaptive) (adaptive)

0.09 0.03 0.02

1.37 0.15 0.07

20.89 1.19 0.45

327.08 12.31 4.92

1 2 3 4 5 6 7 8 9 10

Lap

102

103

104

105

A
cc

u
m

u
la

te
d

#
it

er
at

io
n
s

1 2 3 4 5 6 7 8 9 10

Lap

101

102

103

104

105

A
cc

u
m

u
la

te
d

li
n
ea

r
so

lv
er

ti
m

e

Figure 6.9. Comparison of the linear solver performance. The left plot shows the accumulated
number of iterations required by the GMRES solver with restricted additive Schwarz preconditioner.
The right plot shows the total time spent in the solver. The line styles are the same as in Figure 6.8.

126 6.3 Results

Table 6.3. Scaling behavior of a GMRES linear solver with restricted additive Schwarz precondi-
tioner for an implicit Euler (top) and space-time (bottom) discretization.

levels # iterations solver time [s]

Implicit Euler (uniform)

1 176 1.50 s

2 409 3.88 s

3 928 14.76 s

4 2,018 80.57 s

levels # iterations solver time [s]

Implicit Euler (adaptive)

1 390 3.15 s

2 1,192 9.86 s

3 4,253 38.62 s

4 15,148 152.84 s

levels # iterations solver time [s]

Space-time (uniform)

1 80 9.46 s

2 148 63.68 s

3 288 778.55 s

4 429 13,693.89 s

levels # iterations solver time [s]

Space-time (adaptive)

1 77 11.06 s

2 207 41.92 s

3 517 146.64 s

4 1,097 567.70 s

Table 6.4. Scaling of a conjugate gradient solver with BoomerAMG preconditioner for an implicit
Euler discretization.

levels # iterations solver time [s]

Implicit Euler (uniform)

1 46 1.89 s

2 86 4.81 s

3 163 13.96 s

4 320 47.22 s

levels # iterations solver time [s]

Implicit Euler (adaptive)

1 170 4.68 s

2 496 16.52 s

3 1,460 53.72 s

4 4,025 168.60 s

127 6.3 Results

For a uniform method of lines discretization with an implicit Euler time discretization scheme,

the linear solver requires on average 31.5 iterations per time step and 2,018 iterations per lap (con-

sisting of 640 time steps). For the space-time discretized problem, the linear solver converges on

average within 429 iterations. As one would expect from a block preconditioner which is not op-

timal, the average number of linear solves for adaptive discretizations is lower than the number

measured on a uniform mesh of the same minimal mesh width. For the adaptive discretizations we

measure an average of 18.3 and 75.15 for the number of iterations per time step (for the implicit

Euler discretization) or iterations per solution (for the space-time discretization), respectively. The

average accumulated number of iterations per lap was found to be 15,148 and 1,097.1, respectively.

Note that the systems solved per time step have varying dimensions due to the adaptive refinement

procedure.

Despite the lower number of iterations measured for the space-time simulations the accumulated

time spent in the linear solver is larger, see the right plot in Figure 6.9. We measure an accumu-

lated linear solver time of 80.6 s for the implicit Euler method and 13,693.9 s for the space-time

discretized method. The linear solver for the adaptive method of lines discretization is about 2×
slower than the solver on a uniform mesh (152.8 s per lap on average). The linear solver for the

adaptive space-time discretization on the other hand is 24.12× faster than the solver for the uniform

space-time discretization (567.7 s per lap). In Table 6.3 the average number of iterations and the

average time per lap is shown for different refinement levels. Each row in the table corresponds to

one point in Figure 6.8. It is apparent that the solver for the space-time system shows a significantly

worse scaling behavior in the solution time compared to the solver for the implicit Euler method.

Since the increase in the solution time is disproportional to the increase in the number of solver

iterations, it is most likely caused by the sub-optimal scaling of the local solver. For the implicit

Euler method, the local problem sizes increase by 22 = 4 whenever a new level is added. In contrast,

the local problem sizes increase by 23 = 8 for the space-time discretization. Moreover, the sparsity

pattern of the stiffness matrix on the local block differs in the two cases. Since the performance of

the sparse solver depends on the sparsity pattern of the stiffness matrix, the solution of a sequence

of two-dimensional problems is not equivalent to the solution of a three-dimensional problem of the

same size. In general, the latter will perform worse due to additional fill-in.

For comparison we also list the iteration counts and solver times for a method of lines dis-

cretization using a conjugate gradient solver with (untuned) algebraic multi-grid solver (using

BOOMERAMG 53,62) in Table 6.4. The algebraic multi-grid preconditioner gives level-independent

convergence rates and hence the reported accumulated number of iterations increases approximately

linearly with the level. Up to three levels of refinement, the solution time of the block precondi-

tioned GMRES solver is comparable to that of the multi-grid preconditioned conjugate gradient.

On adaptive meshes the block preconditioned GMRES solver is faster in all our measurements.

Let us point out that our presentation of the measured data has a slight bias towards the uniform

mesh methods since we scale timings to a single processing elements assuming linear scaling. This

is necessary in order to be able to compare timings obtained with a different number of processing

elements. However, the assumption of linear scaling may be violated for the solution of the linear

systems on the coarser meshes during the adaptive refinement procedure.

128 6.3 Results

Figure 6.10. Projected view of the contours of the discrete solution using space-time finite elements
(left) and an implicit Euler time discretization (right).

6.3.4 (3+1)-dimensional Heat Equation

To assess the feasibility of the solution of three-dimensional, time-dependent partial differential

equations using space-time finite elements, in this section we consider the (3+1)-dimensional heat

equation. We used the same analytic solution as in Section 6.3.3, i.e., a Gaussian peak moving in

the xy plane. We used a structured mesh on the domain Ω = (−1,1)3, space-time slabs of extent 1
2

in time direction, and a coarse tessellation of 2×2×2 and 2×2×2×1 for the adaptive method of

lines and adaptive space-time discretizations, respectively.

The results of our experiments are summarized in Figure 6.12 and Table 6.5. The measurements

are in line with the experimental results from the previous sections, i.e., we observe a large reduction

in the number of degrees of freedom by means of spatial adaptivity and an additional improvement

by a factor of about two when adding local time stepping via space-time finite elements.

6.3.5 (1+1)-dimensional Monodomain Equation

In this section we study the space-time solution of the (1+1)-dimensional monodomain equation.

In contrast to the heat equation studied in the previous section, the space-time discretization of the

monodomain equation leads to a non-linear system of equations (see Section 6.2.5).

We consider the solution of the monodomain equation on the domain Ω = (−1,1) with a con-

ductivity tensor Gmono = 2 mS/cm and an applied current Iapp = 250 µA/cm2 for 1
4

ms in
(
− 1

2
, 1

2

)
.

For our experiments we used the Bernus membrane model.

In a first set of experiments we used conforming ansatz spaces on uniform spatial and space-time

meshes with spatial mesh width 1/128 cm, a step size of 1/64 ms and a lap size Llap = 64. The

129 6.3 Results

time

Figure 6.11. Space-time contour plot of the discrete solution using space-time finite elements (left)
and an implicit Euler time discretization (right). The wireframe of the mesh on leaves with level≥ 3

is overlayed to indicate the structure of the adaptively refined meshes.

130 6.3 Results

104 105 106 107 108 109

Total number of degrees of freedom

10−2

10−1

1

10

E
rr

o
r

in
|·
| L

2
(H

1
)

se
m

i-
n
o
rm

Comparison of uniform and adaptive methods

Implicit Euler (uniform)

Implicit Euler (adaptive)

Space-time (uniform)

Space-time (adaptive)

Figure 6.12. Comparison of the con-
vergence of uniform and adaptive dis-
cretizations of the (3+ 1)-dimensional
heat equation.

Table 6.5. Quotient of the number of degrees
of freedom (in millions) and the measured dis-
cretization error for the uniform and adaptive im-
plicit Euler discretization and the adaptive space-
time discretization of the (3+1)-dimensional heat
equation. Each row corresponds to a data point
from Figure 6.12.

Implicit Euler Implicit Euler Space-Time

(uniform) (adaptive) (adaptive)

0.45 0.17 0.15

10.05 0.86 0.61

286.35 5.75 2.50

mesh for the space-time discretization thus had an extent of 1 ms in the time direction. The linear

system was solved with the direct solver MUMPS
3,4. The non-linear system for the implicit Euler

and space-time finite element discretization was solved by a Newton method with backtracking.

The backtracking algorithm sequentially tested step sizes 1,2−1,2−2,2−3 until the functional value

is ≤ 1.05 times the previous value. If this criterion was not met, a step size of 2−3 was used. The

Newton solver stopped if the residual norm was less than 10−8.

A contour plot of the solution in space-time view on (−1,1)× (0,20) is shown in Figure 6.13.

The implicit Euler and the space-time discretization give comparable results. The solution com-

puted by the space-time discretization features a slightly slower depolarization front compared to

the implicit Euler method and both, the implicit Euler and space-time solution, feature a slower

depolarization time compared to the implicit-explicit Euler solution.

In Table 6.6 the number of Newton iterations and function evaluations for a selection of the

time laps are shown. Due to the small time step size, the Newton solver for the method of lines

discretization converges quickly in 2–3 iterations. By comparing the average number of iterations

and the average number of function evaluations we can see that the backtracking is rarely invoked

by the Newton solver, i.e., the step size 1 is used in most cases.

The number of Newton iterations required for the solution of the non-linear space-time system

is between two and six times larger. The backtracking algorithm is invoked many times to calculate

reduced step sizes, which indicates a “rougher” non-linearity. During the solution of the non-linear

system on the second space-time slab, the backtracking algorithm fails four times, i.e., is unable

131 6.3 Results

(a) Implicit-explicit Euler method. (b) Implicit Euler method. (c) Space-time discretization.

Figure 6.13. Contours of the solution of the (1 + 1)-dimensional monodomain equation using
an implicit-explicit Euler (left), implicit Euler (middle) and space-time (right) discretization. The
vertical axis equals the time. For the visualization, the simulation domain has been scaled in time
direction.

to obtain a sufficient bound on the function value for the permissible step sizes. Nevertheless, the

Newton solver converges in 14 iterations.

Since the one-dimensional stiffness matrix can be trivially inverted due to the tridiagonal struc-

ture a comparison of the solution times is not meaningful.

The time step size (explicitly through the choice of τ or through the mesh width in time direc-

tion) influences the strength of the non-linearity in the functional F that is solved in an implicit Euler

step or on a space-time slab. Since the non-linearity is scaled by τ or by the space-time mass-matrix

(the entries of which scale linearly in the mesh width in time-direction), the non-linear system is

easier to solve on finer space-time meshes. In the case of a space-time discretization, one more-

over expects the extent of the mesh in time-direction to influence the convergence behavior of the

non-linear solver.

132 6.3 Results

Table 6.6. Number of Newton iterations and evaluations of the functional for a selection of the time
laps. For the implicit Euler, average and accumulated numbers are shown.

Lap
avg. acc. avg. # fct acc. # fct

iters # iters evals evals

Implicit Euler

1 2.9 187 6.8 438

2 2.9 187 6.8 438

5 2.9 187 6.8 438

10 2.9 188 6.9 440

15 2.0 128 5.0 320

17 1.4 90 3.8 244

Lap # iterations
function

evaluations

Space-time

1 6 15

2 14 55

5 7 17

10 8 21

15 8 21

17 8 21

0 5 10 15 20

Simulation time [ms]

0

5

10

15

20

25

30

#
it

er
at

io
n
s

E = 1

E = 10

E = 14

E = 16

E = 18

0 5 10 15 20

Simulation time [ms]

0

20

40

60

80

100

120

140

160

#
fu

n
ct

io
n

ev
al

u
at

io
n
s

Figure 6.14. Number of Newton iterations (left) and functional evaluations (right) in the depen-
dence of the extent E/64 ms in time direction.

In order to quantify this dependence we considered the discretization of the (1+1)-dimensional

monodomain equation on a uniform space-time mesh with mesh width 1/64 (cm and ms, respec-

tively) and incrementally increased the number of elements E ∈ Z≥1 in time direction. Thus, the

space-time slabs had extent E/64 ms in time direction. For these experiments we allowed step sizes{
2− j
}7

j=0
for the backtracking algorithm.

The number of Newton iterations and functional evaluations over time are plotted in Figure 6.14.

Initially, the increase in number of iterations and functional evaluations is less than 2×. Starting

at E ≥ 14 however, the solver fails due to a floating point exception in the backtracking algorithm.

When increasing the extent of the space-time mesh further, the failure occurs earlier. Starting with

E = 22, the Newton solver is unable to solve the non-linear system on the first space-time slab.

Finally, we consider the space-time adaptive solution of the monodomain equation. In these

133 6.3 Results

experiments we used a space-time slab of length 0.25 ms in time direction. Four refinement levels

were allowed and we set δℓ = 1/4 for all levels ℓ. The Newton solver terminated if the non-linear

residual norm was below 10−8. We used a GMRES(30) iterative solver with a block Jacobi pre-

conditioner with four subdomains. The linear solver terminated after 1,000 steps or if the absolute

norm was below 10−10 or if the initial residual was reduced by 10−8.

We employed a gradient-based error indicator

(
ηΣ

o

)2
=
∑

E∈To

(∇∇∇Vτττ ,∇∇∇Vτττ)
2
L2(E) .

In previous experiments with the (d + 1)-dimensional heat equation we used the exact error with

respect to a known analytic solution. However, when using error indicators (in contrast to error

estimators) to steer the adaptive refinement, the refinement process can potentially be misguided

by “faulty” initial conditions. As discussed in Section 6.2.4 we use a space-time transfer operator

between the trace spaces on the lower and upper boundary of Qi to simplify the assembly of the jump

term. The trace operator introduces an additional error if the target mesh is too coarse. In order

to ensure a sufficient approximation property of the boundary mesh, we can promote refinement

towards the lower boundary by assigning weights wo = 2 to leaves touching the lower boundary.

All other leaves are weighted with wo = 1.

In each refinement step, the leaves o with
(
woηΣ

o

)
≥ 1

2
maxo′ η

Σ
o′ were marked for refinement.

Our refinement strategy stopped if no leaves were marked for refinement or if
∑

o ηΣ
o ≤ 10. Note

that we only used the weights when comparing against the maximal error indicator and thus the

spectrum of the indicators was left unchanged. Therefore, we can guarantee that this modification

does not reduce the approximation quality of the ansatz spaces in the interior of the space-time slab.

In Figure 6.15 a wireframe representation of the adaptive meshes on 20 space-time slabs on

(−1,1)× (3.75,7.75) ⊂ Q is shown. Figures 6.15a and 6.15b show the adaptive mesh with and

without weighting, respectively.

Figure 6.16 shows the number of degrees of freedom of the adaptive ansatz spaces. We compare

with a spatially adaptive implicit Euler discretization with step size τ = 1/256 ms. During the

depolarization phase, local time stepping reduces the accumulated number of degrees of freedom

by a factor of approximately two. The use of the modified marking strategy increases the number

of degrees of freedom by at most a factor of 1.24 but on average only by a factor of 1.03.

In our experiments we observed oscillations of small amplitude in time direction on fine leaves

where the mesh is coarsened in time. These oscillations can be damped by adding an additional

diffusion in time as discussed in Section 6.3.2. However, the strength of the stabilization term needs

to be carefully adjusted since an overly strong diffusion reduces the speed of the depolarization front

and negatively impacts the accuracy of the measured depolarization times. Stabilization can also

significantly reduce the number of linear solver iterations required within the non-linear Newton

solver.

134 6.3 Results

(a) Space-time mesh obtained with the standard
maximum-based marking strategy.

(b) Space-time mesh obtained with the modified
marking strategy.

Figure 6.15. Non-conforming adaptively refined space-time mesh on (−1,1)× (3.75,7.75) using
a standard maximum-based refinement strategy (left) and weighted error indicators (right). The
vertical axis equals the time.

135 6.3 Results

0 5 10 15 20

Simulation time [ms]

0.0

0.1

0.2

0.3

0.4

re
la

ti
v
e

#
d
eg

re
es

o
f

fr
ee

d
o
m

Implicit Euler

Space-time

Space-time*

Figure 6.16. Number of degrees of freedom relative to the dimension 33,345 of a conforming ansatz
space on a uniform mesh. For the implicit Euler method, accumulated number of degrees of freedom
are shown. For the space-time discretization results with standard and modified marking strategy
are shown.

6.3.6 (2+1)-dimensional Monodomain Equation

We consider the solution of the (2+ 1)-dimensional monodomain equation on the domain Ω =

(0,1)2. For the following experiments we employed a two-dimensional version of the conductivity

tensor used for the three-dimensional small-scale problem in Sections 4.8.2 and 5.5.1, i.e.,

Gmono = 2 ·al⊗al +0.25562 · (at⊗at +an⊗an) mS/cm .

with

al =

[
1√
2
,

1√
2

]T

, at = 0, an =

[
1√
2
,− 1√

2

]T

.

We applied a stimulation current of Iapp = 250 µA/cm2 for 1
4

ms in (3
8
, 5

8
)2 ⊂ Ω . For our experi-

ments we used space-time slabs of extent 1
8

ms in time direction. The coarse tessellation consisted

of 8×8×1 hexahedra. The maximal tree depth was set to ℓmax = 3 and (δℓ)
3
ℓ=1 = (1/4,1/4,1/4).

We used a conforming ansatz space Yc
τττ . Refinement was driven by the strategy used in Section

6.3.5. We employed a Newton solver with backtracking as in the previous section. The arising

linear systems were solved with a GMRES(30) iterative solver, preconditioned by a one-level re-

stricted additive Schwarz (RAS) preconditioner with an overlap of four. The problem was stabilized

by the diffusion term ∑

E∈Tτττ

10−2 diam(E) (∂tV,∂tU)L2(E) . (6.22)

Stabilization was used primarily to ensure convergence of the linear solver which failed repeatedly

to reach the (absolute and relative) tolerance of 10−8 and thus slowed down the Newton solver when

no stabilization was used.

In Figure 6.17 the number of Newton solver iterations and function evaluations over time are

shown. In most laps the Newton converges within at 5–6 iterations and requires 11–14 function

evaluations. The RAS preconditioned GMRES solver converges within at most 106 iterations. Note

136 6.3 Results

0 5 10 15 20 25 30

Simulation time [ms]

0

10

20

30

40

50

60
#

it
er

at
io

n
s

Total number

Average number

0 5 10 15 20 25 30

Simulation time [ms]

0

50

100

150

200

250

#
fu

n
ct

io
n

ev
al

u
at

io
n
s

Figure 6.17. Number of Newton iterations (left) and functional evaluations (right). The plot shows
the number of iterations and evaluations accumulated (blue) and averaged (red) over all passes.

0 5 10 15 20 25 30

Simulation time [ms]

0.0

0.1

0.2

0.3

0.4

re
la

ti
v
e

#
d
eg

re
es

o
f

fr
ee

d
o
m

Implicit Euler

Space-time

Figure 6.18. Number of degrees of freedom relative to the dimension 282,897 of a conforming
ansatz space on a uniform mesh.

that the stabilization term is crucial to ensure convergence of the linear solver despite the large

overlap used in this experiment.

Figure 6.18 shows the reduction in the number of degrees of freedom relative to a conform-

ing discretization with the same minimal mesh width. Due to the use of a finer tessellation and

space-time slabs with smaller extent in the time direction we measure a lower reduction compared

to the results from Section 6.3.5. An average improvement by a factor of 1.63 and 2.99 for the first

15 ms and 30 ms simulation time, respectively, is measured over a spatially adaptive method of lines

discretization with τ = 0.0078125 and Llap = 16.

Figure 6.19 shows selected contour surfaces of the membrane voltage Vτττ on the first 96 space-

time slabs together with the mesh on levels ≥ 2. We refer to Figure 2.3 and Figure 5.4 for different

visualizations of the membrane voltage solution for the same problem computed by means of an

implicit-explicit Euler discretization.

137 6.3 Results

time

Figure 6.19. Space-time contour plot of the membrane voltage on (0,1)×
(

1
2
,1
)
×(0,12) computed

using space-time finite elements. The wireframe of the mesh on leaves with level ≥ 2 is overlayed
to indicate the structure of the adaptively refined meshes. The time direction is scaled by a factor 1

4

for the visualization.

138 6.4 Related Work

6.4 Related Work

Local time stepping is a standard technique for the solution of hyperbolic equations using explicit

time discretization schemes in combination with block-structured adaptive mesh refinement meth-

ods21,22,56. Gassner et al. 69 discuss local time stepping for discontinuous Galerkin discretizations

based on explicit predictor-corrector schemes. Local time stepping in the context of wavelet-based

adaptive resolution schemes using explicit time discretization schemes is discussed, for example,

by Domingues et al. 57 and Bendahmane et al. 19,20 . Coquel et al. 48 discuss local time stepping for

semi-implicit discretization schemes and adaptive resolution methods.

For a historical review of locally adaptive time stepping techniques we refer to Gander and

Halpern 67 .

Griebel and Oeltz 71 use space-time sparse grids for the solution of parabolic partial differen-

tial equations with continuous and discontinuous ansatz functions in time. By using sparse grids,

the dimension of the ansatz space can be reduced from O
(

Nd+1
)

to O
(

Nd
)

, i.e., the order of the

dimension of a stationary problem72. In contrast to classical sparse grids, the space-time sparse

grids constructed by Griebel and Oeltz are not limited to tensor product spaces but can be used with

an arbitrary multi-level basis in space. The authors discuss an adaptive discretization of parabolic

equations with non-smooth solutions for which the regularity requirements of the sparse-grid ap-

proximation does not hold.

Yu 176 describes an implementation of local time stepping based on a multiplicative Schwarz

domain decomposition method. In this method the finite element space is decomposed according

to an overlapping decomposition of the domain Ω . Using the method of lines, the considered time-

dependent partial differential is reduced to a coupled set of ordinary differential equations in the

finite element space. These equations are solved in the interior of the local subdomains and the so-

lutions in the subspaces are combined using a multiplicative Schwarz algorithm. Since the ordinary

differential equations in different subdomains are solved independently (though in sequential or-

der), different time steps or even different discretization schemes may be used in different domains.

This approach has later been combined with block-structured AMR177.

Tezduyar and Sathe 152 propose the enhanced-discretization space-time technique (EDSTT) to

enable local time stepping for fluid dynamics and fluid structure interaction. They introduce two

techniques. The first method, EDSTT-SM (single mesh), is based on a space-time conforming mesh

that is refined towards the region of interest. The second method, EDSTT-MM (multi mesh), uses

overlapping meshes of different resolution. In this method, the solution is locally written as a sum

of contributions from ansatz spaces corresponding to the different meshes153. The authors present

(1+ 1)- and (2+ 1)-dimensional results. Similar to this work, we propose to use a space-time

discretization to implement local time stepping in an implicit setting. Both works are based on

a discontinuous Galerkin approximation in time. In contrast to Tezduyar and Sathe we use non-

overlapping, non-conforming meshes (as discussed in Chapter 5) and standard finite element ansatz

spaces for the discretization within a space-time slab. This ensures that our method can be used for

solving a large class of partial differential equations. Whereas Tezduyar and Sathe consider a fixed

139 6.5 Discussion

spatial region where a smaller time step is used, in our approach the time step is adapted based on

error estimates.

Weinzierl and Köppl 164 study a space-time multi-grid method for the solution of the heat equa-

tion on adaptive tree-based meshes. The authors use a stencil-based implementation of a finite

element discretization and discuss a full space-time multi-grid algorithm. Results for the adaptive

solution of the (2+1)-dimensional heat equation are reported.

Neumüller and Steinbach 117 describe a space-time discontinuous Galerkin method for the so-

lution of the transient heat equation. The authors discuss the refinement of pentatopes in R4 for the

purpose of generating space-time adaptive meshes. Convergence studies for the (3+1)-dimensional

heat equation and a solution of the (2+1)-dimensional Navier Stokes equation on a moving domain

are presented. An example of a space-time adaptive solution of the (1+1)-dimensional heat equa-

tion is given. In contrast to Neumüller and Steinbach we use the discontinuous Galerkin discretiza-

tion in combination with non-conforming finite elements. By using cubes instead of tetrahedra or

pentatopes, the handling of arbitrary dimensions is straightforward.

6.5 Discussion

We have proposed the use of space-time discretizations to enable local time stepping for the solu-

tion of time-dependent partial differential equations for which global time step control is inefficient.

By combining finite element ansatz spaces built on non-conforming meshes with a discontinuous

Galerkin discretization in time, we can reuse existing adaptive techniques (see Chapter 4 and Chap-

ter 5) while having the possibility to control the computational and storage requirements by means

of the extent of the space-time slabs. In order to simplify the assembly of the jump term, we use

a space-time transfer operator to map the trace of the solution on the previous space-time slab to

the new slab. Let us point out that, in particular for (3+ 1)-dimensional simulations, lightweight

data structures are a crucial ingredient for large-scale simulations due to the limited local memory

available on current and next-generation supercomputers.

In Sections 6.3.1–6.3.4 we have studied the solution of the heat equation for different spatial

dimensions. We have measured a consistent gain by a factor of approximately two in the reduction

of the number of degrees of freedom when comparing our space-time adaptive discretization with a

spatially adaptive method of lines discretization. The best of our knowledge, space-time adaptivity

for (3+1)-dimensional partial differential equations has not been demonstrated before.

In Section 6.3.2 we observed instabilities when using a non-conforming mortar ansatz space

instead of a conforming finite element space and discussed the stabilization of the method. Our

experimental results indicate that the large kernel of the space-time discretization of the Laplacian

is a major source of complications for both the construction of stable discretizations and the efficient

preconditioning of the arising linear systems.

We have demonstrated the feasibility of the adaptive space-time discretization of reaction-

diffusion equations, in particular of the monodomain equation. The arising large non-linear systems

of equations can be solved with a globalized Newton method. The efficient preconditioning of the

140 6.5 Discussion

arising linear systems is however challenging (see below).

In order to take advantage of space-time adaptivity, robust and efficient preconditioning tech-

niques are crucial. Several authors have studied space-time multi-grid algorithms82,83 and multi-

grid wavefront relaxation methods93 for the solution of transient linear parabolic partial differential

equations. Weinzierl and Köppl 164 demonstrated a space-time multi-grid on adaptive meshes. Due

to the difference in the discretizations these results cannot be applied straightforwardly to our setup.

Despite the significant reduction in the number of degrees of freedom through the use of space-

time adaptivity that we observed in our experiments, it is not clear if it is possible to obtain an

equally large reduction in the computing time. In fact, even with linear solvers of optimal complex-

ity, computing time will increase with the dimension due to the growing matrix bandwidth. More

generally, we note that the curse of dimension not only shows in the exponential growth of the total

number of degrees of freedom but is also reflected “locally”. For example, the number of local

degrees of freedom (and thus the matrix bandwidth) and number of quadrature points also grow

exponentially with the dimension. Thus, a space-time solver needs to perform less work per entry

in the stiffness matrix in order to be competitive to a series of lower-dimensional solvers.

Let us point out that a space-time discretization can be an attractive alternative to a method of

lines discretization for other reasons. Space-time discretizations allow for a transparent treatment

of moving domains. In the context of computational electrocardiology this is of interest for the

simulation of coupled electromechanical models. Additionally, space-time adaptive discretization

techniques open up an additional level of parallelism in the workload since the serial time stepping

is replaced by a global space-time iterative procedure. In fact, in all our parallel runs the space-

time slabs were distributed according to a (d +1)-dimensional space-filling curve. For this reason,

space-time discretizations may be of interest for a new generation of algorithms targeted at exa-scale

supercomputers. Since, however, memory bandwidth will be a scarce resource in such systems it is

not clear if the additional parallelism can be taken advantage of in practice due to the “local curse

of dimension” (see above). Nevertheless, space-time discretization should be investigated as an al-

ternative to parallel-in-time integration schemes (see, for example, Speck et al. 146) which usually

feature strict bounds on the achievable speedup.

7 Conclusion

We presented adaptive discretization schemes for the solution of reaction-diffusion equations in the

field of computational electrocardiology. The presented methods combine the plainness of struc-

tured meshes with the flexibility of a non-conforming mortar element discretization in a novel and

original way.

We presented two adaptive mesh data structures that use either a conforming tessellation or

a forest of shallow trees to organize the local structured meshes. The first method allows for a

representation of the complete mesh by a single integer vector ℓℓℓ ∈ ZN
≥1. This data structure is not

only extremely lightweight but also lacks the implicit storage of a refinement history and thus can

be modified very easily. A disadvantage of this mesh data structure is the limited reduction in the

degrees of freedom that is measured in practice. The second data structure is based on shallow trees,

i.e., the representation of the mesh by a vector τττ ∈
(
(Z≥0)

∗)N
of 2d-trees. This data structure has

a higher memory footprint and is less flexible with respect to mesh modifications but, due to the

hierarchical structure, provides more control over the location and shape of the refined region.

We described two approaches for the solution of variational problems on these mesh data struc-

tures. First we proposed and evaluated a matrix-free scheme for the monodomain equation with

a tailored block preconditioner. This approach allows for exploiting the special structure of the

meshes Tℓℓℓ or Tτττ but is not well suited for ill-conditioned problems. As an alternative we described

the construction of standard linear algebra data structures on non-conforming meshes. In particular

we discussed the element-wise assembly of stiffness matrices on subspaces of the product space via

an algebraic representation of the inclusion map.

The presented results do confirm our initial research hypothesis, namely that by embracing

non-conformity, a rich flavor of adaptive strategies is at our disposal. These methods can be tailored

to different design goals such as the simplicity of the implementation (Chapter 4) or flexibility

(Chapter 5).

The presented schemes can be used in the context of spatial adaptivity (possibly in combina-

tion with global time stepping) or space-time adaptivity using a space-time discretization. Due

to the special structure of the space-time discrete problem, stabilization might be necessary. We

have presented extensive numerical experiments, including the space-time adaptive solution of the

(3+ 1)-dimensional heat equation and the (2+ 1)-dimensional monodomain equation with a real-

istic Bernus membrane model, that prove the feasibility of this idea.

141

142

In this work we considered the development of adaptive schemes (i.e., the combination of mesh

and algebra data structures, linear solver and marking strategy) as a design process that requires

selection between potentially competing design choices. Therefore one expects that multiple itera-

tions are required to obtain an (Pareto-) optimal method. An additional complication stems from the

interaction between these individual components. For example, our results clearly show that effi-

cient preconditioners for uniform mesh methods may be less appropriate for the considered adaptive

meshes. Moreover, the choice of the mesh data structure has a profound impact on the distribution

of the accumulated error indicators and thus on the effectiveness of the marking strategy. Therefore

it is not unexpected that much work is left for the future. Here, we want to point out several topics

that should be the subject of future research.

Algebra data structures and preconditioners. The construction of efficient preconditioning tech-

niques is an important topic for future work. On the one hand, efficient preconditioners for

the non-conforming discretization of elliptic problems are required (see, for example, Section

5.6). On the other hand, preconditioners for the space-time discretization of reaction-diffusion

equations need to be developed (see Section 6.5). For the discretization of elliptic problems

using a mortar element discretization, several theoretical studies already exist that can serve

as a starting point (see Section 4.10).

Our results show that it can be advantageous to “decouple” the choice of the ansatz space

from the choice of the basis (of a superspace) used to represent the solution. In doing so, one

can optimize the ansatz space with respect to stability and approximation properties while

choosing an appropriate data representation for good performance. The design of good pre-

conditioning techniques which can exploit these data structures is crucial. In Chapter 4 we

used a product space representation but other vector spaces may be employed. A particular

advantage of the product space representation was the block structure of the stiffness matrix

which allowed us to perform local re-assembly of the stiffness matrix.

Error indication and marking strategies. In the numerical experiments in this thesis we have

used a maximum-based marking strategy together with accumulated residual-based error esti-

mators or gradient error indicators. The sum of all error indicators/estimators is not a suitable

measure for the optimality of a mesh when restricting the maximal refinement level. There-

fore we used the termination of the refinement process as an indicator for the optimality of

the constructed mesh. An obvious disadvantage of this approach is a relatively high number

of required repetitions in particular when using deeper trees (see Section 5.5).

Since accumulation alters the distribution of the error indicators we believe that tailored mark-

ing strategies can give a significant reduction in the number of passes required to find a suit-

able mesh. Moreover, a strategy is required to assess the quality or optimality of the adaptive

meshes. This necessitates further verification of our methods on different geometries using

different error indication and marking strategies. The goal is to deliver a robust scheme that

minimizes the need for manual parameter tuning by domain scientists.

Emerging architectures. The presented schemes have been implemented and evaluated on homo-

143

geneous parallel computers. Since accelerators in the form of graphics processing elements

or other throughput-oriented co-processors are increasingly common in high-end supercom-

puters, the adaptation of the presented adaptive schemes to such hybrid architectures should

be the subject of future work. The structured meshes serving as the fundamental building

block of our adaptive meshes are well suited for throughput-optimized chips, too. However,

in contrast to central processing units, we expect the size of the local meshes to have a higher

impact on the sustained performance.

The novel combination of non-conforming discretizations with optimized lightweight data struc-

tures as presented in this thesis provides us with an exciting new class of adaptive methods. Our

results clearly demonstrate the viability of this approach and encourages further research in the

areas mentioned above.

144

A Assembly of the Mortar Projection

In this appendix we provide a detailed description of the assembly of the mortar projection, in par-

ticular the matrix R as defined in equation (4.10b). As mentioned in Section 4.3.3 we need to take

into account the different orientations of the structured meshes on the slave and master sides in-

duced by the orientation of the adjacent patches.

To simplify the notation we restrict ourselves to the case d = 3. We consider a non-mortar

γ+m =
⋃

m′ γ
−
m′ on the interface Γi j. In the geometrically conforming setting in Chapter 4 we have

γ+m = γ−m = Γi j. In the geometrically non-conforming setting discussed in Chapter 5 the non-mortar

in general is split into multiple mortars. Moreover γ+m and Γi j usually are not equal. Without loss of

generality we assume that the non-mortar side is associated with the patch Ω j.

For an axis-aligned rectangles X ⊆ (0,1)2 we denote by SX the unique affine linear bijection

(0,1)2 → X . As in Section 4.3.3 we denote the parametrizations of γ+m and γ−m′ over (0,1)2 by

ϕ+
m and ϕ−m′ . By ϕi, ϕ j we denote the parametrizations of the patches Ωi and Ω j over (0,1)3.

Furthermore we define

ϕ̃i : (0,1)2 ∼= ϕ−1
i (Γi j)

ϕi−−−→ Γi j and ϕ̃ j : (0,1)2 ∼= ϕ−1
j (Γi j)

ϕ j−−−→ Γi j .

By design of the mesh data structures Tℓℓℓ and Tτττ the parametrizations ϕ+
m and ϕ−m′ are induced by

the parametrizations of the adjacent patches, i.e.,

ϕ+
m = ϕ̃ j ◦S(

ϕ+
m

)−1(
γ+m
) and ϕ−m′ = ϕ̃i ◦S(

ϕ−
m′
)−1(

γ−
m′
) . (A.1)

The function A = (ϕ̃ j)
−1 ◦ ϕ̃i maps corners of (0,1)2 to corners. One can show that there exists

a vector b ∈ {0,1}2 and a permutation ω ∈ S2 such that

A(x) = b− (1−2diagb)Eωx

with (Eω)kh = δkω(h).

According to definition (4.10b) we have

Rα̇ε =

∫

γ+m

ψα̇θε dS(x) =
∑

m′

∫

γ−
m′

ψα̇θε dS(x) =
∑

m′

∑

F−⊂γ−
m′

∫

F−
ψα̇θε dS(x) . (A.2)

145

146

Since we employ locally nested meshes in Chapters 4 and 5 for each face F− ⊂ γ−m′ there exists

a unique face F+ ⊂ γ+m with F− ⊆ F+. By F̂− ⊆ (0,1)2 and F̂+ ⊆ (0,1)2 we denote the images

of these faces under the inverse parametrizations ϕ̃i and ϕ̃ j, respectively. We use the short-hand

notations

ϕF− = ϕ̃i ◦S
F̂−

and ϕF+ = ϕ̃ j ◦S
F̂+ .

Let us point out that is convenient to work with the parametrizations of the interface Γi j rather than

with the parametrizations of mortars and non-mortars in a geometrically non-conforming setting.

By definition (4.12)

ψα̇

∣∣
F+ =

wα̇√
det
(
(∇∇∇ϕ+

m)T ∇∇∇ϕ+
m

) ψ̂α̇ ◦ (ϕF+)−1

and θε

∣∣
F− = θ̂ε ◦ (ϕF−)

−1
.

In order to evaluate the surface integral over F− in equation (A.2) we use the parametrization

ξ = ϕ̃ j ◦S
A
(

F̂−
) = ϕ̃i ◦A−1 ◦S

A
(

F̂−
) .

With this definition we have

ψα̇ ◦ξ =
wα̇√

det
(
(∇∇∇ϕ+

m)T ∇∇∇ϕ+
m

) ψ̂α̇ ◦ (ϕF+)−1 ◦ ϕ̃ j ◦S
A
(

F̂−
)

=
wα̇√

det
(
(∇∇∇ϕ+

m)T ∇∇∇ϕ+
m

) ψ̂α̇ ◦S−1

F̂+
◦S

A
(

F̂−
)

and

θε ◦ξ = θ̂ε ◦ (ϕF−)
−1 ◦ ϕ̃i ◦A−1 ◦S

A
(

F̂−
)

= θ̂ε ◦S
F̂−
◦A−1 ◦S

A
(

F̂−
)

= θ̂ε ◦A−1 .

The last equality is a consequence of the identity A ◦ SX = SA(X) ◦ A which itself follows from

geometric considerations. If σ ∈ S4 is the permutation of the corners of (0,1)2 induced by the

mapping A we have θ̂ε ◦A−1 = θ̂σ(ε).

Using the parametrization ξ and the equations above we finally obtain

Rα̇ε =
∑

m′

∑

F−⊂γ−
m′

wα̇

∫

(0,1)2

(
ψ̂α̇ ◦S−1

F̂+
◦S

A
(

F̂−
)
)

θ̂σ(ε)

√
det
(
(∇∇∇ξ)T ∇∇∇ξ

)

√
det
(
(∇∇∇ϕ+

m)T ∇∇∇ϕ+
m

) dx . (A.3)

The integral in equation (A.3) can be approximated with a standard Gauss-Legendre quadrature

rule.

Bibliography

1. G. S. Abdoulaev, Y. Achdou, Y. A. Kuznetsov, and C. Prud’homme. On a parallel implemen-

tation of the mortar element method. ESAIM-Math. Model. Num., 33(2):245–259, 1999.

2. R. Abedi, B. Petracovici, and R. B. Haber. A space-time discontinuous Galerkin method for

linearized elastodynamics with element-wise momentum balance. Comput. Meth. Appl. Mech.
Eng., 195(25–28):3247–3273, 2006.

3. P. R. Amestoy, I. S. Duff, and J.-Y. L’Excellent. Multifrontal parallel distributed symmetric

and unsymmetric solvers. Comput. Methods Appl. M., 184(2–4):501–520, 2000.

4. P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster. A fully asynchronous multifrontal

solver using distributed dynamic scheduling. SIAM J. Matrix. Anal. A, 23(1):15–41, 2001.

5. M. Anderson and J.-H. Kimn. A numerical approach to space-time finite elements for the

wave equation. J. Comput. Phys., 226(1):466–476, 2007.

6. A. K. Aziz and P. Monk. Continuous finite elements in space and time for the heat equation.

Math. Comput., 52(186):255–274, 1989.

7. I. Babuska and M. Suri. The p and h-p versions of the finite element method, basic principles

and properties. SIAM Rev., 36(4):578–632, 1994.

8. M. Bader, S. Schraufstetter, C. A. Vigh, and J. Behrens. Memory efficient adaptive mesh gen-

eration and implementation of multigrid algorithms using Sierpinski curves. Int. J. Comput.
Sci. Eng., 4(1):12–21, 2008.

9. M. Bader, C. Böck, J. Schwaiger, and C. Vigh. Dynamically adaptive simulations with min-

imal memory requirement – Solving the shallow water equations using Sierpinski curves.

SIAM J. Sci. Comput., 32(1):212–228, 2010.

10. M. Bader, K. Rahnema, and C. Vigh. Memory-efficient Sierpinski-order traversals on dy-

namically adaptive, recursively structured triangular grids. In K. Jónasson, editor, Applied
Parallel and Scientific Computing, volume 7134 of Lecture Notes in Computer Science, pages

302–312. Springer, 2012.

147

148 Bibliography

11. S. Balay, W. D. Gropp, L. Curfman McInnes, and B. F. Smith. Efficient management of

parallelism in object oriented numerical software libraries. In E. Arge, A. M. Bruaset, and

H. P. Langtangen, editors, Modern Software Tools in Scientific Computing, pages 163–202.

Birkhäuser Press, 1997.

12. S. Balay, J. Brown, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knep-

ley, L. Curfman McInnes, B. F. Smith, and H. Zhang. PETSc web page, 2011.

http://www.mcs.anl.gov/petsc.

13. W. Bangerth, C. Burstedde, T. Heister, and M. Kronbichler. Algorithms and data structures

for massively parallel generic adaptive finite element codes. ACM Trans. Math. Softw., 38(2):

14:1–14:28, 2012.

14. P. Bastian, K. Birken, K. Johannsen, S. Lang, N. Neuss, H. Rentz-Reichert, and C. Wieners.

UG – A flexible software toolbox for solving partial differential equations. Comput. Vis. Sci.,
1(1):27–40, 1997.

15. G. W. Beeler and H. Reuter. Reconstruction of the action potential of ventricular myocardial

fibres. J. Physio., 268(1):177–210, 1977.

16. F. B. Belgacem. The mortar finite element method with Lagrange multipliers. Numer. Math.,
84(2):173–197, 1999.

17. Y. Belhamadia. A time-dependent adaptive remeshing for electrical waves of the heart. IEEE
Trans. Biomed. Eng., 55(2):443–452, 2008.

18. Y. Belhamadia, A. Fortin, and Y. Bourgault. Towards accurate numerical method for mono-

domain models using a realistic heart geometry. Math. Biosci., 220(2):89–101, 2009.

19. M. Bendahmane, R. Bürger, R. Ruiz-Baier, and K. Schneider. Adaptive multiresolution

schemes with local time stepping for two-dimensional degenerate reaction–diffusion systems.

Appl. Numer. Math., 59(7):1668–1692, 2009.

20. M. Bendahmane, R. Bürger, and R. Ruiz-Baier. A multiresolution space-time adaptive scheme

for the bidomain model in electrocardiology. Numer. Meth. Part. D. E., 26(6):1377–1404,

2010.

21. M. J. Berger and P. Colella. Local adaptive mesh refinement for shock hydrodynamics. J.
Comput. Phys., 82(1):64–84, 1989.

22. M. J. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial differential equa-

tions. J. Comput. Phys., 53(3):484–512, 1984.

23. C. Bernardi and F. Hecht. Error indicators for the mortar finite element discretization of the

laplace equation. Math. Comput., 71(240):1371–1403, 2002.

149 Bibliography

24. C. Bernardi and Y. Maday. Mesh adaptivity in finite elements using the mortar method. Revue
Européenne des Éléments, 9(4):451–465, 2000.

25. C. Bernardi, Y. Maday, and A. T. Patera. A new nonconforming approach to domain decom-

position: The mortar element method. In H. Brezis and J. L. Lions, editors, Nonlinear Partial
Differential Equations and Their Applications, 299, pages 13–51. Pitman Res. Notes Math.

Ser., 1994.

26. C. Bernardi, Y. Maday, and F. Rapetti. Basics and some applications of the mortar element

method. GAMM-Mitt., 28(2):97–123, 2005.

27. O. Bernus, R. Wilders, C. W. Zemlin, H. Verschelde, and A. V. Panfilov. A computationally

efficient electrophysiological model of human ventricular cells. Am. J. Physiol.-Heart C., 282

(6):H2296–H2308, 2002.

28. M. J. Bishop, G. Plank, R. A. B. Burton, J. E. Schneider, D. J. Gavaghan, V. Grau, and P. Kohl.

Development of an anatomically detailed MRI-derived rabbit ventricular model and assess-

ment of its impact on simulations of electrophysiological function. Am. J. Physiol.-Heart C.,
298(2):H699–H718, 2010.

29. P. E. Bjørstad, M. Dryja, and T. Rahman. Additive Schwarz methods for elliptic mortar finite

element problems. Numer. Math., 95(3):427–457, 2003.

30. P. B. Bochev, M. D. Gunzburger, and J. N. Shadid. Stability of the SUPG finite element

method for transient advection-diffusion problems. Comput. Meth. Appl. Mech. Eng., 193

(23–26):2301–2323, 2004.

31. R. Bordas, B. Carpentieri, G. Fotia, F. Maggio, R. Nobes, J. Pitt-Francis, and J. Southern. Sim-

ulation of cardiac electrophysiology on next-generation high-performance computers. Philos.
T. R. Soc. A, 367(1895):1951–1969, 2009.

32. D. Braess, W. Dahmen, and C. Wieners. A multigrid algorithm for the mortar finite element

method. SIAM J. Numer. Anal., 37(1):48–69, 2000.

33. A. Brandt. Multi-level adaptive solutions to boundary-value problems. Math. Comput., 31

(138):333–390, 1977.

34. A. N. Brooks and T. J. R. Hughes. Streamline upwind/Petrov-Galerkin formulations for con-

vection dominated flows with particular emphasis on the incompressible navier-stokes equa-

tions. Comput. Meth. Appl. Mech. Eng., 32(1–3):199–259, 1982.

35. C. Burstedde, O. Ghattas, M. Gurnis, G. Stadler, E. Tan, T. Tu, L. C. Wilcox, and S. Zhong.

Scalable adaptive mantle convection simulation on petascale supercomputers. In Proceedings
of the 2008 ACM/IEEE conference on Supercomputing, pages 621–6215, 2008.

36. C. Burstedde, O. Ghattas, G. Stadler, T. Tu, and L. C. Wilcox. Towards adaptive mesh PDE

simulations on petascale computers. In Proceedings of TeraGrid 2008, 2008.

150 Bibliography

37. C. Burstedde, O. Ghattas, M. Gurnis, T. Isaac, G. Stadler, Tim Warburton, and L. C. Wilcox.

Extreme-scale AMR. In Proceedings of the 2010 ACM/IEEE conference on Supercomputing,

pages 1–12, 2010.

38. C. Burstedde, L. C. Wilcox, and O. Ghattas. p4est: Scalable algorithms for parallel adaptive

mesh refinement on forests of octrees. SIAM J. Sci. Comput., 33(3):1103–1133, 2011.

39. H. C. Chen and T. S. Huang. A survey of construction and manipulation of octrees. Comput.
Vis. Graphics & Imag. Proc., 43(3):409–431, 1988.

40. E. M. Cherry, H. S. Greenside, and C. S. Henriquez. A space-time adaptive method for

simulating complex cardiac dynamics. Phys. Rev. Lett., 84(6):1343–1346, 2000.

41. E. M. Cherry, H. S. Greenside, and C. S. Henriquez. Efficient simulation of three-dimensional

anisotropic cardiac tissue using an adaptive mesh refinement method. Chaos, 13(3):853–865,

2003.

42. R. H. Clayton, O. Bernus, E. M. Cherry, H. Dierckx, F. H. Fenton, L. Mirabella, A. V. Pan-

filov, F. B. Sachse, G. Seemann, and H. Zhang. Models of cardiac tissue electrophysiology:

Progress, challenges and open questions. Prog. Biophys. Mol. Bio., 104(1–3):22–48, 2011.

43. B. Cockburn. Discontinuous Galerkin methods. ZAMM-Z. Angew. Math. ME, 83(11):

731–754, 2003.

44. A. Cohen, S. M. Kaber, S. Müller, and M. Postel. Fully adaptive multiresolution finite volume

schemes for conservation laws. Math. Comput., 72(241):183–225, 2003.

45. P. Colella, D. T. Graves, N. D. Keen, T. J. Ligocki, D. F. Martin, P. W. McCorquodale,

D. Modiano, P. O. Schwartz, T. D. Sternberg, and B. Van Straalen. Chombo Software Package
for AMR Applications: Design Document, 2009.

46. P. Colli Franzone and L. F. Pavarino. A parallel solver for reaction-diffusion systems in com-

putational electrocardiology. Math. Model Meth. App. Sci., 14(06):883–911, 2004.

47. P. Colli Franzone, P. Deuflhard, B. Erdmann, J. Lang, and L. F. Pavarino. Adaptivity in space

and time for reaction-diffusion systems in electrocardiology. SIAM J. Sci. Comput., 28(3):

942–962, 2006.

48. F. Coquel, Q. L. Nguyen, M. Postel, and Q. H. Tran. Local time stepping applied to implicit-

explicit methods for hyperbolic systems. SIAM Mult. Mod. Simul., 8(2):540–570, 2010.

49. T. A. Davis. A column pre-ordering strategy for the unsymmetric-pattern multifrontal method.

ACM Trans. Math. Softw., 30(2):165–195, 2004.

50. T. A. Davis. Algorithm 832: UMFPACK v4.3 – an unsymmetric-pattern multifrontal method.

ACM Trans. Math. Softw., 30(2):196–199, 2004.

151 Bibliography

51. T. A. Davis and I. S. Duff. An unsymmetric-pattern multifrontal method for sparse LU factor-

ization. SIAM J. Matrix. Anal. A, 18(1):140–158, 1997.

52. T. A. Davis and I. S. Duff. A combined unifrontal/multifrontal method for unsymmetric sparse

matrices. ACM Trans. Math. Softw., 25(1):1–20, 1999.

53. H. De Sterck, U. M. Yang, and J. J. Heys. Reducing complexity in parallel algebraic multigrid

preconditioners. SIAM J. Matrix. Anal. A, 27(4):1019–1039, 2006.

54. M. Delfour, W. Hager, and F. Trochu. Discontinuous Galerkin methods for ordinary differen-

tial equations. Math. Comput., 36(154):455–473, 1981.

55. P. Deuflhard, B. Erdmann, R. Roitzsch, and G. T. Lines. Adaptive finite element simulation

of ventricular fibrillation dynamics. Comput. Vis. Sci., 12(5):201–205, 2009.

56. L. F. Diachin, R. Hornung, P. Plassmann, and A. Wissink. Parallel adaptive mesh refinement.

In M. A. Heroux, P. Raghavan, and H. D. Simon, editors, Parallel Processing for Scientific
Computing, chapter 8, pages 143–163. SIAM, 2006.

57. M. O. Domingues, S. M. Gomes, O. Roussel, and K. Schneider. An adaptive multiresolution

scheme with local time stepping for evolutionary PDEs. J. Comput. Phys., 227(8):3758–3780,

2008.

58. K. Eriksson, C. Johnson, and V. Thomée. Time discretization of parabolic problems by the

discontinuous Galerkin method. ESAIM-Math. Model. Num., 19(4):611–643, 1985.

59. A. Ern and J.-L. Guermond. Theory and Practice of Finite Elements. Applied Mathematical

Sciences. Springer, 2004.

60. M. Ethier and Y. Bourgault. Semi-implicit time-discretization schemes for the bidomain

model. SIAM J. Numer. Anal., 46(5):2443–2468, 2008.

61. S. Ethier, W. M. Tang, and Z. Lin. Gyrokinetic particle-in-cell simulations of plasma micro-

turbulence on advanced computing platforms. J. Phys. Conf. Ser., 16(1):1–15, 2005.

62. R. Falgout, A. Baker, V. E. Henson, U. M. Yang, T. Kolev, B. Lee, J. Painter, C. Tong, and

P. Vassilevski. Hypre web page, 2011. https://computation.llnl.gov/casc/linear_solvers.

63. H. Feng, C. Mavriplis, R. Feng, and R. Biswas. Parallel 3D mortar element method for

adaptive nonconforming meshes. J. Sci. Comput., 27(1–3):231–243, 2006.

64. B. Flemisch and B. I. Wohlmuth. Stable Lagrange multipliers for quadrilateral meshes of

curved interfaces in 3D. Comput. Meth. Appl. Mech. Eng., 196(8):1589–1602, 2007.

65. D. A. French and T. E. Peterson. A continuous space-time finite element method for the wave

equation. Math. Comput., 65(214):491–506, 1996.

152 Bibliography

66. V. Gaede and O. Günther. Multidimensional access methods. ACM Comput. Surv., 30(2):

170–231, 1998.

67. M. J. Gander and L. Halpern. Techniques for locally adaptive timestepping developed over

the last two decades. In Domain Decomposition Methods, 2012. to appear.

68. G. Gassner, F. Lörcher, and C.-D. Munz. A discontinuous Galerkin scheme based on a

space-time expansion II. Viscous flow equations in multi dimensions. J. Sci. Comput., 34

(3):260–286, 2008.

69. G. Gassner, M. Dumbser, F. Hindenlang, and C.-D. Munz. Explicit one-step time discretiza-

tions for discontinuous Galerkin and finite volume schemes based on local predictors. J.
Comput. Phys., 230(11):4232–4247, 2011.

70. S. Götschel, M. Weiser, and A. Schiela. Solving optimal control problems with the Kaskade

7 finite element toolbox. In A. Dedner, B. Flemisch, and R. Klöfkorn, editors, Advances in
DUNE, pages 101–112. Springer, 2012.

71. M. Griebel and D. Oeltz. A sparse grid space-time discretization scheme for parabolic prob-

lems. Computing, 81(1):1–34, 2007.

72. M. Griebel, D. Oeltz, and P. Vassilevski. Space-time approximation with sparse grids. SIAM
J. Sci. Comput., 28(2):701–727, 2006.

73. D. M. Harrild and C. S. Henriquez. A computer model of normal conduction in the human

atria. Circ. Res., 87(7):e25–e36, 2000.

74. L. Hart and S. McCormick. Asynchronous multilevel adaptive methods for solving partial

differential equations on multiprocessors: Basic ideas. Parallel Comput., 12(2):131–144,

1989.

75. A. Harten. Multiresolution algorithms for the numerical solution of hyperbolic conservation

laws. Commun. Pur. Appl. Anal., 48(12):1305–1342, 1995.

76. A. Henderson. The ParaView Guide: A Parallel Visualization Application. Kitware Inc., 2005.

77. M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq,

K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thornquist, R. S. Tuminaro,

J. M. Willenbring, A. Williams, and K. S. Stanley. An overview of the Trilinos project. ACM
Trans. Math. Softw., 31(3):397–423, 2005.

78. A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane current and its

application to conduction and excitation in nerve. J. Physio., 117(4):500–544, 1952.

79. M. G. Hoogendijk, M. Potse, A. C. Linnenbank, A. O. Verkerk, H. M. den Ruijter, S. C. M.

van Amersfoorth, E. C. Klaver, L. Beekman, C. R. Bezzina, P. G. Postema, H. L. Tan, A. G.

153 Bibliography

Reimer, A. C. van der Wal, A. D. J. ten Harkel, M. Dalinghaus, A. Vinet, A. A. M. Wilde,

J. M. T. de Bakker, and R. Coronel. Mechanism of right precordial ST-segment elevation in

structural heart disease: Excitation failure by current-to-load mismatch. Heart Rhythm, 7(2):

238–248, 2010.

80. R. H. W. Hoppe, Y. Iliash, Y. Kuznetsov, Y. Vassilevski, and B. Wohlmuth. Analysis and

parallel implementation of adaptive mortar finite element methods. J. Numer. Math., 6(3):

223–248, 1998.

81. R. D. Hornung, A. M. Wissink, and S. R. Kohn. Managing complex data and geometry in

parallel structured AMR applications. Eng. Comput., 22(3–4):181–195, 2006.

82. G. Horton. The time-parallel multigrid method. Commun. Appl. Numer. M., 8(9):585–595,

1992.

83. G. Horton and S. Vandewalle. A space-time multigrid method for parabolic partial differential

equations. SIAM J. Sci. Comput., 16(4):848–864, 1995.

84. W. Huang, L. Kamenski, and J. Lang. Adaptive finite elements with anisotropic meshes. In

A. Cangiani, R. L. Davidchack, E. Georgoulis, A. N. Gorban, J. Levesley, and M. V. Tretyakov,

editors, Numerical Mathematics and Advanced Applications 2011, pages 33–42. Springer,

2013.

85. T. J. R. Hughes and G. M. Hulbert. Space-time finite element methods for elastodynamics:

formulations and error estimates. Comput. Meth. Appl. Mech. Eng., 66(3):339–363, 1988.

86. G. M. Hulbert and T. J. R. Hughes. Space-time finite element methods for second-order

hyperbolic equations. Comput. Meth. Appl. Mech. Eng., 84(3):327–348, 1990.

87. J. D. Hunter. Matplotlib: A 2D graphics environment. Comput. Sci. Eng., 9(3):90–95, 2007.

88. J. Hutter and Alessandro Curioni. Dual-level parallelism for ab initio molecular dynamics:

Reaching teraflop performance with the CPMD code. Parallel Comput., 31(1):1–17, 2005.

89. R. Ierusalimschy, L. H. de Figueiredo, and W. Celes. Lua 5.1 Reference Manual. Lua.Org,

2006.

90. IPM. IPM Homepage, 2009. http://ipm-hpc.sourceforge.net/.

91. V. Iyer, R. Mazhari, and R. L. Winslow. A computational model of the human left-ventricular

epicardial myocyte. Biophys. J., 87(3):1507–1525, 2004.

92. P. Jamet. Galerkin-type approximations which are discontinuous in time for parabolic equa-

tions in a variable domain. SIAM J. Numer. Anal., 15(5):912–928, 1978.

93. J. Janssen and S. Vandewalle. Multigrid waveform relaxation on spatial finite element meshes:

The continuous-time case. SIAM J. Numer. Anal., 33(2):456–474, 1996.

154 Bibliography

94. R. Kaeppeli, S. C. Whitehouse, S. Scheidegger, U.-L. Pen, and M. Liebendörfer. FISH: A

three-dimensional parallel magnetohydrodynamics code for astrophysical applications. Astro-
phys. J. Suppl. S., 195(2):20, 2011.

95. G. Karypis and V. Kumar. Parallel multilevel series k-way partitioning scheme for irregular

graphs. SIAM Rev., 41(2):278–300, 1999.

96. J. Keener and J. Sneyd. Mathematical Physiology: I: Cellular Physiology. Interdisciplinary

Applied Mathematics. Springer, 2nd edition, 2008.

97. J. Keener and J. Sneyd. Mathematical Physiology: II: Systems Physiology. Interdisciplinary

Applied Mathematics. Springer, 2nd edition, 2008.

98. R. E. Klabunde. Cardiovascular Physiology Concepts. Wolters Kluwer Health, 2011.

99. D. Krause, K. Fackeldey, and R. Krause. A parallel multiscale simulation toolbox for coupling

molecular dynamics and finite elements. 2012. to appear.

100. D. Krause, M. Potse, T. Dickopf, R. Krause, A. Auricchio, and F. W. Prinzen. Hybrid par-

allelization of a large-scale heart model. In R. Keller, D. Kramer, and J.-P. Weiss, editors,

Facing the Multicore-Challenge II, volume 7174 of Lecture Notes in Computer Science, pages

120–132. Springer, 2012.

101. J. Lang. Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems: Theory, Algo-
rithm, and Applications, volume 16 of Lecture Notes in Computational Science and Engineer-
ing. Springer, 2000.

102. B. Lee, S. F. McCormick, B. Philip, and D. J. Quinlan. Asynchronous fast adaptive composite-

grid methods: Numerical results. SIAM J. Sci. Comput., 25(2):682–700, 2003.

103. B. Lee, S. F. McCormick, B. Philip, and D. J. Quinlan. Asynchronous fast adaptive composite-

grid method for elliptic problems: Theoretical foundations. SIAM J. Numer. Anal., 42(1):

130–152, 2005.

104. G. T. Lines, P. Grottum, and A. Tveito. Modeling the electrical activity of the heart: A

bidomain model of the ventricles embedded in a torso. Comput. Vis. Sci., 5(4):195–213, 2003.

105. R. D. Loft, S. J. Thomas, and J. M. Dennis. Terascale spectral element dynamical core for

atmospheric general circulation models. In Proceedings of the 2001 ACM/IEEE conference
on Supercomputing, pages 18–18, 2001.

106. C.-H. Luo and Y. Rudy. A model of the ventricular cardiac action potential. depolarization,

repolarization, and their interaction. Circ. Res., 68(6):1501–1526, 1991.

107. C.-H. Luo and Y. Rudy. A dynamic model of the cardiac ventricular action potential. I. Sim-

ulations of ionic currents and concentration changes. Circ. Res., 74(6):1071–96, 1994.

155 Bibliography

108. C.-H. Luo and Y. Rudy. A dynamic model of the cardiac ventricular action potential. II.

Afterdepolarizations, triggered activity, and potentiation. Circ. Res., 74(6):1097–113, 1994.

109. X. Ma and N. Zabaras. An adaptive hierarchical sparse grid collocation algorithm for the

solution of stochastic differential equations. J. Comput. Phys., 228(8):3084–3113, 2009.

110. Y. Maday, C. Mavriplis, and A. T. Patera. Nonconforming mortar element methods – Appli-

cation to spectral discretizations. In Domain Decomposition Methods, pages 392–418, 1989.

111. G. Mahinthakumar and F. Saied. A hybrid MPI-OpenMP implementation of an implicit finite-

element code on parallel architectures. Int. J. High Perform. C, 16(4):371–393, 2002.

112. S. McCormick and D. Quinlan. Asynchronous multilevel adaptive methods for solving par-

tial differential equations on multiprocessors: Performance results. Parallel Comput., 12(2):

145–156, 1989.

113. G. R. Mirams, C. J. Arthurs, M. O. Bernabeu, R. Bordas, J. Cooper, A. Corrias, Y. Davit,

S.-. Dunn, A. G. Fletcher, D. G. Harvey, M. E. Marsh, J. M. Osborne, P. Pathmanathan,

J. Pitt-Francis, J. Southern, N. Zemzemi, and D. J. Gavaghan. Chaste: An open source C++

library for computational physiology and biology. PLoS Comput. Bio., 9(3):e1002970, 03

2013.

114. A. A. Mirin, D. F. Richards, J. N. Glosli, E. W. Draeger, B. Chan, J.-L. Fattebert, W. D.

Krauss, T. Oppelstrup, J. J. Rice, J. A. Gunnels, V. Gurev, C. Kim, J. Magerlein, M. Reumann,

and H.-F. Wen. Toward real-time modeling of human heart ventricles at cellular resolution:

Simulation of drug-induced arrhythmias. In Proceedings of the 2012 ACM/IEEE conference
on Supercomputing, pages 2:1–2:11, 2012.

115. L. Mitchell, M. J. Bishop, E. Hötzl, A. Neic, M. Liebmann, G. Haase, and G. Plank. Modeling

cardiac electrophysiology at the organ level in the peta flops computing age. AIP Conf. Proc.,
1281(1):407–410, 2010.

116. M. Munteanu and L. F. Pavarino. Decoupled Schwarz algorithms for implicit discretiza-

tions of nonlinear monodomain and bidomain systems. Math. Model Meth. App. Sci., 19

(7):1065–1097, 2009.

117. M. Neumüller and O. Steinbach. Refinement of flexible space-time finite element meshes and

discontinuous Galerkin methods. Comput. Vis. Sci., 14(5):189–205, 2011.

118. S. Niederer, L. Mitchell, N. Smith, and G. Plank. Simulating a human heart beat with near-real

time performance. Front. Physiol., 2:14, 2011.

119. PARATEC. PARAllel Total Energy Code. http://www.nersc.gov/projects/paratec.

120. P. Pathmanathan, M. O. Bernabeu, R. Bordas, J. Cooper, A. Garny, J. M. Pitt-Francis, J. P.

Whiteley, and D. J. Gavaghan. A numerical guide to the solution of the bidomain equations

of cardiac electrophysiology. Prog. Biophys. Mol. Bio., 102(2–3):136–155, 2010.

156 Bibliography

121. L. F. Pavarino and S. Scacchi. Multilevel additive Schwarz preconditioners for the bidomain

reaction-diffusion system. SIAM J. Sci. Comput., 31(1):420–443, 2008.

122. M. Pennacchio. A non-conforming domain decomposition method for the cardiac potential

problem. In Comput. in Cardiol., pages 537–540, 2001.

123. M. Pennacchio. The mortar finite element method for the cardiac “bidomain” model of extra-

cellular potential. J. Sci. Comput., 20(2):191–210, 2004.

124. G. Plank, R. A. Burton, P. Hales, M. J. Bishop, T. Mansoori, M. O. Bernabeu, A. Garny,

A. J. Prassl, C. Bollensdorff, F. Mason, F. Mahmood, B. Rodriguez, V. Grau, J. E. Schneider,

D. Gavaghan, and P. Kohl. Generation of histo-anatomically representative models of the

individual heart: Tools and application. Philos. T. R. Soc. A, 367(1896):2257–2292, 2009.

125. B. Pope, B. Fitch, M. Pitman, J. Rice, and M. Reumann. Performance of hybrid programming

models for multiscale, cardiac simulations: Preparing for petascale computation. IEEE Trans.
Biomed. Eng., 58(10):2965–2969, 2011.

126. M. Potse. Mathematical modeling and simulation of ventricular activation sequences: Impli-

cations for cardiac resynchronization therapy. J. Cardio. Transl. Res., 5(2):146–158, 2012.

127. M. Potse, B. Dubé, J. Richer, A. Vinet, and R. M. Gulrajani. A comparison of monodomain

and bidomain reaction-diffusion models for action potential propagation in the human heart.

IEEE Trans. Biomed. Eng., 53(12):2425–2435, 2006.

128. M. Potse, B. Dubé, and A. Vinet. Cardiac anisotropy in boundary-element models for the

electrocardiogram. Med. Biol. Eng. Comput., 47(7):719–729, 2009.

129. L. Priebe and D. J. Beuckelmann. Simulation study of cellular electric properties in heart

failure. Circ. Res., 82(11):1206–1223, 1998.

130. R. Rabenseifner, G. Hager, and G. Jost. Hybrid MPI/OpenMP parallel programming on clus-

ters of multi-core SMP nodes. In Proceedings of the 17th Euromicro International Conference
on Parallel, Distributed and Network-based Processing, pages 427–436, 2009.

131. C. A. Rendleman, V. E. Beckner, M. Lijewski, W. Crutchfield, and J. B. Bell. Parallelization of

structured, hierarchical adaptive mesh refinement algorithms. Comput. Vis. Sci., 3(3):147–157,

2000.

132. F. A. Roberge, A. Vinet, and B. Victorri. Reconstruction of propagated electrical activity with

a two-dimensional model of anisotropic heart muscle. Circ. Res., 58(4):461–475, 1986.

133. D. Rossinelli, M. Bergdorf, B. Hejazialhosseini, and P. Koumoutsakos. Wavelet-based adap-

tive solvers on multi-core architectures for the simulation of complex systems. In H. Sips,

D. Epema, and H.-X. Lin, editors, Euro-Par 2009 Parallel Processing, volume 5704 of Lec-
ture Notes in Computer Science, pages 721–734. Springer, 2009.

157 Bibliography

134. D. Rossinelli, B. Hejazialhosseini, D. G. Spampinato, and P. Koumoutsakos. Multicore/multi-

GPU accelerated simulations of multiphase compressible flows using wavelet adapted grids.

SIAM J. Sci. Comput., 33(2):512–540, 2011.

135. S. Rush and H. Larsen. A practical algorithm for solving dynamic membrane equations. IEEE
Trans. Biomed. Eng., 25(4):389–392, 1978.

136. Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied

Mathematics, 2003.

137. O. Sahni, M. Zhou, M. S. Shephard, and K. E. Jansen. Scalable implicit finite element solver

for massively parallel processing with demonstration to 160k cores. In Proceedings of the
2009 ACM/IEEE conference on Supercomputing, pages 68:1–68:12, 2009.

138. Hasan I. Saleheen and Kwong T. Ng. New finite difference formulations for general inhomo-

geneous anisotropic bioelectric problems. IEEE Trans. Biomed. Eng., 44(9):800–809, 1997.

139. R. S. Sampath, S. S. Adavani, H. Sundar, I. Lashuk, and G. Biros. Dendro: Parallel algo-

rithms for multigrid and AMR methods on 2:1 balanced octrees. In Proceedings of the 2008
ACM/IEEE conference on Supercomputing, pages 18:1–18:12, 2008.

140. S. V. Sathe, R. Benney, R. D. Charles, E. Doucette, J. Miletti, M. Senga, K. R. Stein, and

T. E. Tezduyar. Fluid-structure interaction modeling of complex parachute designs with the

space-time finite element techniques. Comput. Fluids, 36(1):127–135, 2007.

141. B. Satish, J. Brown, , K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley,

L. Curfman McInnes, B. F. Smith, and H. Zhang. PETSc users manual. Technical Report

ANL-95/11 - Revision 3.1, Argonne National Laboratory, 2010.

142. P. Schwartz, M. Barad, P. Colella, and T. Ligocki. A Cartesian grid embedded boundary

method for the heat equation and Poisson’s equation in three dimensions. J. Comput. Phys.,
211(2):531–550, 2006.

143. J. Southern, G. Plank, E. J. Vigmond, and J. P. Whiteley. Solving the coupled system im-

proves computational efficiency of the bidomain equations. IEEE Trans. Biomed. Eng., 56

(10):2404–2412, 2009.

144. J. Southern, G. J. Gorman, M. D. Piggott, P. E. Farrell, M. O. Bernabeu, and J. Pitt-Francis.

Simulating cardiac electrophysiology using anisotropic mesh adaptivity. J. Comput. Phys., 1

(2):82–88, 2010.

145. J. Southern, G. J. Gorman, M. D. Piggott, and P. E. Farrell. Parallel anisotropic mesh adaptivity

with dynamic load balancing for cardiac electrophysiology. J. Comput. Phys., 3(1–2):8–16,

2012.

158 Bibliography

146. R. Speck, D. Ruprecht, R. Krause, M. Emmett, M. Minion, M. Winkel, and P. Gibbon. A mas-

sively space-time parallel N-body solver. In Proceedings of the 2012 ACM/IEEE conference
on Supercomputing, pages 92:1–92:11, 2012.

147. D. Stefanica. A numerical study of FETI algorithms for mortar finite element methods. SIAM
J. Sci. Comput., 23(4):1135–1160, 2001.

148. S. Sun and M. F. Wheeler. Mesh adaptation strategies for discontinuous Galerkin methods

applied to reactive transport problems. In H.-W. Chu, M. Savoie, and B. Sanchez, editors,

Proceedings of the 2004 International Conference on Computing, Communication and Con-
trol Technologies, volume 1, pages 223–228, 2004.

149. H. Sundar, G. Biros, C. Burstedde, J. Rudi, O. Ghattas, and G. Stadler. Parallel geometric-

algebraic multigrid on unstructured forests of octrees. In Proceedings of the 2012 ACM/IEEE
conference on Supercomputing, pages 43:1–43:11, 2012.

150. K. H. ten Tusscher and A. V. Panfilov. Alternans and spiral breakup in a human ventricular

tissue model. Am. J. Physiol., 291(3):H1088–H1100, 2006.

151. K. H. ten Tusscher, D. Noble, P. J. Noble, and A. V. Panfilov. A model for human ventricular

tissue. Am. J. Physiol., 286(4):H1573–H1589, 2004.

152. T. E. Tezduyar and S. V. Sathe. Enhanced-discretization space-time technique (EDSTT). Com-
put. Methods Appl. M., 193(15–16):1385–1401, 2004.

153. T. E. Tezduyar, S. Aliabadi, and M. Behr. Enhanced-discretization interface-capturing tech-

nique (EDICT) for computation of unsteady flows with interfaces. Comput. Methods Appl.
M., 155(3–4):235–248, 1998.

154. T.E. Tezduyar, M. Behr, and J. Liou. A new strategy for finite element computations involving

moving boundaries and interfaces – The deforming-spatial-domain/space-time procedure: I.

The concept and the preliminary numerical tests. Comput. Meth. Appl. Mech. Eng., 94(3):

339–351, 1992.

155. J. A. Trangenstein and C. Kim. Operator splitting and adaptive mesh refinement for the Luo-

Rudy I model. J. Comput. Phys., 196(2):645–679, 2004.

156. N. A. Trayanova. Defibrillation of the heart: Insights into mechanisms from modelling studies.

Experimental Physiology, 91(2):323–337, 2006.

157. T. Tu, D. R. O’Hallaron, and O. Ghattas. Scalable parallel octree meshing for terascale ap-

plications. In Proceedings of the 2005 ACM/IEEE conference on Supercomputing, pages

4:1–4:15, 2005.

158. L. Tung. A bi-domain model for describing ischemic myocardial D-C potentials. PhD thesis,

MIT, Cambridge, MA, 1978.

159 Bibliography

159. B. Van Straalen, P. Colella, D. T. Graves, and N. Keen. Petascale block-structured AMR

applications without distributed meta-data. In E. Jeannot, R. Namyst, and J. Roman, edi-

tors, Euro-Par 2011 Parallel Processing, volume 6853 of Lecture Notes in Computer Science,

pages 377–386. Springer Berlin Heidelberg, 2011.

160. M. Vázquez, R. Arís, G. Houzeaux, R. Aubry, P. Villar, J. Garcia-Barnés, D. Gil, and F. Car-

reras. A massively parallel computational electrophysiology model of the heart. Int. J. Numer.
Meth. Biomed. Eng., 27(12):1911–1929, 2011.

161. E. J. Vigmond, F. Aguel, and N. A. Trayanova. Computational techniques for solving the

bidomain equations in three dimensions. IEEE Trans. Biomed. Eng., 49(11):1260–1269, 2002.

162. E. J. Vigmond, R. Weber dos Santos, A. J. Prassl, M. Deo, and G. Plank. Solvers for the

cardiac bidomain equations. Prog. Biophys. Mol. Bio., 96(1–3):3–18, 2008.

163. M. S. Warren and J. K. Salmon. A parallel hashed oct-tree N-body algorithm. In Proceedings
of the 1993 ACM/IEEE conference on Supercomputing, pages 12–21, 1993.

164. T. Weinzierl and T. Köppl. A geometric space-time multigrid algorithm for the heat equation.

Numerical Mathematics: Theory, Methods and Applications, 5(1):110–130, 2012.

165. T. Weinzierl and M. Mehl. Peano – A traversal and storage scheme for octree-like adaptive

Cartesian multiscale grids. SIAM J. Sci. Comput., 33(5):2732–2760, 2011.

166. M. Weiser, B. Erdmann, and P. Deuflhard. On efficiency and accuracy in cardioelectric simula-

tion. In H.-G. Bock, F. Hoog, A. Friedman, et al., editors, Progress in Industrial Mathematics
at ECMI 2008, volume 15 of Mathematics in Industry, pages 371–376. Springer Berlin Hei-

delberg, 2010.

167. J. P. Whiteley. Physiology driven adaptivity for the numerical solution of the bidomain equa-

tions. Ann. Biomed. Eng., 35(9):1510–1520, 2007.

168. Jonathan P. Whiteley. An efficient numerical technique for the solution of the monodomain

and bidomain equations. IEEE Trans. Biomed. Eng., 53(11):2139–2147, 2006.

169. A. M. Wissink, R. D. Hornung, S. R. Kohn, S. S. Smith, and N. Elliott. Large scale parallel

structured AMR calculations using the SAMRAI framework. In Proceedings of the 2001
ACM/IEEE conference on Supercomputing, pages 6–6, 2001.

170. B. I. Wohlmuth. A residual based estimator for mortar finite element discretizations. Numer.
Math., 84(1):143–171, 1999.

171. B. I. Wohlmuth. A mortar finite element method using dual spaces for the Lagrange multiplier.

SIAM J. Numer. Anal., 38(3):989–1012, 2000.

172. B. I. Wohlmuth. Discretization Techniques and Iterative Solvers Based on Domain Decompo-
sition, volume 17. Springer, 2001.

160 Bibliography

173. B. I. Wohlmuth and R. Krause. Monotone multigrid methods on nonmatching grids for non-

linear multibody contact problems. SIAM J. Sci. Comput., 25(1):324–347, 2003.

174. B. I. Wohlmuth and R. H. Krause. A multigrid method based on the unconstrained product

space for mortar finite element discretizations. SIAM J. Numer. Anal., 39(1):192–213, 2002.

175. W. Ying and C. S. Henriquez. Adaptive mesh refinement for modeling cardiac electrical

dynamics. Chaos, 2011. submitted.

176. H. Yu. Solving parabolic problems with different time steps in different regions in space based

on domain decomposition methods. Appl. Numer. Math., 30(4):475–491, 1999.

177. H. Yu. A local space-time adaptive scheme in solving two-dimensional parabolic problems

based on domain decomposition methods. SIAM J. Sci. Comput., 23(1):304–322, 2001.

178. G. W. Zumbusch. A sparse grid PDE solver; discretization, adaptivity, software design and

parallelization. In H. P. Langtangen, A. M. Bruaset, and E. Quak, editors, Advances in Soft-
ware Tools for Scientific Computing, volume 10 of Lecture Notes in Computational Science
and Engineering, pages 133–177. Springer, 2000.

	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Computational Modeling in Electrophysiology
	Modeling Electrical Properties of Cardiac Cells
	Hodgkin-Huxley Type Models
	Membrane Models for Human Ventricular Cells
	The Fitz-Hugh Nagumo Model
	The Bernus Model

	Modeling Electrical Properties of Cardiac Tissue
	The Bidomain equation
	The Monodomain equation
	Conductivity Tensors
	Summary of Governing Equations

	Numerical Methods
	Spatial Discretization
	Temporal Discretization

	Adaptive Computational Methods
	Motivation
	Background

	Parallelization of the Propag Heart Model for Large-Scale Simulations
	Characterization of Propag-4
	Algorithms for Large-Scale Simulations
	Implicit-Explicit Euler Time Integration
	Parallel Setup

	Hybrid Parallelization
	MPI Parallelization
	MPI Threading Support

	Results
	Performance of Single-Threaded Execution
	Benefits of Hybrid Execution
	Weak Scaling of Monodomain Solver
	Performance of Parallel Setup

	Discussion

	A Lightweight Adaptive Scheme for the Monodomain Equation
	Introduction
	Overview

	Lightweight Adaptive Meshes
	Mortar Discretization
	Mortar Constraints
	Mortar Projection
	Dual Lagrange Multipliers
	Saddle-Point Formulation
	A Basis for the Subspace

	Linear Solver and Preconditioning
	Transfer Operators
	L2-Transfer
	Local Transfer

	Adaptivity Control
	Error Estimation
	Marking Strategy

	Implementation and Parallelization
	Implementation Aspects
	Parallelization
	Measuring Depolarization Times

	Results
	Convergence Studies
	Small-Scale Problem
	Large-Scale Problem
	Parallel Scalability

	Related Work
	Discussion

	Spatial Adaptivity Using Forests of Shallow Trees
	Introduction
	Adaptive Meshes on Forests of Shallow Trees
	Discretization
	Geometrically Non-Conforming Mortar Discretization
	The Subspace of Continuous Functions
	Assembly Strategy

	Implementation and Parallelization
	Mesh Datastructure
	Finite Element Spaces and Linear Algebra
	Assembly Strategy
	Transfer Operators

	Results
	Small-Scale Problem
	Large-Scale Problem
	Bidomain Equation
	Heart Model

	Discussion

	Adaptivity Using Space-Time Finite Elements
	Introduction
	Space-Time Discretization
	Discretization with Continuous Finite Elements
	Discontinuous Galerkin Methods
	Discretization on Non-Conforming Meshes
	Space-Time Transfer Operator
	Discretization of Monodomain and Bidomain equations

	Results
	(1+1)-dimensional Heat Equation
	Stabilization of the Space-Time Mortar Element Method
	(2+1)-dimensional Heat Equation
	(3+1)-dimensional Heat Equation
	(1+1)-dimensional Monodomain Equation
	(2+1)-dimensional Monodomain Equation

	Related Work
	Discussion

	Conclusion
	Assembly of the Mortar Projection
	Bibliography

