Mining Unstructured Software Data

Doctoral Dissertation submitted to the
Faculty of Informatics of the Universita della Svizzera Italiana
in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

presented by
Alberto Bacchelli

under the supervision of
Prof. Dr. Michele Lanza

June 2013

Dissertation Committee

Prof. Dr. Fabio Crestani
Prof. Dr. Carlo Ghezzi

Prof. Dr. Lionel Briand
Prof. Dr. Massimiliano Di Penta
Dr. Thomas Zimmermann

Universita della Svizzera Italiana, Switzerland
Politecnico di Milano, Italy

University of Luxembourg, Luxembourg
University of Sannio, Italy
Microsoft Research, USA

Dissertation accepted on 14 June 2013

Prof. Dr. Michele Lanza
Research Advisor
Universita della Svizzera Italiana, Switzerland

Prof. Dr. Antonio Carzaniga
PhD Program Director

I certify that except where due acknowledgement has been given, the work presented in this
thesis is that of the author alone; the work has not been submitted previously, in whole or in part,
to qualify for any other academic award; and the content of the thesis is the result of work which
has been carried out since the official commencement date of the approved research program.

Alberto Bacchelli
Lugano, 14 June 2013

To Randy, the elephant in the room.

Abstract

The availability of large amounts of recorded data, produced during software development, has
led to a research area called mining software repositories (MSR). Researchers mine software
repositories both to support software understanding, development, and evolution, and to em-
pirically validate novel ideas and techniques. Most MSR research focuses on mining archives
of data that is either written by humans for a computer (e.g., source code) or generated by a
computer for humans (e.g., execution traces). This data has an easily parseable structure that
allows precise fact extraction and concerns the end product of software development. For this
reason, the knowledge embedded in structured data can be extracted and modeled through well-
established techniques.

Other software repositories archive data that is more unstructured, as it is produced by humans
for humans: documents, such as emails, change comments, or bug reports, written in natural
language and used to exchange information among people. The data contained in these reposito-
ries is not widely exploited because of its noisy and unstructured nature. The information stored
in unstructured data encodes knowledge not to be found in other software artifacts, and also al-
lows gaining valuable insights on the human factors revolving around a software project.

Our thesis is that the analysis of unstructured data supports software understanding and evolu-
tion analysis, and complements the data mined from structured sources. To this aim, we imple-
mented the necessary toolset and investigated methods for exploring, exposing, and exploiting
unstructured data.

To validate our thesis, we focused on development email data. We found two main challenges
in using it to support program comprehension and software development: The disconnection
between emails and code artifacts and the noisy and mixed-language nature of email content.
We tackle these challenges proposing novel approaches. First, we devise lightweight techniques
for linking email data to code artifacts. We use these techniques for creating a tool to support
program comprehension with email data, and to create a new set of email based metrics to im-
prove existing defect prediction approaches. Subsequently, we devise techniques for giving a
structure to the content of email and we use this structure to conduct novel software analyses to
support program comprehension.

In this dissertation we show that unstructured data, in the form of development emails, is a
valuable addition to structured data and, if correctly mined, can be used successfully to support
software engineering activities.

iii

Acknowledgements

What made the years that led to my Ph.D. one of the best periods of my life are, no doubt, the
people who I had the luck to meet and who decided to share some of their precious time with me.
Thanks to them I grew, I had life changing experiences, I had fun, and I managed to successfully
complete my Ph.D. with a happy smile on my face.

In my vision, a Ph.D. starts and ends with the advisor. I know for sure that there are great Ph.D.
advisors out there (I have even seen some of them in action), but—for me—Prof. Michele Lanza
has been nothing less than the perfect one. Michele, I will always be grateful to you for giving
me the priceless chance to be one of your Ph.D. students. From you I have learnt so many things
that I could write a book as long as this one. You have been a mentor for both my professional
and my personal life. Among so many other positive things, you have always been be there for
me when I needed, and you perfectly knew how to push me well beyond what I thought were
my limits. And you probably did much more for me and all your Ph.D. students, than we could
actually see. Thank you for everything. A special thank you to your sweet and phenomenal wife
Marisa. Marisa, thanks for helping Michele to deal with us even during hard times!

My Ph.D. could not have been possible without the efforts and the approval of my dissertation
committee: Prof. Lionel Briand, Prof. Fabio Crestani, Prof. Max Di Penta, Prof. Carlo Ghezzi,
and Dr. Tom Zimmerman. I would like to thank you for accepting to be in my committee: I never
expected to be so fortunate that top researchers like you decided to be part of my Ph.D. work. I
thank you for all the valuable time you have spent on revising my progress and on providing me
with top quality feedback. I really appreciated how you were, at the same time, professional,
insightful, and easy-going. Lionel, thank you for accepting to evaluate my work despite your
busy research agenda; I really appreciated your valuable feedback during the defense and your
praises on the quality of my work. Fabio, thank you for letting me hear the voice of a top re-
searcher in information retrieval about my work. Max you are one of the most hard-working,
prolific, and smart people I had the chance to meet, thank you for all the constructive comments
about my work; I am looking forward to start our research collaboration. Carlo, thank you for
giving me good advices about my future career and for showing me how you can be both a great
researcher and a cool person. Tom, thank you for giving me the opportunity to collaborate with
you during my internship at Microsoft Research, I have learnt a lot from you and you have been
of great inspiration during my research.

During my two internships at Microsoft Research, Dr. Christian Bird has been a great mentor,
collaborator, and friend. Chris, thank you for asking me to work with you and for making my
internships stellar from every perspective. You taught me a lot on how to do great research. It
was so fun to learn together how to do a great qualitative study. I cannot forget how together we
managed to submit an awesome ICSE paper the last day of my internship at 2 in the morning.
Also, thank you for being a true mentor, who helped and understood me even about my personal
issues. I am looking forward to continue collaborating with you!

I would like to thank all my colleagues in the REVEAL research group, led by Michele Lanza.
Ricky, Mircea, Lile, Fernando, Marco, and Romain you made each of my working days special.

You were not only great colleagues, but also great friends from the very first day I arrived in
Lugano. Ricky, thank you for making the office a funny place and for sharing with me a lot of
your experience on work and life. Mircea, thank you for being the most welcoming person in
the office, your very social nature was the perfect glue for all the relationships in the office. Lile,
it has been great to work with you, even on very small projects, you showed me how one can be
very professional, but at the same time not a workaholic. Fernando, every time I have to deal
with object oriented issues, I always think about you and how you would solve them: You are a
programming guru for me. Marco, you are the best colleague that I could have ever imagined;
every day, I miss working with you on cool projects while having fun and making jokes. Romain,
you were the best post-doc ever: As Michele has been the perfect advisor to me, you were the
perfect post-doc, nothing less; one of the best things about continuing working in academia is
that I can still collaborate with you.

I'would like to thank Prof. Anthony Cleve and Dr. Andrea Mocci, who collaborated with me on
a very cool piece of work. Not only it has been a pleasure to work with you, but also I found two
great friends. I will continue to have fun and collaborate with you.

Many thanks to Prof. Mehdi Jazayeri, the founding dean of the University of Lugano, who gave
me the opportunity to work there. Thank you for being such a great example of enlightened
academic and educator. Also, thank you for your great help to improve my job applications to
academia.

Concerning the University of Lugano, many thanks also to the nice people working at the “de-
canato.” You helped me dealing with my traveling and logistic issues always with a cheerful
smile and a friendly attitude, it was always a pleasure to go to your office.

Teaching is learning. During my Ph.D. years, I had the great opportunity to supervise many
Bachelor and Master students. Ebrisa, Francesco, Luca, Lorenzo, Remo, Tommaso, and Vitezslav,
I would like to thank you all for giving me the possibility to help you in achieving your targets
and for letting me learn from you. A special thanks to Tommaso, who is also a great friend
and decided to join the REVEAL group as a Ph.D. student after having worked with us for six
months. Another special thanks to Sylvie, who I did not mentor directly, but who is always
interested in my progress and who became a good friend.

Good luck and thank you to the new Ph.D. students in the REVEAL group: Roberto, Luca, and
Tommaso. Be aware: You have to meet very high standards of coolness to maintain the former
spirit of the group ;)

Another thanks goes to Dr. Roel Wuyts, who has been my teacher in the software engineering
course during my Erasmus in Brussels. Roel, I would like to thank you because, undoubtedly,
without that course I would have never decided to do a Ph.D. with Michele. So, thank you a lot!
I hope to have the chance someday to thank you in person.

The last, but not least, “academic” thank you goes to Prof. Arie van Deursen, the SERG group,
and TU Delft. I feel privileged that you decided—even before I defended my thesis-to give me
the chance to continue my academic career in your great group, as an assistant professor! Thank
you for all your support and your faith in me.

The first non-academic thank you goes to the outermost circle of my “family:” Alessandra, Gi-
anluca, and Daniele. Thank you for being my best friends, for always being there for me, and
for being such amazing people. Your friendship has been a great support for me during my
Ph.D. years. Alessandra, your perseverance and love in your work is continuous inspiration for
me: You know what it means to live for a passion. I am impressed about how, sometimes, you

understand me even better than myself and how you can let me know what you think just by
looking at me. Gianluca, I admire how you are able to find the best in the small things of life, and
how you are so proud of your roots. Our friendship grew impressively in the last years, during
which we had fun together in good times and you were with me on the bad ones, trying to make
me think and cheer me up. I wish you and Alessandra all the best with your family. Daniele,
you have been on my side since kindergarden, and I consider you as a brother. I know I will
always be able to rely on you, and you know you can do the same with me. I wish you all the
best with your new American adventure, from which you will be able to get out the most for you
and for the people close to you. To all the three of you, thank you for being such an important
part of my wedding: Gianluca and Daniele for being my official best men, and Alessandra for
being my best “man” in pectore.

The second family thank you goes to my mom, Maria Cristina, and my sister, Chiara. Mom, you
brought me to life and taught me to be a good person; you taught me what is important and
what is valuable, you taught me what is right, and you showed me how to stand the troubles
of life. Of course, no one can ever replace you. Sorella, I know I can rely on you for everything,
because you have always been there for me. You trusted me more than everyone else and put
complete confidence on me, since the very beginning. Thank you for being as you are. And
thank you to Lucia, Michele, and Rita: The best nephews I could ever imagine.

I would like to say thank you to Oinky, Monky, Randy, Penguina, and Tommy. For being such
an awesome tribii and for supporting me patiently while I was writing this thesis.

Finally, the last and most important thank you goes to the innermost circle of my family: My
wife, Anja. Anja, every and each day of our life you make me discover what true love feels like.
Thank you for choosing me as the companion for your life, for always exceeding my expectation
under every possible aspect of everything, and for being the most important part of my life.

Alberto Bacchelli

Contents

Prologue
Introduction
1.1 TheProblem e
1.2 ThesisStatement
1.3 Contributions e
1.4 Outline e e
State of the Art
2.1 AHistorical Perspective
2.2 Mining Software Repositories 0.
221 Linking Software DataSources
2.2.2 Structured and Unstructured Software Data
2.2.3 Emails as an Unstructured Data Source of Information
23 SUMMATY oo it

Methodology, Replicability, and Subject Systems

3.1 Iterative Explorative Approach
32 ToolBasedResearch

321 AWalkThroughMiler
3.3 Benchmark and Replicability
3.4 Subject Systems forthe Analyses
35 Summary

Linking Unstructured Data and Source Code Artifacts

Recovering Traceability Links Between Emails and Source Code Artifacts
471 OVervIiew o it e

4.2 Benchmark Creation With the Miler Toolset
421 ImportingEmailData
422 Importing Source CodeData
4.2.3 Manual Benchmark Creation With the Miler Game
424 Evaluation
4.3 Lightweight Traceability Linking
43.1 Artifact Name, CaseInsensitive
432 Artifact Name, CaseSensitive,
43.3 Strict Regular Expression
434 Loose Regular Expression, Case Sensitive
435 Mixedapproaches o

ix

43.6 Discussion e e e 50

44 Information Retrieval Techniques 50
441 Vector Space Model (VSM), 52

442 Latent Semantic Indexing (LSI) 54

443 Results e e e 54

4.5 Lightweight vs Heavyweight 57
45.1 Results of Lightweight Methods 57

452 Comparison 59

453 DiscusSion e e e e 60

454 OnTheThreatsto Validity 60

46 Relatedwork 61
4.7 Summary 63
Improving Defect Prediction Approaches With Email Data 65
5.1 OVerview e e e e e 65
52 Methodology 66
53 Experiments 70
53.1 Correlations Analysis 71

5.3.2 Defect Prediction 72

5.4 DiscussSion e e e e e e e 74
55 Threatstovalidity 75
5.6 Related Work e e e 76
57 Summary 77
Supporting Program Comprehension With Emails 79
6.1 Overview e e e 79
6.2 REmam: Recommending Emails, 80
6.2.1 Data-collection Mechanism 81

6.2.2 RecommendationEngine 82

623 UserInterface e 83

6.3 Program comprehension throughemails. 85
6.3.1 Entry points from class popularity inemails 85

6.3.2 Software Evolution Analysis 89

633 Expertfinding L. 90

6.34 Recovering Additional Information 91

6.4 Related Work e e e 93
6.5 SUMMATIYo 93
Structuring Unstructured Software Data 95
Detecting Lines of Source Code in Development Emails 99
701 OVerVIEW e e e e 99
7.2 Benchmark and Evaluation 100
721 Subjects of theexperiment 100

722 Benchmarkcreation 101

723 Evaluation 101

73 Experiments 102

7.3.1 Classification of emails including source code fragments 103

7.3.2 Classification of text lines including source code fragments 108

7.3.3 Sourcecodeextraction 111
74 DiSCuSSION e e e e e e e 112
75 Relatedwork e e 113
76 Summaryo 114
Recovering Structured Fragments from Unstructured Data 117
8.1 Overview e e 118
8.2 GrammarsandIslandParsing o oL 119
8.2.1 Island Grammars and Their Parsing 121
8.3 1Lanper: The Parsing Approach 121
8.3.1 Island Definition 123
8.3.2 Ambiguity Resolution 125
8.4 1Lanper: Validation 127
8.4.1 Textnormalizationofemails 127
8.42 Empirical Validation L. 129
843 ThreatstoValidity 131
8.5 1Lanper: Model Extraction 131
851 Metamodel e e 132
852 Transformation Example. L 133
8.6 1LanDEr: Disclosing New Directions for Analyses 134
8.6.1 Modelreconstruction 135
8.6.2 Systemanalysis L L L 138
8.7 DPemitlsLanp: The Parsing Approach, 140
8.7.1 Parsing Expression Grammars 141
8.72 Implementation L 141
873 Summary 146
8.8 PemrlsLanD: Validation 146
8.8.1 Productions 147
8.82 Results e e 151
883 Summary 152
8.9 PeritlsLaND: Applications Lo L 153
8.9.1 Extracting source models from system artifacts 153
8.9.2 Otherapplications 154
8.10 Related Work e 155
811 Summary 156
Classification of Lines in Development Emails 159
9.1 OVEIVIEW . . . o o o e e e e e e e e e e e e e e e e e e 159
9.2 Motivation e e e e e 160
9.3 Data Collection and Classification 161
9.3.1 DataCollection e 162
9.3.2 Data Classification e 162
9.3.3 DataDistribution e 164
94 Experiment. 164
9.4.1 Term Based Classification 164
9.42 Trainingand Testing 167
9.43 Term Based Features and Overfitting 168

9.44 Parsing Based Classification 169

10

11

9.45 Unified Approach

9.5 Threatsto Validity
9.6 Related Work
9.7 Summary
Epilogue
Communication in OSS Mailing Lists
10.1 OVerviewo
10.2 Methodology
10.2.1 Research Questions i it
10.2.2 ResearchMethod o
10.2.3 DataCollection
1024 CardSort.
10.2.5 Aliasing and Identification of Developers
10.3 What are mailing list participants talking about?
10.4 How often do participants talk about each topic?
10.4.1 How prominent are implementation details?
10.5 Is the development mailing list only for developers?
10.5.1 Whatdo developers focuson?
10.5.2 Dynamics of interactions L o o oL
10.5.3 Theoverall picture,
10.6 What is the role of the development mailing list?
10.6.1 Isin the mailing list where all the communication occurs?
10.6.2 Is the mailing list for driving coordination?
10.6.3 Is the mailing list used for peer code review?
10.6.4 Is the mailing list the hub of project communication?
10.7 Implications
10.8 Limitations
109 Related Work L
10.10Summary
Conclusion
11.1 Contributions
11.1.1 Exploratory Investigation
11.1.2 Email Data and Source Code Artifacts Reconnected
11.1.3 Unstructured Data Restructured
11.1.4 Updated our knowledge on OSS mailing list communication
11.1.5 Benchmarks
112 FutureWork
11.2.1 Lessons learned by mining developmentemails

113 ClosingWords

List of Figures

3.1
3.2
3.3

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8
49
4.10
4.11

5.1
52

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

7.1
7.2
73
74
7.5
7.6
7.7
7.8
7.9
7.10

8.1

The architectureof Miler 22
The Meta-Modelof Miler 23
TheMilerGame e 25
Example of parsed information and the resultingmodel 39
Miler Game: The Web Application for Creating the Benchmark 40
Miler Game: The autocompletion field, 40
An email from the sample set containing various kinds of references to entities . 43
Mixing approaches to face polysemy-related issues 48
Precision, recall, and F-measure of all lightweight approaches. 51
LSI, F-Measure by topics and query type 55
VSM, tf-idf: F-Measure by distance 0L 55
LSI: F-Measure by distance 56
Example text with code artifact mentioned. 58
Overall precision, recall, and F-measure 59
Overall schema of our approach. 67
Linking bugs, SCM filesand classes. 70
The architectureof Remail L L oL 81
The REmamwL Plugin 83
Excerpt of a related, however irrelevant, linkedemail 84
Email filtering configuration L L L L L L. 85
Excerpt from Package Explorer: FReeneT packages with popularity 86
Excerpt from Emails View: emails recommended for class Node 87
Emails View: recent threads recommended for PeerNode 88
Mina architecture: Main components and their popularity 88
Package org.apache.mina.util: changes and discussions 90
Emails recommended for mina.util.ExceptionMonitor 92
An email excerpt containing source code fragments 102
The MiLer GaME extended to support email annotation of source code fragments 103
Anexcerptfrom Figure7.1 L oo 103
Email classification on occurrences of keywords L. 104
OpenJPA: email classification based on occurrences of keywords 105
Email classification based on frequencies of special characters 106
Lines with source code fragments in Figure7.1 107
Email classification based onend of lines 108
FrEENET: email classification based onend of lines 109
Common lines with source code distant from thecontent 111
Example document enclosing structured information 117

xiii

8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20
8.21
8.22
8.23
8.24

9.1
9.2
9.3
94
9.5

10.1
10.2
10.3
10.4

Two different parse trees for the expression2 * 1 + 3. 120

Example lines from Figure 8.1 enclosing structured information 123
Incomplete method declaration from Figure 8.1 124
Examples of incomplete class declaration with partialbody 124
Ambiguous method invocation from Figure 8.1 126
Examplepatch 128
Example interrupted stack traceline 0 0oL 128
Systems’ Mailing Listsand Results 129
Example truncated code fragment 0L 130
Example of extracted facts oL 132
Incomplete method declaration from Figure8.1 133
Extracted incomplete method declaration 133
Facts from an incomplete method declaration 135
Class fragments popularity and relationshipsinemails 139
Trends in popularity of fragmentsof classes 140
The parsing process, showing the role of precedences. 144
Parts matched with a small island parser. 145
Structured fragment embedding water and islands: Island with lakes. 145
Example text with a compilationunit. 148
Example text with various source code fragments. 149
Source code from Figure820. oL 152
Example lines with code from Figure 8.21. 152
Class modeling for textanalysis. 154
Example development email with mixed content 160
Mailpeek: our web app for classifying email content 163
Lines modeled as vector of term-features 165
Results on training and test sets, by line threshold for features 168
Training and Test Process of the Unified Classification Approach. 174
The mixed approach research method applied. 186
Card Sort: ExampleCard 188
Distribution of threads per category. 191

Distribution of the types of threads. 195

List of Tables

3.1 The open source software systems used in our analyses, by chapters 28
4.1 Emails per benchmark and softwaresystem 37
4.2 Source code entities per benchmark and software system 39
43 VSM and LSl results, optimal parameters 57
4.4 Results for best performing lightweight approaches 57
5.1 Class level source code and change metrics. 68
5.2 Class level email popularity metrics. 68
5.3 Systems consideredinthestudy 71
54 Correlation coefficients o oL o o 72
5.5 Defect predictionresults L L Lo 74
6.1 Code commits involving org.apache.mina.util.ExceptionMonitor 91
7.1 The software systems considered for the benchmark 100
7.2 End of line and regular expression approachresults 107
7.3 Line classification by occurrences of characters 110
74 Line classification by end of line and regular expression 110
7.5 Line classification by end of line and regular expression 111
7.6 Average effectiveness of detectionmethods 0. 112
8.1 Source fragments recognized in ILANDER 126
8.2 Percentage of system reconstruction fromemails 137
8.3 A Selection of The Parser Combinators in PetitParser 142
8.4 A Selection of Terminal Parsers in PetitParser 142
8.5 Considered Java productions, in priority order (top to down, then left to right) . 147
8.6 Dataset description and results, by projecttag. 151
9.1 Email data sets used in the experiment, by system 162
9.2 Distribution of the categories per line, by system 164
9.3 Results with term based classification, by featuresets 166
9.4 Mailing list cross validation on the best set of features 168
9.5 Single classification results achieved by using parsers 172
9.6 Results adding parser-based features 173
9.7 Results of the unified approach on mailing list cross validation 175
10.1 Categorization of email threads. 194

XV

Part |

Prologue

Chapter 1

Introduction

Human factors play a key role in software engineering processes. In 1968, Melvin Conway stated
the hypothesis, later called Conway’s Law, that any organization that designs a system will pro-
duce a design whose structure is a copy of the organization’s communication structure [48]. In
the process of validating this law, recent research (e.g., [38; 44; 143]) provides evidence that “when
the organization of people in a software effort is similar to the organization of the software, the project does
better than when they differ” [149]. In Fred Brook’s seminal work The Mythical Man-Month, written
in 1975, we read that the number of people involved in a software project increases its complexity
exponentially. By analyzing the history of five hundred projects, DeMarco and Lister reported
that in most failed projects “there was not a single technological issue to explain the failure” [124].

To understand human factors in software engineering, one should study the people involved in
a software project as they work, typically by conducting field research [41]. Field research consists
of “a group of methods that can be used, individually or in combination, to understand different aspects
of real world environments” [117] and always requires data collection. Lethbridge et al. surveyed
how field research has been performed in software engineering and accordingly proposed a
taxonomy of data collection techniques by grouping them in three main sets [117]: (1) direct,
(2) indirect, and (3) independent. Direct data collection techniques (e.g., focus groups, inter-
views, questionnaires, or think-aloud sessions) require researchers to have direct involvement
with the participant population; indirect techniques (e.g., instrumenting systems, or “fly on the
wall”) require the researcher to have only indirect access to the participants’ via direct access to
their work environment; independent techniques (e.g., analysis of tool use logs, documentation
analysis) require researchers to access only work artifacts, such as issue reports or source code.
Even though direct techniques allow the experimenter to obtain a general understanding of the
human factors in the software engineering process and might be the only ones to gauge “how
enjoyable or motivating certain tools are to use or certain activities to perform” [117], they present sev-
eral drawbacks that threaten their validity and feasibility. For example, direct techniques are
observational thus might suffer from the Hawthorne effect [79] (i.e., the output of a process is not
related to environmental conditions, but rather to whether or not subject are being observed);
moreover, in direct techniques “all data is potentially useful and the usefulness of a particular piece
of data is often not known until after it is collected” [175], thus the researcher could omit and not
record significant details while conducting the observation; in addition, the data quality is often
based on subjects’ ability to remembering, which can be biased [175]; finally, finding appropriate
subjects for a case study is hard, especially in industrial and distributed settings [201].

Given the drawbacks of direct data collection techniques, many researchers are performing in-
vestigations by means of independent data collection. In particular, software development tools
such as version control systems, issue trackers, and mailing list services produce and record
a large amount of information stored in software data repositories. By mining these software

Chapter 1 Introduction

repositories, researchers extract data both to empirically validate novel research ideas and to
support practitioners’ day-to-day activities such as program comprehension, reverse engineer-
ing, or re-documentation tasks [92].

1.1 The Problem

The focus of most research in mining software repositories is directed to repositories containing
structured data, such as code change repositories. The information in such repositories is well
structured, because it comprises artifacts either written by humans for a machine (e.g., source
code, formal specifications and models) or generated by a machine for humans (e.g., execution
traces). The knowledge embedded in structured data can currently be extracted and modeled
through well-established techniques. For this reason, most of the tools, achievements, and re-
search are directed to the final product, the outcome, of software development, rather than the
people and the process that generate the software product.

Structured data answers only little about human factors revolving around a software project.
This is a problem because people and collaboration play a central role in software engineering
[124]. In this vein, in 2009, at the Workshop on Cooperative and Human Aspects of Software
Engineering (CHASE), Robert DeLine pointed out that only 20% of the papers in the 31st edition
of the International Conference on Software Engineering (ICSE) dealt with software “as though
it were created by people working together.”

To achieve results and answers that are closer to those of direct field research and to provide new
perspectives and insights to understand and support software development, in our dissertation
we want to mine unstructured data repositories, which are influenced by human factors. Such
software data sources archive data that is produced by humans for humans: documents, such
as emails, change comments, or bugs’ reports, written in natural language and used to exchange
information among people.

Unstructured data poses difficult challenges to the researchers who want to retrieve meaningful
and relevant information. However, believing in the advantages that having this new form of
information at our disposal would bring, we are convinced that “we should not be dissuaded from
our duty by the existence of textual narrative in artifacts” [62]. In this dissertation, we want to investi-
gate this form of information, with the aim of broadening our view and complementing current
approaches based on structured data to improve system development and understanding.

1.2 Thesis Statement

We state our thesis as follows:

The content of unstructured data, such as emails, produced during the evolution of a software
project is a valuable information source to support software understanding and evolution,
and to complement the data mined from structured sources, such as source code artifacts.

To validate our thesis, we mostly focused on development email data, although the presented
approaches and findings can be adapted to other unstructured data artifacts, such as bug report
comments and change comments. For the validation, we devised a number of approaches and

1.3 Contributions

implemented them in a comprehensive toolset to face the two main challenges in email and
unstructured data mining;:

Disconnection Between Unstructured Artifacts and Code Artifacts. Unstructured data, which is to be
read both by the people involved in the evolution of the system and by the people that use
it, often reference, explicitly or implicitly, other data sources such as source code and log
reports. However, the actual linking to these entities is to be done by the reader. Moreover,
the links are one way: There is no link from source code to unstructured data or vice-versa.
Connecting unstructured data to the source code is a necessary step to use this data in the
context of software development and analysis.

Noisy and Mixed-language Content Unstructured data is often noisy form of information: It is not
formal, contains irrelevant data, information might be wrong or incomplete, and authors
are not professional writers and often use jargon. Unstructured data related to a software
system, then, do not only contain sentences written in natural language, but also fragments
written in other “languages,” such as source code, execution traces, or patches. To extract
relevant and correct information from unstructured data, it is necessary to remove the un-
wanted data, recognize the different languages, and subsequently give a structure to the
content (thus enabling techniques to exploit the peculiarities of each language).

The validation of our thesis consists in devising and applying analysis techniques on top of our
toolset. With these techniques we show that, by analyzing unstructured content, we support
software understanding and evolution.

1.3 Contributions

The main contributions of this dissertation can be classified in four categories: exploratory in-
vestigation, tools and mining approaches, analyses, and publicly available benchmarks.

Exploratory Investigation

1. We conducted an iterative exploratory investigation to disclose challenges and benefits
of exploiting email data to support understanding and development of software projects.
This is the methodology we follow in our dissertation (see Section 3.1).

2. We identified the importance of reconnecting development emails to source code artifacts
(see Chapter 4).

3. We realized the importance of identifying the structure in email data (see Chapter 7);

4. We identified the importance of understanding the structured content in email data (see
Chapter 8). We realized this cannot be achieved using a lexical approach and regular ex-
pressions, but it requires a full-fledged parsing approach.

5. We identified that development emails are composed of a number of languages (see Chap-
ter 9) that should be recognized to enable subsequent ad-hoc analyses.

6. We conducted a qualitative study [86] to understand what data can be found in OSS mail-
ing lists (see Chapter 10). We conduct this research to guide future investigations on this
form of unstructured software data.

Chapter 1 Introduction

Tools and Mining Approaches

10.

11.

12.

13.

14.

15.

16.

17.

We present MiLer [14; 15] an extensive and extensible meta-model and toolset to explore
email and unstructured data (see Section 3.2).

We devised, implemented, and tested a number of lightweight approaches [13] to recover
the traceability links between emails and source code artifacts (see Section 4.3).

We conducted a comprehensive evaluation of state-of-the-art linking techniques [18]. We
compare different linking methods, ranging from our lightweight approaches to more
complex approaches from the information retrieval (IR) field (see Section 4.5).

We extended MiLEr to model bug information. We extend our meta-model to support new
metrics generated by our lightweight email-to-code linking approach [12] (see Chapter 5).

We created REmaIL [16; 17; 9], an Eclipse plugin based on our email-to-code linking ap-
proach. It makes email data available in the IDE, i.e., the place where developers spend
most of their time (see Section 6.2).

We devised and evaluated lightweight techniques that detect source code fragments in
emails by exploiting characteristics of source code text (see Chapter 7).

We devised 1LanDer [10], an island parser to recognize, extract, and model source code
fragments immersed in natural language text. 1ILANDER is based on the ASF-SDF Meta-
Environment [196], and we evaluate it extracting information from emails (see Chapter 8).

We created PetitIsLanp, a flexible and extensible framework for building and composing
island parsers. PeritIsLaND is written in SmaLLTaLK and is based on the parser generator
PeritParser[163]. We evaluated it by extracting source code fragments from Stack Over-
flow posts (see Chapter 8).

We created a novel approach that fuses island parsing and machine learning techniques
for classification of email lines [11]. Our approach, named Mucca, is able to perform au-
tomatic classification of the content of development emails into five language categories:
natural language text, source code fragments, stack traces, code patches, and noise (see
Chapter 9).

We created a novel web application to manually classify email content. We extend the
MiLer GAME by creating a novel user interface and adding new features (see Chapter 9).

We created a coding system that is reusable for analysis of developer communication in
general, and mailing lists in particular (see Chapter 10).

Analyses

18.

19.

We show that a number of program comprehension tasks are enhanced by having email
data at disposal (see Chapter 6). We used REmAIL (see Section 6.2) and the connection
between emails and source code to complete this task [17].

We devised a novel defect prediction technique based on email data. We evaluated the
performance of our model on four OSS systems [12].

1.4 Outline

20. We use 1LANDER to conduct a number of software evolution analyses. We reconstruct the
model of a software system from its emails and we detect salient moments in its history.
(see Chapter 8).

21. We assessed the frequency of discussion topics in development mailing list (see Chap-
ter 10). In particular, we found that implementation details are not extremely prominent.

Publicly Available Benchmarks

22. We produced two benchmarks for evaluating the recovery of traceability links between
emails and source code artifacts (see Chapter 4). We created them by analyzing the mail-
ing lists of six diverse OSS systems written in four different programming languages. It
includes more than 5,000 manually annotated emails.

23. We produced a benchmark that features sets of sample emails, randomly extracted from
five unrelated Java OSS systems, which we manually read to label structured fragments. It
includes more than 1,800 manually labelled emails (see Chapter 7).

24. We produced a benchmark for evaluating the recognition, extraction, and modeling of Java
content in email data (see Chapter 8). We created it by reading and labeling sample emails
from four unrelated Java OSS systems. It comprises 188 labelled emails with described
structured fragments.

25. We adapted and improved a previously published benchmark to assess the recognition of
source code fragments in Stack Overflow posts. It comprises 188 posts embedding more
than 350 code fragments (see Chapter 8).

26. We produced a benchmark to evaluate the classification of email lines into five categories,
i.e., natural language, source code, patch, stack trace, and noise (see Chapter 9). It features
more than 1,400 emails comprising almost 69,000 manually classified lines.

27. We create two benchmarks: one for email thread categorization and one for resolving
aliases of participants (see Chapter 10). Our benchmark are comprised of more than 500
manually classified threads and more than 310 resolved aliases and email addresses.

1.4 Outline

The rest of the dissertation is structured as follows:

Part I: Prologue. In the first part of this dissertation, we introduce the background and the
motivation for our thesis. We present the challenges to prove our thesis and the methodology
we followed in our work.

Chapter 2 provides a historical perspective on our work, by presenting the history of mining
software repositories and analyzing the (more recent) work on using unstructured data
for software engineering. We also survey work related to the analysis of email data.

Chapter 3 presents the methodology we used in the course of our dissertation, describing our
iterative exploratory research, the toolset we devised for supporting our research, and the
decision taken in terms of case studies and replication.

Chapter 1 Introduction

Part II: Linking Unstructured Data and Source Code Artifacts. In this part of our dissertation,
we cover the first challenge of mining development email data: Recovering the traceability links
between emails and source code artifacts. We devised lightweight traceability techniques and
evaluate them against state-of-the-art IR techniques. Building on top of our lightweight tech-
niques, we present a novel defect prediction analysis and a tool, which we used to evaluate the
usefulness of email data to support program comprehension.

Chapter 4 presents our lightweight traceability techniques, based on simple text matching, and
the evaluation we conducted against state-of-the-art IR techniques. We surprisingly found
that, in the case of emails, simple text matching still offers the best results. Reasoning on
the results we realized that, differently from other natural language documents, which
are written before the actual implementation, emails are being sent while developers and
users are creating and using the actual application. For this reason, most of the time, code
artifacts that already exist are referred to using their actual names. As a consequence our
lightweight techniques offer the most effective results.

Chapter 5 presents a defect prediction analysis based on email data. Having the traceability links
between source code entities and emails, we devised a set of new metrics to enrich a sys-
tem model with information extracted from email archives. Such metrics seize the “pop-
ularity” of source code entities in the discussions taking place in emails. We used these
new metrics to perform defect prediction for object-oriented systems at class level, and
we compared their predictive power to that of metrics obtained through structured data
(i.e., object-oriented metrics, change/defect metrics). We achieved results similar to source
code metrics, but inferior to change metrics. The most interesting contribution of our met-
rics is that, by combining the metrics extracted from repositories with different form of
data (i.e., structured and unstructured), we could improve the overall predictive power.

Chapter 6 introduces REmaiL. By using our lightweight traceability techniques, which provide
results in a few seconds even when linking one code entity to thousands of emails, we
implemented REmarL, an Eclipse plugin, to make email data available in the place where
developers spend most of their time-IDEs. We subsequently used REmAIL to verify that
having email data at disposal in the development environment enhances tasks related to
program comprehension and software development.

Part III: Structuring Unstructured Data. In this part of our dissertation, we cover the second
challenge of mining development email data: Giving an appropriate structure to the unstruc-
tured content. To this aim, we first tried lightweight methods for detecting code content. Then,
realizing that detection is not sufficient, we created an approach, based on island parsing, to
recognize, extract, and model structured fragments in development emails. This granted us a
better understanding of email content. We present a number of analyses that used this novel in-
formation. We improved our approach by implementing a flexible and extensible island parsing
framework, and using it on unstructured data other than development emails: Stack Overflow
posts. Finally we show how this approach could be used to support other software development
tasks.

Chapter 7 presents our initial work on trying to give a structure to the unstructured email data.
We found that emails often contain structured fragments, such as source code, which
should not be treated equally to the rest of the content. We devised lightweight techniques
that, on the basis of simple text inspections, exploiting characteristics of source code text,
can detect source code fragments in emails, fast and with a high accuracy. Our methods

1.4 Outline

achieved performance higher than the ones previously obtained through complex machine
learning techniques.

Chapter 8 presents ILANDER, an island parsing approach based on ASF-SDF. After evaluating it
against a manually implemented benchmark, we used it to conduct software analysis on
an OSS system. Afterwards, we present PeritIsLanD, a more comprehensive, extensible,
and flexible framework we devised to create and compose island parsers.

Chapter 9 presents Mucca, an approach to classify development email lines. Given the diversity
of languages used in the example email, if we consider its content as a single bag of words,
we would obtain a motley set of flattened terms without a clear context, and we would
severely reduce the quality and the amount of available information. By automatically
distinguishing the parts that form an email, we provide better support for subsequent
analyses and tasks, such as traceability recovery or content summarization. Mucca fuses
island parsing and machine learning to propose a robust and accurate approach.

Part VI: Epilogue In the last part of our dissertation we take a step back from the different
challenges and analyses done on development emails and consider our work as a whole and we
look further to find the directions for future research. Since we sensed that mailing lists in OSS
communities have been facing a shift with respect to their usage, we first conducted a work to
update our knowledge on the data available nowadays in mailing list. This helps us to target
our future research to the most important information available in mailing list and also to the
most promising repositories of unstructured data. Subsequently, we present our contributions
and outline future research directions we envision.

Chapter 10 presents an extensive qualitative research on the development mailing list of a mature
and widely used OSS system. Our aim is to update our knowledge of mailing list usage
and data. We found that development emails are losing their role as the hub of project
communication and that other unstructured data sources are gaining more popularity,
such as issue repositories.

Chapter 11 concludes this dissertation by discussing our approaches and findings, summarizing
the contributions of this work and outlining future research directions.

Chapter 2

State of the Art

In our dissertation we propose approaches for mining unstructured software data, and we ap-
ply these approaches to real data to show that this form of data is useful to support software
understanding and evolution. This is challenging because unstructured data is not written with
software evolution analysis in mind. For example, development mailing lists can contain the dis-
cussions behind certain implementation choices, but extracting this information and connecting
it to the appropriate code artifacts is not trivial. In this chapter, we analyze the background for
our research and the current state of the art in mining unstructured software data.

2.1 A Historical Perspective

In this section, we describe the progress in research that led to the birth of the mining software
repositories (MSR) research field. The emergence MSR goes hand in hand with the recognition of
software development and maintenance as an evolutionary process, named software evolution.

The Seventies: SCM Applied to Software. In the seventies Software Configuration Management
(SCM) emerged as a discipline. In 1975, the same year when the first International Conference on
Software Engineering (ICSE) was held, Rochkind introduced the first SCM, called Source Code
Control System (SCCS) [170]. Although in the fifties the aerospace industry already started a
sort of configuration management, SCCS was the first case in which configuration management
was applied to software.

In 1976, Mills argued that software development should be incremental with continuous user
participation [132]. In 1977 Gilb proposed evolutionary project management, and introduced the
terms evolution and evolutionary to the lexicon of the software process [78]. In 1978, Yau intro-
duced evolutionary elements in software development process models [206]. In 1979, Feldman
developed the program Make, making an important contribution to SCMs and their adoption.

The Eighties: Software Evolution As a Discipline. Manny Lehman introduced the ‘laws of software
evolution’, which describe a set of general principles for the evolution of E-type software systems.
This kind of software systems is one that “mechanise a human or societal activity” [115] and needs
to change to adapt to the real world and maintain its usefulness. The formulated empirical
laws were based on a study to understand the change process being applied to IBM’s OS 360
operating system. Lehman confirmed the software evolution laws on other software systems in

11

Chapter 2 State of the Art

1985 [116]. Lehman used the term software evolution to emphasize the difference with the post-
deployment activity of software maintenance. It took until the end of the eighties for the term
software evolution to be widely accepted [6; 148].

During the eighties, SCM systems continued to mature and increased their adoption: In 1982,
Tichy introduced Revision Control System (RCS) [191], while four years later Concurrent Version
System (CVS), a very popular versioning system (still used in a large number of OSS projects [72]
and industrial settings) emerged.

The Nineties: Widespread Usage of SCM. In the nineties, the concepts of software evolution and
evolutionary development became widespread. In the same decade, SCM received a significant
acceleration in attention and usage. With the advent of the Internet and the improvement in
network bandwidth, software development started to be distributed, source code repositories
started to be remote and CVS played a key role in this transition, as it supports concurrent devel-
opment. Moreover, in the nineties, the first bug tracking systems were created: GNATS being
the first in 1992, followed by Debbugs in 1994, BucziLLa in 1998, a service offered by SourceForge
in 1999 and many others after 2000 (including the Google Code issue tracker in 2007).

At the end of the nineties and in the following decade two important events in the growth of
SCM were the creation of Subversion (SVN) in 2000 (the successor of CVS) and the release of Git
in 2006 (an open source distributed version control system).

2.2 Mining Software Repositories

The Dawn of Mining Software Repositories. In the second half of the nineties, researchers started to
mine repositories of source code data. The first approaches were proposed by Ball et al. in 1997
to find clusters of files frequently changed together [19], by Graves et al. in 1998 to compute the
effort necessary for developers to make changes [84] and by Atkins et al. in 1999 to evaluate the
impact of tools on software quality [8]. These are among the seminal research works where the
field of mining software repositories has its roots.

Starting from the first half of the last decade, the usage of SCM systems became fundamental
for software development. Estublier et al. stated: “[...] modern SCM systems are now unanimously
considered to be essential to the success of any software development project |...]. Furthermore, there is a
lively international research community working on SCM, and a billion dollar commercial industry has
developed” [68]. A number of new bug tracking systems were created (e.g., Jira) and their usage
started to become established practice in software development.

The availability of large amounts of data on the evolution of software systems drew the atten-
tion of researchers and practitioners to software repositories, to a point that mining software
repositories matured and started to be a research area on its own. In 2004, the first International
Workshop on Mining Software Repositories (MSR) was held [95]. In the following years, the
topic gained increasing attention and the field continued to mature: Many software engineering
and software maintenance conferences had sessions about mining and the international work-
shop on MSR became a working conference in 2008 [92].

12

2.2 Mining Software Repositories

The Mining Software Repositories Field. The official website of the conference describes the MSR
field: “[The MSR] field analyzes the rich data available in software repositories to uncover interesting
and actionable information about software systems and projects.”! The main goal of MSR is to make
intelligent use of software repositories to support decision making, to empirically validate novel
research ideas, and to support practitioners” day-to-day activities such as program comprehen-
sion, reverse engineering, or re-documentation tasks. Software repositories offer a rich source
of data, but it must be correctly processed, transformed, and presented to be useful.

Most software development tools, such as version control systems, issue trackers, and mailing
list services, produce and record a large amount of information, which is the result of traces left
by the evolutionary changes to software artifacts (e.g., source code), and the interaction among
the stakeholders and project members. We describe the most prominent sources of data:

Source code. The source code is a set of instructions to be executed by a computer and written
using some human-readable computer language, usually as text. The source code repos-
itory contains a collection of documents, written in one or more programming languages
(e.g., Java) and usually grouped in packages or modules.

SCM data. The software configuration management system (also known as versioning system or
revision control) collects data by recording the history of changes made to a set of docu-
ments. Documents can be added, deleted, and changed. Usually software developers use
versioning systems to store the edits to the source code of the projects they are working
on. This allows them, for example, to retrieve previous versions of a system.

Execution logs. The execution logs record the output of a software system during its execution.
The output to be logged by an execution is generally defined by developers by means
of programming languages and might contain, for example, the name of methods being
called and the time of execution.

Issue repositories. When developers or users of a system encounter an error or a faulty behav-
ior, they create an issue report in the issue tracking system. Reports are usually discussed,
assigned to developers, and resolved. More recently issue repositories also archive en-
hancement requests, in the form of new features requests or improvements.

Requirements and Design Documents. Requirements are documents, mostly written in natural lan-
guage, that establish the needs of stakeholders to be solved by the software system. The
requirements can be either functional (to specify the behavior of the program) or non-
functional (to define qualities such as reliability and accessibility). Design documents de-
scribe the general design of a software system, including its architecture and use cases.

Mailing list logs. Mailing lists archive messages exchanged among participants in a software project.
In OSS systems, mailing lists are considered to be the hub of project communication [73],
and are employed to discuss to discuss various topics, ranging from low-level concerns
(e.g., bug fixes, refactoring) to high-level resolutions (e.g., future planning).

Chat logs. Chat logs are the recorded instant messaging communication among participants in
a software project. Usually chat logs include, for all messages, authors and timestamps.

Online forums. Online resources, such as forums and question and answers (Q&A) services, pro-
vide developers with the infrastructure to exchange knowledge in form of questions and
answers: Developers pose questions and receive answers regarding issues from people
that are not part of the same project.

1 http://msrconf.org

13

http://msrconf.org

Chapter 2 State of the Art

2.2.1 Linking Software Data Sources

A problem in the exploitation of the data recorded in software repositories is their integration.
Usually projects use issue tracking systems, mailing list managers, and version control systems
that are not connected one to another. This means, for example, that there is no link connecting
software defects recorded in an issue tracking system to the source code artifacts they affect.
To conduct successful mining of software repositories, recovering links among repositories is
essential [52], particularly reconnecting non-code repositories (e.g., issue repositories) to source
code artifacts they pertain to. To deal with this issue, researchers proposed many techniques;
D’Ambros categorized them in: during development approaches and after development ones [52]:

During development These approaches enhance software development tools (e.g., integrated de-
velopment environments (IDE)) to support the linking across multiple repositories and to
show relevant artifacts to the users. An example is Jazz [75], which integrates source code
with defects, defects with failed unit tests, source code with builds and builds with defects.
Another example of this type of approach is Mylyn [104; 103].

After development These approaches reconnect data in software repositories by analyzing the
contained data itself. Most of the approaches regard the linking between SCM reposi-
tories and bug databases: The first approach was the Release History Database (RHDB)
[69], followed by others such as Kenyon [100], Hipikat [194] and softChange [77].

In our case, there is no possibility to use during development approaches. In fact, unstructured
data, such as development emails, offers no actual linking to referenced artifacts, and there is
no link from code to unstructured data. Recovering the links between unstructured data and
software artifacts, so that the former can be more effectively used, is the first challenge we have
to face to prove our thesis. In Part II of this dissertation we tackle this challenge and show the
subsequent benefits for supporting software understanding and evolution analysis.

2.2.2 Structured and Unstructured Software Data

By mining software repositories, researchers have produced valuable results. The focus has
mainly been on repositories of structured data, which is easier to extract data from. In fact, struc-
tured data has a well defined meta-model and a known form, because it is either designed to be
automatically parsed by a machine (e.g., in the case of source code, test plans, and code changes)
or it is reported by a computer (e.g., execution logs). The main sources of structured data cur-
rently being analyzed by researchers are:

* Source code: Source code has been studied, analyzed, and measured to assess, for instance,
the quality of the internal structure of software systems (e.g., [128; 113]) or to predict the
location of software defects in future releases (e.g., [21; 183; 142; 210; 53]).

* SCM systems: SCMs have attracted the interest of researchers more recently [19; 213] and
are being studied to understand the evolution of a system [80; 54], to identify components
that present design flaws [161], to support new debugging methods [208], or to improve
existing defect prediction techniques (e.g., [152; 137]).

¢ Issue repositories: Issue repositories are being mined to investigate the defects in the his-
tory of a software system: Researchers devised defect prediction techniques studying his-
torical defects (e.g., [94; 27; 105]), or performed retrospective system analysis to understand
the most problematic parts of a system [55].

14

2.2 Mining Software Repositories

The other information stored in software repositories is unstructured data. Most repositories con-
tain a mixture of structured and unstructured data. To define the term unstructured data for
this dissertation, similarly to Thomas [188], we adopt the following definition [123]:

“Unstructured data is data which does not have clear, semantically overt, easy-for-a-computer
structure. It is the opposite of structured data, the canonical example of which is a relational
database, of the sort companies usually use to maintain product inventories and personnel
records.”

In practice, unstructured data usually is natural language text, which follows no explicit data
meta-model, and it is written by people for other people. One potential criticism to this defini-
tion is that that also natural language text has a structure, made of relationships among words,
an almost linear flow, and terms with a well defined syntactic or morphological behavior. Al-
though this is true, because such a structure can be more or less easily inferred by humans, in
the case of automatic analysis, such a parsing is far from being simple and actionable in the
current status of the research. For this reason, in its raw form, “[natural language] text is simply
a collection of characters with no structure and no meaning to a data mining algorithm” [188]. Exam-
ples of unstructured software data, archived in software repositories, are: emails exchanged by
program participants, the text of chat logs, titles and descriptions of issue reports, source code
comments and identifiers, SCM commit messages, and design and requirement documents.

Structured data is not good for everything. There are some kinds of questions for which struc-
tured data answers little: Especially in the context of understanding and exploiting human fac-
tors to understand and support software development, structured data limits us to partial views.
Let us imagine two developers working in the same project: We parse code changes to deter-
mine whether they worked on the same files in the same time period; we parse email metadata,
to verify whether they also communicated in these days; but we do know whether they were
really collaborating, whether they were aware of each other work, and whether they had accord-
ing plans. To have answers, we should query them by conducting a field study with direct data
collection, with the subsequent drawbacks (see Chapter 1). Otherwise, we could perform indi-
rect data collection and study the content of their discussions or commit comments to get deeper
insights. In fact, people write such documents to share knowledge with other people, thus they
contain facts and qualitative data that answer new kinds of questions.

Our thesis stems from our belief that natural language documents—if correctly mined, measured,
and made available—can integrate, consolidate, and complement the data extracted from struc-
tured sources, because they include human factors and are a source of qualitative data.

The repositories that store artifacts with textual narrative, however, are still largely unexplored
by researchers and not exploited by software developers. On the one hand practitioners do
not employ textual artifacts during development for many reasons [200]: Developers do not
know whether a specific topic is expressed in these artifacts, fast full-text search is not always
implemented, different kinds of artifacts provide different search and browsing tools, there is
no consistency among different repositories and tools, and it is hard to know whether an artifact
contains updated information or not. On the other hand, researchers must still find appropriate
techniques for extracting relevant information from unstructured data.

Finding appropriate techniques for extracting relevant information from unstructured data is
the second challenge in proving our thesis. In Part III, we tackle it by creating methods for
extracting structured content embedded in emails, by creating an approach to give a structure
to unstructured documents, and by showing that extracted information can be used to conduct
new software analyses.

15

Chapter 2 State of the Art
2.2.3 Emails as an Unstructured Data Source of Information

To prove our thesis, among all the possible unstructured data sources of information, we decided
to focus on development emails, because they offer an interesting and hard case (due to their
noisy and mixed language nature) to test novel mining techniques and conduct new software
analyses. In the following we better describe the rationale of our choice and the current state of
the art on mining this form of data.

In small co-located development teams, unplanned face- to-face meetings are the favorite form
of communication when developers face program comprehension problems [114]. Developers
who need to understand source code entities (e.., to know the design rationale behind a certain
implementation—the most common information need for a developer [109]), and cannot find the
appropriate documentation, simply query other programmers. This solution, besides disrupt-
ing developers’ attention and retaining knowledge by a few developers, is inapplicable to large
or distributed development projects. Developers, thus, replace face-to-face meetings with elec-
tronic communication. Instant messaging, wikis, forums are viable options, but the decisive role
is played by emails, indeed: “Mailing lists are the bread and butter of project communications” [73].

Emails are asynchronous, thus evade time zone barriers and do not disrupt developers’ atten-
tion; mailing lists broadcast discussions, announcement, and decisions to all the participants,
thus maintaining developers’ awareness; emails are not bound to specific abstraction levels (as
opposed to commit messages, design documents, or code comments), thus they can be used to
discuss issues ranging from low-level decisions (e.g., implementation, bug fixing) up to high-
level considerations (e.g., design rationales): The range of topics of a discussion on a mailing list
“is larger than a bug database or CVS commit logs” [166]; mailing lists archive messages during the
whole lifetime of a software project, thus offering a historical perspective. From a field research
point of view, email discussions are appealing because “software developers reveal their thought pro-
cesses most naturally when communicating with other software developers, so this communication offers
the best opportunity for a researcher to observe the development process” [175].

By investigating email archives, we can conduct two kinds of analyses: social analyses and tech-
nical analyses. The former focuses on studying and interpreting the social phenomena, within a
particular software project, or in the context of software ecosystems [121], using approaches equiv-
alent to that used by historians or social scientists [155]; the latter extracts the data enclosed in
mailing lists to tackle technical issues and extend system analysis.

For these reasons, we focus our research on mining development email archives.

Email metadata offers an easily parsable structured content with information about author, date
and time, and threading of email messages. Researchers used this structured information to con-
duct the first social analyses by employing emails: Bird et al. proposed techniques to mine email
social networks [36], to discover that there is a strong cumulative relationship between email
activity and source code activity [37], and to investigate social interaction among participants of
open source software projects [38]. Ogawa et al. used email metadata to visualize social interac-
tion among participants in open source software projects [146]. Tang et al. proposed techniques
for identifying the country origin of participants in open source mailing lists, and conducted a
subsequent geographic analysis [186]. Shihab et al. performed an exploratory study on the role
of mailing lists in open source projects, and further showed that mailing list activity is related to
source code activity; in addition, by starting to look into the content of emails, they found that
specific words in mailing list discussions are good indicators of the types of source code changes
happening in the project [178].

16

2.3 Summary

More recently researchers have started analyzing the natural language content of emails: Pat-
tison et al. investigated the behavior of developers and users by studying the frequency with
which terms of software entities are mentioned in emails, and correlating it with the number of
system changes [154]. Baysal and Malton tried to correlate discussion in emails and source code
[23]. In particular, they searched for a correlation between discussions and software releases, by
applying data mining and Natural Language Processing techniques.

The current ongoing work and interest shown by researchers on development emails is a symp-
tom of the acknowledged importance of this source of people-centric information and is paving
the way for deeper and more detailed analysis of this data. Our thesis moves in this direction:
We explored email data, as a case of unstructured data, to see the challenges that must be faced
to expose the most important information (thus creating the appropriate mining techniques) and
to realize how we can exploit this information to support program comprehension and software
evolution (thus suggesting improved or novel software analyses).

2.3 Summary

The current ongoing work on mining software repositories and the increasing interest shown by
practitioners and researchers on this field is a symptom of the acknowledged importance of this
kind of research. The main focus in these years has been on structured data, because it comprises
both the end product of software development (i.e., source code) and it is easier to parse and to
extract data from. Structured data is complemented by a large amount of unstructured data,
usually in the form of natural language communication among project participants. This type
of data is under exploited by the current state of the art in mining software repositories. Through
our survey on the related work and our iterative exploration of unstructured data, with a focus
on development emails, we found that the two main challenges in exploiting unstructured data
for software engineering are reconnecting unstructured data artifacts and source code artifacts
and extracting meaningful and actionable information from the mixed language and noisy con-
tent of unstructured artifacts. These are the two challenges we face in our dissertation. In the
next chapters we will also detail the work related to each of our approach and analyses.

17

Chapter 3

Methodology, Replicability, and Subject Systems

Believing that tools have a fundamental role for software engineering research, we gradually
developed a toolset MiLEr, which we used to test theories, conduct empirical studies, and per-
form software quality analyses. We carried out our research in an iterative explorative fashion;
we iteratively: (1) investigated which information can be provided by email data, (2) found the
problems that hinder the correct exploitation of such information, (3) devised and evaluate ap-
proaches to tackle the problem and implement them in our toolset to support the corresponding
novel techniques and analyses, (4) reasoned about the results to gain a better knowledge of email
data and the available useful information it contains, to use it in the next iteration.

3.1 Iterative Explorative Approach

We started our research by trying to create a software system visualization that contained infor-
mation about which entities of the system were discussed in the development mailing list. This
simple task made us aware of the difficulty in finding an appropriately evaluated method for
linking emails and source code entities. We found no work in literature on how to link emails
and source code and we realized that this link is the first necessary step of any work that is
willing to use email data for software analysis. In fact, the majority of MSR approaches start
from the model of the software system as it is extracted by the source code, and enriches it with
additional information gathered from different sources, such as the versioning system or the
issue repository. In this way, it is possible to obtain grounded and actionable results to support
software understanding and development.

First lteration: Reconnecting Emails and Code Artifacts. In the first iteration, we faced our first chal-
lenge: Recovering the traceability links between emails and source code artifacts. We started
tackling it by building MILER, our toolset to support email data exploration (see Section 3.2).
We used MILER to devise and evaluate lightweight lexical text-matching techniques for linking
email and source code entities (see Chapter 4). Afterwards, we expanded our toolset to support
more programming languages and we compared our lightweight linking techniques to more so-
phisticated information retrieval methods, such as vector space modeling (VSM). We found that
our lightweight approaches are better suited for recovering traceability links, especially when
dealing with code and emails.

19

Chapter 3 Methodology, Replicability, and Subject Systems

Second lteration: Using the Link Between Emails and Code Artifacts. In the second iteration, we ex-
ploited our lightweight techniques for reconnecting email data to source code artifacts. First, we
went into the direction of adding new quantitative metrics to enrich our knowledge of source
code entities with email information. In particular, we measured the popularity of code artifacts
in mailing list discussions and used this information to conduct bug prediction analysis (see
Chapter 5). We found that email data can be successfully used to enrich existing defect predic-
tion models: It adds information that increases the models” explanative and predictive power.
With this result we made a step toward proving our thesis.

Even though email data proved to be valuable for defect prediction, we realized that we did
not know why this was the case: We were creating a measure that merely counted how much an
entity was discussed without knowing why or how this was happening. This made us realize that
the value of emails resides in the context they always provide: When a code artifact is mentioned
in a message, it is referred in a context of a broader message that conveys more information. This
reflection led us to the third iteration.

Third Iteration: Providing Email Data in The Development Environment. In the third iteration, we car-
ried on our research on using the linking information, but we also went into the direction of
taking advantage of the content of emails. We created REmarL, an Eclipse plugin to integrate
email communication in the IDE (see Section 6.2). By using REmar, developers can seamlessly
handle source code entities and emails concerning them in the environment they use to develop.
By using REmaAIL we made a further step to prove our thesis: We successfully used it to show that
email data can enhance our understanding of software development, by means of the contextual
information it provides (see Section 6.3).

While studying email data for program comprehension, we realized that emails are composed
of different languages: natural language, source code, stack traces, efc. We found that the kind
of language in which the reference to a code entity appears significantly affects the usefulness of
the email for different program comprehension tasks. For example, when debugging an entity,
emails that reference it in a stack trace are more useful than emails that reference it in a code
snippet, while when trying to understand the evolution of a code artifact, emails that reference
it in a patch are the most relevant.

Fourth lteration: Source Code Identification. In the fourth iteration, we moved our research on
studying the content of emails and trying to recognize the structured content that they include,
so that we can better extract further information. We created lightweight methods to find lines
of source code, patches, or stack traces (see Chapter 7), in the body of an email. By studying
the results of this research, we realized that we need not only a finer granularity (i.e., distinguish
code snippets from patches from stack traces) but also to recognize irrelevant parts of the emails’
contents (e.g., authors’ signatures) and filter them out from our analysis.

Fifth lteration: Parsing Structured Content in Unstructured Data. In the fifth iteration, we devised
techniques (see Chapter 8) for precisely recognizing, extracting, and modeling certain struc-
tured parts embedded in any type of textual artifact. In fact, by only detecting structured lines
we cannot understand their meaning and use it for subsequent analyses. We approached this
problem by using island parsing [136], first by implementing an island parser in ASF-SDF (see
Section 8.3). With this implementation we managed to conduct a first step into novel software
analyses. Afterwards, given the difficulty of extend, maintain, and use our first solution based

20

3.2 Tool Based Research

on ASF-SDF, we created a novel extensible framework for island parsing in SMALLTALK (see Sec-
tion 8.7). We used our framework to write island parsers for source code, patches, stack traces,
and we used it to classify email lines (see Chapter 9).

Sixth Iteration: Updating Our Knowledge on Mailing List Usage Historically, mailing lists have been
considered the hub of project communication at the inception of the first OSS communities, such
as Linux and Apache. We, thus, consider mailing list data to be a valuable case study for devising
and testing techniques for mining and analyzing unstructured data from software projects.

Nevertheless, in the course of the years, while developing and analyzing mailing lists, we sensed
a change in the usage of development mailing lists across OSS systems. For this reason, to con-
clude our work, we decided to analyze carefully, with a qualitative research, the content of the
development mailing list of a OSS project, across its entire history. We found that indeed the
role of the development mailing list changed, by diminishing its importance in OSS project com-
munication. At the same time, another source of unstructured data is emerging more and more:
The issue repository. Software developers and users are increasingly using this type of repos-
itories to interact, set new milestones, and discuss about the details of the project. Luckily, the
techniques we devised to deal with mailing list data can be adapted to issue repository data,
which is less noisy and more structured than email messages.

3.2 Tool Based Research

To import, process, store, and analyze both email and source code data, during our research, we
devised the toolset MILER, by progressively and iteratively implementing its features.

MILER is implemented in VisualWorks SmaLrraLk, relies on the Moose Reengineering Environ-
ment [145] for some modeling tasks, and uses GLORP (Generic Lightweight Object-Relational
Persistence) [107] and the Metabase (a tool to provide flexibility and persistence to any meta-
model in general) [56] for the object persistency. Figure 3.1 depicts MiLer’s architecture: It shows
the sources from which Miler retrieves data, the data importers, the external components being
used, the kernel, the PerirIsLanp framework, and the processing/analysis modules.

3.2.1 A Walk Through Miler

Importing email data: Importing email data to be used as a source of information is not trivial,
because there is no consistent way to access data. Different personal email clients and different
applications to manage mailing lists store data in different formats. Moreover, in the life of a
developer or a software system, the email client or the mailing list applications can be changed
multiple times.

Accessing email data in this scenario would require writing multiple email data importers for
each software system being analyzed. We tackled this issue by (a) creating an importer for
the MBox format, which is used by many email clients and mailing list managers (e.g., GNU
Mailman), and (b) using MarkMar,! an online service for searching among more than 8,000
up-to-date mailing lists. Our importers either crawl the MarkMAIL website or parse the MBox

1 http://markmail.org/

21

http://markmail.org/

Chapter 3 Methodology, Replicability, and Subject Systems

: linking popularity : Miler:
] (';/zla"ri:e inference || IR engine exd?)tratler metrics cggfegpoers MUCCA |« . :
: | engine || i exP [extractor || 1 Petitlsland
processing/analysis modules - patch parser
| || stack trace
§ | MarkMail parser
] importer
: P traceability system | licode ;rraS%Tent
+——> emails — links) “—"| models P
source code]
] MBox] parsers
: importer kernel : +
o .ﬁ'.ﬁ'.'.'.ZZ'.ZZZﬁZZZ'.ZZﬁ'.Z'.'.'.Z'.'.ZZZ.'"';fiﬁffifffiffTﬁffiﬁffifffifffiffiﬁffiﬁ coeeeeii. 0 [revision
] P B importer
mailing list MOOSE o B ? """"""
reengineering — [[source |
environment Lo
MarkMail Do code
service | SCM system
: code data

Figure 3.1: The architecture of Miler

file, extract the selected emails, and instantiate them as live objects in the MiLEr kernel. As shown
in the architecture diagram, we can plug importers that extract data from additional sources.

Importing code data: MiLer handles software systems written in many programming languages
through specialized importers. First, we wrote a revision importer to import multiple releases of
the same software system. It obtains multiple source code snapshots of a software system wither
by downloading them from the system website (not depicted in Figure 3.1) or by performing
“check out” operations (one per snapshot) from the software configuration management (SCM)
system, also known as versioning system repository. In the case of retrieving the data from the
versioning system, we can specify the timespan to be considered between subsequent releases.

Once MILER obtains the source code snapshots, we import them with two different techniques.
For Java systems we have two options (which we used in different moments in time to perform
different analyses): (a) We use nFusion? for parsing the source code and importing it in the
Moose reengineering environment, so that we can extract a number of code metrics (e.g., see
Chapter 5); (b) we use a lightweight specialized Java code parser written on top of our parsing
framework (see Section 8.7). The latter option is also used to import systems written in other
languages: We devised lightweight island parsers for ActionScrirt, PHP, and C systems.

The models created by inFusion, and enriched by Moos, or created through our island source
code parsers are imported in the MiLer kernel as System Models.

The meta-model: Figure 3.2 shows the meta-model behind the MiLEr’s kernel. System is the
class representing any software system imported in MiLer. Each system has a collection of Re-

http://www.intooitus.com/products/infusion

22

http://www.intooitus.com/products/infusion

3.2 Tool Based Research

Release Entity code related class I:l
name 1 1_*| name
HITESEm : rawContent code&email related class I:I
terms
traceabilityLinks email related class I:I
1..% 01_,*
1 TLinkAutomatic
System 1.% technique
Ir:;rSSage fTraceabllltyLlnk <‘L TLinkManual
confidence -
releases - timestamp
mailing lists 1. o
emailAuthors 1
1
1 1. ® Annotator
. Email name
1. rawContent background
MailingList author experience
1.."| mailingList 1
name .
inception &) | permalink TO .
importer subject ..
authors timestamp LabelManual LabelAutomatic
emails I1 N timestamp technique
1.” 1.5 1 abel
EmailAuthor LabelledEmail A Cha d
o - | startCharacter
ggg}isses labels endCharacter
name

Figure 3.2: The Meta-Model of Miler

lease s, which represents the various snapshots of the source code. Each rRelease is charac-
terized by a “timestamp” and has a collection of unique instance of the class Entity. In our
case, even though we work in Smarrrark and we could extend the meta-model definitions of
Moosg, we decided to create a new class to represent entities of the system. This allowed us
to be independent from the Moose meta-model, which has been under heavy re-development
and evolution during the course of our thesis work. Nevertheless, it is possible to substitute this
abstraction with a FAMIXaAbstractObject class.

Each system has also a collection of mailing lists (for example the same software system can
have a user mailing list to complement the development one). Mailing lists are represented by
the MailingList class, which has a list of email authors and a list of unique emails, described
by the class Email. In addition to the raw content, each email has fields for storing meta-data
information, such as the timestamp or the subject.

The data exporter module exports the imported and processed information as it is described by
the meta-model in Figure 3.2, so that it can be used by other researchers and applications.

Storing imported data: To store information gathered from mailing lists and source code, we
use an approach based on object persistency rather than using text files. Although the Moose

23

Chapter 3 Methodology, Replicability, and Subject Systems

environment uses textual files (in particular in the MSE format) to store and retrieve information
about any analyzed system, we deemed them to be not appropriate in our context. In fact, despite
the fact that textual files do not require a DBMS, they have the drawback that data cannot be
accessed remotely, and that they generate performance bottlenecks, since the entire text file must
always be parsed (i.e., it is not possible to import only parts of the model). When considering
mailing lists, the performance aspect is relevant as they often contain thousands of documents.

In Figure 3.1, the components that reside in the Miler’s kernel are modeled according to a meta-
model (depicted in Figure 3.2), from which the Metabase component is capable of automatically
generating the corresponding GLORP class descriptions (which define the mapping between
the SmaLLTALK classes and the database tables) [56]. In this way, objects are stored and retrieved
from the chosen database transparently through the GLORP layer: It is sufficient to save the
objects of the model the first time they are created and to create a connection with the database
when loading MiLer. In addition, since objects are stored in a common database, it is possible
to access them, even remotely, from different languages and applications.

Interacting with emails: Using the SmaLLtaLK web framework Seasipe [63], we implemented the
MiLer GaME, a web module to interact with emails stored in the MiLer kernel. Figure 3.3 shows
the main interface of the MiLEr GAME.

The MiLer GaME has a modular structure organized in panels. Point 1 marks the main panel,
which displays the selected email, with meta-data on top and the whole body colored according
to quotation levels to enhance readability. Within the MiLer GAME, one can plug any number
of panels to interact with the stored systems and emails. For example, on the left of the main
panel, we see: the navigation panel (Point 2), to read a specific email, given its id; the mails
panel (Point 3), with statistics on emails; and the systems panel (Point 4), to switch to another
system.

Linking code and emails: Even though development emails often discuss source code artifacts,
establishing actual links to the referenced entities is to be manually established by the reader.
Moreover, the links are unidirectional: There is no visible link from source code to emails. This
is the first challenge we encountered in our thesis (see Section 1.2). In the first phase of our re-
search (see Chapter 4), we implemented a 1inking inference engine to automatically infer
these traceability links and persist them in the MiLer kernel. These links are first class entities
in our meta-model, and are modeled by the class TraceabilityLink. The TraceabilityLink
entities can be instantiated as TLinkAutomatic by the engine. In this case, the engine can use
either lightweight text-matching techniques we devised, or the information retrieval (IR) tech-
niques implemented in our IR engine (e.g., LSI and tf-idf). With different case studies, we verified
whether one of the techniques better handles this linking task.

Extracting metrics: Once email and source code data are imported, and email messages are re-
connected to code entities they discuss, we can devise new metrics to measure new facts. To this
aim, we devised the popularity metrics extractor, which enriches a system model with information
extracted from email archives. In particular, the current implementation of the extractor com-
putes metrics to seize the “popularity” of source code entities in the discussions taking place
in emails. In mailing lists, the entities that are discussed are not only the most relevant for the
development, but also those that are most exploited during the usage of the software system.
Moreover, the email content is expressed using natural language, which does not require the
writer to carefully explain all the abstractions using the same level of importance. Our extrac-
tor can be extended to include other metrics measuring different aspects extracted from email
data.

24

3.2 Tool Based Research

® 00 Untitled o
@ [8 http://miler.inf.usi.ch/milerGame Reader] @
Systems Re: How to draw a custom Plane?

Habari (taurus76) Pawet Stanistawczuk bi....@todesign.pl - com.googlegroups.away3d-dev

Augeas October 19, 2007 3:13:36.000

Freenet mail-unique-id: 5ig66jidgih7x6ak

JMeter ~

Away3D Regards

ArgoUML Pawet

Mails On Oct 18, 3:49 pm, "Peter Kapelyan" wrote:

JMeter : 1/355

Freenet : 147/379 There is a bezier extrusion in away3d. An L or U can technically be done

Augeas : 0/281 like that.

Habari : 50/374 | am not sure how it works (didn't try) but even the T might be possible,
check out the

ArgoUML : 380/380 !))
Away3D : 17/370 Z:Iass BezierCurve extends ObjectContainer3D
- public function BezierCurve()

Romain : 183

in the EngineTest.as in trunk/techdemos/

Navigation
| Good luck! :) .
-pete :

@ | On 10/18/07, taurus76 wrote:
Hil

This won't do, because all of the dimensions are user defined, so the
plane has to be generated "on-the-fly".

Taurus76

| | Regards
| | OnOct 18, 1:43 pm, "Rob Bateman" wrote:

plane with a transparent material? the alpha channel of a material's
bitmap
source is preserved when texturing an object, allowing you to produce

I
depending on the size of your bitmap, have you considered just using one
irregular shapes from a single plane.

| | | On10/18/07, taurus76 wrote:

L1 H 1

>

Figure 3.3: The Miler Game

Detecting structured fragments: The second challenge we faced in our thesis is the noisy and
mixed-language content of development emails (see Section 1.2). In fact, development emails are
often interleaved with structured content, e.g., stack traces, patches, or code snippets, and noise
such as author’s signatures. We first tried to separate structured fragments from natural lan-
guage in email messages. This brings several benefits, such as better characterization of mailing
list usage, improved authors’ behavior analysis, or reconstruction of alternative system models
(see Chapter 7). MILer offers a Structured fragments detector module, which implements a light-
weight technique we devised for classifying emails and lines containing structured data. With
a case study, we evaluated the effectiveness of a number of candidate techniques for detecting
structured fragments in email content.

25

Chapter 3 Methodology, Replicability, and Subject Systems

A framework for island parsing in unstructured content: After we devised lightweight ap-
proaches for separating structured content from natural language in emails, we realized that
much information is available in these fragments. For extracting facts from this information, the
structured fragment detector moduleisnotenough, because itis not able to parse and model
the content. For this reason, we devised a more powerful approach based on island parsing,
which is able to identify, extract, and model structured information embedded in textual data
artifacts of any kind (e.g., source code or development emails). This approach is implemented
in a framework, called PetitIsLAND, based on the SmaLLTALK parser generator PETITPARSER [163].
Our framework is designed to be accurate and efficient, flexible, and extensible (see Section 8.7).
We extended it with specialized island parsers for code fragments, patches, stack traces.

Line classification of development emails: Mucca (eMail Unified Content Classification Ap-
proach) is the last application built in Miler. It consists of a technique to classify email lines in
five categories: natural language, source code, stack traces, patches, and noise. Mucca is based
both on island parsers written on top of PeritlsLanp and on two machine learning techniques
(i.e., Naive Bayes and Classification Tree). The machine learning techniques are implemented in
Weka [90], which we use as an external component (not depicted in Figure 3.1) to have access to a
vast number of machine learning approaches. With a case study, we evaluated the effectiveness
of Mucca and found that it reaches almost perfect results (see Chapter 9).

3.3 Benchmark and Replicability

To mine unstructured data, researchers have been experimenting with technologies adopted
from related research fields, such as topic models from Information Retrieval (IR), hierarchical
clustering from Data Mining (DM), or part-of-speech tagging from Natural Language Process-
ing (NLP). By studying these approaches (more background on the different IR approaches is
given in the chapters in which they are evaluated or employed), we noted that there is a gap
between the validation approaches used by the software engineering researchers and the ones
used in IR, DM, and NLP. The areas in which IR, DM, and NLP techniques have proven use-
ful (e.g., management of scientific and legal literature, web searches) are supported by a set of
well designed, robust, and universally accepted benchmarks. IR benchmarks, for example, are
publicly available and distributed via the infrastructure of the Text REtrieval Conference series
(TREC), sponsored by the National Institute of Standards and Technology (NIST) and the US
Department of Defense (DARPA) [179]. They keep evolving and now include retrieval tasks for
many different kinds of information (e.g., spam, genomic data).

In short, work in related research fields is supported by an extensive and statistically significant
benchmark against which their techniques were evaluated. This does not hold for the software
engineering approaches.

Sim et al. were the first to report this trend in software engineering [179]. They stressed the im-
portance of widely used and reliable benchmarks to assess the quality of research findings, and
challenged the software engineering research community to define appropriate benchmarks.
We share the concerns raised by Sim et al. For this reason, we support our work with carefully
designed and publicly available benchmarks. This allows us to better generalize our findings
and to let other researchers compare their approaches to ours and devise improvements.

In the analyses we conducted in which we needed benchmarks (i.e., when we had to compare the
output of automatic approaches to annotations done manually by human reviewers), we created

26

3.4 Subject Systems for the Analyses

such oracles manually by reading and annotating a large number of emails. For example, to
establish the quality of the traceability links retrieved by our lightweight approaches, we needed
a dataset in which emails were already linked to the correct code artifacts. Since it did not exist,
we had to create it manually by reading thousands of emails. We aided these kinds of manual
tasks by creating specialized panels implemented in the MiLEr GAME.

We implemented the MiLer GaME to have the following features:

It is web based, thus it can be accessed by different platforms and with different devices.

e It is easy to interact with it, because it shows only a single window with all the panels
immediately accessible.

¢ It supports concurrency: More users can access the MiLer Game and concurrently make
changes in the email data (e.g., to add annotations).

¢ Changes and annotations done by the users are immediately stored and persisted in the
database.

¢ [t is extensible by means of pluggable panels.

Using extensions to the MiLer GaMmE allowed us to make the task easier and less fatiguing, and
to automatically include the results in our models. For example, manually retrieved traceability
links are instances of the class TLinkManual. The data exporter module in MiLer is useful for
sharing our benchmarks and allows our work to be replicated. We refer the reader to the follow-
ing chapters (i.e., Chapter 4, Chapter 7, and Chapter 9), to see how we extended the MiLer GAME
to create different benchmarks for different scenarios.

3.4 Subject Systems for the Analyses

To conduct our data exploration and assess our techniques and findings, we performed a number
of case studies. To have a great variety of data and projects to study, and to have the possibility
to share the datasets we use in our research to improve verifiability and reproducibility of our
results, we used open source software (OSS) systems for our case studies.

Table 3.1 summarizes the main characteristic of the OSS systems used in our case studies. In gen-
eral, we selected mature systems with a mature development process, that make use of mailing
lists as communication channels, and that have an established user base. In the following we
briefly describe them to show that they vary in domain, usage, and development community:

ArgoUML is a graphical application for designing and automatically generating UML diagrams.
It is written in Java and released under the open source Eclipse Public License.’

Augeas is a configuration-editing library. It parses configuration files in their native formats
and transforms them into a tree. Manipulating this tree and saving it back into native
configuration files make configuration changes. It is written in C and released as OSS
under the GNU Lesser General Public License* (LGPL).

Away3D is a 3D graphics engine, which can be used to render 3D models and perform various
other 3D computations. It is written for the Adobe Flash® platform in AcTionScripT 3 (an

3 http://www.eclipse.org/legal/epl-v10.html
4 http://www.gnu.org/copyleft/lesser.html
5 http://www.adobe.com/software/flash/about/

27

http://www.eclipse.org/legal/epl-v10.html
http://www.gnu.org/copyleft/lesser.html
http://www.adobe.com/software/flash/about/

O 0 N O

Chapter 3 Methodology, Replicability, and Subject Systems

Chapters System Website PIOGIAMINNG pygiapie
Release Name Inception
4,7,8,9 Argouml http://argouml.tigris.org/ Java Apr 1999 org.tigris.argouml.dev Jan 2000
4 Augeas http:/augeas.net/ C Dec 2007 com.redhat.augeas-devel Feb 2008
4 Away3d http://away3d.com/ ActionScript Mar 2007 com.googlegroups.away3d-dev May 2007
5 Equinox http://www.eclipse.org/equinox/ Java Feb 2003 org.eclipse.equinox-dev Feb 2003
4,6,7,8,9 Freenet https://freenetproject.org/ Java Mar 2000 org.freenetproject.devl Apr 2000
4 Habari http://www.habariproject.org/ PHP Apr 2007 com.googlegroups.habari-dev Oct 2006
5 Jackrabbit http://jackrabbit.apache.org/ Java Sep 2004 org.apache.jackrabbit.dev Sep 2004
4,7,9 JMeter http:/jmeter.apache.org/ Java Mar 2001 org.apache.jakarta.jmeter-dev Feb 2001
5,10 Lucene http://lucene.apache.org/ Java Sep 2001 org.apache.lucene.java-dev Sep 2001
5 Maven http://maven.apache.org/ Java Sep 2003 org.apache.maven.dev Nov 2002
6,7,8,9 Mina http://mina.apache.org/ Java Nov 2006 org.apache.mina.dev Jan 2006
7 OpenJPA http://openjpa.apache.org/ Java Aug 2007 org.apache.openjpa.dev May 2006

Table 3.1: The open source software systems used in our analyses, by chapters

object-oriented programming language compliant with the ECMAScript Language Speci-
fication®), and it is released under the Apache License 2.0.”

Equinox is a plugin system for the Eclipse project. It is an implementation of the Open Services
Gateway initiative (OSGi) core framework specification,® a set of bundles that implement
various optional OSGi services and other infrastructure for running OSGi-based systems.
It is written in Java and released under the Eclipse Public License.

Freenet is a peer-to-peer software for anonymous file sharing, and for browsing and publishing
“freesites” (web sites accessible only through Freenet). It is a platform for censorship-
resistant communication. It is written in Java and released under the GNU General Public
License® (GPL).

Habari is a blog engine, publishing platform, and application framework. It is written in object-
oriented PHP 5, and supports many OSS database management systems for the database
backend. It is released under the Apache License 2.0.

Apache Jackrabbit is a content repository is a hierarchical content store with support for struc-
tured and unstructured content, full text search, versioning, transactions, observation, etc.
It is written in Java and released under the Apache License 2.0.

Apache JMeter is a load-testing tool for analyzing and measuring the performance of a variety of
services, with a focus on web applications. JMeter architecture is based on plugins. It is
written in Java and it is released under the Apache License 2.0.

Apache Lucene is an information retrieval library written in Java. It provides indexing and search
technology, as well as spellchecking, hit highlighting and advanced analysis/tokenization
capabilities. It is released under the Apache License 2.0.

http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.apache.org/licenses/LICENSE-2.0.html
http://www.osgi.org/Specifications/HomePage
http://www.gnu.org/licenses/gpl.html

28

http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.apache.org/licenses/LICENSE-2.0.html
http://www.osgi.org/Specifications/HomePage
http://www.gnu.org/licenses/gpl.html

3.5 Summary

Apache Maven is a build automation tool for to build and manage projects written in Java and
other languages. Maven serves a similar purpose to the Apache Ant'” tool, but it is based
on different concepts and works in a different manner. It is written in Java and released
under the Apache License 2.0.

Apache Mina is a Java network application framework written in Java. Mina provides unified
APIs for various transport protocols. A user application interacts with Mina APIs, shield-
ing the user application from low-level I/O details. It is has the Apache License 2.0.

Apache OpenJPA is an implementation of the Java Persistence API specification.!! It is an object-
relational mapping solution for the Java language, which simplifies storing objects in a
database. It is written in Java and released under the Apache License 2.0.

The choice of using only OSS systems might limit the generalizability of our findings. Even
though we strive to build techniques that do not rely on features specific to open source systems,
we cannot claim they will equally work in closed source and industrial settings. However, this
threat to validity regards mostly the results of our analyses (such as the defect prediction anal-
yses presented in Chapter 5), and it does not affect the effectiveness of the mining techniques,
which can be applied to data from industrial contexts and provide similar performances.

3.5 Summary

In this chapter we presented the high-level methodology that we followed in our dissertation to
provide evidence toward our thesis. We also presented how we attempted to create studies that
can be replicated, through the dissemination of our benchmarks, and by using OSS systems as
subjects of our studies. In the following chapters we describe the different experiments and case
studies we did following this approach. In each chapter we follow a methodology of its own to
answer the questions we raise or to evaluate the techniques we propose. We allocate the chapters
in three other parts: In Part Il we address the first challenge in mining unstructured software data
(i.e., reconnecting it with code artifacts), in Part IIl we present techniques for giving a structure
to unstructured data so that we can use more appropriate mining techniques afterward, and in
Part IV we conclude by taking a step back from our research and by proposing future work.

10 http://ant.apache.org/
11 http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html

29

http://ant.apache.org/
http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html

Part Il

Linking Unstructured Data and Source
Code Artifacts

31

The vast majority of mining software repositories approaches start from the source code. Once the in-
formation extracted from the source code is available and correctly modeled, it is usually enriched with
information extracted from other software repositories, such as those with versioning system data or issue
tracking system data. This method has been proved very effective [52].

Manually keeping links between artifacts in software repositories is hard: It constitutes a tedious, error-
prone, and time-consuming task to be done gradually. It forces developers to interrupt their normal pro-
gramming flow. For these reasons, in software repositories we often find no predetermined links between
one software repository to another. To tackle this problem, researchers have proposed a number of well-
tested linking techniques. Some of them were devoted to automatically recover the traceability links
between unstructured data and other artifacts (e.g., [125]).

In this part of the dissertation we present our work toward reconnecting emails to development artifacts, so
that this information can be used for supporting program comprehension and software evolution analysis.
We present novel techniques for recovering traceability links and we compare them to the state of the
art. Subsequently we show that these traceability links can be used in different software engineering
scenarios.

In Chapter 4 we present our first step, in which we first devised lightweight linking techniques to recon-
nect email and source code, then we compare them to the state of the art in traceability for unstructured
data. Once we determined that our techniques are the best performing, we use them in two scenarios. In
Chapter 5 we use them to create new metrics to seize a novel aspect of the software process and use them
to improve existing defect predictions models. In Chapter 6 we use the links to integrate email data in the
development environment, and we show that this novel information, if correctly provided and displayed
to developers, supports program comprehension.

33

Chapter 4

Recovering Traceability Links Between Emails and
Source Code Artifacts

In our thesis statement (see Section 1.2), we presented the two main challenges in mining un-
structured data, in particular development emails. In this chapter we present an investigation
in which we devised and evaluated a number of techniques to tackle the first challenge: the
disconnection between email artifacts and code artifacts.

4.1 Overview

Email messages often reference other data sources, such as source code, but there is no actual link
to referenced artifacts. Emails can provide new data and metrics to enrich the already available
information [200] (e.g., emails pertaining to certain entities of the source code can integrate, or
supply, incomplete documentation), but they must first be linked to the discussed source code
artifacts. Connecting emails to the source code can be helpful for various tasks [3]:

Understanding software systems: As systems are continuously growing in complexity and
size, they help both bottom-up and top-down comprehension [3];

Recovering design rationales: Often, developers discuss design decisions over mailing lists
[23]. Establishing the link between software entities and those discussions permits to join
design decisions and their implementation;

Performing impact analysis: After a change is discussed and approved, it is implemented.
Tracing these discussions with the subsequent code modifications gives hints about the
impact of changes.

Identifying coupling: Code entities that are often mentioned at the same time are implicitly
coupled.

Extracting developer behavior: Provided the appropriate links, it is possible to verify how
changes occur in the source code (e.., if they are discussed before or after their implemen-
tation).

Examining socio-technical congruence: Provided the connection between code artifacts and
email communication, we can investigate the alignment between the technical dependen-
cies and the social coordination in a project.

35

Chapter 4 Recovering Traceability Links Between Emails and Source Code Artifacts

To gain such benefits, the link between source code and emails must be present, up-to-date,
and relevant. In this chapter, we investigate whether and how effectively these links can be
automatically established. In the first phase, we devise lightweight lexical methods, based on
textual matching, to establish the link between emails and source code artifacts; and we evaluate
our methods against a manually created benchmark containing correct links between emails and
source code of a Java software system. In the second phase, we consider the state of the art in
recovering traceability links in software engineering (which mainly focuses on recovering links
between source code and authoritative documents, e.g., system documentation) and compare its
performances against our best performing methods, using another manually created benchmark
comprising six OSS systems written in four programming languages.

Contributions of the chapter. In this chapter, we present the following contributions:

o We identify the importance of reconnecting development emails to source code artifacts. This sec-
tion showed the objectives that we achieve by recovering traceability links between emails
and code artifacts.

» We devise, implement, and test a number of lightweight approaches to recover the traceability links
between emails and source code artifacts. The approaches we devise can be used to retrieve
the links in real-time, thus can be easily integrated in development environments.

* We conduct a comprehensive evaluation of the state-of-the-art linking techniques. We compare
existing linking methods ranging from our lightweight lexical approaches to the state of
the art in recovering traceability links from authoritative documents, in which researchers
effectively adapted approaches from the IR field [3; 126].

* We produce two benchmarks for evaluating the recovery of traceability links between emails and
source code artifacts. We create the first by analyzing the mailing list of a Java software
system and linking emails to the last source code release, and we create the second by
analyzing the mailing lists of six software systems, written in four different programming
languages. For each benchmark, we manually annotated a statistically significant number
of emails.

Structure of the chapter. In Section 4.2 we illustrate how we created the necessary benchmark
through MILER (see Section 3.2.1), our toolset for exploring email data. In Section 4.3 we detail
the lightweight approaches we devised, analyze their theoretical complexity, and evaluate their
effectiveness. In Section 4.4, we present the IR methods that shown to be effective for traceability
in software engineering, and that we apply in the context of emails. In Section 4.5 we compare
our lightweight approaches to the state of the art, discuss the experiment, and list the poten-
tial threats to the validity of our experiments. In Section 4.6 we review the related work. We
conclude by summarizing our contributions in Section 4.7.

4.2 Benchmark Creation With the Miler Toolset

Our work aims at finding links between two artifacts produced during software development:
source code and mailing lists. We want to verify whether it is possible to automatically—and
efficiently—find reliable traceability links between emails and software entities using lightweight

36

4.2 Benchmark Creation With the Miler Toolset

lexical approaches (namely text and regular expression matching), which exploit intrinsic char-
acteristics of source code elements, rather than expensive IR models or NLP. We also want to
compare our methods with more sophisticated IR techniques that led to valuable results in a
similar context.

The state of the art mainly spans vector space model (VSM) [123] and latent semantic indexing
(LSI) [60] (see Section 4.6); these are currently the methods against which new techniques have to
be tested. While researchers successfully adapted these techniques from information retrieval,
they mainly applied them to authoritative documents (e.g., functional requirements): We cannot
assume that these techniques will provide the same results when applied to email data. In fact,
emails have peculiarities that may alter the results (e.g., they contain low level information, such
as explicit references to classes, that, for instance, requirements do not include). We argue that
a specific benchmark is needed to reliably validate and compare approaches against each other in
this domain. In the following, we describe the benchmark we created.

We conducted our experiments in two phases: In the first phase, we devised, implemented,
and evaluated lightweight lexical approaches for retrieving traceability links between emails
and source code entities. In the second phase, we compared our best performing lightweight
techniques with the state of the art in traceability.

To reduce overfitting on the data, we created two different benchmarks for the two phases. In the
first benchmark (B1), used to test our lightweight methods in the first instance, we considered
one Java system (ArRGoUML) in its last release and linked its classes to emails taken from its
developments and user mailing lists. In the second benchmark (B2), used to compare our best
lightweight methods to the state of the art in traceability, we analyzed six unrelated OSS systems,
written in four different programming languages, and linked their code entities to emails taken
from their development mailing lists only.

To create reliable benchmarks we used MiLER (see Section 3.2).

4.2.1 Importing Email Data

Using the MArRkMAIL importer described in Section 3.2.1, we extracted all the emails from the
selected mailing lists, and modeled them in the MiLEr kernel, according to our meta-model.
Table 4.1 presents the email datasets considered for each system and benchmark.

Table 4.1: Emails per benchmark and software system

Programming Emails
Benchmark System Language Population Sample
Size Confidence Error
B1 ArgoUML 0.28 Java 29,024 3,000 95% 1.7%
B2 ArgoUML Java 29,112 355 95% 5.0%
B2 Freenet Java 26,412 379 95% 5.0%
B2 JMeter Java 20,554 380 95% 5.0%
B2 Away3D ActionScript 9,757 370 95% 5.0%
B2 Habari PHP 13,095 374 95% 5.0%
B2 Augeas (o} 2,219 281 95% 5.0%

37

Chapter 4 Recovering Traceability Links Between Emails and Source Code Artifacts

Since we have no prior details about the distribution of traceability links in email archives, we
employ random sampling without replacement (as opposed to other techniques, e.g., stratified
random sampling) to extract reliable sample sets from the populations of the emails. We estab-
lish the size (n) of such sets with the following formula [193]:

N -5 (20)2)°

(4.1)
(N = 1) E2 + 5G (2072)°

n =

This formula includes the finite population correction factor, because we consider populations that
are statistically relatively small. N is the size of the considered population (e.g., 20,554 emails
for JMETER); p is the expected proportion of emails referring a specific source code entity in the
sample set, while ¢ is (1 — p) (i.e., emails not referring that entity); E is the margin of error to be
considered, and z,» is the critical value [193] associated to the chosen confidence level.

In our experiment, since the proportion (p) of the emails referring to a specific entity of the
source code is not known a priori, we consider the worst case scenario (i.e., p - § = 0.25). For
the first benchmark, which is based only on one system, we keep a confidence level of 95% and
an error (E) of 1.7%; while for the second benchmark, which considers more systems, we keep
a confidence level of 95% and an error (E) of 5%. In practice, this means that if a source code
entity is cited in f% of the sample set emails, we are 95% confident it is cited in the f% + E
of the population emails. This validates the quality of this sample set as an exemplification of
the entire population; it is not directly related to the precision and recall values presented later,
which are actual values based on manually analyzed elements. Applying this formula to our
populations results in the sample sizes (n) shown in Table 4.1.

4.2.2 Importing Source Code Data

The other ingredient of our benchmarks is the source code. In the first benchmark (B1), we
consider only the release 0.28 (March 2009) of ARcoUML, while for the second benchmark (B2),
we take all system versions throughout the systems’ history. Using our revision importer (see
Section 3.2), we take the chosen releases (e.g., 0.28 for ARcoUML in B1, or all the official releases
for ARcoUML or JMETErR in B2), otherwise we use the checkout by date feature of the version
control system (i.e., we retrieved the committed code in intervals of 3 months, starting 3 months
after repository creation). As opposed to Antoniol et al. [3] and Marcus et al. [126], we do not
consider files as the unit for documents, but we link emails with source code entities: classes for
object-oriented systems, functions and structures for procedural language systems. To achieve
this, we parse the source code, extract the model, and find the links between model entities and
emails. Table 4.2 lists the collected data.

To reduce the threats to external validity of our experiments, i.e., to improve the generalizability
of our findings, in benchmark B2 we consider systems written in different languages. To locate
and model the source code from files, we use the code importers described in Section 3.2. In
particular, we use the industrial tool inFusion, for Java and C systems. For the other languages
we implemented our own code fact extractors.

Since we do not need all the information that a full-fledged parser is able to provide (e.g., INFu-
sioN also performs static analysis of the code—not necessary in this context), we limit ourselves

38

4.2 Benchmark Creation With the Miler Toolset

Table 4.2: Source code entities per benchmark and software system

Benchmark System NF;meer of Number of Entities
eleases First rel Last Rel Total
B1 ArgoUML 0.28 1 n/a 2,197 2,197
B2 ArgoUML 11 906 2,396 18,252
B2 Freenet 30 822 2,026 37,878
B2 JMeter 20 16 906 11,105
B2 Away3D 9 132 465 2,351
B2 Habari 12 20 124 1,105
B2 Augeas 17 60 675 8,042

to the necessary features. This has the advantage of being more lightweight both from an im-
plementation point of view and in terms of parsing efficiency. We do this by implementing
dedicated island parsers [136] in our PeritIsLanp framework (see Section 8.7).

1 package examplePackage; ExampleClass

2 . file: ExampleClass.Java

3 public class ExampleClass { package: examplePackage

4 public ExampleClass() { ... } enclosingClass: -

5 class ExamplelnClass { Zgg;‘a’f:g)i’;f;sfégxamp'e'”C'ass

6 ExampleinClass() { ... } dec/arationStop." 284

7 int alnnerMethod(inta) { ... } |:||:||:>

8} ExampleInClass

9 void method1(){ ... } file: ExampleClass.Java

10 int method2(){ ...} Pacfag_e-' gamp'lzepack?g&

11 public method3(int x, int y){ ... endlosingCiass: ExampleClass

12 } declarationStart: 88
ExampleClass.java declarationStop: 193

Figure 4.1: Example of parsed information and the resulting model

From the source code of an entity, we require the following information: in the case of our
lightweight lexical methods (see Section 4.3), we only need to extract the name, the containing
package, and the location of the entities to be linked; for IR techniques (see Section 4.4), we
additionally need the terms included in entity declarations, to generate the term vectors.

Figure 4.1 shows an example of what information is parsed and the resulting model. Bold parts
are the relevant facts (i.e., island code); they constitute the information in the model. The other
parts (i.e., water) are not parsed, but a reference is stored in the model, so that contained terms
can be later retrieved. On the right hand side of the figure, for instance, we know where Exam-
pleIncClass is defined—in which file, where it declaration begins and ends—thus we can extract
only the terms involved in its definition, excluding terms defined in the rest of the document.

39

Chapter 4 Recovering Traceability Links Between Emails and Source Code Artifacts

Systems Re: How to draw a custom Plane?
Habari (taurus76) Pawet Stanistawczuk bi....@todesign.pl - com.googlegroups.away3d-dev Type the name of the entity mentioned in the
Augeas October 19, 2007 3:13:36.000 email
mak-unique-id: Sig6E4gh7x6ak
Ereenet X e
JMeter ~
Away3D Regards
rao Pawet

& 4 away3d::objects::Plane

Malils On Oct 18, 3:49 pm, "Peter Kapelyan" wrote: away3d::core::scene::ObjectContainer3D
JMeter : 1/355 away3d::extrusions.:BezierExtrude
Freenet : 147/379 There Is a bezler extrusion In away3d. An L or U can technically be done away3d::core::mesh::Vertex

: like that.
Augeas : 0/281
ey I am not sure how It works (didn't try) but even the T might be possible,

check out the

oUML : 380/380 class BezierCurve extends ObjectContainer3D

Away3D : 17/370

Romain : 183
Navigation

{
public function BezierCurve()

In the EngineTest.as In trunk/techdemos/

Good luck! :)
-Pete

| ©n 10/18/07, taurus76 wrote:

|| Hit
| | This won't do, because all of the dimensions are user defined, so the L
lane has to be generated "on-the-fly".
pl g Y () Report annotation
Regards
Taurus76

| | On Oct 18, 1:43 pm, "Rob Bateman™ wrote:

plane with a transparent material? the alpha channel of a material's
bitmap
source is preserved when texturing an object, allowing you to produce

| depending on the size of your bitmap, have you considered just using one
irregular shapes from a single plane.

| | | On10/18/07, taurus76 wrote:

LELT He

o
a
v

Figure 4.2: Miler Game: The Web Application for Creating the Benchmark

4.2.3 Manual Benchmark Creation With the Miler Game

Creating the benchmark requires one to read all the emails in the sample sets and to annotate
them with code entities discussed therein. We extended the MiLer GAME (see Section 3.3) to assist
the manual linking task. Figure 4.2 shows the MiLEr GaME’s main page, after a user logged in.
With respect to the main interface of the MiLer Game, we added a new panel, called Annotation
panel (Point 1), which contains the list of the code entities linked up to the present.

Type the name of the entity mentioned in the email
ObjectC |

faway3d::containers::ObjectContainer3D

away 3d::core::proto::ObjectContainer3D

way 3d::core::scene::ObjectContainer3D

I:way?»d::core::scene::DebugObjectContainer3D

Figure 4.3: Miler Game: The autocompletion field

40

4.2 Benchmark Creation With the Miler Toolset

The Annotation panel features an autocompletion field (Figure 4.3) to help users to link an email
to the correct code entities. Users can see any entity whose name includes the typed letters; the
autocompletion avoids typos since only existing entities can be linked. The field displays entity
names with the following coloring convention: Entities are black if present in the last release
before the email date (this is the only option for B1, which only uses one release of ARcoUML);
light-gray if present only in older releases; blue if implemented in the first release after the email
date; and light blue if released later. In Figure 4.2, the user typed “ObjectContainer3D”. The
menu shows the homonymous entities in three colors: [...]Jproto: :0bjectContainer3b is light-
gray, as itis not in the current release, but only in older ones; [..]Jcontainers: : ObjectContainer3D
is blue, because it will be created only in the future release; [..]scene: :0bjectContainer3b is
black, because it exists in the current release. This helps choosing the most appropriate entity.

Six members of the REVEAL research group, with several years of programming experience,
inspected the sample sets. In both benchmarks, the emails were randomly divided in overlap-
ping sets, resulting in 49% of the messages analyzed by two people. A complete agreement was
reached on 91% of these messages, with the remaining annotations featuring small differences:
Almost all the divergences were caused by one of the two reviewers missing to annotate a link
that was actually present in the email. All the errors were corrected.

Annotators did not differentiate between links only present in text quoted from previous mes-
sages and present in the new content of the email. This allows the usage of these benchmarks
as a general case of textual information containing source code identifiers and discussions.

4.2.4 Evaluation

To compare the effectiveness of the approaches, we measure two well known IR metrics for the
quality of the results [123] (i.e., precision and recall), based on the following definitions:

* True Positives (TP): elements that are correctly retrieved by the approach under analysis
(i.e., links to source entities also present in the oracle)

¢ False Positives (FP): elements that are wrongly retrieved by the approach under analysis
(i.e., links to source entities not present in the oracle)

* False Negatives (FN): elements that are not retrieved by the approach under analysis (i.e.,
links to source entities only present in the oracle)

Standard formulas for calculating precision and recall are:

TP
Precision = M} (42)
|TP|
Recall = ————F— 4.3
TP L FN (43)

The union of TP and F'N constitutes the set of correct links present in the benchmark per email,
while the union of TP and F'P constitutes the set of links retrieved by the used approach. In
short, precision is the fraction of the retrieved links that are correct, while recall is the fraction of
the correct links retrieved.

41

Chapter 4 Recovering Traceability Links Between Emails and Source Code Artifacts

A number of emails in the benchmark have no references to source code entities, thus the union
of TP and F'N is empty. In these cases, the denominator in the recall formula is zero and the
recall value cannot be calculated. Analogously, it is possible for automatic approaches not to find
any link between an email and source code. In this case, the precision value cannot be evaluated
because the denominator in the corresponding formula is equal to zero. To overcome these
issues, we first calculate the average of TP, F'P, and F'N, on the entire dataset. Then, we measure
the average precision and recall from those values. This solution also takes into account the impact
of false positives on precision, when the set of benchmark references is empty. Antoniol et al., who
encountered the same difficulty, used a similar approach [3].

Precision (P) and recall (R) are two quantities that trade off against one another: Intuitively, it is
possible to link each mail with all classes, reaching a recall value of 1, but a very low precision.
For this reason, in order to measure such trade-off we added the F measure, which is the weighted
harmonic mean of precision and recall:

1 —e (8% +1)PR
r= — ™ ——— 2 = — s = 7
a%—k(l—a)%’ﬁ a B2P+ R

(4.4)

The weighting of precision and recall can be decided through the value of 5. We decided to
emphasize neither the recall nor the precision, because our approaches can be used in many
different situations, and it is up to the engineer to select the most appropriate one. Thus, we
prefer to give a general view of the result: We use a § value of 1 to obtain the balanced F measure.

4.3 Lightweight Traceability Linking

In this section we analyze the different lightweight approaches we devised and tested using
our first benchmark B1 (see Section 4.2). We illustrate each approach explaining the rationale,
showing the implementation, presenting the results achieved, and discussing the computational
complexity of the most elaborate ones. All techniques go from artifact to emails: We start from a
given artifact, extract the necessary information from the MiLer kernel (e.g., artifact name), and
use this information to establish whether each email contains a link to said artifact. To illustrate
our techniques, we use an email taken from the sample set (Figure 4.4), which contains several
examples of how people reference classes in emails.

Why efficiency matters. We implemented our methods to be (1) compact, (2) simple, and (3) fast.
We are interested in these features, because we strive for pmcticalz’ty, i.e., we want our techniques
to be usable in a real-world setting. As a typical usage scenario of traceability links between
source code and emails, we expect not only software engineering researchers, but also develop-
ers who search for emails that discuss a code artifact they are currently maintaining.

In such a scenario, developers work on a non-specialized multi-purpose computer. The linking
methods must be: (1) compact, thus not occupying large amount of disk space to store informa-
tion; (2) simple, thus being easy to implement and include in different working environments;
and (3) fast, presenting results in a few seconds at most, thus not requiring any large computa-
tional effort.

In the following we not only present the rationale behind our techniques, but we also study their
complexity and present efficiency improvements, whenever possible.

42

4.3 Lightweight Traceability Linking

What replaces Pluggablelmport and Generator2? (and other language module questions)
Tom Morris tfmo...@gmail.com

September 23, 2006 - 13:12:51
rinjveféxmcootka

We're trying to implement support in ArgoEclipse for reverse engineering which means that we n to deal with the
Pluggablelmport interface. It doesn't really make sense to modify that interface because it is recated, but | can't
figure out what replaces it.) mments say to register with org.argouml.uml.reveng.Import but that class has no
registration method. Additi itself depends on the deprecated Pluggablelmport interface.

On the code generation side of things, Generator2 has been deprecated in favor of CodeGenerator, but they don't
appear to have equivalent functionality, so | don't understand how this is meant to work.

Are there examples of modules which have been converted to the new structure? Is there a design discussion @
somewhere which describes how to convert old style modules to new style modules?

Arelated issue is GUI independence. | don't really see any reason that the language modules need to be dependent
on a GUI. They really only need to know about source modules, the UML model, @ghd some configuration settings. The
settings thathkg are pretty simple (things like boolean values, integers, stri »Q it seems like overkill to make

them construct tl settings dialogs. This also unnecessarily couples them to the G
Who's working on this stuff? I'm happy to help if | can get an idea of what the design direction is.

Tom

Figure 4.4: An email from the sample set containing various kinds of references to entities

4.3.1 Artifact Name, Case Insensitive

Intuition: The simplest way for an email author to reference an entity is using its name. As
an example, in Figure 4.4 Point 1, the class Generator2 is simply mentioned by name. Given an
artifact, this method links all the emails that contain at least one string corresponding to its name.
This method also considers valid the strings that do not respect the original case of the letters
in the artifact name; in fact, when quickly writing about an artifact, email authors might not
respect naming conventions (e.g., upper case letters). Finally, this method does not impose any
restriction on the characters surrounding the candidate string. As we see in Figure 4.4 Points
2a and 2b, where class names CodeGenerator and Generator2 are followed by punctuation,
authors can include names in different contexts.

Implementation: This simple implementation consists in verifying, given an artifact name, whether
there is at least one string corresponding to it in the considered email. When traversing the email
content, the implementation takes into consideration neither the case of the artifact name nor
the preceding or following characters. Since MiLer kernel provides the name of an artifact, this
implementation can be reduced to a string-matching problem [50].

Precision: 0.09 — Recall: 0.70 — F-Measure: 0.16

Results: The most interesting result of this simple match is the recall value: It reaches a value of
0.70 on our statistically representative sample. The trade-off is a low precision, due to the many
false positives.

Considering Figure 4.4 Point 3, we note that the word “model” does not refer to the class Model
in the package org.argouml.model, as this simple approach wrongly assumes. This is one of
the many examples that make this approach generating false positives.

43

Chapter 4 Recovering Traceability Links Between Emails and Source Code Artifacts

All the matching techniques that follow use this simple class name match as the first step for
their implementation: They all consider the class name and require it to be present in one single
word in the email content. For this reason, the value reached with this first approach is the upper
bound of the recall.

Complexity: O(a+m), where ¢ stands for the number of characters in the artifact name and m the
number of characters in the emails. We repeatedly check the same artifact name against many
emails, thus the string matching algorithm by Knuth et al. [108] is an optimal solution.

4.3.2 Artifact Name, Case Sensitive

Intuition: In many object-oriented languages, developers follow the widely accepted convention
of starting class names with a capital letter and use media capitals (e.g., ClassName), also known
as CamelCasing, to compound words. For this reason, case sensitivity might be important when
matching a class name against an email text. For example, in Figure 4.4 Point 3, we note that the
author of the email is not referring to the class org.argouml.model.Model, but is using the term
“Model” with its common dictionary meaning. By considering case sensitivity, this email would
not be reported as relevant when searching for email discussing the class Model, while it would
be recommended for the classes CodeGenerator and Generator2.

Implementation: In this approach we use an algorithm similar to the previous one, but we do
consider the case of characters. We expect to reduce the false positives that the previous algo-
rithm generates.

Precision: 0.33 — Recall: 0.69 — F-Measure: 0.46

Results: As expected, the recall value did not decrease significantly. On the contrary, the simple
additional case sensitivity check greatly increases precision (i.e., by 24%). The number of false
positives dropped, while the number of good links not retrieved was almost as high as in the
previous approach.

This result points out that class names are mainly mentioned respecting camel casing. This
simple check thus helps to separate common words of discussions from true references to source
code entities.

One of the false positive created by this approach is the one marked with point 4 in Figure 4.4.
The word GuT is not a reference to the class org.argouml.ui.GUI, on the contrary the author is
writing about a component of the ARcoUML application, from a user point of view. Also, the
class Generator is wrongly recognized as being referenced, because its name is part of the word
“Generator2” or “CodeGenerator” (Figure 4.4 points 1 and 2, respectively).

Complexity: O(a+m), as with the previous technique.

4.3.3 Strict Regular Expression

Intuition: This method exploits some peculiar characteristics of source artifacts (in addition
to the name) to reach a high precision value. It is an indicator of the upper bound for preci-
sion. First, this method verifies whether the chosen email contains a string corresponding to
the artifact name, if so, it analyzes the surrounding text. We consider the text after the string
corresponding to the artifact name:

44

4.3 Lightweight Traceability Linking

¢ File extension: Many programming languages store source code and binary files with rec-

ognizable extensions, often named after the code artifact they contain. For example, Java
classes are stored in files with special extensions (i.e., java and class) and the compiler
enforces these files to have the same name as the class they define. For this, given the ar-
tifact, when we find a string corresponding to its name and followed by these extensions,
we can be almost certain that it is a valid traceability link.

Whitespace and punctuation: When email authors discuss about an entity, and not about
its containing file, the file extension is likely to be omitted. When there is no extension, we
impose that, after the string corresponding to a class name, there must be an empty space
or a punctuation sign. This constraint both admits natural language text punctuations and
resolves ambiguities in strings with the same prefix (e.g., when we search for emails related
to the class Mode1l, the previous approach would also link any email containing the string
ModelFacade, while this method would not).

We analyze the text to be found before strings that correspond to artifact names:

¢ Package: In most object-oriented languages, every class is in a package; two classes can

have the same name only if they reside in different packages. We require the last part of
the package name to be present before the string corresponding to a class name. Such a
strict requirement resolves the ambiguity of different classes having the same name and
guarantees high precision.

Punctuation: Package identifiers are commonly separated by a dot (e.g., org.argouml).
In many languages, packages are represented in the file system as directories (e.g., org/,
org/argouml/). For this reason, email authors referring to a class in its file form could
divide the package identifiers through the common file system separators, i.e., “\” and
“/”. We require the last part of the package to be preceded with this special punctuation.

Whitespace: We require the text that precedes the aforementioned punctuation to be either
a whitespace (e.g., blanks, tabulator keys, new lines) or the rest of the package preceded
by whitespaces.

By enforcing these constraints, the example email will be reported as a valid link only when
searching for emails related to the class [...]reveng . Import (being correctly referred in Figure 4.4,
Point 5). No false positive link is produced.

Implementation: The core of this approach consists in a regular expression, which we express
here according to the IEEE POSIX Basic Regular Expressions (BRE) standard:

1
2
3
4
5
6

C.*)(\s)
(<beginning of package>(.|\\|/))?

<last part of package>(.|[\\|/)
<entity name>

(\.(java|class|cs|h|c|php|as)|[:punct:]|\s)
C.*)

MILER replaces the parts in italic and angle brackets (e.g., <class name>) with the code artifact’s
specific information available in the Miler kernel, and generates the complete regular expression
text. For example, when applied to the Java class org.argouml.application.Main, this function
produces the following regular expression:

45

Chapter 4 Recovering Traceability Links Between Emails and Source Code Artifacts

1 (.*)(\s)

2 (org(.|\\|/)argouml(.[\\]|/))?

3 application(.|\\|/)

4 Main(\.(java|class)|[:punct:]|\s)
5 (.%)

Precision: 0.94 — Recall: 0.10 — F-Measure: 0.18

Results: Using this strict match, the recall value radically changes and reaches a very low value.
On the other hand, as we expected, the precision reaches a top value. Due to the small number
of links that this approach retrieves, a very few false positives (i.e., 11 for the whole data set) are
sufficient to lower the precision from 1 to 0.94. Classes that are not in the ARcoUML model, but
have the same name and last part of package, are recognized as references with this approach,
thus causing those false positives. The F-Measure value is as low as in the match based on the
simple class name approach, not case sensitive. There is no difference in the results when using
case sensitivity.

Complexity: O(a - m), where a sums the characters in the artifact name and in the package,
and those used in the regular expression; m sums the email characters. Since retrieving the
information from Miler kernel is done in constant time, the auxiliary function that generates the
regular expression text takes O(a) time.

In our experiment, we generate the regular expression text only once per entity and we use it
to match multiple emails. The regular expression always contains the complete class name in
its text. Checking for the presence of the artifact name is significantly faster than evaluating
the complete regular expression, thus, we first check for the presence of the artifact name: if it
appears, we invoke the regular expression matcher.

The regular expression matcher dominates the computational time of this approach. The fastest
algorithm to match a text against a regular expression is based on work by McNaughton and
Yamada [131] and by Thompson [190]. They demonstrated that any regular expression could be
represented with a nondeterministic finite automaton (NFA), which can be matched against a
text in polynomial time. In the worst case, the regular expression matching is computed on all
the m characters of the email requiring O(m - a) time.

Further efficiency improvement: Rabin and Scott showed that any NFA can be simulated by
deterministic finite automatons (DFA) in which each DFA state corresponds to a set of NFA states
[130]. A DFA has the advantage to be matched against m characters in linear time O(m). The
most expensive part of this approach is transforming an NFA into the corresponding (potentially
much larger) DFA. In the typical case (i.e., our case), the transformation requires O(a?) time.

When m exceeds a®, we benefit from using the DFA. For example, in the case of our benchmark,
which consists of 2,000 emails, the transformation from NFA to DFA brings an advantage. If
we consider the previously cited regular expression, composed of 98 characters, we obtain a?
=941,192. Even with only 471 (i.e., 941,192 characters divided by 2,000 emails) characters per
email on average, we would have enough text to justify the transformation.

In other words, when using this approach on a large set of emails, we can optimize it to be
executed in O(m + a?).

46

4.3 Lightweight Traceability Linking

4.3.4 Loose Regular Expression, Case Sensitive

Intuition: The strictest requirement of the previous approach is the presence, in the matching
string, of the package tail before the artifact name. By relaxing this constraint we expect to
achieve a better compromise between precision and recall. At the place of the package tail, we
allow either an empty space or the complete package string. For the text after the artifact name,
we apply the constraints of the previous approach.

This approach would report the example email in Figure 4.4 as valid, for the classes mentioned
in Points 1, 2 and 5.

Implementation: As in the previous approach, we implement this technique with a regular
expression.

¢.*)

((\s) | (<package>(.|\\[|/)))

<class name>

4 (\.(java|class|cs|h|c|php|as)|[:punct:]]|\s)
5 (.%)

w N

By applying this function to the class of the previous example, we obtain the following regular
expression:

¢.*)

((\s)|
(org(.[\\|/)argouml(.|\\]|/)application(.|\\[/)))
Main(\.(java|class)|[:punct:]|\s)(.*)

B W N e

Precision: 0.45 — Recall: 0.54 — F-Measure: 0.49

Results: Results show that the recall increased to 42%, while precision lost 49%. The F-Measure,
which is slightly higher than the match on the class name case-sensitive, points out that this
method is the best choice, up to now, if recall and precision are considered equally important.

One of the false positives, considering Figure 4.4, is the word marked by Point 4. The string
matches the regular expression, however the author is not discussing a class named GuI.

Complexity: O(a - m), same as above. It can be equally optimized for large sets of emails.

4.3.5 Mixed approaches

These approaches integrate the previous ones to combine their strengths and offer a more con-
venient trade-off between precision and recall for general cases. They are based on the same
rationale as the previous ones: When developers communicate about a code artifact, they often
mention it by its name. For this, the first step still consists in searching for a string corresponding
to the name of the artifact to be linked.

The main precision problem of searching for strings that correspond to artifact names is polysemy,
i.e., the capacity for a word to have multiple meanings. A convention to support program com-
prehension is naming artifacts after the real-world objects they model (e.g., ARcoUML'’s class

47

—_

Chapter 4 Recovering Traceability Links Between Emails and Source Code Artifacts

Text models the behavior of text); this implies that, in any document, a string corresponding
to an artifact name might not actually refer to that artifact but simply have the usual definition
we find in a dictionary. The intuition behind the mixed approaches is to use a strict matching
technique (e.g., the regular expression based method detailed in Section 4.3.3) when a string can
have more meanings than the artifact name (e.g., the word “Text”), and to use a loose technique
(e.g., the matching on artifact name method) otherwise.

Strict match
(e.g. Strict regular

yes | ’
()Q,ﬁ expression)

Can it have
other

from artifact meanings?

Extract name EIEII:>

b0 Loose match
O% (e.g., Artifact name

no : case sensitive)

Figure 4.5: Mixing approaches to face polysemy-related issues

Figure 4.5 shows our strategy to mix the approaches. First, given an artifact in the Miler kernel,
we consider its name: If it might present polysemy, we use a strict matching, otherwise we use
a loose matching. The main difference among the following mixed approaches is how they
determine whether the artifact name presents polysemy.

Dictionary approach

Intuition: We can find polysemy in those artifact names that also have a meaning in a common
dictionary (such as Dialog, Text, or Critic). This approach determines polysemy when the artifact
name also appears as an entry in an English dictionary.

Implementation: Given the name of an artifact, a function checks its presence in a dictionary of
common English words with more than two hundred thousand words taken from the standard
Unix words file.! If the name is present, the function then uses the strictest matching available
(i.e., Strict regular expression, cf. Section 4.3.3) to match the string in the body of an email, oth-
erwise it uses the matching on the Artifact name, case sensitive (cf. Section 4.3.2).

Precision: 0.57 — Recall: 0.62 — F-Measure: 0.60

Results: To obtain a stronger comprehension of the results obtained, we also tried to use the
simple matching not case sensitive on the class name (see Section 4.3.1), in place of the case
sensitive one. The results are: precision 0.20, recall 0.64. The difference in precision, related to
the usage of case sensitivity, is evidence of the fact that the most cited classes are not part of the
dictionary. In fact, we recall that the simple match on the class name is only used when the name
is not on the dictionary, otherwise we apply the strict regular expression, which is not influenced
by case sensitivity.

The F-measure shows that this approach, which makes use of a dictionary to select the severity
of the match, is the most effective until now.

http://en.wikipedia.org/wiki/Words_(Unix)

48

http://en.wikipedia.org/wiki/Words_(Unix)

4.3 Lightweight Traceability Linking

Complexity: O(a-m). The dictionary can be stored in a hash table, thus string searching is com-
pleted in constant time on the number of stored elements. The complexity is dominated by the
slowest matching used: in this case the Strict regular expression (see Section 4.3.3).

CamelCase approach

Intuition: Even though dictionaries can be stored in hash tables and searched in constant time,
in practice their usage is uncomfortable (e.g., one dictionary per language) and the searching
time, although constant, is not zero. This approach exploits naming conventions to determine
whether an artifact name can present polysemy.

As previously mentioned, artifacts usually represent abstractions of real-world categories of ob-
jects; for this reason, it is common practice to give them names from common words. However,
since empty spaces are not allowed in artifact names, whenever an artifact represents a con-
cept which is clearer if named with two or more words, those are compounded, by using media
capitals as suggested by naming conventions.

The intuition is that artifact names, which are formed by compounded words, cannot be part
of a common dictionary. For example, the artifact name ExplorerTree is formed by the two
dictionary words explorer and tree, but their composition is not a dictionary word. For this
reason, we suppose that it is sufficient to check for the presence of media capitals to determine
whether a word presents polysemy. If the artifact name is a single word, this method uses the
loose matching, otherwise, when a name is made by compounded words, the method uses the
strict matching.

Implementation: The implementation is analog to the previous algorithm, but in practice, since
it does not require a dictionary, it is faster and requires less memory. The test for media capitals
considers a word to be compounded if it contains more than one capital letter and at least one
lower case letter. In addition to the common cases, this test correctly handles also cases such as
the string PGMLParser, marked as compounded, and csv, marked as simple.

Precision: 0.63 — Recall: 0.62 — F-Measure: 0.62

Results: The main goal of this approach is to lighten the previous one removing the dictionary
search. The results show that, in addition to performance, the precision value increased, without
any loss in the recall value.

These results can be explained through a few examples. First, there are class names that are not
in a simple English dictionary, but are common computer science terms: parser is one of such
terms. The previous approach did not find the string Parser in the dictionary, thus it wrongly
treated it with the most optimistic match. On the contrary, this new approach found only one
capital character and correctly switched to use the strictest match.

Second, there are class names that are part of dictionary words. For example, the class Init has
a name that is part of many dictionary words (e.g., Initialization, Initial), thus the most
optimistic methods (which does not impose any restriction on characters surrounding the class
name) finds wrong matches. On the contrary, this new method correctly treats such words,
which have only one capital letter, using the strictest approach.

Finally, classes often have names that correspond to high-level design concepts. For example,
Modeller is a class name, and a concept in the ARGoUML jargon. It is possible to find it men-
tioned both as a high level design concept (not referring the class with the same name) and as a

49

Chapter 4 Recovering Traceability Links Between Emails and Source Code Artifacts

class of the system. Also in this case, this new approach takes the right decision of treating this
case with the strictest matching. In terms of F-Measure, this method is the most effective.

Complexity: O(a-m). Even though this method has the same linear complexity as the previous
one, which uses the dictionary, it consumes less memory and its verification requires a shorter
constant time. The Strict regular expression still dominates and determines the overall compu-
tational time of O(a - m). This can be optimized up to O(t + m?), as in previous approaches.

4.3.6 Discussion

Results. In Figure 4.6 we have summarized the results of all approaches. The case insensitive
class name approach (A) represents the upper bound for the recall (i.e., 0.70), as all the other
approaches we used, as the first step, check for the presence of the class name. Then, they refine
the precision using different techniques, which necessarily reduces the recall. It is still possible
to implement lightweight techniques to raise it. For example, during the benchmark creation,
we noted that, sometimes, class names that are made of compounded words are mentioned
in e-mails using those words separately. This aspect can be implemented refining the regular
expressions. Heavyweight approaches may find implicit references, thus increasing the recall.

On the opposite extreme, there is the case insensitive strict regular expression approach (C),
which reaches top precision but retrieves few links. From the results of the two mixed ap-
proaches (E and F), the strict approach was useful to raise the precision value when used together
with the case sensitive class name approach.

The two mixed approaches give the best results: They are not only capable of retrieving 62% of
all the correct links between e-mails and source code entities, but they also completed this task
with the same significant level of precision (i.e., 63% of the links retrieved were true positives).

Complexity. All approaches can be computed in polynomial time. In particular, the first two
approaches, without regular expressions, are computed in linear time O(a +m), where m is the
number of characters in the email, and a the number of characters in the pattern to be searched
for (e.g., the artifact name).

The approaches involving regular expressions are computed in time O(a - m), which is still poly-
nomial and, in most of the cases, less than quadratic (it is quadratic when a approaches ¢, but this
happens only for very short emails, that can be checked extremely fast anyways). These results
cement the validity of our approaches as lightweight, since they can be both easily implemented
and quickly executed.

We showed that these complexities can be even lowered when we plan to use the function on
multiple emails. In the approaches involving regular expressions, we illustrated how one can
split computation into a pre-processing part and a matching part. The pre-processing is com-
putationally intensive: O(a®) time in the average case, but the match can be executed in O(t).

4.4 Information Retrieval Techniques

The state of the art in recovering traceability links between code entities and authoritative doc-
uments is represented by VSM, introduced in this context by Antoniol et al. [3], and by LSI,

50

4.4 Information Retrieval Techniques

Precision
1.0

©

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1 @
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall
Approach Precision Recall F-measure
A Artifact name, case insensitive 0.09 0.70 0.16
B Artifact name, case sensitive 0.33 0.69 0.46
C Strict regular expression, case insensitive 0.94 0.10 0.18
D Loose regular expression, case sensitive 0.45 0.54 0.49
E Mixed, with dictionary, case sensitive 0.57 0.62 0.60
F Mixed, with CamelCase, case sensitive 0.63 0.62 0.62

Figure 4.6: Precision, recall, and F-measure of all lightweight approaches.

used by Marcus and Maletic [126]. In this section we present these two approaches and their
application to the context of retrieving links between code entities and emails.

51

Chapter 4 Recovering Traceability Links Between Emails and Source Code Artifacts

4.4.1 Vector Space Model (VSM)

VSM approaches represent each document in a corpus as a term vector. The size of the vectors
is the total number of terms in the corpus’ vocabulary and the values reflect the number of
occurrences of each term in the document. If we consider a document (d), the cardinality of the
vocabulary (|C|), and the number of times each term (¢;) occurs in the document, we can define
the vector as:

va = [ti(a), ta(d)s - - - > to(a)] (4.5)

Methods that use the VSM aggregate and transpose term vectors to compose the Term Document
Matrix (TDM):

‘ Dy Do Dy

t1 1 0 1 0

TDM = t2 | O 0 4
te | 1 2 0

In the example matrix, the term ¢~ appears once in the first document (D,) twice in the second,
but not in the last (Dy).

Term Weighting. In the TDM, each term is assigned with a weight, i.e., the number of occur-
rences. To compare documents of different lengths, this weight is normalized on the length of
the document. This weighting is called term frequency (tf):

C

tfc,n = dc,n ' (Z di,n)_l (46)

=1

Tf is a local weighting, because it only consider the single document. A global weighting, in-
stead, normalizes documents’ characteristics by taking into account the entire corpus. Among
the many forms of global weighting proposed by researchers, the mostly used one is called in-
verse document frequency (idf):

idf, = log|D| —log |{d : t, € d}| + 1 (4.7)

In the idf formula, the more common a term is among all the documents, the less (in a log-
arithmic fashion) it is weighted. The result is that very common terms (e.g., ArgoUML in the
homonymous email set) have an extremely low weight, because they do not help in distinguish-
ing documents.

We follow the state of the art [3; 126] and adopt the composition of term frequency and inverse
document frequency, known as tf-idf and defined as:

tf'idfc,n = tfc,n . Zdfc (48)

52

4.4 Information Retrieval Techniques

Query Creation. Once the matrix is created, we can evaluate textual queries on it. Each query is
handled as a new document and is converted to a term vector (g), by using the aforementioned
weighting scheme (it only considers terms already in the TDM). Once the query vector (g) is
obtained, it is compared to the vectors (d) in the TDM. The response to the query is formed by
the documents corresponding to vectors that are the most “similar” to the query vector. The
similarity is evaluated as the cosine of the angle between the vectors [28]. Any document whose
distance is less than a given threshold is a match. We consider emails as the corpus, from which
to create the TDM, and code artifacts as the queries. Determining the most effective threshold
is non-trivial, because it depends on characteristics of the corpus and the domain [123]. When
evaluating the results of IR approaches, we use a wide range of thresholds to find whether an
optimal value exists.

Tokenization. The effectiveness of methods based on VSM critically relies on the quality of the
term extraction process (i.e., tokenization). In fact, the choice of terms determines the config-
uration of the TDM, the weighting values, and similarity calculations. For this reason, previ-
ous traceability recovery work in software engineering conducted a preliminary normalization
phase. In particular, Marcus and Maletic, and Antoniol et al. deemed necessary to: (1) re-
move punctuation, (2) transform all the characters to their lower case versions, (3) perform stem-
ming (i.e., a morphological analysis to convert plurals into singulars and to transform conjugated
forms of verbs into infinitives), and (4) remove stop-words (i.e., very common words, such as con-
junctions or prepositions, not useful to distinguish documents). The resulting terms were those
considered to build the TDM.

In our experiment, we approached the pre-processing phase by first inspecting the emails in our
corpus. This qualitative analysis led us to the following conclusions:

¢ Punctuation: We found that punctuation marks have to be treated differently depending
on their type, usage, and location. The reason why punctuation marks are removed in
most pre-processing phases (e.g., [3; 126]) is that, if used per se without their context, they
are ineffective to distinguish documents or clarify their content. In fact, in TDM the order
and context of the terms is lost. Nevertheless, symbols often clarify the intended meaning
of surrounding characters. As an example, the abbreviation e.g., loses sense if reduced
to the terms e and g, thus punctuation is necessary to preserve its meaning. In our cor-
pus, in many cases code entities are referenced through their fully qualified names (FON),
such as org.main.Argo. Reducing a FQN to its components (e.g., org, main, Argo) dimin-
ishes the quality of the information. Similarly a complete file path is more informative
than the single components. Preserving this kind of punctuation assures the integrity of
meaningful information. In our experiment, we consider FQNs, paths, floating numbers,
abbreviations, etc. as single tokens.

¢ Characterlowercasing: In our corpus, lowering the case of each character would not allow
us to take advantage of the naming conventions (explained in Section 4.3) of each program-
ming language. For example, a document with many occurrences of the term Model would
more probably be referencing the homonymous class; while a document with most occur-
rences of the term model, even if also containing an occurrence of Model (which could be
the beginning of a new sentence), would probably be discussing about the abstract con-
cept. Our initial tests confirmed that lowercasing reduces the effectiveness of the used
approaches. We thus do not lowercase characters in our experiment.

53

Chapter 4 Recovering Traceability Links Between Emails and Source Code Artifacts

¢ Stemming: In the systems constituting our corpus, several code entities have similar names.
For example, HaBar: has two classes called Plugin and Plugins. Performing stemming
would not allow us to recognize the correct reference: The two different terms would be
reduced to a single term representing both classes, thus increasing the risk of false posi-
tives. For this reason, we do not perform stemming.

* Stop-words removal: From the manual inspection of our corpus, we could not qualita-
tively understand the actual impact of removing stop words before constructing the TDM.
Since there is no previous work on this, especially in our context, we evaluate the results
for both cases, i.e., with and without stop-words, to understand their actual impact.

4.4.2 Latent Semantic Indexing (LSI)

Documents written in natural language are inherently ambiguous, especially due to synonymy
and polysemy. In our context, because of synonymy, the same entity can be referenced in an
email in different ways beyond its formal identifier; e.g., ARcoUML developers often use the
name NSUML when referring to the class NSUMLModelFacade. Due to polysemy, when a common
dictionary word is also used as a code entity name (e.g., Model), it is difficult to interpret its
meaning without the context.

LSI aims to overcome these natural language problems by detecting the relationships between
terms, modeling the latent semantic structure of the corpus and recognizing its topics [60]. LSI
builds these underlying relationships by considering the words that co-occur in multiple docu-
ments. Instead of relying on individual words to locate documents, LSI uses topics: documents
are no longer represented by vectors of term frequencies but by vectors of topics, which are in-
ferred from the terms’ co-occurrences (e.g., if the terms NSUML and Model occur often together, a
document containing only NsUML might still be returned if the query is Model).

LSI starts where VSM approaches stop: Given a TDM, LSI outputs a reduction through Singular
Value Decomposition (SVD) [106], a technique used in signal processing to reduce noise while
preserving the original signal. LSI assumes that the original TDM is filled with the noise gen-
erated by synonymy and polysemy, thus its reduction is a model of the corpus with this noise
filtered out. The emails form the corpus and LSI starts from the TDM generated for the VSM
approach. Once the TDM is obtained, SVD reduces pruning out eigenvectors with low values.
The dimension of the resulting matrix is the number of topics to consider.

After SVD computes the reduced matrix, we can use any text as a query. As for VSM, we consider
a code artifact as our query, which is transformed in a vector and compared to other documents
in the matrix by using the cosine of their angles. To index the query, a naive, but slow, approach
would be recomputing the entire SVD matrix with the query document added to the matrix and
extract its vector. Instead, we use topic inference techniques to recover the topic composition of
the query document based on its term frequency [29].

4.4.3 Results

We explore the impact of different settings for the parameters of VSM and LSI: (1) discussing the
impact of topics for LSI; (2) exploring the various query types for both approaches; (3) measuring
the best distance thresholds; and (4) investigating the role of corpus size. We performed an
exhaustive comparison of all parameter combinations, but here we outline only general trends.

54

4.4 Information Retrieval Techniques

Impact of the number of topics. The number of topics impacts both the results of the approach
and the time for corpus indexing and query comparison. The quality of the results and the
computation time increase with the number of topics. However, the quality decreases when
the number of topics exceeds a certain threshold. We are interested in finding the minimal,
but still effective, number of topics. Figure 4.7 plots the best F-Measure values obtained with
LSI, by number of topics and query type. We see a performance plateau after 200 topics, and a
maximum around 250 topics.

——classname ~—classname and package ~*"source code content

F-measure
o
o

10 30 50 70 90 110 130 150 170 190 210 230 250 270 290 310 330 350
number of topics

Figure 4.7: LSI, F-Measure by topics and query type

Most effective query type. We considered three different kind of queries generated from the
entity to search links for: (1) the entity name; (2) the entity name and the package in which it
resides; (3) the whole source code of the entity. The entity name query is the best performing,
while the others provide too much noise (Figure 4.7). We obtained consistent results using VSM
with tf-idf.

Optimal distances. Considering the F-Measure as the indicator of overall performance, in Fig-
ure 4.8 we see that the best distance threshold for VSM with tf-idf is in the 0.85-0.91 range.

—ArgoUML —Freenet Jmeter —Away3D Habari

o o
w I

F-measure
o
o

o

—_
\
\

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
distance threshold

Figure 4.8: VSM, tf-idf: F-Measure by distance

55

Chapter 4 Recovering Traceability Links Between Emails and Source Code Artifacts

For LSI the results are less conclusive (Figure 4.9): The optimal distance is heavily dependent
on the system (e.g., for Freenet is in the 0.25-0.35 range, while 0.6-0.8 for Hasarr and 0.9-1 for
Auceas), thus one must discover the optimal distance for each case.

—ArgoUML —Freenet Jmeter —Away3d Habari —Augeas
0.6

0.5
204
3
@

o 03

£

w 0.2
0.1

0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
distance threshold

Figure 4.9: LSI: F-Measure by distance

Use of full/partial corpus. We computed the results detailed above using only the manually
annotated emails included in the benchmark as the corpus. However, unlike regular expres-
sions, IR techniques are affected by the corpus used. A larger corpus might significantly change
weightings of VSM with tf-idf, and alter topics inferred by LSI. On the one hand, the topic de-
scriptions and weightings could be more accurate, on the other hand there might be much more
noise. To test this, we used VSM and LSI to index the entire mailing list content and have a full
corpus. Then, when running the benchmark, we kept only the documents also in the benchmark
as valid results, discarding the others. Our tests show that using a full corpus has a harmful effect
for both approaches: VSM'’s results are much lower, while LSI’s performance seems to improve
only with a very large number of topics. Unfortunately, large numbers of topics (3,000 or more)
are very expensive to compute when generating the approximate matrix and also increase the
time needed for the distance computation, i.e., it took more than 24 hours? to obtain the approxi-
mate matrix from a complete mailing list using a fast C implementation of SVD?. Linking a single
class to the same complete mailing list using lightweight approaches takes seconds. Moreover,
results are worse than with a restricted corpus: with 100 topics the maximum F-Measure value
reached is 0.06, 0.19 with 1,000 topics, and 0.24 with 3,000 topics.

Overall results. Table 4.3 shows the overall results with optimal parameters (entity name as a
query type, best overall distance, restricted corpus, 200-300 topics for LSI). As expected, IR meth-
ods achieve higher recall values than lightweight methods, but at a significant cost in precision.
F-Measure values for LSI outperform VSM with tf-idf results, probably because its ability to deal
with synonyms, but are still far from the performance of the lightweight methods.

Both the techniques applied on Auceas still offer poor results. Before applying the techniques
on all the systems we pre-processed the text—converting it to lowercase—, thus case sensitivity
cannot be the cause. However, many components (such as executables or configuration settings)

2 on a dual quad-core Intel Xeon server with 42GB of RAM
3 http:/ /tedlab.mit.edu/ dr/SVDLIBC/

56

4.5 Lightweight vs Heavyweight

Table 4.3: VSM and LSI results, optimal parameters

System Vector Space Model, tf-idf Latent Semantic Indexing
Precision Recall F-Measure Precision Recall F-Measure
ArgoUML 0.25 0.34 0.29 0.60 0.48 0.53
Freenet 0.15 0.25 0.19 0.62 0.43 0.51
JMeter 0.21 0.34 0.26 0.52 0.40 0.45
Away3D 0.35 0.31 0.33 0.35 0.33 0.34
Habari 0.34 0.39 0.36 0.36 0.41 0.38
Augeas 0.10 0.20 0.14 0.10 0.28 0.14

have names identical to source code entities (functions and structures); they can be distinguished
only by understanding the context in which they are mentioned.

4.5 Lightweight vs Heavyweight

Given the results achieved by lightweight techniques in the first part of this study (see Sec-
tion 4.3), we are interested to see how they compare to the IR methods previously tested and
how they perform with different OSS systems and programming languages.

4.5.1 Results of Lightweight Methods

To compare our lightweight techniques (see Section 4.3) to the state of the art, we apply them to
the same benchmark (i.e., B2) that we used to evaluate the latter. Table 4.4 reports the results.
We only focused on the techniques that performed better in the first experiment.

Table 4.4: Results for best performing lightweight approaches

System Artifact Name, case sensitive Mixed, with regular expression Mixed, with new regular expression

Precision Recall F-Measure Precision Recall F-Measure Precision Recall F-Measure
ArgoUML 0.27 0.68 0.38 0.64 0.61 0.63 0.35 0.68 0.46
Freenet 0.17 0.70 0.27 0.59 0.59 0.59 0.27 0.69 0.39
JMeter 0.15 0.73 0.25 0.59 0.65 0.62 0.30 0.72 0.42
Away3D 0.32 0.74 0.44 0.40 0.54 0.46 0.41 0.72 0.52
Habari 0.40 0.41 0.41 0.83 0.09 0.17 0.49 0.38 0.43
Augeas 0.09 0.72 0.15 0.14 0.02 0.04 0.15 0.64 0.24

Artifact Name, case sensitive. The results achieved for all the object-oriented systems are sim-
ilar, as shown in columns 2—4 of Table 4.4. We obtained a lower precision with FReeNET and
JMETER, because they have a higher number of class names that are dictionary words (e.g., Node
or Client for FREENET, Cut or Copy for JMETER). We expected low performances for Auceas: since it
is written in C, names are lowercase both for functions and structures, thus the performances
are consistent with those achieved for the other systems when not using case sensitivity.

57

Chapter 4 Recovering Traceability Links Between Emails and Source Code Artifacts

Mixed, with regular expression. Columns 5-7 of Table 4.4 shows that the results we previously
obtained on a single Java system are still valid in other unrelated Java systems: both FReeNeT and
JMETER reach a precision of 0.59 and a recall which is the same or higher.

The algorithm performs well with Away3D, reaching a F-Measure value of 0.46. However, char-
acteristics of this system make the results for the precision lower that in it is for the Java systems:
1. due to its rapid evolution many classes are often moved between packages. Our algorithm
uses the package information only for non-compounded words. In the other cases, all the pos-
sible classes with the same name, but in different packages, are returned by the algorithm; 2. in
AcTioNScrrpT, the programming language in which Away3D is written, it is less common to men-
tion a class using its package.

Our algorithm applied on Auceas offers poor performances, because the C language does not
follow the camel casing convention and does not have packages. The results on Hasarr are also
low, this is due to two intrinsic characteristics of the system: 1. The majority of class names are not
compounded words, so the algorithm switches always to the strict matching (which lowers the
recall); 2. Namespaces (i.e., packages) where introduced in PHP 5.3, and Hasarr developers do
not use them in the considered releases, making the first part of the regular expression useless.

Mixed, with new regular expression. We reach better results for non-Java systems using the
following regular expression:

1 (.%)
2 (:punct:|\s)+
3 <Entity name>
4 (:punct:|\s)+
C-*)

(6]

The intuition behind it is that an entity name is written as a single word separated from others by
empty space or connected to them through source code tokens (i.e., punctuation). For example,
let us consider the following text:

1 var data:Plane
2 Casting is not necessary in SmallTalk

Figure 4.10: Example text with code artifact mentioned.

Line 1 shows the declaration of the variable data in Away3D. Although Data is one of the entities
available, this approach does not report a link, because of case sensitivity. P1ane however is cor-
rectly matched. We: check case sensitivity; count the capital letters (1); and use the above regular
expression, which reports Plane as a matching entity, since it is surrounded only by punctuation
and spaces. In line 2 the name of the entity cast partially matches the word casting. Due to
the single capital letter, the regular expression is used, and it refuses the match because of the
letter i after the last letter t.

This simple variation in our approach gives higher outcomes for all non-Java systems, as shown
in columns 8-10 of Table 4.4. Auctas increases both recall and precision, while Away3D and
HaBar! have a higher F-Measure due to increasing recall.

58

4.5 Lightweight vs Heavyweight

4.5.2 Comparison

08
10 ArgoUML
=1 OFreenet
2
o7 2! @Jdmeter
= é’f O Away3D
0.6 1 OHabari
S {0 Augeas
TP Ty
i <*ArgoUML
0.5 ¥ i
| “‘Freenet
é c% 1“*Jmeter
'© 04 T N >
S RNl 14<‘Away3D
s t+E k b .
. EVAN I, 1 <*Habari
Ceapa® e il i
03 e, | “‘Augeas
Derte,? 1 & ArgoUML
0.2 Tt | © Freenet
L 4k ‘Z’ Jmeter
04 4 . | “ Away3D
1 “Habari
12 Augeas
0
0 0.1 0.2 0.3 0.4 0.5 06 07 08
Recall

Figure 4.11: Overall precision, recall, and F-measure

Figure 4.11 summarizes the bests results obtained by all approaches. The crosses plotted on
the graph represent precision and recall of each approach, while the areas of the bubbles are
proportional to the F-Measure. Bubble borders differentiate the approaches: Full for the light-
weight approach, thick dashes for VSM with tf-idf, and thin dashes for LSI. F-measure ranges
are: 0.24-0.63 for regular expressions (choosing the regular expression according to the language
of the system); 0.14-0.33 for VSM with tf-idf; and 0.14-0.53 for LSI. As it shown in graph, the
lightweight methods based on regular expressions outperform information retrieval approaches
consistently. Indeed, authors of emails often mention source code entities by name, hence the
benefit of accounting for indirect references (the higher recall of LSI and VSM)), is offset by their
sensibility to noise (much lower precision). The ranking of the approaches is stable between dif-
ferent projects: for example, if we consider Auceas, which has low values for all the rankings,
the lightweight approach is still the best performer, followed by LSI, and finally by VSM. This
order is preserved when considering all the systems.

59

Chapter 4 Recovering Traceability Links Between Emails and Source Code Artifacts

4.5.3 Discussion

Several additional aspects must be taken into account before drawing conclusions on our results.
We discuss each approach individually, before issuing our overall recommendation.

Lightweight approaches. Our lightweight approaches are more language-dependent (with re-
spect to other techniques): Our first mixed approach reached equivalent results on all the three
Java systems, however the results for other systems are relatively more distant. This is caused by
the “strict part” of the lightweight approach, i.e., the regular expression, since it heavily relies on
common conventions and intrinsic syntactical characteristics of the programming language. To
overcome this issue, it is necessary to devise appropriate regular expressions capable of taking
into account the syntactic features of the programming language of the system for which links
must be found. We showed how, with a simple change, it is possible to achieve good results also
in non-Java systems. However, when naming conventions are not followed and entities are not
mentioned by name, this technique offers poor results, as shown by the outcome on the Augeas
system, developed in C.

VSM. The VSM with tf-idf approach does not reach high values even considering the best out-
come for each system. It also suffers of serious performance issues when used in very large
corpuses, since it must store all the vocabulary of the corpus in the term-document matrix. For
example, performance seriously decreased when we used it on the entire email population of
JMeter (20,554 emails) both to build the tdm and to compute distances between vectors.

LSI. Theoretically, LSI should not suffer from performance issues when used in large corpuses
as it reduces the size of the matrix to the approximate one, which has a lower rank. However,
in practice, computing the approximate matrix of a very large corpus is very expensive. If using
the same number of topics used in a small corpus, the results are not maintained. We measured
how, for source code to emails linking, it is necessary to increase the number of topics when
having a larger corpus to improve results. Even impractical number of topics (computing 3,000
topics took more than 24 hours) did not provide good results when the entire mailing list was
indexed. For this reason, LSI suffers from the same scalability problems as VSM. This issue was
also reported in other applications of LSI to standard IR corpuses [61].

Hence, our final recommendation is that the IR approaches we tried are too heavyweight and
still not accurate enough to be worth the investment. In addition, they do not help to solve the
problem that code entities are often referred to in ways other than their actual names. The best
approach to link email and source code is using regular expressions, while being careful that
these are tailored to the programming language in use.

4.5.4 On The Threats to Validity

Construct Validity. Threats to construct validity are concerned with whether what one mea-
sures is what one intends to measure. In our case, there could be several reasons why the links
established between the emails and the source code as part of the benchmark are incorrect. We
rely on human judgment to annotate the emails, which is a potentially error-prone process. To
alleviate this issue, 50% of the emails we inspected were annotated by two different judges.
When measuring the agreement between them, we found an overlap of 92%, where the 8% of
disagreement was due to one judge missing one link in some emails. We corrected these errors
in the set of email that was inspected twice. We expect the same low proportion of missing links
in the other half of the sample, which may affect the accuracy of the results.

60

4.6 Related work

Another issue is the domain knowledge of the judges. Being unfamiliar with the reviewed sys-
tems, they may miss some implicit references (e.g., abbreviations) to entities that a seasoned
developer of the system might understand. A qualitative evaluation of our benchmark that in-
volves system developers could measure the effect of this threat.

Statistical Conclusion. Threats to statistical conclusion are concerned with whether we have
enough data to support our claims with a reasonable confidence. We took samples of email
populations that were representative with a 95% confidence and a 5% error level, which are
standard values. On the number of links, our corpus has 2,749 mail-to-code links, about 20
times as many as in Antoniol’s study [3].

External Validity. Threats to external validity are concerned with the generalizability of the
results. Our first experiment has an important limitation caused by the fact that it was performed
considering only one system: ARcoUML. The style of the discussions in different mailing lists
can vary, potentially changing the results achieved. However, in our approaches we did not rely
on the specific dialect of the ARcoUML developers to avoid reducing the generality of our results
(e.g., we did not match “NSUML” directly to the class NSUMLModelFacade). On the contrary, we
exploited naming conventions that are common in all the Java systems.

In the second experiment, we used a benchmark (B2) that includes different programming lan-
guages and naming conventions and we compared our best methods to the state of the art in
traceability. To alleviate the generalizability issues of the first experiment, we also chose 6 sys-
tems with unrelated characteristics. The systems are developed from separate communities and
are implemented in 4 different programming languages in two paradigms, object-oriented and
procedural. The sizes of the systems, and of their mailing lists both varied by one order of mag-
nitude. In general, we found that if approach A performs better than approach B on a system,
it tends to perform similarly on all the systems. There is one caveat: Lightweight approaches
based on regular expressions are language-specific.

There are however some aspects in which our selection is not representative: We only consider
open-source systems. Usage patterns may vary in other languages (e.g., scripting languages)
and in the industry. In particular, mailing lists often occupy a central role in the development
of open-source systems, which may not be the case in systems developed in a more centralized
and confidential fashion. Finally, we have not analyzed truly large-scale systems (our largest
system has around 2,000 classes): we cannot confirm that our results are similar in these cases. In
particular, we expect the VSM and LSI approaches to become more resource-intensive as systems
and email sets grow in size.

4.6 Related work

According to Zhao et al. [209], the approaches dealing with the problem of traceability between
source code and unstructured data can be classified in three categories: (1) artifact traceability
support tools, (2) traceability via intermediate abstraction, and (3) traceability via IR.

Artifact Traceability Support Tools

CASE (Computer-Aided Software Engineering) tools help developers to manually maintain links
between source code and other artifacts, providing support for recording, displaying and check-

61

Chapter 4 Recovering Traceability Links Between Emails and Source Code Artifacts

ing links. TOOR (Traceability of Object-Oriented Requirements) [156] is a visual tool intended
to be used during development: A programmer can define any artifact (e.g., design charts, sys-
tem manuals, interview transcripts) as an object of a certain class and establish relations to other
artifacts. Objects and their relationships can be inspected graphically. For instance, all objects
of a given class, or all objects participating in a given relation, can be shown at the same time.
The tool can also relate indirectly linked objects, as the links are transitive.

The REMAP [159] and gIBIS [47] tools are based on IBIS (Issue Based Information System) [205],
amethod that provides a model for representing “argumentation” processes, and hence keeping
the rationale for the decisions. Adams is a semi-automated traceability link recovery tool based
on LSI and is implemented as a plug-in for Eclipse [59].

The Ophelia Traceability Layer [180] is a tool that takes into account all the artifacts of the de-
velopment lifecycle, helping developers to create a navigable graph of their relationships, to
maintain the traceability between artifacts consistently.

Artifact Traceability via Intermediate Abstraction

These methods rely on an intermediate abstraction, for both source code and documents, as a
basis for the matching. While we strive for investigating methods to automatically maintain links,
these methods require user interaction. For this reason we do not cover them in detail.

Fiutem and Antoniol [70] and Antoniol et al. [4] proposed an Abstract Object Language (AOL) to
assist the traceability between code and design artifacts. Murphy et al. [139] introduced reflexion
models for the same purposes, while Sefika et al. [177] proposes a model based on both static
and dynamic information.

Artifact Traceability via Information Retrieval

Probabilistic and Vector Space Model (VSM). Antoniol et al. experimented with two Informa-
tion Retrieval (IR) models to retrieve the link between source code and documentation [3]: a
Probabilistic IR Model and a Vector Space IR Model. The former computes a ranking score based
on the probability that a document is related to a specific source code component, while the lat-
ter calculates the distance between the vocabulary of all the documents and a code component.
They analyzed two software systems: LEDA (Library of Efficient Data Types and Algorithms),
a C++ library of 208 classes to link to 88 manual pages, and a student project of 95 classes to link
to functional requirements written beforehand.

Antoniol et al. used the document collection as the corpus in which to find the missing links, and
source code files as the queries. Each document was pre-processed: The authors converted char-
acters to lowercase, removed stop-words (e.g., articles, punctuation, numbers, common words),
and performed stemming (e.g., converting plurals into singulars, transforming verbs into their
infinitive form). They also extracted the list of identifiers from the source code, removed the lan-
guage keywords, and split compounded words (e.g., ClassName into class name). Code comments
were disregarded. Both case studies revealed a better overall performance of VSM.

Latent Semantic Indexing (LSI). Marcus and Maletic proposed a solution based on LSI [126].
LSIis based on VSM and considers that words always appear in a context, which provides a set
of mutual constraints to determine meaning similarity. The authors evaluated their approach
effectiveness on the systems considered by Antoniol et al. [3].

62

4.7 Summary

Marcus and Maletic considered source code files as the corpus in which to find the link, and
documents as the queries. The pre-processing consisted in: non-textual tokens removal, char-
acters lowercasing, and compounded words splitting (while also keeping the original form, i.e.,
ClassName becomes classname, class, name). They included code comments. Finally, as LSI does
not use a predefined vocabulary or a predefined grammar, the authors deemed not necessary
to perform the stemming process, i.e., there was no morphological analysis. The results were
slightly improved with respect to the approach by Antoniol et al., especially for the LEDA sys-
tem: There were more documents in the corpus and the same entity identifiers were used in
both the source code and the documents.

Hayes et al. used the three IR algorithms proposed by Antoniol ef al. and Marcus ef al. (Vector
Space Model, Vector Space Model with a simple thesaurus, and LSI) to trace requirements-to-
requirements and aggregate candidate links to be evaluated by software analysts. They vali-
dated the algorithms on two systems of similar size to the ones used by Antoniol et al. (one of
circa 20 kLOC of C and 455 documents, and the other with 58 documents).

Lormans et al. used LSI to find traceability relations between requirements, design documents,
and test cases [120]. They evaluated the effectiveness of LSI in terms of precision and recall on
two compact case studies.

Chen and Grundy incorporated regular expressions, key phrases [202], and a modified version
of the K-mean clustering algorithm [122] with VSM to extract links between documents and
class entities [45]. They show that the three techniques significantly improve—although by a
low magnitude—the on shortcomings of VSM by taking advantage of the respective strengths
of each of the three supporting techniques.

Latent Dirichlet Allocation (LDA) and Jensen—-Shannon divergence Other than the aforemen-
tioned technique, also Jensen-Shannon divergence [51] and Latent Dirichlet Allocation (LDA)
[39] were used for traceability link recovery. Specifically, Asuncion et al. propose an approach
based on LDA to aid users in analyzing the semantic nature of artifacts and the software ar-
chitecture [7]. Abadi et al. reported good results in using the Jensen-Shannon model for the
traceability discovery task [1].

Natural Language Processing (NLP). Baysal et al. put discussion archives (i.e., the emails in
mailing lists) and source code [23] in correlation. They looked for a correlation between discus-
sions and software releases. First, they recovered information about the system applying data
mining techniques on its release history and discussion archives. Then, they used NLP methods
to search for a correlation. They presented two case studies: A visualization tool (a Java system
with 144 files and an archive of 495 emails) and Apache Ant (a Java system with 667 Java files
and an archive of 67,377 emails). Baysal et al. did not manually inspect the studied systems to
verify the quality of their results.

4.7 Summary

Email archives enclose significant information on the software system they discuss. We dealt
with the problem of recovering traceability links between emails and source code. We evaluated
different automated approaches to retrieve these links: Lightweight methods based on captur-
ing programming languages elements with regular expressions, and two Information Retrieval
approaches. We tested all approaches against the benchmark we created and measured their
effectiveness in terms of precision, recall and F-measure. The results we obtained show how,

63

Chapter 4 Recovering Traceability Links Between Emails and Source Code Artifacts

for this task, “less is more”: The lightweight methods consistently and significantly outperform
the IR approaches in all six systems. The reason is that in emails entities are often referred to by
name, not synonyms, and source code is rare.

Reflection. We claimed that recovering traceability links between emails and code artifacts would
bring several benefits to understand and support software development. However, the links are
only the first, though necessary, step toward proving our thesis. In the following chapters of this
part, we prove the usefulness of the linked email data by performing two case studies: (1) We
create a new quantitative metric for code entities, which takes into account email discussions as
a new source of information, (2) and we implement a recommender system to integrate emails
in the development environment and use it to support program comprehension.

64

Chapter 5

Improving Defect Prediction Approaches With
Email Data

In the previous chapter, we presented both lightweight and sophisticated techniques for recon-
necting development emails to the code entities they discuss. In this chapter we show that, by
having this novel information available, we can use it to conduct defect prediction analysis.

5.1 Overview

Knowing the location of future defects allows project managers to optimize the resources avail-
able for the maintenance of a software project by focusing on the problematic components.
However, performing defect prediction with enough precision to produce useful results is a
challenging problem. Researchers have proposed a number of approaches to predict software
defects, exploiting various sources of information, such as source code metrics [21; 147; 183;
88; 142], code churn [141], process metrics extracted from versioning system repositories [137;
27], and past defects [152; 212]. A source of information for defect prediction that has been not
exploited so far are development mailing lists.

Why would one want to use emails for defect prediction? The source code of software systems is
only written by developers, who must follow a rigid and terse syntax to define abstractions they
want to include. On the contrary, mailing lists, even those specifically devoted to development,
archive emails written by both programmers and users. For this reason, the entities discussed are
not only the most relevant from a development point of view, but also the most exploited during
the use of a software system. Moreover, emails are written using natural language, thus the
writer can generalize some concepts and focus on others. For this reason, we expect information
we extract from mailing lists to be independent from those provided by the source code analysis.
Thus, they can be valuable information for defect prediction.

We present “popularity” metrics that express the importance of each source code entity in dis-
cussions taking place in development mailing lists. Our hypothesis is that such metrics are an
indicator of possible flaws in software components, thus being correlated with the number of
defects. We aim at answering the following research questions:

Q1 — Does the popularity of software components in discussions correlate with software defects?
Q2 - Is a regression model based on the popularity metrics a good predictor for software defects?

Q3 — Does the addition of popularity metrics improve the prediction performance of existing defect
prediction techniques?

65

Chapter 5 Improving Defect Prediction Approaches With Email Data

We provide the answers to these questions by validating our approach on four different open
source software systems.

Contributions of the chapter. In this chapter, we present the following contributions:

* We extend MILER (see Section 3.2) to model bug information. We extend our meta-model to
support novel metrics generated by our lightweight email-to-code linking approach.

* We devise a novel defect prediction technique based on email data. We evaluate the performance
of our model on four OSS systems. We integrate our novel information to existing models
for defect prediction and show that the results are improved.

Structure of the chapter. In Section 5.2 we expose the methodology used to conduct our exper-
iment: how we collected, processed, and analyzed the data in order to construct and test pop-
ularity metrics and other metrics we include in our case study. In Section 5.3 we describe the
dataset of our case study, the evaluation and the results achieved. We discuss our findings in
Section 5.4. In Section 5.5 we list the possible threats to the validity of our experiment and how
we tried to reduce them. We review related work in Section 5.6, and summarize our contribu-
tions in Section 5.7.

5.2 Methodology

Our goal is to investigate whether popularity metrics correlate with software defects, then to
study whether existing bug prediction approaches can be improved using such metrics. To con-
duct our investigation, we follow the methodology depicted in Figure 5.1:

* We extract email data, link it with source code entities and compute popularity metrics.
We extract and evaluate source code and change metrics.

* We extract defect data from issue repositories and we quantify the correlation of popular-
ity metrics with software defects, using as baseline the correlation between source code
metrics and software defects.

* We build regression models with popularity metrics as independent variables and the
number of post-release defects as the dependent variable. We evaluate the performance of
the models using the Spearman’s correlation between the predicted and the reported bugs.
We create regression models based on source code metrics [183; 88; 142; 212] and change
metrics [137; 27] alone, and later enrich these sets of metrics with popularity metrics, to
measure the improvement given by the popularity metrics.

We focus on Java software systems using classes as target entities. We decided to not focus on
packages for the following reasons:

¢ Predictions at the package-level are less helpful since they are significantly larger than
classes. Reviewing a package involves more work than reviewing a class, because the dis-
tribution of bugs across classes in a package is seldom uniform.

¢ Package-level information can be derived from class-level information, while the opposite
is not true.

66

5.2 Methodology

Y : :
=> ki => o Cha Bug Prediction
VSISVN s enge > rediction evaluation
?episistory & o B> | et [Pl >
S~ — Change
metrics Ep Predicted
Popularity :> bugs
metrics {}
Regression
Source
code :> 9 n|:(> Source code oo : br:;)s;l;n Comparison
(release X) metncs CorFeTa-m;r; ' metrlcs pre-release :.'> (Spearman's
bugs correlation)
Source code {}
metrics
H : Popularity :"> :> Reported
metrics eporte
H : bugs
: . S
i D> Popularity Populanty
achie @(I.) _D_ED " 6:%0;873;,55, o> - —>
1 Miler ! \ analysis | :

Bug
repository

Figure 5.1: Overall schema of our approach.

* Classes are the building blocks of object-oriented systems, and are self-contained elements
from the point of view of both design and implementation.

Modeling. We import into MiLEr the object-oriented models systems we want to analyze, by
using iINFusion and the Moosk reengineering environment (see Section 3.2.1).

Computing Source Code Metrics. The model of a software system obtained through Moosk also
contains a catalogue of object oriented metrics, listed in the first four columns of Table 5.1. The
catalog includes the Chidamber and Kemerer (CK) metrics suite [46], which was already used
for bug prediction [21; 66; 183; 88], and additional object oriented metrics.

Computing Change Metrics. Change metrics are process metrics extracted from versioning system
log files (CVS and SVN in our experiments). Differently from source code metrics that measure
several aspects of the source code, change metrics are measures of how the code was developed
over time. We use the set of change metrics listed in the last two columns of Table 5.1, which is
a subset of the ones used by Moser et al. [137].

To use change metrics in our experiments, we need to link them with source code entities, i.e.,
classes. We do that by comparing the versioning system filename, including the directory path,
with the full class name, including the class path. Due to the file-based nature of SVN and CVS
and to the fact that Java inner classes are defined in the same file as their containing class, several
classes might point to the same CVS/SVN file. For this, we do not consider inner Java classes.

67

Chapter 5 Improving Defect Prediction Approaches With Email Data

Table 5.1: Class level source code and change metrics.

CK Metrics

Name Description
WMC Weighted Method Count
DIT Depth of Inheritance Tree

Other OO Metrics

Name Description
Fanln Number of classes referencing the class
FanOut Number of classes referenced by the class

NOA Number of attributes
NOPA Number of public attributes
NOPRA Number of private attributes
NOAI Number of attributes inherited
LOC Number of lines of code
NOM Number of methods
NOPM Number of public methods
NOPRM Number of private methods
NOMI Number of methods inherited

RFC Response For Class

NOC Number of Children

CBO Coupling Between Objects
LCOM Lack of Cohesion in Methods

Change Metrics
Name Description
NR Number of revisions
NFIX Number of times file was involved in bug-fixing
CHGSET Change set size (max and avg)
NREF Number of times file has been refactored
NAUTH Number of authors who committed the file
AGE Age of afile

Computing Popularity Metrics. The extraction of popularity metrics, given a software system and
its mailing lists, is done in two steps: First we link each class with all the emails discussing it, by
using the lightweight techniques presented in Chapter 4, then we use the popularity metrics
extractor (see Section 3.2.1) to compute the metrics using the obtained links.

Table 5.2: Class level email popularity metrics.

Popularity Metrics

Name Description
POP-NOM Number of emails
POP-NOT Number of threads
POP-NOA Number of authors
POP-NOCM Number of characters in email
POP-NOMT Number of emails in thread

For each popularity metric (listed in Table 5.2) we provide the rationale behind their creation
and a high-level description of their implementation, using MiLER’s meta-model.

POP-NOM (Number of emails): To associate the popularity of a class with discussions in mail-
ing lists, we count the number of mails that are mentioning it. Since we are considering develop-
ment mailing lists, we presume that classes are mainly mentioned in discussions about failure
reporting, bug fixing and feature enhancements, thus they can be related to defects. Thanks to
the enriched FAMIX model we generate, it is simple to compute this metric. Once the mapping
from classes to emails is completed, and the model contains the links, we count the number of
links of each class.

POP-NOT (Number of threads): In mailing lists discussions are divided in threads. Our hypoth-
esis is that all the messages that form thread discuss the same topic: If an author wants to start

68

5.2 Methodology

talking about a different subject she can create a new thread. We suppose that if developers are
talking about one defect in a class they will continue talking about it in the same thread. If they
want to discuss about an unrelated or new defect (even in the same classes) they would open a
new thread. The number of threads, then, could be a popularity metric whose value is related
to the number of defects. After extracting emails from mailing lists, our email model also con-
tains the information about threads. Once the related mails are available in the object-oriented
model, we retrieve this thread information from the messages related to each class and count
the number of different threads. If two, or more, emails related to the same class are part of the
same thread, they are counted as one.

POP-NOA (Number of authors): A high number of authors talking about the same class sug-
gests that it is subject to broad discussions. For example, a class frequently mentioned by differ-
ent users can hide design flaws or stability problems. Also, a class discussed by many developers
might be not well defined, comprehensible, or correct, thus more defect prone. For each class,
we count the number of authors that wrote in referring mails (i.e., if the same author wrote two,
or more, emails, we count only one).

POP-NOCM (Number of characters in emails): Development mailing lists can also contain
other topics than technical discussions. For example, while manually inspecting part of our
dataset, we noticed that voting about whether and when to release a new version occurs quite
frequently in Lucene, Maven and Jackrabbit mailing lists. Equally, announcements take place
with a certain frequency. Usually this kind of messages is characterized by a short content (e.g.,
“yes” or “no” for voting, “congratulations” for announcements). The intuition is that emails
discussing flaws in the source code could present a longer amount of text than mails about other
topics. We consider the length of messages taking into account the number of characters in the
text of mails: We evaluate the POP-NOCM metric by adding the number of characters in all the
emails related to the chosen class.

POP-NOMT (Number of emails in threads): Inspecting sample emails from the mailing lists
which form our experiment, we noticed that short threads are often characteristic of “announce-
ments” emails, simple emails about technical issues experimented by new users of the systems,
or updates about the status of developers. We hypothesize that longer threads could be symp-
tom of discussions about questions that raise the interest of the developers, such as those about
defects, bugs or changes in the code. For each class in the source code, we consider the thread
of all the referring mails, and we count the total number of mails in each thread. If a thread is
composed by more than one email, but only one is referring the class, we still count all the emails
inside the thread, since it is possible that following emails reference the same class implicitly.

Extracting Defect Information. To measure the correlation of metrics with software defects, and to
perform defect prediction, we need to link each problem report to any class of the system that
it affects. We link classes imported in MILEr with versioning system files, as we did to compute
change metrics, and the files with bugs retrieved from a BucziLLal!, or Jira,? repository. Figure 5.2
shows the bug linking process.

A file version in the versioning system contains a developer comment written at commit time,
which often includes a reference to a problem report (e.g., “fixed bug 123”). Such references allow
us to link problem reports with files in the versioning system, and therefore with source code
artifacts, i.e., classes. However, the link between a CVS/SVN file and a BucziLLa/Jira problem

1 http://www.bugzilla.org
2 http://www.atlassian.com/software/jira

69

http://www.bugzilla.org
http://www.atlassian.com/software/jira

Chapter 5 Improving Defect Prediction Approaches With Email Data

=S| oo, i
— I I \
= <o [-
Versioning - ug reports
system logs Commit comments v
Inferred//
Class / File link
log link e
P d
”~
y'ad
- System release
Miler.Entity y Bugzilla /
SVN/CVS B p— gira
repository Importing | —— database

Figure 5.2: Linking bugs, SCM files and classes.

report is not formally defined, and to find a reference to the problem report id we use pattern
matching techniques on the developer comments, a widely adopted technique [69; 212]. Once
we have established the link between a problem report and a file version, we verify that the bug
has been reported before the commit time of the file version.

To measure the correlation between metrics and defects we consider all the defects, while for bug
prediction only post-release defects, i.e., the ones reported within a six months time interval after
the considered release of the software system.?. The output of the bug linking process is, for each
class of the considered release, the total number of defects and of post-release defects.

Summing Up. We presented the different data repositories we mine, how we parse, model and
extract all the necessary information. We described our popularity metrics, along with all the
other metrics included in our experiment. In the following section we describe the dataset on
which we compute these metrics and how we evaluate and compare them.

5.3 Experiments

We conducted our experiments on the software systems listed in Table 5.3. We considered sys-
tems that deal with different domains and have distinct characteristics (e.g., popularity, number
of classes, emails, and defects) to mitigate some of the threats to external validity. These systems
are stable projects, under active development, and have a history with several major releases. All
are written in Java to ensure that all the code metrics are defined identically for each system. By
using the same parser, we can avoid issues due to behavior differences in parsing, a known issue
for reverse engineering tools [110].

Public development mailing lists used to discuss technical issues are available for all the systems,
and are separated from lists specifically thought for system user issues. We consider emails
starting from the creation of each mailing list until the date of each release considered. Messages

3 Six months for post release defects was also used by Zimmermann et al. [212].

70

5.3 Experiments

Table 5.3: Systems considered in the study

System Classes Emails Defects
Total Linked Timeframe Amount
Equinox 439 5,575 2,383 Feb 2003 - Jun 2008 1,554
Sep 2004 - Dec 2008 674
Jackrabbit 1,913 11,901 3,358
Sep 2004 - Aug 2009 975
Oct 2001 - May 2008 751
Lucene 1,279 17,537 8,800
Oct 2001 - Sep 2009 1,274
Apr 2004 - Sep 2008 507
Maven 301 65,601 4,616
Apr 2004 - Aug 2009 616

automatically generated by bug tracking and revision control systems are filtered out, and we
report the resulting number of emails and the number of those referring to classes according to
our linking techniques. All systems have public bug tracking systems that were usually created
along with the mailing lists.

5.3.1 Correlations Analysis

To answer the research question Q1 “Does the popularity of software components correlate with soft-
ware defects?”, we compute the correlation between class level popularity metrics and the number
of defects per class. We compute the correlation in terms of both the Pearson’s and the Spearman’s
correlation coefficient (r,,; and rgp,,, respectively). The Spearman’s rank correlation test is a
non-parametric test that uses ranks of sample data consisting of matched pairs. The correlation
coefficient varies from 1, i.e., ranks are identical, to -1, i.e., ranks are the opposite, where 0 indi-
cates no correlation. Contrarily to Pearson’s correlation, Spearman’s one is less sensitive to bias
due to outliers and does not require data to be metrically scaled or of normality assumptions
[193]. Including the Pearson’s correlation coefficient increases our understanding of the results:
If rspm is higher than r,,s, we might conclude that the variables are consistently correlated, but
not in a linear fashion. If the two coefficients are very similar and different from zero, there is
indication of a linear relationship. Finally, if the r,,; value is significantly higher than r,,,, we
can deduce that there are outliers inside the dataset. This information first helps us to discover
threats to construct validity, and then put in evidence single elements that are heavily related.
For example, a high r,,, can indicate that, among the classes with the highest number of bugs,
we can find also the classes with the highest number of related emails.

We compute the correlation between class level source code metrics and number of defects per
class, in order to compare the correlation to a broadly used baseline. We only show the correla-
tion for the source code metric LOC, as previous research showed that it is one of the best metrics
for defect prediction [88; 150; 151; 153]. Table 5.4 shows the correlation coefficients between the
different popularity metrics and the number of bugs of each system.

71

Chapter 5 Improving Defect Prediction Approaches With Email Data

Table 5.4: Correlation coefficients

POP-NOM POP-NOCM POP-NOT POP-NOTM @ POP-NOA LOC
System

Fspm Fprs Fspm Fprs Fspm Fprs Fspm Fprs | Fspm [Kprs Fspm TFprs
Equinox 052 051 052 042 053 054 052 048 053 0.50 0.73 0.80

Jackrabbit 023 035 022 036 024 036 023 -002 023 0.34 0.27 0.54
Lucene 041 063 038 057 041 057 042 068 041 0.54 0.177 0.38
Maven 0.44 081 039 078 046 0.78 044 0.81 045 0.78 035 0.78

We put in bold the highest values achieved for both 7y, and ry,s, by system. Results provide
evidence that the two metrics are rank correlated, and correlations over 0.4 are considered to
be strong in fault prediction studies [210]. The Spearman’s correlation coefficients in our study
exceed this value for three systems, i.e., EQuiNnox, Luceng, and Maven. In the case of JackrassT,
the maximum coefficient is 0.24, which is similar to the value reached by using r.oc. The best
performing popularity metric depends on the software system: for example in LUCENE, POP-
NoTM, which counts the length of threads containing emails about the classes, is the best choice,
while pop-NOT, number of threads containing at least one email about the classes, is the best
performing for other systems.

5.3.2 Defect Prediction

To answer the research question Q2 “Is a regression model based on the popularity metrics a good pre-
dictor for software defects?”, we create and evaluate regression models in which the independent
variables are the class level popularity metrics, while the dependent variable is the number of
post-release defects per class. We create regression models based on source code metrics and
change metrics alone, as well as models in which these metrics are enriched with popularity
metrics, where the dependent variable is always the number of post-release defects per class.

Subsequently, we compare the prediction performances of these models to answer research ques-
tion Q3 “Does the addition of popularity metrics improve the prediction performance of existing defect
prediction techniques?” We follow the methodology proposed by Nagappan ef al. [142] and also
used by Zimmermann et al. [210], consisting of: Principal component analysis, building regres-
sion models, evaluating explanative power and evaluating prediction power.

Principal Component Analysis. This method is a standard statistical technique that avoids the
problem of multicollinearity among the independent variables. This problem comes from in-
tercorrelations amongst these variables and can lead to an inflated variance in the estimation
of the dependent variable. We do not build the regression models using the actual variables as
independent variables, but instead we use sets of principal components (PCs). PCs are indepen-
dent and do not suffer from multicollinearity, while at the same time they account for as much
sample variance as possible. We select sets of PCs that account for a cumulative sample variance
of at least 95%.

Building Regression Models. To evaluate the predictive power of the regression models we do
cross-validation: We use 90% of the dataset, i.c., 90% of the classes (training set), to build the

72

5.3 Experiments

prediction model, and the remaining 10% of the dataset (validation set) to evaluate the efficacy
of the built model. For each model we perform 50 “folds”, i.e., we create 50 random 90%-10%
splits of the data.

Evaluating Explanative Power. To evaluate the explanative power of the regression models
we use the adjusted R? coefficient. The (non-adjusted) R? is the ratio of the regression sum of
squares to the total sum of squares. R? ranges from 0 to 1, and the higher the value is, the more
variability is explained by the model, i.e., the better the explanative power of the model is. The
adjusted R?, takes into account the degrees of freedom of the independent variables and the
sample population. As a consequence, it is consistently lower than R?. When reporting results,
we only mention the adjusted R?. We test the statistical significance of the regression models
using the F-test. All our regression models are significant at the 99% level (p < 0.01).

Evaluating Prediction Power. To evaluate the predictive power of the regression models, we
compute Spearman’s correlation between the predicted number of post-release defects and the
actual number. This approach has been broadly used to assess the predictive power of a number
of predictors [150; 151; 153]. In the cross-validation, for each random split, we use the training set
(90% of the dataset) to build the regression model, and then we apply the obtained model on the
validation set (10% of the dataset), producing for each class the predicted number of post-release
defects. Then, to evaluate the performance of the performed prediction, we compute Spearman’s
correlation, on the validation set, between the lists of classes ranked according to the predicted
and actual number of post-release defects. Since we perform 50 folds cross-validation, the final
values of the Spearman’s correlation and adjusted R? are averages over 50 folds.

Results. Table 5.5 displays the results we obtained for the defect prediction, considering both
R? adjusted values and Spearman’s correlation coefficients.

The first row shows the results achieved using all the popularity metrics defined in Section 5.2.
In the following four blocks, we report the prediction results obtained through the source code
and change metrics, first alone, then by incorporating each single popularity metric, and finally
incorporating all the popularity metrics. For each system and block of metrics, when popularity
metrics augment the results of other metrics, we put in bold the highest value reached.

Analyzing the results of the sole popularity metrics, we notice that, in terms of correlation,
Eoquinox and Maven still present a strong correlation, i.e., higher than .40, while Lucene is less
correlated. The popularity metrics alone are not sufficient for performing predictions in the
JackraseiT system. Looking at the results obtained by using all the metrics, we first note that
JackraBBIT’s results are much lower if compared to those reached in other systems, especially
for the R?, and partly for the R;,. Only change metrics show fine Ry, value in JAckrABBIT.

Going back to the other systems, the R? adjusted values are always increased and the best results
are achieved when using all popularity metrics together. The increase, with respect to the other
metrics, varies from 2%, when other metrics already reach high values, up to 107%. Spearman’s
coefficients also increase by using the information given by popularity metrics: Their values
augment, on average, more than fifteen percent. However, there is not a single popularity metric
that outperforms the others, and their union does not always give the best results.

73

Chapter 5 Improving Defect Prediction Approaches With Email Data

Metrics
All Popularity Metrics

All Change Metrics

All C.M. + POP-NOM
All C.M. + POP-NOCM
All C.M. + POP-NOT
All C.M. + POP-NOMT
All C.M. + POP-NOA
All C.M. + All POP
Improvement

Source Code Metrics
S.C.M. + POP-NOM
S.C.M. + POP-NOCM
S.C.M. + POP-NOT
S.C.M. + POP-NOMT
S.C.M. + POP-NOA
S.C.M. + All POP
Improvement

CK Metrics

CK + POP-NOM
CK + POP-NOCM
CK + POP-NOT
CK + POP-NOMT
CK + POP-NOA
CK +All POP
Improvement

All Source Code Metrics
All S.C.M. + POP-NOM
All S.C.M. + POP-NOCM
All S.C.M. + POP-NOT
All S.C.M. + POP-NOMT
All S.C.M. + POP-NOA
All S.C.M. +All POP
Improvement

Table 5.5: Defect prediction results

Equinox Jackrabbit
0.23 0.00
0.55 0.06
0.56 0.06
0.58 0.06
0.56 0.06
0.56 0.06
0.56 0.06
0.61 0.06
11% 0%
0.61 0.03
0.62 0.03
0.62 0.04
0.61 0.03
0.62 0.03
0.61 0.04
0.62 0.03
+2% +25%
0.54 0.01
0.56 0.02
0.57 0.02
0.56 0.01
0.57 0.01
0.56 0.02
0.57 0.02
+6% +50%
0.66 0.04
0.67 0.04
0.66 0.04
0.66 0.04
0.67 0.04
0.66 0.04
0.67 0.04
+2% 0%

5.4 Discussion

R? adj
Lucene
0.31

0.43
0.43
0.43
0.43
0.43
0.43
0.45
+5%

0.27
0.33
0.32
0.31
0.35
0.30
0.37
+37%

0.39
0.40
0.40
0.40
0.40
0.40
0.42
+8%

0.44
0.45
0.45
0.44
0.44
0.44
0.46
+5%

Maven
0.55

0.71
0.71
0.70
0.71
0.70
0.70
0.71

0%

0.42
0.59
0.56
0.57
0.60
0.56
0.61
+45%

0.28
0.54
0.50
0.51
0.56
0.51
0.58
+107%

0.45
0.60
0.56
0.57
0.62
0.57
0.63
+40%

Avg
0.27

0.44
0.44
0.44
0.44
0.44
0.44
0.46
+4%

0.33
0.39
0.38
0.38
0.40
0.38
0.41
+27%

0.31
0.38
0.37
0.37
0.39
0.37
0.40
+43%

0.40
0.44
0.43
0.43
0.44
0.43
0.45

+12%

Equinox Jackrabbit
0.43 0.04
0.54 0.30
0.53 0.32
0.57 0.31
0.54 0.31
0.53 0.29
0.58 0.29
0.52 0.30
+7% +7%
0.51 0.17
0.53 0.14
0.51 0.15
0.49 0.15
0.55 0.14
0.53 0.12
0.58 0.14

+14% -0.12
0.51 0.13
0.48 0.13
0.50 0.17
0.53 0.13
0.52 0.14
0.52 0.14
0.51 0.16
+4% +31%
0.48 0.15
0.59 0.15
0.51 0.16
0.50 0.14
0.53 0.14
0.51 0.15
0.51 0.16
+23% +7%

Rspearman
Lucene
0.27

0.36
0.38
0.43
0.39
0.41
0.37
0.38
+19%

0.31
0.35
0.36
0.38
0.33
0.38
0.32
+23%

0.36
0.35
0.33
0.34
0.25
0.41
0.30
+14%

0.35
0.34
0.30
0.35
0.35
0.34
0.33
+0%

Maven
0.52

0.62
0.69
0.60
0.59
0.60
0.43
0.43
+11%

0.52
0.52
0.60
0.52
0.43
0.70
0.52
+35%

0.60
0.69
0.42
0.52
0.49
0.53
0.52
+15%

0.36
0.62
0.31
0.52
0.34
0.43
0.52
+72%

Avg
0.32

0.45
0.48
0.48
0.46
0.46
0.42
0.41
+11%

0.38
0.38
0.41
0.38
0.36
0.43
0.39
+15%

0.40
0.41
0.35
0.38
0.35
0.40
0.37
+16%

0.33
0.43
0.32
0.38
0.34
0.36
0.38
+26%

Popularity of software components correlates with software defects. Three software systems
out of four show a strong rank correlation, i.e., coefficients ranging from .42 to .53, between
defects of software components and their popularity in email discussions. Only JackraBssiT is
less rank correlated with a coefficient of .23.

Popularity can predict software defects, but without major improvements over previously es-
tablished techniques. In the second part of our results, consistently with the correlation anal-
ysis, the quality of predictions done by JackrassiT using popularity metrics are extremely low,
both for the R? adjusted values and for the Spearman’s correlation coefficients. On the contrary,
our popularity metrics applied to the other three systems lead to different results: Popularity

74

5.5 Threats to validity

metrics are able to predict defects. However, if used alone, they do not compete with the results
obtained through other metrics. The best average results are shown by the Change Metrics,
corroborating previous works stating the quality of such predictors [137; 27].

Popularity metrics can improve prediction performances of existing defect prediction tech-
niques. The most interesting results are obtained integrating the popularity information into
other techniques. This, in most cases, increase the overall results: The improvements on corre-
lation coefficients are, on average, more than fifteen percent higher, with peaks over 30% and
reaching the top value of 72%, to those obtained without popularity metrics. This provides
evidence toward our initial assumption that popularity metrics measure a different aspect of
the development process from those captured by other techniques. Our results put in evidence
that, given the considerable difference of the prediction performance across different software
projects, bug prediction techniques that exploit popularity metrics should not be applied in a
“black box” way. As suggested by Nagappan et al. [142], the prediction approach should be first
validated on the history of a software project, to see which metrics work best for predictions for
the system.

The case of Jackrabbit shows that all the information that we have available cannot be used to
explain its defects. This underlines the importance of triangulating the investigated phenom-
ena (e.g., defects) with data gathered from different sources and that we have to adapt our ap-
proaches to each software system under study.

5.5 Threats to validity

Threats to construct validity. A first construct validity threat concerns the way we link bugs
with versioning system files and subsequently with classes. In fact, the pattern matching tech-
nique we use to detect bug references in commit comments does not guarantee that all the links
are retrieved. We also made the assumption that commit comments do contain bug fixing infor-
mation, which limits the application of our bug linking approach only to software projects where
this convention is used. Finally, a commit that is referring to a bug can also contain modifications
to files that are unrelated to the bug. However, this technique is the current state of the art in
linking bugs to versioning system files, widely used in literature [69]. The noise affecting issue
repositories constitutes another construct validity threat: Even though we carefully removed all
the issue reports not marked as bug (e.g., New Feature, Improvement, Task) from our dataset, Anto-
niol et al. showed that a relevant fraction of issues marked as bugs in BucziLLa (according to their
severity) are not actually related to corrective maintenance [2]. Another threat concerns the pro-
cedure for linking emails to discussed classes. We use linking techniques whose effectiveness
was measured (see Chapter 4), and it is known that they cannot produce a perfect linking. The
enriched object-oriented model can contain wrongly reported links or miss connections that are
present. We alleviated this problem manually inspecting all the classes that showed an uncom-
mon number of links, i.e., outliers, and, whenever necessary, adjusted the regular expressions
composing the linking techniques to correctly handle such unexpected situations. We removed
from our dataset any email automatically generated by the bug tracking system and the revision
control system, because they could bias the results.

Threats to statistical conclusion validity. We strived to reduce threats to statistical conclusion
validity by having all the Spearman correlation coefficients and all the regression models signif-
icant at the 99% level.

75

Chapter 5 Improving Defect Prediction Approaches With Email Data

Threats to external validity. In our approach we analyze only open-source software projects,
however the development in industrial environment may differ and conduct to different com-
portments in the developers, thus to different results. Another external validity threat concerns
the language: all the software systems are developed in Java. Although this alleviates parsing
bias, communities using other languages could have different developer cultures and the style
of emails can vary. To obtain a better generalization of the results, they should be tested on
industrial systems and other object-oriented languages.

5.6 Related Work

Mining Data From Email Archives

Li et al. first introduced the idea of using the information stored in the mailing lists as an ad-
ditional predictor for finding defects in software systems [118]. They conducted a case study
on a single software system, used a number of previously known predictors and defined new
mailing list predictors. Mainly such predictors counted the number of messages to different
mailing lists during the development of software releases. One predictor TechMailing, based
on number of messages to the technical mailing list during development, was evaluated to be
the most highly rank correlated predictor with the number of defects, among all the predictors
evaluated. Our works differs in genre and granularity of defects we predict: We concentrate on
defects on small source code units that can be easily reviewed, analyzed, and improved. Also
Li et al. did not remove the noise from the mailing lists, focusing only on source code related
messages. Pattison et al. were the first to introduce the idea of studying software entity (func-
tion, class etc.) names in emails [154]. They used a linking based on simple name matching, and
found a high correlation between the amount of discussions about entities and the number of
changes in the source code. However, Pattison et al. did not validate the quality of their links
between emails and source code. To our knowledge, our work [13] was the first to measure the
effectiveness of linking techniques for emails and source code. This research is the first work
that uses information from development mailing lists at class granularity to predict and to find
correlation with source code defects. Other works also analyzed development mailing lists but
extracting a different kind of information: social structures [36], developers’ participation [135]
and inter-projects migration [35], and emotional content [166].

Defect Prediction

The main difference between our work and the following approaches is that our approach is the
first one to exploit email archives data for defect prediction.

Change Log-based Defect Prediction Approaches. These techniques use information extracted
from the versioning system to perform defect prediction. Nagappan and Ball performed a study
on the influence of code churn (i.e., the amount of change to the sytem) on the defect density
in Windows Server 2003 [141]. They found that relative code churn was a better predictor than
absolute churn. Hassan introduced a measure of the complexity of code changes [93] and used
it as defect predictor on 6 open-source systems. Moser et al. used a set of change metrics to
predict the presence/absence of bugs in files of Eclipse [137]. Ostrand et al. predict faults on
two industrial systems, using change and previous defect data [152]. The approach by Bernstein
et al. uses bug and change information in non-linear prediction models [27].

76

5.7 Summary

Single-version Defect Prediction Approaches. These methods employ the heuristic that the
current design and behavior of the program influence the presence of future defects, assuming
that changing a part of the program that is hard to understand is inherently more risky than
changing a part with a simpler design. Basili et al. used the CK metrics on 8 medium-sized
information management systems [21]. Ohlsson et al. used several graph metrics including the
McCabe cyclomatic complexity on a telecom system [147]. El Emam et al. used the CK metrics in
conjunction with Briand’s coupling metrics [40] to predict faults on one commercial Java system
[66]. Subramanyam ef al. used the CK metrics on a commercial C++/Java case study [183], while
Gyimothy et al. performed a similar analysis on Mozilla [88]. Nagappan and Ball estimated the
pre-release defect density of Windows Server 2003 with a static analysis tool [140]. Nagappan
et al. used a catalog of source code metrics to predict post release defects at the module level
on five Microsoft systems, and found that it was possible to build predictors for one individual
project, but that no predictor would perform well on all the projects [142]. Zimmermann et al.
applied a number of code metrics on the Eclipse IDE [212].

Other Approaches. Ostrand et al. conducted a series of studies on the whole history of different
systems in order to analyze how the characteristics of source code files can predict defects [150;
151; 153]. On this basis, they proposed an effective and automatable predictive model based on
such characteristics (e.g., age, lines of code) [153]. Zimmermann and Nagappan used dependen-
cies between binaries to predict defect [210]. Marcus ef al. used a cohesion measurement based
on LSI for defect prediction on C++ systems [127]. Neuhaus et al. used a variety of features of
Mozilla to detect vulnerabilities, a subset of bugs with security risks [144]. Wolf et al. analyzed
the network of communications between developers (i.e., interactions) to understand how they
are related to issues in integration of modules of a system [203]. They conceptualized commu-
nication as based on developer’s comments on work items. Finally, Sarma et al. proposed a tool
to visually explore relationships between developers, issue reports, communication (based on
email archives and comments and activity on issue reports), and source code [171].

5.7 Summary

We have presented a novel approach to correlate popularity of source code artifacts within email
archives to software defects. We also investigated whether such metrics could be used to pre-
dict post-release defects. We showed that, while there is a significant correlation, popularity
metrics by themselves do not outperform source code and change metrics in terms of predic-
tion power. However, we provided evidence that, in conjunction with source code and change
metrics, popularity metrics can be used to increase explanative and predictive power of existing
defect prediction techniques.

Reflection. Popularity metrics are merely quantitative: We do not know why counting the num-
ber of emails referring to a code entity is a reasonable predictor for software defects. We could
guess that entities are popular and developers are talking about them because they are incor-
rectly designed or present other kinds of issues. To understand why our method works and
further improve it, the content of each linked email should be manually inspected by conduct-
ing a qualitative investigation. This is partially done in the work we present in the next chapter
and is the motivation for work we present in Part IIL

77

Chapter 6

Supporting Program Comprehension With Emails

In Chapter 4 we presented lightweight techniques for reconnecting emails and code artifacts,
and in Chapter 5 we showed a first scenario in which this novel form of information can be used
to support software development: defect prediction. In this chapter, we present another scenario
in which email data proved to be useful: program comprehension.

By using our lightweight traceability techniques, which provide results in a few seconds even
when linking one code entity to thousands of emails, we implemented Remail, an Eclipse plu-
gin, to make email data available in the place where developers spend most of their time-IDEs.
Subsequently, we used Remail to verify that having email data at disposal in the development
environment enhances tasks related to program comprehension and software development.

6.1 Overview

Developers spend most of their programming time on software maintenance and program com-
prehension. Between 85% and 90% of the global cost of a software system is due to software
maintenance activities [67; 174], which are in a largely (up to 60%) program comprehension
tasks [49].

Clear, comprehensive, and updated software documentation would be an effective approach to
reduce time spent in program comprehension. Nevertheless, industrial developers report how
documentation is commonly inadequate, outdated, and hard to retrieve or link to actual source
code entities [114]. Open source development projects are similarly affected by issues related to
documentation [82].

In small co-located development teams, unplanned face-to-face meetings are the favorite form
of communication when developers face program comprehension problems [114]. Developers
who need to understand source code entities (e.g., to know the design rationale behind a certain
implementation ~the most common information need for a developer [109]), and cannot find the
appropriate documentation, simply query other programmers. This solution, besides disrupting
developers’ attention and retaining knowledge by a few developers, is inapplicable to large or
distributed development projects.

Developers, thus, replace face-to-face meetings with electronic communication means. Instant
messaging, wikis, forums are viable options, but the decisive role is played by emails [73]. Con-
sidering the breadth of the information that is supposed to be found in mailing lists (e.g., infor-
mation about how to perform a specific development task, clarification on certain implemen-
tation details, explanation of high-level design decisions), and that readers are able to always

79

Chapter 6 Supporting Program Comprehension With Emails

verify the context of ongoing discussions and decide whether the retrieved information applies
to their situation, we argue that emails can be used to help program comprehension tasks.

We present REmarL, a plugin for Eclipse, which integrates email archives in the IDE. REMAIL is
a recommendation system for emails: It allows developers to easily retrieve discussions related
to the chosen code entities. The practitioner can read and learn from previous discussions oc-
curred among programmers, thus accessing an updated and effective form of complementary
documentation. Using Remail the interaction with the emails is within the development en-
vironment, i.e., the programmer is not forced to frequent context switches and can retain the
current development situation.

Contributions of the chapter. In this chapter, we present the following contributions:

* We create REmaIL, an Eclipse plugin based on our email-to-code linking approach. REMAIL makes
email data available in the IDE, i.e., the place where developers spend most of their time.

* We show that having email data at disposal enhances a number of program comprehension tasks.
We use REmaIL and the connection between emails and source code to complete this task.

Structure of the chapter. In Section 6.2 we present REmaIL, our recommender for emails and,
in Section 6.3, we illustrate how we can exploit email data using it for augmenting program
comprehension. In Section 6.4 we present the related work, and we summarize our contributions
in Section 6.5.

6.2 REmAIL: Recommending Emails

When introducing the concept of open source projects, Fogel invites to use mailing lists “as much
as possible, and as conspicuously as possible”, since “searching in them [for answers to technical ques-
tions] can produce answers” [73]. Nevertheless, two critical issues hinder the effectiveness of mail-
ing lists in supporting program comprehension and software evolution analysis:

1. Mailing lists store very large amounts of messages: The archive of Linux counts more
than one million messages, the mailing lists of smaller but active projects count tens of
thousands of emails. Finding, in such archives, the most relevant information concerning
a specific code entity is a non-trivial task, and important discussions could be missed [98].

2. Development mailing lists discuss topics related to project development and are contin-
uously read and written by developers. Developers spend most of their programming,
designing, and understanding time within IDEs [114]. However, no matter how much re-
lated emails are to software development, programs that are external to IDEs manage them,
sometimes even in a web browser. Therefore emails are completely disconnected from the
development environment.

We devised REmaIL to tackle both issues. REmaIL recommends the emails that are related to
specified code artifacts, by using the lightweight techniques we devised and thoroughly evalu-
ated for this task [13; 18]. This reduces the amount of messages to be read by orders of magni-
tude, and lets practitioners focus on the emails related to their tasks. In addition, REmaALL is a

80

6.2 REmaIL: Recommending Emails

modular plugin for the Eclipse IDE, thus among other benefits, it allows developers to (1) simul-
taneously inspect code and content of messages, easily (2) prompt recovered traceability links
between code and emails, and (3) minimize the disruptive context switches necessary to access
email data while programming.

Eclipse has been our target IDE because of its modular and pluggable structure, its significant
amount of users (who can benefit from REmarL, and provide feedback for further improvement),
and its support for multiple languages. The current implementation of REmarr is targeted to java
systems, however our lightweight linking techniques have proven to be effective for a number
of other languages (e.g., ECMAScript, PHP) [18]; the multi-language support of Eclipse can be
used to expand REmaIL to other languages with a minor effort.

Since REmAIL can be considered a recommendation system, we detail it by following the division
described by Robillard et al. [169]: A recommender system involves: a data-collection mechanism
to store development-process data and artifacts in a model, a recommendation engine to analyze
the data and generate recommendation, and a user interface to trigger recommendations and
present the results.

6.2.1 Data-collection Mechanism

Figure 6.1 shows the architecture we devised for REmaiL. Initially we devised a stand-alone
solution, in which REmaIL was composed of the Eclipse plugin and simply used emails stored
in the users’ email client. This approach had disadvantages: For example, emails had to be
files in MBox format and could not be modified to avoid concurrency issues with the email
client; developers working on the same project could not share information such as rating; any
computation (e.g., finding the links between classes and emails) is done client-side and must be
replicated by each client. Currently REmaIL is made of a server (left-hand side of Figure 6.1) and
an Eclipse plugin (right-hand side).

MBox oo | Email Writing Composer |<—> gx:;
files] MB : - @ ! e
\A? Impo?t);r : TP | Email Metrics Extractor |
b . 55 i
‘] HTTP ol | | Rating Engine |
Email _—' POP/IMAP | : p 4
o ! — -
Server Daemon . » /,’ : |Traceab|||ty Engine |
: ‘ E - JS Visualizations REmail
—— ;| MarkMail 1 Rating Infos i Plugin
Mailing / Importer | ;
Lists 1 :
i : Importing : [:%:%:j System
MarkMail b é [:ﬁ Model
Service] Eclipse :

Figure 6.1: The architecture of Remail

The REmaIL server handles the data used by the plugin. It has to be installed by any organiza-
tion willing to use REmMAIL and it relies on the document-oriented database CoucuDB!, which
provides a RESTful JSON API accessible through HTTP requests. Since emails are stored in a
document-oriented database, we can change the meta-model without having to migrate data to

1 http://couchdb.apache.org/

81

http://couchdb.apache.org/

Chapter 6 Supporting Program Comprehension With Emails

a new schema, and we can use MapReduce? functions to parallelize tasks among cores or clus-
ters of computers. Moreover, having a centralized server for storing email data has a number of
advantages. For example, it allows multiple connections, thus enabling multiple developers to
work simultaneously using a single email archive. This can be an advantage when rating email
relevance: Whenever developers retrieve an irrelevant email (traceability links cannot be always
perfect), they can rate it as non-interesting, and all the team would benefit from this informa-
tion.

To populate CoucHDB, we devised an Importing Layer that handles different sources (e.g.,
MBox archives, MARkMAIL), extracts the selected emails, and instantiates them as documents
in CoucHDB. We also created a POP/IMAP daemon to handle newly received messages, thus
keeping email data updated.

The MBox importer can also be run as a daemon to keep data from this source updated. In fact,
a number of popular email clients (e.g., Mozilla Thunderbird and related clients, Apple Mail,
Eudora) use the MBox format to store the messages on which they operate. Having a running
daemon that keeps MBox in sync is a decisive benefit: Practitioners are able to immediately
take advantage of the emails already archived by their email clients, just by pointing the REmarL
server to the right folders. From that moment new or modified messages in the email client will
be also accordingly updated in REmarL.

6.2.2 Recommendation Engine

The recommendation engine analyzes the data stored in the REmAIL server and generates the
recommendation for the provided context. Users specify the context directly from the Eclipse
environment: They select the packages and classes in which they are interested and trigger the
engine. The recommendation consists in presenting emails that discuss the chosen classes, as
they might be useful for program comprehension and augmenting awareness.

Any component of the REmaIL plugin that needs email data directly queries the CoucuDB server
through HTTP requests by sending and receiving JSON objects. As an example we see how the
Traceability Engine works in practice. When users open a class from the package explorer or change
tab in the main editor, REMAIL automatically triggers the Traceability Engine. Since the Trace-
ability Engine retrieves the links between classes and emails by using lightweight text-matching
techniques (see Chapter 4), it does not require additional information other than the fully qual-
ified class name. The very first time users request emails for a class, REMAIL plugin generates a
new specialized CoucuDB view that implements the linking procedure, and permanently add
it to the database. From that moment on, every time emails for the same class are requested, the
REMarL plugin will query the view to obtain the emails. The first time the view is run, CoucuDB
applies it to all the emails to find the appropriate documents. The results will be stored and
subsequent requests will be served in real-time. Moreover, since the view results are stored in a
B-tree, when new emails are stored, the view will be updated accordingly in logarithmic time.
The rating engine is based on CoucuDB update and view functions.

Since our lightweight methods offer different trade-offs between precision and recall, users
could find some of them to be more appropriate for their needs. For this reason, we included
all the methods in the Traceability Engine of the REmarL server and let the server administrator
configure the preferred option.

2 http://labs.google.com/papers/mapreduce.html

82

http://labs.google.com/papers/mapreduce.html

6.2.3 User Interface

6.2 REmaIL: Recommending Emails

Figure 6.2 presents the REmaIL plugin as seen during a development session in the Eclipse IDE.

[# PackageExp & . ProjectExpl | = O [J) Metadata.java &2 . [J] ArchiveContext.java
2% -
- /** Metadata parser/writer class. */
» & foobar public class Metadata implements Clone: {

v 83> fred [fred-stag
v @& >src
v 3 freenet.client not cc ete,
» (5} ArchiveContext.java (7) @
» [3 ArchiveExtractCallback.jal st
> [} ArchiveExtractTag.java (not
» [} ArchiveFailureException.java (n:

ng master ’ / URI at which this Metadata

FreenetURI resolvedURI;

has been/will be

/ Name at which this Metadata has been/will be
String resolvedName;

@verride

a public Object clone() {

try {
Metadata meta = (Metadata) super.clone();
meta.finishClone(this);
return meta;

} catch (CloneNotSupportedException e) {
throw new Error("Yes it is!");

» [} ArchiveHandler.java (not
» [} ArchiveHandlerimpl.java (6)
» [} ArchiveKey.java (0

» [1 ArchiveManager.java (not searchec

» [} ArchiveRestartException.java (not) ¥

» [} ArchiveStoreContext.java (23)
»_ [0 ArchiveStaraltam iava (1)

=8

inserted.

inside contair

000000 00

Tasks R Emails &2 = B R Emails Visualization %

©

]
Subject
[Freenet-dev] Crypto, Metadata, Multicasting, ant

Date Author
> 11.04.2000 04:49 Jake Mannix

¥ 18.04.2000 10:19 awlydick

[Freenet-dev] Cry sting, an
[Freenet-dev] Searching. Questions and a Proposé

19.04. 2000 07:47 Philipp [Freenet-dev] Searching. Questions and a Propos:

=0

R Email Content %
Subject: [Freen@ypm, Metadata, Multicasting, andM...

From: Dave Noha
Date: 11.04.2000 16:46

From: lan Clarke [mailto:l.Clarke at dynamicblue.com]

If someone can provide a good case for why XML would be good for

metadata specifically (and "XML is a cool technology” is not a good
answer), then we will use it, but for the moment it strike:
Global rating Your rating
Sefd Rating
R Email Writer &2
Send Attach

From: |remail@sback.it v

To:
Ca

Subjec onArchive...

Hello,

» 19.04.200009:04 Brandon [Freenet-dev] Meta-data (final word - for now)

Search| metadata.* protocol @

Related classes: freenet.client.ArchiveContext.java,
freenet.client.ArchiveKey.java,

Figure 6.2: The REma1L Plugin

Package Explorer. This is the entry point for interacting with REmam and triggering its recom-
mendation engine (Figure 6.2, Point 1). The first time REmAIL is used, the developer selects the
classes and packages of interest and starts the search by clicking REmaIL search in the popup
menu. By selecting a package, the search will be recursively performed in all the subclasses.
Once the process is completed, next to each chosen entity in the Package Explorer, the user sees
a number (Point 2), which shows how many “hits” each entity has within the mailing list, thus
effectively measuring the popularity of the entities (see Chapter 5). As we discuss in Section 6.3,
the popularity can be used as an entry point to study an unknown system.

Emails View. Once a search has been performed, the user can click on any indexed class in the
package explorer, or open/change a class in the editor (Point 3) and the Emails View (Figure 6.2,
Point 4) will be updated accordingly. The visualization used in this panel conveys multiple
details: 1. The messages are sorted by time, 2. the three columns (namely date, author, and subject)
chunk the main metadata, and 3. the nested tree layout preserves the discussion threads. This
view is similar to the one presented in common email clients: It scales to a vast number of emails
and gives a temporal dimension. The latter feature is interesting from a program comprehension
point of view: Even though the source code is updated, it is possible to walk back in time, by
reading the emails discussing a class in the past. In mailing lists emails are organized in threads:
Whenever there is a reply on an email, subsequent emails are handled in discussion threads by
email clients. REmarL supports threads in the Emails View, and in the Email Content View. This
enhances email readability and the discussion context is more explicit. With the search box
(Point 5), they can further refine their search using keyword and/or regular expressions.

Emails Visualization. With this view (Point 6), users can see how the related emails are dis-
tributed in time. This view shows the emails related to the chosen class as a bar chart: The x-
axis is a discrete timeline, split in bins of equal duration, and the height is the number of emails

83

Chapter 6 Supporting Program Comprehension With Emails

exchanged during each period of time. This graph allows developers to see trends in discussions
related to the chosen class. When users find a significant period and click on a bar, the Emails
view (Point 4) shows only those emails. This view is based on HTML and Javascript. By using
the SWT Browser, one can include HTML pages and interactive javascript within Eclipse and
use java-to-javascript and javascript-to-java callbacks to make the view interacting with the en-
vironment. In this way, the same visualization can be accessed through a web browser outside
of Eclipse (we can imagine a manager using this feature), all the effective javascript visualization
libraries that are available can be used, and the IDE is more responsive than when using Eclipse
visualizations.

Email Content View. Point 7 in Figure 6.2 details the panel that is opened when a specific email
is selected in the Emails View. Its content is also visual: A box presents the metadata, different
colors and bars distinguish the different quotation levels, and a bold red typeface highlights
the name of the class for which the email was recommended. Users can also rate the impor-
tance/relevance of emails in this view (Point 8), this rating will be shared and averaged with the
other users, thus creating a social rating.

Email Writer View. With REmarL, users can not only consume email information, but also produce
it. By selecting any number of entities in the package explorer and/or a snippet in the code
editor and clicking a button a new email is automatically prepared, whose body includes the
chosen information. The Email Writer view (Point 9) shows the intermediate result. Users can
then complete the message by hand. The code snippets and fully qualified names of entities are
automatically included in the email body.

Editor support Most time that developers spend using IDEs is focused on the editor, where they
actually work with the source code. They might want to maximize the editor to completely fill
the screen. By doing so, the views of REmarL are not visible. Therefore, we enhance the Editor
itself to provide support in this situation. Markers (Point 10) signal general point of interest in
any of the resource files. We have used the bookmark markers to provide information about
all the class names visible in the source code editor, to which some emails have been linked. A
toolbar button triggers markers, so that user can decide whether to show them.

Global email filtering During our case studies we obtained a considerable number of emails,
that indeed referred to a class in question, but were irrelevant in a program comprehension
context. The vast majority of such irrelevant messages are automatically generated and sent
by issue repository systems, or by version control systems for detailing commits (e.g., see Fig-
ure 6.3). These emails include listings of all classes that are part of each commit or defect report,
which is hardly relevant for their understanding.

Author: nextgens
Date: 2008-08-26 13:14:49 +0000 (Tue, 26 Aug 2008)
New Revision: 22172

Modified:
trunk/freenet/src/freenet/client/ArchiveContext.java
trunk/freenet/src/freenet/client/ArchiveManager.java
trunk/freenet/src/freenet/client/FetchContext.java
trunk/freenet/src/freenet/client/async/ClientGetter.java

Figure 6.3: Excerpt of a related, however irrelevant, linked email

84

6.3 Program comprehension through emails

type filter text Message Filters AT AN ¢
b General E-mail result filtering

b Ant Messages with Subject matching following should be:

b Help Translation e

b Install/Update cvs

> java Remove

~ REmail Up

Message Filters
Down

i

b Run/Debug
b Tasks Excluded =
b Team Messages with Author matching following should be:
b Usage Data Collect | |jra@apache.org
Validation

b XML Remove
Up
Down
Excluded |w

Figure 6.4: Email filtering configuration

REmarL includes a message filtering feature to reject messages based on subject and author fields.
The filtering configuration panel is shown in Figure 6.4. This feature proved to be helpful during
our case study: The emails posted to the mailing lists by the version control systems have a
special subject and all the emails posted by the issue repository system have the same sender,
thus, by creating filters, we had been able remove all unnecessary emails. The filtered emails
are removed from the linking results and do not appear in Email View, nor they are counted as
“hits”. The filtered links are not removed from the caching mechanism, thus we can try different
filters without triggering the search again.

6.3 Program comprehension through emails

We present scenarios to illustrate the benefits of the program comprehension support that RE-
MalIL offers by recommending emails. We explore two OSS systems, Apache Mina and FrReeNeT,
from unrelated domains, with different size, and with distinct communities (see Section 3.4).

6.3.1 Entry points from class popularity in emails

A key issue in program comprehension efforts is to know where to start. Email data provides
both qualitative and quantitative information for this purpose. The augmented Package Ex-
plorer view, which shows decorations with the number of emails related to the chosen packages
and classes, gives hints on the “popularity” of entities in the mailing list, in quantitative terms.
We argue that this value might be high in classes that implement the core functionalities of a
system, thus it might be used for recommending entry points for program comprehension.

85

Chapter 6 Supporting Program Comprehension With Emails

This “secondary” recommendation, based on popularity, can be easily contextualized and eval-
uated by the practitioner, thanks to the qualitative aspect of emails. In other words, this popu-
larity is not a value coming out of the blue, but, on the contrary, it is supported by the content
of the emails: By skimming the messages’ text, one can decide whether a popular class is worth
understanding for the task at hand.

Freenet

i freenet.client (93)

i freenet.client.async (103)

f# freenet.client.events (89)

i freenet.client.filter (40)

i# freenet.clients.http (100)

f# freenet.clients.http.ajaxpush (8)

freenet.clients.http.annotation (0)

i freenet.clients.http.bookmark (10)

f# freenet.clients.http.complexhtminodes (1)
i# freenet.clients.http.updateableelements (10)
i# freenet.config (17)

i freenet.crypt (69)

i freenet.crypt.ciphers (11)

f# freenet.io (7)

i freenet.io.comm (40)

i freenet.io.xfer (30)

f# freenet.keys (94)

freenet.110n (9)
| freenet.node (459)

i freenet.node.fcp (278)

freenet.node.fcp.whiteboard (0)

i# freenet.node.simulator (12)

f# freenet.node.stats (0)

i freenet.node.updater (9)

i# freenet.node.useralerts (47)

i freenet.pluginmanager (36)

i freenet.store (20)

i# freenet.store.saltedhash (0)

i freenet.support (170)

freenet.support.api (22)

freenet.support.compress (1)

freenet.support.CPUInformation (4)
i freenet.support.io (110)

freenet.support.math (9)

i freenet.support.plugins.helpers1 (1)
freenet.support.transport.ip (13)
freenet.tools (7)

net.i2p.util (16)

1 org.bitpedia.collider.core (0)

i# org.bitpedia.util (0)

Figure 6.5: Excerpt from Package Explorer: FReeNeT packages with popularity

Figure 6.5 reports the popularity of FReener packages, as shown by REmaiL’s Package Explorer
decorator. It shows that the most popular package is freenet.node (Point 1), with classes dis-
cussed in more than 450 emails. The second most discussed package is freenet.node. fcp, with
slightly more than 250 emails, while the other packages are significantly less popular.

We investigate the most popular package: In the node package, developers mainly discuss four
entities: classes Node (74 emails), PacketSender (61), and PeerNode (67), and interface Request-
Client (98). With a brief analysis of the emails for the interface, we see that it was popular
during the first phases of FREENET development, but afterwards its importance gradually faded.
We focus on the other classes that are still currently discussed:

Node: By looking at the distribution of the emails over time, via the Emails View panel, we see
(Figure 6.6) that the large class Node has been very popular since the inception of the project (i.e.,

86

6.3 Program comprehension through emails

year 2000). By inspecting the code, we discover not only that it includes the main method from
which the Freener system bootstraps, but also that it models the node run by the user in the
network. Since FREENET is a peer-to-peer system, the user node has a crucial role for the whole
application and is essential for comprehending how the software functions as a whole.

Date Author Subject
. 2000 1 Bill Trost [Freenet-dev] Logging happening -- wrapping
16.04. 2000 O Stuart A Blair [Freenet-dev] Submitted for review: Inform via web proxy
16.04. 2000 1 Scott G. Miller [Freenet-dev] Connection limiting/thread management
18.04. 2000 0 Oskar Sandberg [Freenet-dev] Shutting down Freenet
21.04. 2000 1 dav...@aminal.com [Freenet-dev] Spin City
05.05. 2000 0 Oskar Sandberg [Freenet-dev] make
02.08. 2000 0 ha...@finney.org [Freenet-dev] changing forwarding logic and other stuff
3 03.08. 2000 O lan Clarke [Freenet-dev] Automatic Message: Build Broken
09.08. 2000 1 Stephen Blackheath [Freenet-dev] Plans for Client
25.08. 2000 0 lan Clarke [Freenet-dev] Nazibot: Build Broken
26.08. 2000 1 Alex Barnell [Freenet-dev] Bug report: build.sh
05.02.2001 1 devl...@freenetproje Devl digest, Vol 1 #187 - 11 msgs
b 09.02. 2001 1 Matthew Toseland [freenet-devl] Kaffe versus Freenet: part 2163
23.02. 2001 1 Kirk Reiser [freenet-devl] Bug in ThreadPool.reclaim ?7?
08.04. 2001 1 Brandon [freenet-devl] a bug possibly
b 30.10. 2001 2 Dominic Anello [freenet-devl] zombie node process
29.11. 2001 0 Volker Stolz [freenet-devl] Filtering outgoing connections
13.12. 2001 1 toad [freenet-devl] Statement is unreachable
08.01. 2002 1 lan Clarke [freenet-devl] Build errors in new_datastore
18.01. 2002 O Benoit Laniel [freenet-devl] Problem with new .jar file?
22.01. 2002 O lan Clarke [freenet-devl] Unified diagnostics mechanism
24.02. 2002 1 lan Clarke [freenet-devl] Infolet structure checked in and working
08.11. 2002 1 thi...@hushmail.com [freenet-dev] Extension to allow Freenet to get content from
b 18.02. 2006 1 bobbie sanford [freenet-dev] 64 bit FEC library build test
3 03.04. 2006 2 Florent Daigniere (Ne [freenet-dev] Plan for 0.7a release - your help needed
3 02.06. 2006 0 Colin Davis [freenet-dev] Regarding (bad) users with numbers of Disconne
11.11. 2006 1 toad [freenet-dev] Trying to contact freenetwork@web.de, bugs in
11.12. 2007 O Robert Hailey [freenet-dev] Why Freenet is so SLOW! / Finding data
b 11.12. 2007 0 Sven-Ola Tlcke [freenet-dev] Embedded Java
3 18.01. 2008 2 Robert Hailey [freenet-dev] Request Coalescing deadlocks - r17164
09.03. 2008 1 Sven-Ola Tlcke [freenet-dev] Freenet on Mips
14.08. 2008 0° code...@google.con [freenet-dev] nextgens commented on SVN revision 21841.

Figure 6.6: Excerpt from Emails View: emails recommended for class Node

PacketSender: This class implements packet sending through the FrReeNeT network. It has a gen-
eral importance in the system, and by reading one recommended email, we understand that it is
critical for a developer who must deal with message handling: “Are you interested in implementing
message priorities? Messageltem and PacketSender are the most relevant classes.” This message also
reveals a hidden coupling, not detectable by static analysis, with MessageItem.

PeerNode: The opening code comment of PeerNode states that it “represents a peer we are connected
to.” Therefore, it plays a central role in the Freener functioning and is another important entry
point for program comprehension. Moreover, by reading among the most recent email threads
recommended by REmarL (Figure 6.7, Point 1), we discover additional information that could not

87

Chapter 6 Supporting Program Comprehension With Emails

have been learned by solely investigating the code. PeerNode is responsible for implementing
the Freener Network Protocol (FNP) —~the communication protocol used in FReeNEeT. A developer
who must change this protocol is required to “move all the FNP related code from PeerNode to a new
class, and have PeerNode use the old code through this class. The new code can then be added without
touching FNP, and PeerNode [can] choose which format to use for each peer.” By reading the same
thread, the developer interested in modifying FNP would also discover the other two classes
responsible for the implementation of FNP: PacketTracker and SessionKey.

Date | Author | Subject 7\
v 21.05.2010 06:04 -Ma-rtin-Nﬁus- - -[%e?et-deV] I;ple-me-nta-tiorof-EvRs-paaet-fo?na?
| 21.05.2010 09:24 Juiceman Re: [freenet-dev] Implementation of Evans packet format |
| 22.05.2010 09:17 Matthew Toseland Re: [freenet-dev] Implementation of Evans packet format |
~ [17.07.2010 10:07 _ Matthew Toseland [freenet-dev] zidel's new packet format branch
27.07.2010 07:54 Martin Nyhus Re: [freenet-dev] zidel's new packet format branch
v 09.08. 2010 07:06 Martin Nyhus Re: [freenet-dev] Code review of recent work on new packet format

09.08. 2010 09:01 Matthew Toseland Re: [freenet-dev] Code review of recent work on new packet format

Figure 6.7: Emails View: recent threads recommended for PeerNode

To further evaluate the importance of these three classes in the system, we analyzed them in
terms of Design Flaws [113]. The detection strategies we use (see [128]) diagnose all the three
classes as affected by the Behavioral God Class [164] design flaw, i.e., they tend to incorporate a
disproportionately large amount of intelligence. This reinforces the hypothesis that they repre-
sent an important entry point for program comprehension. Additionally, all the classes present
other design flaws such as Brain Methods, Intensive Coupling, and Shotgun Surgery. We do not
analyze each design flaw, but refer the interested reader to [113]

MiNA

Mina is an application framework for supporting the development of network applications.
Within the project documentation, developers offer a decomposition of the system to introduce
newcomers to its architecture. Figure 6.8 replicates this decomposition.

|0 Handler <: 10 FilterChain <: l/,—’ ‘/\\'
I 1O Filt IO Service {{'min'\s Rgmote \
architecture 10 Session :> I :> Rl eer ,/;
I T -
Component 4 439 5 555 416 487 341
Popularity

Figure 6.8: MiNa architecture: Main components and their popularity

With this decomposition in place, we compare it to the popularity of its component. For each
component (e.g., [O Handler), we report the popularity of the corresponding class (e.g., the class

88

6.3 Program comprehension through emails

core.service.IOHandler). Only in the case of IO Filter Chain, we sum the popularity of the
interface 10FiltercChain and of its sole implementer DefaultIOFilterChain.

The popularity values depicted in Figure 6.8 show that the most discussed components match
the architecture proposed by the developers. In fact, only a few other classes reach such a pop-
ularity score: 10Buffer (541 emails), the replacement of the Java library class ByteBuffer, nec-
essary for writing on any IO Session; 10Acceptor (390 emails) and I0Connector (347) used for
starting a server and a client, respectively; and ProtocolcodecFilter (1,010), a specialized 10
filter also detailed in the official decomposition. In other words, we could have extracted an
almost equivalent decomposition simply by using quantitative data from emails.

On an unrelated note, we see how the number of emails talking about the most popular classes
is rather higher compared to Freener, even though the respective mailing lists archive a similar
total number of messages. This reflects the different programming and communication habits
between the two development communities.

6.3.2 Software Evolution Analysis

Version control (or software configuration management-SCM) systems offer historical informa-
tion on the evolution of the source code. They can be used to track changes in source code artifact
in order to detect whether a class is stable or always morphing. For example, researchers have
successfully used change metrics to predict defects [27; 137].

We argue that, in system in which developers mainly communicate in mailing lists (such as open
source projects, and distributed teams), emails might be used to complement known information
in order to better understand the relevance of changes. The rationale is that classes that are not
discussed in the development mailing lists are likely to be more stable and less prone to major
modifications, since a substantial change would require an agreement of the team.

To investigate our hypothesis, we analyze the package util in the MiNa project. It presents
98 distinct commits in fifty months, and discussions in the mailing list. It contains 17 classes,
of which we manually inspected the complete history in the SCM system and all the emails
recommended. We analyze the changes occurred since the inception of the mailing list (2006).

Figure 6.9 visualizes the results of our analysis. We divide the time in one-month slots and fill
them with the occurred events. Grey boxes represent related emails, the other boxes represent
commits. Light blue boxes represent class addition, white boxes represent minimal changes (e.g.,
author renaming, license change, reformatting), and red boxes represent relevant changes that
modified a class’ behavior.

The first thing we note is the small number of relevant changes: Only 6 relevant changes over
98 commits. From our hypothesis, we expected this behavior, since the mailing list is silent on
most of the classes. We note how there is no relevant change in classes not mentioned in the
mailing list. Concerning the relevant changes, we see (circled in Figure 6.9) how these happen
close in time to discussion related to the class. The only exception is IdentityHashsSet, where
the related discussion happens after many months.

An analogous pattern is present in the FReeNeT system. For example, the package crypt con-
tains classes that used to be discussed in the past of the project, but that have been almost no
discussed for two years. By analyzing the related commits, we verify that they contain no rele-
vant change. From this scenario, we see how historical information provided by emails might
help in understanding where the current, active, and relevant development is focused.

89

Chapter 6 Supporting Program Comprehension With Emails

2006

Available- :

2007

2008

2009

PortFinder LL LT LT 1T TJ

Baseb4 |

CircularQueue !

Concurrent-
HashSet :

CopyOn-
WriteMap !

Default- :

|

O O

4d

ExceptionMonitor _l_u Lo o u

ExceptionMonitor 3 um |

mpm

ExpirationListener

ExpiringMap

[

IdentityHashSeti_‘_u O T O O LT

LazyInitialized- :
CacheMap :

Lazylnitializer

Log4j- f
XmiFormatter :

MapBackedSet

NamePreserving-
Runnable :

Synchronized-
Queue :

Transform !

[Related email thread

H Relevant change

[

J Trivial change

= B B e e e < <= I

A Class addition

Figure 6.9: Package org.apache.mina.util: changes and discussions

6.3.3 Expert finding

Program comprehension involves keeping up with who on a distributed team is expert about
specific code entities. Given the complexity and the amount of changes in software, this is a non-
trivial task. Researchers have proposed a number of approaches to recommend experts (e.g.,
[189; 135; 173]), most of them based on authorship of code: The person committing changes to
an artifact has expertise in it. Emails recommended by REmaIL also report the author (see Point
4 and 7 of Figure 6.2). We argue that this information can be used to extract both quantitative

90

6.3 Program comprehension through emails

and qualitative information about the expertise on discussed entities. As an example, we see
how REMAIL can be used to find an expert of classBookmarkItem.

We first selected the entity itself (see Figure 6.2, Point 1), which has 26 related emails. Then,
in the Emails View (Point 4), we already see how Toseland wrote several emails on this entity.
This quantitative information suggests us his potential class expertise. To confirm this belief,
we select one of the emails he wrote and we read it in Email Content View (Point 7). Thanks to
the different colors used to distinguish the quotation levels, we clearly read that Toseland, first,
indicated how BookmarkItem must be aggregated: “you should put each Bookmarkltem as a sub-
fieldset, not a string”; then, gave the rationale behind this behavior: “[to have] the ability to easily
add fields.” Using REMaIL we found an expert of this entity.

Table 6.1: Code commits involving org.apache.mina.util.ExceptionMonitor

Revision Date Author Revision Date Author
995776 Oct 2010 elecharny 671827 Jun 2008 jvermillard
900040 Jan 2010 elecharny 576217 Sep 2007 trustin
783334 Jun 2009 elecharny 565669 Aug 2007 trustin
774593 May 2009 elecharny 555855 Jul 2007 trustin
678335 Jul 2008 mwebb 497314 Jan 2007 trustin

As another example, we see how REMAIL complements the expertise information we find in the
SCM system. We analyze the Mina class ExceptionMonitor. Table 6.1 reports the SCM system
commits involving this class, by date and author. Only four developers committed on this class:
They are the exclusive experts from a SCM system point of view.

Figure 6.10 reports the emails related to ExceptionMonitor, as recommended by REmarL. The
aforementioned committers were all involved in discussions, in a moment in time close to their
activity on the class. For example, we see that Trustin Lee (trustin, in commits) wrote emails in
2006 and worked on the class up to 2007. In 2008, Mark Webb and Julien Vermillard where both
committing and discussing the class. Currently Emmanuel Lecharny is the sole committer.

By reading the thread in Point 1, we learn that other developers designed the class, but are now
no longer involved in the implementation (e.g., Karasulu: “I think this was something Trustin and
I talked about while experimenting with Monitors versus logging. [This class] was a bad idea then and
I think it is a bad idea now.”). At the same time, by reading Point 2, we see that Dave Irving
is knowledgeable about the functioning of the class: “an ExceptionMonitor instance [...] doesn’t
swallow exceptions (or captures them for relaying back to your test if you're not running off the main
thread).” Only with the SCM data, we would have not been able to discover his expertise.

6.3.4 Recovering Additional Information

Official documentation, e.g., design documents, is regarded by developers as “write-only me-
dia,” as it is difficult and cumbersome to evolve along with the rest of the systems [114]. More-
over, not all the developers have the rights to modify it. On the contrary, emails are easier to
write, due to their less formal nature, and can be written by non-developers. We claim that rec-
ommended emails might contain complementary information not available in code comments, or
official documentation, thus helping program comprehension.

91

Chapter 6 Supporting Program Comprehension With Emails

Date Author Subject
16.06. 2006 19:24 John Preston Addition of SocketConnector method to handle socks proxies.
b 01.11. 2006 01:39 Hieu Phan Thanh RE: [MINA 0.8.3] Could not stop listening on Port
06.11. 2006 17:07 Trustin Lee Re: [MINA 1.0.0] Could not stop listening on Port
3 28.07. 2007 03:07 James Im Rationale for Thread.sleep(1000) in Worker ?
23.08. 2007 06:07 Pierre-Louis Bonicoli Re: client doesn't stop
b 05.02. 2008 07:45 Sangjin Lee Re: connect timeout
hd 10.06. 2008 04:31 Julien Vermillard Re: [2.0 refactoring] Reviewing core packages was : [2.0 refactoring]
20.06. 2008 05:20 Emmanuel Lecharny Re: [2.0 refactoring] Reviewing core ges was : [2.0 refactoring]
vom. 2%8 @5_ Emaﬁel Ehaw Imeaemnhmwr_usem
I 05.07.2008 06:27 Alex Karasulu Re: Is the ExceptionMonitor usefull ?
05.07. 2008 10:50 peter royal Re: Is the ExceptionMonitor usefull ? I
06.07.2008 06:01 Alex Karasulu Re: Is the ExceptionMonitor usefull ?
06.07. 2008 06:07 Emmanuel Lecharny Re: Is the ExceptionMonitor usefull ? I

06.07. 2008 22:30 Emmanuel Lecharny Re: Is the ExceptionMonitor usefull ?

07.07. 2008 12:42 Adam Fisk Re: Is the ExceptionMonitor usefull ?
07.07.2008 13:39 Alex Karasulu Re: Is the ExceptionMonitor usefull ? I
07.07. 2008 13:45 Mark Webb Re: Is the ExceptionMonitor usefull ? I

BEEREERAEEA

07.07. 2008 14:30 Niklas Gustavsson Re: Is the ExceptionMonitor usefull ?
11.08. 2008 23:35 Julien Vermillard Release of Apache MINA 2.0.0-M3
v (] 09.06. 2009 01:37 Irving, Dave RE: Exceptions in MINA

._ 09.06. 2009 11:36 Michael Ossareh Re: Exceptions in MINA

Figure 6.10: Emails recommended for mina.util.ExceptionMonitor

We present the example of the class circularQueue, in the MiNa system, which provides anecdo-
tal evidence of our hypothesis. The SCM system (as shown in Table 6.1) reports five commits on
this class in the last months, thus underlying a sort of evolution. However, from a previous sce-
nario we know that these changes are not relevant and the class is almost frozen. For this reason,
one would wonder its real purpose, which components use this class, and why it is stable. The
only information provided by the class comments and documentation is that circulargueue
implements an “unbounded circular queue based on array.” However, we can read a recent
thread titled “About CircularQueue”, among those recommended by REmAIL as pertaining to
CircularQueue, to gain additional information. From the emails we discover that this class has
a logical connection to ConcurrentLinkedQueue. Even though the latter “performs bad comparing
to synchronized [CircularQueue] when the number of accessing threads are very small”, developers
decided to remove “all references to the non-thread-safe [CircularQueue] data structure, and replace
it with a [ConcurrentLinkedQueue].” The reason is that “not only [ConcurrentLinkedQueue] is a
comparable data structure, but it’s also thread safe, and tested.” Eventually, we read that developers
are considering to “remove the [CircularQueue] data structure from the code base” as it should only
be used by the core and not by framework users.

Thanks to this additional information, we learned what the most important issues of the class
are (i.e., not-thread-safe and not well tested), which components use it (i.e., only internal core
classes), and why it has not been changed significantly lately (i.e., it will probably be removed).

92

6.4 Related Work

6.4 Related Work

Holmes and Begel devised an approach similar to ours, including external artifacts in the de-
velopment environment [97]. They presented Deep Intellisense, a Visual Studio IDE plugin that
links a number of artifacts (e.g., bug reports, e-mails, code changes) to source code entities. It
features three views: a structural view of the artifact chosen, a view to represent people related
to that artifact, and a view to display all the related historical information (e.g., checkins, or bug
reports). As opposed to our approach, Deep Intellisense always relies on external applications
to handle the visualization of different artifacts: For example, when a user clicks on a bug, the
native viewer is open. By implementing Remail, we strive to give the users views that are consis-
tent with the development environment, in order to avoid unnecessary context switches, and to
allow more interaction. For example, as our future work, we plan to allow the developer to click
on the content of an email to trigger appropriate events in the IDE. This would not be possible
by relying on external viewers. In addition, Deep Intellisense needs a specialized database with
all the information modeled, in order to use its implicit query system [200]. By using MBox files,
we removed the burden of such complex infrastructure from users’ shoulders, thus lowering the
bar for adopting Remail in everyday development.

Hipkat offers an integrated approach to access information stored in project archives [199]. Sim-
ilarly to our approach, it is an Eclipse plugin. The main difference resides on fact that Hipkat
requires an external server process to monitor sources, to store them in a database, to iden-
tify links, and to reply to requests sent by the client. While, in Remail, all these operations are
conducted in the client, since we strived to implement our approach as fast, lightweight, and
unobtrusive. In addition, the users of Remail do not need to specify any query for retrieving the
relevant data, they simply choose the entities, and emails are automatically recommended.

IBM Jazz? offers a framework, built on top of Eclipse, to support collaborative software develop-
ment. It features IM communication in the IDE, and uses the concept of “work items” to track
and coordinate development tasks and workflows. Each work item is connected to other artifacts
(e.g., builds, defect reports, change sets, or source code entities). Such work items have analogies
with emails, even though the latter might have a broader perspective. While Jazz advises the use
of a brand new technology, we decided on harnessing the power of emails, a pre-existing pop-
ular communication means successfully adopted by developers of a vast majority of software
projects. This allows developers to take advantage of mailing lists that archive years of relevant
information about the development of software systems.

Mylyn offers the concept of “task context” that focuses on automatically link all relevant artifacts
to the task-at-hand [104]. As for Remail, this system helps in reducing information overload and
easing the sharing of expertise. However, as for the case of Jazz, it also requires an additional
technology to be used, thus it does not provide access to differently archived data and requires
a higher learning effort by developers. At the same time, Remail and Mylyn can coexist in the
same IDE and provide complementary data.

6.5 Summary

We presented a new approach for program comprehension based on email information. We
implemented REmar, an Eclipse plugin to integrate email communication. It enables the con-

3 http://jazz.net/

93

http://jazz.net/

Chapter 6 Supporting Program Comprehension With Emails

nection between code artifacts and emails, within the programming environment. By using
code-to-emails lightweight linking techniques, REmAIL allows the user to easily retrieve discus-
sion relevant to the chosen entities. REmaAIL revolves around two aspects:

1. Simplicity: REmaIL allows developers to take advantage of email archives already present in
their common email clients and to easily import new archives via MaARkMAIL or Mailman.
Also, it lets practitioners find and read relevant emails, for a chosen entity, with one click.

2. Integration: REMAIL smoothly integrates with email clients: When REmAIL uses an archive
of a client, it will not interfere with its functioning, but, on the contrary, will take advantage
of the updates performed by the user from the client, by updating its own data. In addition,
new archives imported by REMAIL can immediately also be used by email clients. Also,
REmALL integrates with the IDE: It has internal views to avoid context switches and ease
concurrent code and email inspection.

We have shown how the email information, as displayed by REmait, helps to find entry points in
an unknown system, understand software evolution, identify experts, and complement missing
documentation. The main strength of REMAIL resides in the fact that it recommends emails—
discussions in a context.

Limitations. The main limitation of the study presented in this chapter is that it was validated
only on two OSS systems, and that the evidence is so far anecdotal. For example, concerning the
entry point analysis (see Section 6.3.1), in the studied systems we found that classes are popular
because they form the system core. Nevertheless, artifacts in other systems might be popular
in emails for other reasons (e.g., because of their size, or because they are subject to frequent
changes); it would be necessary to analyze whether these classes can also be considered as valid
entry points for comprehending a system.

Reflection. The main contribution of REmarL is disclosing both qualitative and quantitative infor-
mation provided by email archives, so that it can be used during software development to sup-
port program comprehension. Remail recommends emails, which are discussions in a context.
The context is vital for users to verify the value of a recommendation. While with popularity
metrics, we only provide a mere number, which does not provide further insights about devel-
opers’ thoughts or recommendations, Remail recommendations provide the qualitative aspect
of emails’ content.

While analyzing the emails for our case study, we realized how the content of email is extremely
noisy and composed of different languages: We find not only natural language sentences, but
also entire parts written in different programming languages in forms of code snippets, patches,
or execution traces. This situation impacts different aspect of mining development emails. For
example, we noticed that artifacts mentioned in natural language parts of emails are more rel-
evant to program comprehension, than artifacts mentioned in other contexts (e.g., stack traces).
Moreover, the emails’” noise must be removed to provide meaningful data for further research
[32]. With this study we discovered the second challenge in proving our thesis (see Section 1.2):
Dealing with the noisy and mixed language content of development emails.

94

Part Il

Structuring Unstructured Software Data

95

Obtaining benefits from software repositories, to support program comprehension and software devel-
opment, is not trivial: The information extracted from software repositories must be relevant, unbi-
ased, and its contribution comprehensible. In this vein, researchers are analyzing the quality of is-
sue datasets, for example to verify if approaches are accurate enough to provide flawless information [34;
1871, and to determine what information is more relevant (e.g., in issue reports [211] or among the changes
in version histories [102]).

When we extract information from repositories containing natural language documents (e.g., web sites,
IRC chat logs, mailing lists), we have to be careful about the quality of the data. In fact, natural language
leaves complete freedom to document authors, not enforcing the rules on data input that we find in struc-
tured data (e.g., source code, issue trackers), which is to be produced or parsed by a machine. On this note,
Bettenburg et al. presented the risks of using email data without a proper cleaning pre-processing phase
[32], with compelling “before and after” examples to show how noise severely impacts such data.

Even when an accurate data cleaning phase is conducted, documents are mostly treated as bags of words:
a count of which terms appear and how frequently. This simplification is proven to be effective in the infor-
mation retrieval field, where techniques are tested on well-formed natural language documents, generated
by information professionals, such as journalists, lawyers, and doctors [1231. In software engineering,
although effective for some tasks (e.g., traceability between documents and code [31), this method reduces
the quality, reliability, and comprehensibility of the available information, because natural language text
is often not well-formed and is interleaved with languages with different syntaxes: code fragments, stack
traces, patches, etc.

For these reasons, we must be aware of the structure of email content, filter irrelevant information, and
use appropriate techniques for exposing and exploiting the significant data.

In this part of the thesis we present our work toward this goal: We present mining techniques aimed at
giving a structure to the unstructured, noisy, and mixed-language content of development emails. These
techniques are built incrementally, from the simplest but less effective, to the most sophisticated, flexible,
and effective ones.

In Chapter 7, we present our first step, in which we devised text-matching based techniques able to separate
source code from natural language. Although results are promising, these techniques cannot be used
to understand the meaning of the recognized lines of code. For this reason, in Chapter 8, we shift our
attention to island parsing [1361, and use this concept to devise a parser for structured content embedded
in natural language. We present some applications of this parser to support software understanding and
development. In the same chapter, we also present our implementation for a flexible and extensible island
parsing framework. Finally, in Chapter 9, we present our approach to merge island parsing and machine
learning to correctly recognize the different kind of “languages” (e.g., stack traces, source code, and natural
language) used in emails.

97

Chapter 7

Detecting Lines of Source Code in Development
Emails

When conducting the experiment described in Chapter 6, we realized that emails are often com-
posed of different languages: Development emails pertaining to a software system report parts
of text written in other languages, especially source code snippets or stack traces. These lan-
guages are more structured than natural language and cannot be processed with the same tools.
In this chapter, we focus on simple textual techniques to detect source code fragments in natural
language text.

7.1 Overview

Reliably extracting valuable information from the content of emails is a non-trivial task: Not only
are emails written in free-form natural language, but they can also contain noise and interleaved
structured fragments that makes it difficult to retrieve the relevant data. As a first step toward
the exploitation of email content, in this chapter, we devise lightweight techniques to detect
source code fragments in the content of emails, on the basis of simple text inspections, exploiting
characteristics of source code text.

We evaluate the accuracy of our techniques through a benchmark we manually built. We took a
statistically significant sample of emails pertaining to five unrelated Java OSS systems.

Contributions of the chapter. In this chapter, we present the following contributions:

» We identify the importance of identifying the structured content in email data. The introduc-
tion of this part and this chapter explains why properly parsing email data is essential for
extracting valuable information.

* We devise and evaluate lightweight techniques that detect source code fragments in emails. Our
techniques exploit simple lexical characteristics of source code text embedded in develop-
ment emails.

* We produce a benchmark for evaluating the identification of source code lines in development emails.
Our benchmark features sets of sample emails, randomly extracted from five unrelated Java
OSS systems, which we manually read to label structured fragments. It includes more than
1,800 manually labelled emails.

99

Chapter 7 Detecting Lines of Source Code in Development Emails

Structure of the chapter. In Section 7.2 we explain how we set up our benchmark and present
the infrastructure we devised to support its creation. In Section 7.3 we detail the different ap-
proaches we tested. In Section 7.4 we discuss how they perform with respect to our benchmark.
In Section 7.5 we discuss the related work. Section 7.6 concludes summarizing our findings.

7.2 Benchmark and Evaluation

Since no previous benchmark has been devised for the problem we tackle with our work, besides
presenting and discussing a set of techniques, we also create a statistically significant, and pub-
licly available benchmark, against which to verify them. Our benchmark for extracting source
code fragments can be employed for further analysis of different techniques. The obtained re-
sults can be compared to show the strengths and drawbacks of several approaches on the same
data set. We designed this benchmark to require no special infrastructure to be used and to be
easily extensible with additional data.

7.2.1 Subjects of the experiment

Table 7.1: The software systems considered for the benchmark

Emails
System Population Sample
Size Filtered Size With Code

ArgoUML 24,876 24,876 379 48
Freenet 22,095 22,095 378 35
JMeter 21,637 9,810 370 105
Mina 18,565 21,869 374 101
OpendPA 14,992 6,328 363 97

Table 7.1 shows the five Java OSS systems that we considered to create our benchmark. We
selected unrelated software systems emerging from the context of different free software com-
munities, i.e., Apache, ARGoUML, and Freener. The development environment, the usage of the
mailing lists, and the development paradigms are all likely to differ among the systems, provid-
ing a good test for the adaptability of our lightweight approaches to a wide variety of systems,
and helping to assess their effectiveness.

Even though all the systems offer multiple mailing lists that can be analyzed, we focus on the
development mailing lists, as they provide the highest density of information related to software
development. We excluded from our benchmark messages automatically generated by the bug
tracking system and the revision control system, since they contain only a reduced amount of
natural language text. In the exceptional case of JMEtER, we decided to also include part of the
messages generated by the revision control system, to see their effect in our experiments.

The section Population of Table 7.1 provides details on the population size, and the number of
emails in the set after filtering out the automatically generated ones.

100

7.2 Benchmark and Evaluation

Emails sample set size: Since we could not afford to manually annotate the entire set of nearly
75,000 emails, we extracted a sample. Due to the lack of any knowledge about the considered
mailing lists, we employ simple random sampling [193] to extract the emails to be included in
our benchmark. To determine the number of emails that must be sampled from the populations,
we used Equation 4.1, already detailed in Section 4.2.1. We took the standard confidence level
of 95%, and error (E) of 5%. This resulted in the values for the sample sets reported in Table 7.1.
If source code fragments are present in the f% of the sample set emails, we are 95% confident
they will be present in the f% =+ 5% of the population messages. This only validates the quality
of this sample set as an exemplification of the populations, and is not related to the precision and
recall values presented later.

7.2.2 Benchmark creation

To evaluate our source code extraction methods, we manually built the benchmark by reading
all the emails and annotating them with the source code fragments they contain. We inspected
the entire sample set, and then randomly selected and re-inspected 10% of the emails to verify
the quality of the annotations. Figure 7.1 shows the excerpt of an email with source code.

The blue parts are those we would have marked as source fragments in our benchmark. We
consider the method call in line 2 as valid (it is actual source code that can be part of a method),
but we do not consider the class, package, and method names, written in italic, in lines from 3
to 5, as they are part of the discussion and are simply used as names. We exclude commented
lines of code (Line 13).

We extended the MiLer GaME (see Section 3.3), to assist this task. We created a code snip-
pets panel (Point 1) to contain the selected fragments from the email. The user can add de-
tected source code fragments by copying and paste them in the appropriate text area in the code
snippets panel. We also enhanced the Main view (Point 2) so that the user can select the chosen
fragments with the mouse and using a keyboard shortcut to add them in the annotations.

Despite the repetitiveness of the annotating task, we decided not to add features that could have
influenced the results. For example, it would have been possible to highlight pieces of text con-
taining Java keywords. However, this could have influenced the email reader, who could have
only skimmed the email content in search of highlighted text, without checking the meaning.

7.2.3 Evaluation

To evaluate the techniques to detect documents and lines containing source code fragments, we
use the IR metrics presented in Section 4.2.4: precision (Equation 4.2), recall (Equation 4.3), and
F-measure (Equation 4.4).

To assess the effectiveness of our approach in extracting fragments, we computed the Levenshtein
distance [123] line by line, between the text labeled as source code in the benchmark and the ex-
tracted fragments. This function, also called edit distance function, outputs the minimum number
of changes needed to transform one string into another. The allowed transformation operations
are deletion, insertion and substitution, and they are given the same unitary cost. As an example
we consider the first source code fragment labeled in line 2 of Figure 7.1 (replicated in Figure 7.3
for readability): add(LabelledLayout.getSeperator());.

101

Chapter 7 Detecting Lines of Source Code in Development Emails

Hi Bob,
I have used swidget version add(LabelledLayout.getSeperator()); from
org.argouml.uml.ui.LabelledLayout earlier and it worked fine.

AW N R

There is another class LabelledLayout in org.tigris.swidgets that has
method

getSeperator(), but it also does not work.

However, after transfer to new ArgoUML version there was no error

in code, but elements were not arranged in two columns any more.

o 3 o U

Here is part of the code I have implemented:
9 import javax.swing.ImageIcon

10 private static String orientation =
11 Configuration.getString(Configuration
12 .makeKey("layout", "tabdocumentation"));

13 //make new column with LabelledLayout
14 add(LabelledLayout.getSeperator());

15 consequences = new UMLTextArea2(
16 new
17 UMLModelElementValue(DepthsArgo.CONSEQUENCES_TAG));

18 Could you help me, please?

19 Thanks,
20 Zoran

Figure 7.1: An email excerpt containing source code fragments

If we evaluate Levenshtein distance between this fragment and another candidate we obtain
0 if the two strings are identical, otherwise a positive number that increases linearly with the
number of operations required to transform the candidate in the correct string. For example,
the distance between this string and “version add(LabelledLayout.getSeperator” is 12.

Other edit distance functions, such as the Damerau-Levenshtein distance [57] and the Hamming
distance [91], are not appropriate for our task as they add unnecessary operations (such as trans-
position of two adjacent characters) or do not provide enough flexibility, e.g., the Hamming
distance only applies to strings of the same size.

7.3 Experiments

We first tackle the problem of classifying emails that contain source code, then we move to the
line level, and we conclude by showing how our methods can extract source code fragments.
We begin from the techniques based on the simplest intuitions and we proceed to others based
on more refined concepts.

102

7.3 Experiments

Re: Grid Renderer Problem Using Number

Systems 7 = ? g Entities in current e-mail
OpenJPA gﬁ&?ﬁ?&ﬁ%;ﬂ%’_g‘;"mm com.googlegroups.gwt-ext Type the name of the entity mentioned in the email
% maik-unique-id: nxStczufisy37oe
=
AiiSML Sanjiv Submit)
Z'—M"EEX' On 10/11/07, Ashley Wong <ashl...@gmail.com> wrote:
Mails I have submitted an issue (#140) about this. When | pass a Float
ArgoUML : 401/401 object to the store, the renderer receive an Integer object. m
JMeter : 400/400 Therefore, java.lang.ClassCastException would be occurred when | cast
Freenet : 400/400 it as Float object. The test case of this defect is as follow:
: 5 (Remove fast) (Clear)
g;ﬁﬁjt,;\":’j%ﬂ b | Object(][] data = new Object][] { new Object] { "test", (Remove last) (Clear)
Mina : 400/400 By et)
- ? miw Float(0) } } Report code mentioned in the email
Alberto : 2002 ? Store store = new Store(new MemoryProxy(data), new
P 2SS = ArrayReader(y 1
Navigation ¥ new RecordDef(
4 new FieldDef[] { new (Submit
. StringFieldDef("type"),
find by permalink e new ((Number) value).doubleValue())
Y va‘ StringFieldDef("id"), Object{][] data = new Object{][] { new Object[] { "test", "test", new
SN new Float(0) }
— | FIoatFleIdDef(balance") })));
¢ store.load(); u
final Grid grid = new Grid(Ext.generateld(), "100%", &

' "100%", store,
. new ColumnModel(new ColumnConfig[] { new
ColumnConfig() {

setDatalndex("type"); il
setHeader("Type"); [
setWidth(300);
) (300 @ (Remove ast) (Clear) .
, new ColumnConfi g ~ —t
} 904 5 G Repod Entities [Repotl code snlppets E
setDatalndex("id"); E Done L
EORTE
,a»-\

,p;,z -

setHeader("#"); ‘ B VNN S e

setWidth(400); =) L.W h‘.?}

< z ori s .i ‘*iun.&. e N
b - | 8

Figure 7.2: The MiLEr GaME extended to support email annotation of source code fragments

}
}, new ColumnConfig() {
- PAL TR VM T

1 Hi Bob,
2 I have used swidget version add(LabelledLayout.getSeperator()); from
3 org.argouml.uml.ui.LabelledLayout earlier and it worked fine.

Figure 7.3: An excerpt from Figure 7.1

7.3.1 Classification of emails including source code fragments
Special characters and keywords

Special characters (e.g., semicolon, curly brackets) and reserved keywords (e.g., public, static) are
fundamental tokens with special meanings to the programming language, and are necessary to
write the source code of any Java system. Even though some keywords are common dictionary
words (e.g., for) the presence of a high number of occurrences of keywords or special characters
in a natural language text can be an evidence of an enclosed source code fragment. However, the
length of the email content could influence the necessary number of occurrences to distinguish
emails with source code fragments from those without them. Thus, we devised two different
approaches to classify emails: 1. According to the number of occurrences of either Java keywords
or Java special characters, and 2. according to keywords or special characters frequencies.

If the number of occurrences of keywords, or their frequencies, is above a certain threshold, we
classify an email as containing source code fragments. We evaluate the results using several
thresholds, to verify whether an optimal value can be defined.

103

Chapter 7 Detecting Lines of Source Code in Development Emails

Implementation. The occurrences of Java keywords in an email can be counted by dividing its
content in words through any space separator (e.g., end of lines, blanks) and summing one for
each keyword occurrence. For the special characters, we do not divide the text in words, but we
only count the occurrences of characters. To compute the frequencies we divide the number of
occurrences by the total number of words or characters.

Results. Figure 7.4 shows the F-Measure results among all the systems, when considering occur-
rences of keywords. The maximum values obtained vary significantly between systems: from
0.31 for Freenet up to 0.63 for JMeter. The best threshold spans between distant values: 5 and
27. As an example, Figure 7.5 details OpenJPA showing precision, recall, and F-Measure.

<—Best Thresholds =>

A\
\
ArgoUML
04T k./v

F-Measure

03T

02T

Freenet
0.1t

+

‘
0 5 10 20 27 30 40 50 60 70 80 90 100
Threshold for the number of occurrences of keywords

Figure 7.4: Email classification on occurrences of keywords

Precision and recall trade off one against the other, but a very low value in one of them does
not automatically guarantee a extremely high value for the other: Both of them can be low. The
relevant feature of this simple approach is that, by varying the threshold, we can obtain either
almost perfect recall or perfect precision, according to our needs.

We obtained similar but more consistent results using special characters occurrences as our dis-
criminator: the best F-Measure values vary between 0.50, for FrReenEr, and 0.63, for JMETER. The
best threshold spans between less distant values: 200 and 600 occurrences of special characters.
The curves have trends equivalent to those in Figure 7.4 and Figure 7.5.

Figure 7.6 shows the F-Measure values when considering frequencies of characters. In this case,
the best thresholds span between more distant values and the F-Measure values do not show
significant improvements compared to the simple occurrence count. For the single system, the
curves still show a trend near to those in Figure 7.5.

104

7.3 Experiments

Precision
0971
0.8 T
071
061
05T
0.4t
03T
02t
F-Measure
0.1 A
Recall
0 |
0 10 20 30 40 50 60 70 80 90 100
Threshold for the number of occurrences of keywords
Figure 7.5: OpenJPA: email classification based on occurrences of keywords
End of lines

Taking the lines in Figure 7.7 as an example (corresponding to the source code lines in Figure 7.1),
we note a peculiarity present in many programming languages (e.g., Java, C, PErr): The devel-
oper must end each statement with a semicolon. In the email, we note that this happens in lines
9,12,14,17, and also in the code enclosed in line 2.

Based on this intuition, this approach verifies whether the text contains lines whose last character
is a semicolon. Since a natural language text line does not often end with such a character, it can
be a significant hint on the presence of source code fragments. To build a more comprehensive
approach, we also consider that a source code line can end with a curly bracket, mainly used to
open or close a block. This approach can be parameterized on a threshold that represents the
number of lines that must end with the special convention.

Implementation. Even though this approach still classifies emails and not lines of code, we
consider the presence of peculiar lines in the text. The implementation consists in analyzing the
email content line by line and verifying if the last character is a semicolon or a curly bracket.

Results. Figure 7.8 shows the F-Measure for each system: the best values are significantly better
than the previous approach: They vary from 0.74 to 0.92. Moreover, the best threshold is a single
value (i.e., one) that is the same for all the systems. Two lines ending with a semicolon are always
the best indicator of the presence of source code fragments with this approach.

Taking FrReeNET as a sample system (Figure 7.9), we show that the approach can quickly achieve
the maximum precision, while maintaining the recall value higher than 0.60. All the systems

105

Chapter 7 Detecting Lines of Source Code in Development Emails

0.65T

<— Best Thresholds ——>

06T

0.55 1

05T

°
IS
v

o
EN

F-Measure

ArgoUML

e
N
w

02T

0.151 Freenet

01T

0.05T1

0 I + + + 1

0 0.05 0.1 0.15 0.2 0.25
Threshold for the frequency of special characters

Figure 7.6: Email classification based on frequencies of special characters

show similar results. Even in the worst case, ARcoUML, at the second step of the threshold the
precision is 1 and the recall is higher than 0.50.

End of lines and regular expression

Even though the previous approach reaches significantly high values, the recall can still be im-
proved. Analyzing the false negatives, we noted that the method does not consider a common
pattern in the Java programming language: the method call pattern. This pattern usually ends
with a semicolon, but a method call can be split in multiple lines (as can be seen in line 11 of
Figure 7.7), or used without semicolon in a stack trace. Our intuition is to raise the recall by
checking this pattern in lines without a final semicolon.

Implementation. This approach extends the previous one, adding the check on the method call
pattern. If a line does not end with any character specified in the previous method, it checks if it
matches the method call pattern. The most effective technique to match such a regular pattern is
using regular expressions. We implemented our regular expression, according the IEEE POSIX
Basic Regular Expressions (BRE) standard, as in the following code:

1 (.%)

2 ([[:alnum:]]+\.)+

3 ([[:alnum:]]|<[[:alnum:]]+>)+
4 \(

5 (.*%)

106

7.3 Experiments

[...]

3 add(LabelledLayout.getSeperator()); from

[...]

9 import javax.swing.ImageIcon

10 private static String orientation =
11 cConfiguration.getString(Configuration
12 .makeKey("layout", "tabdocumentation"));

[...]

14 add(LabelledLayout.getSeperator());

15 consequences = new UMLTextArea2(
16 new
17 UMLModelElementValue(DepthsArgo.CONSEQUENCES_TAG));

[...]

Figure 7.7: Lines with source code fragments in Figure 7.1

Lines 1 and 5 allow the match to be found without requirements on characters that follow or
precede it. Lines 2 to 3 require one or more occurrences of a character followed by a single
dot, e.g., foo., boo., boo.foo. are valid sequences. After this pattern, there must be another
alphanumeric string enclosed, or not, in angle brackets, e.g., foo, or <foo>. Finally, there must
be an open parenthesis (line 4). This regular expression correctly matches the example code in
line 11, Figure 7.7. Such code would have been matched, even though the part after the open
parenthesis was spread out over multiple lines.

Results. Table 7.2 shows the results for each system. We report the results obtained with the
threshold of one, which is still the most effective, confirming the previous results. With this
addition we included cases that were not correctly retrieved by using only the checking on the
end of line. We significantly increased the recall, at the cost of a very small decrement in the
precision. Overall, the results are promising: On average our lightweight approach retrieves
85% of the emails with source code, and correctly classifies 94% of the cases.

Table 7.2: End of line and regular expression approach results

System Precision Recall F-Measure
ArgoUML 0.92 0.71 0.80
Freenet 0.97 0.91 0.94
JMeter 0.91 0.96 0.94
Mina 1.00 0.80 0.89
OpendPA 0.89 0.88 0.88
Average 0.94 0.85 0.89

107

Chapter 7 Detecting Lines of Source Code in Development Emails

< Best Threshold

0.8T

0.6 T

F-Measure
o
&

0471

ArgoUML
03T
0.2t Freenet N—
AN
01T N~ N\
0 n . i
0 1 5 10 15 20 25 30 35 40 45 50

Threshold for the number of lines with special ending

Figure 7.8: Email classification based on end of lines

7.3.2 Classification of text lines including source code fragments
Special characters and keywords

Our first method, which uses occurrence or frequency of special characters and keywords on
the complete email content, has the advantage of retrieving all the emails with source code frag-
ments, and still providing results with reasonable precision. This approach uses the same idea
on the finer granularity of lines: a line having many occurrences, or a high frequency, of key-
words or special characters probably contains a code fragment. We apply the classification on
different thresholds to find the optimal one.

Implementation. This approach has a similar implementation to its equivalent for email clas-
sification, except that we split the text into lines and we count keyword and special character
occurrences per line. We divide the occurrences by the number of words in the line to obtain
frequencies. If a value passes the threshold, we classify the line positively.

Results. Table 7.3 shows the result obtained using the occurrence of characters for the line clas-
sification. It reports both the value with a threshold of one, which provides the best recall, and
the threshold for the best F-Measure (if different from one). We note that the best threshold val-
ues vary less than in the approach for the email classification: between 4 or 5 for all the systems,
except for JMeter. The results obtained using the frequency of special characters are similar
but have lower values. Interestingly, for the line classification, both the occurrence and the fre-
quency of keywords produce significantly lower results. Looking at Figure 7.7 we understand
the reason: Eight lines out of the nine with source code fragments include, at least, one special
character, while only four lines contain a keyword.

108

7.3 Experiments

1
/\ Precision
09t
08T
07+
06T
05+
041
03+
o2t F-Measure
0.1T1
Recall
0 ;
0 5 10 15 20 25 30 35 40 45 50

Threshold for the number of lines with special ending

Figure 7.9: FREENET: email classification based on end of lines

End of line and regular expression

We use the approach for text classification for line classification: Each line that ends with a semi-
colon, a open or closed curly bracket, or that matches the regular expression described previ-
ously, is classified positively. The presence of code comments in a complete text can be evidence
of a larger source code fragment, for this reason, we did not remove comments in the email clas-
sification approach. However, we do not consider comments as actual source code fragments,
thus we remove them from lines during the classification. A threshold is not necessary: either a
line does or does not respect the conditions. For the Open]PA system, we also consider annota-
tions as code fragments, since they are a relevant aspect of that Java persistence library.

Implementation. The implementation is similar to the complete text approach, but it classifies
line by line, instead of the whole content. As a first pass, from each line, we remove the leading
and trailing whitespace and the comments, i.e., the text after //, or /*, and the text before */.
We detect OpeNJPA annotations by checking whether the first character of a line is a e.

Results. Table 7.4 shows the results obtained, by system. The approach provides a very high
precision (0.93 on average), keeping a substantial recall. For Open]JPA, the recall below the aver-
age is caused by the fragmentation of email lines: Many of the words are truncated and split over
different lines. A text normalization [185] would alleviate this problem, probably providing the
approach with results obtained for the other systems.

109

Chapter 7 Detecting Lines of Source Code in Development Emails

Table 7.3: Line classification by occurrences of characters

System Threshold Precision Recall F-Measure
ArgoUML 1 0.11 1.00 0.20
4 0.19 0.62 0.29
Freenet 1 0.05 0.99 0.09
5 0.17 0.40 0.24
JMeter 1 0.22 0.98 0.35
. 1 0.14 0.98 0.25
Mina

4 0.30 0.58 0.40
1 0.16 0.95 0.28

nJPA
Opend 4 0.25 0.66 0.36
1 0.14 0.98 0.24

Average
best 0.22 0.65 0.33

Table 7.4: Line classification by end of line and regular expression

System Precision Recall F-Measure
ArgoUML 0.93 0.89 0.91
Freenet 0.94 0.88 0.91
JMeter 0.97 0.86 0.91
Mina 0.90 0.84 0.87
OpendPA 0.93 0.73 0.82
Average 0.93 0.84 0.88

Beginning of block

Even though the previous approach results meet a high target, we manually inspected all the
false negatives to increase the recall. Lines with a class or method declaration are the most
common problem: Methods and classes are usually defined in a single line, .., public class
Foo(), however, the curly bracket that starts the subsequent block is in a new line. Since our
previous approach does not consider these cases, we also check them. The simple intuition is to
check whether a line begins with a keyword: We see an example of this in Figure 7.7, line 10.

Implementation. The implementation, similar to the previous one, now also verifies whether
the first word is a keyword.

Results. As expected, this approach increases the recall value of all the systems, of at least
two points (Table 7.5). The high values already obtained with the previous approach, make it
interesting for the practitioner who wants more matches, with a lower precision.

110

7.3 Experiments

Table 7.5: Line classification by end of line and regular expression

System Precision Recall F-Measure
ArgoUML 0.74 0.91 0.81
Freenet 0.60 0.90 0.72
JMeter 0.94 0.91 0.93
Mina 0.80 0.89 0.85
OpenJPA 0.77 0.74 0.75
Average 0.77 0.87 0.81

7.3.3 Source code extraction

Considering the high results that our lightweight approaches achieved on line classification,
we conducted a statistical analysis on the benchmark to determine whether devising additional
methods for a finer code extraction is necessary in practice.

Considering all the lines labeled as containing source code fragments in the benchmark (i.e.,
11,978), we evaluated the Levenshtein distance of the complete content from the source code
part. More than 7,664 lines had a distance larger than three (i.c., more than three operations are
necessary to transform the content in the source code). Analyzing these lines, we noted that they
are mainly composed of lines similar to those reported in Figure 7.10.

remove(LabelledLayout.getSeperator());
at org.apache.maven.Maven.doExecute(DefaultMaven.java:336)
+ add(LabelledLayout.getSeperator());
- remove(LabelledLayout.getSeperator());

B w N R

Figure 7.10: Common lines with source code distant from the content

In line 1, the source code does not include leading and trailing white spaces, which are present
in the complete content. Line 2 starts with the at word used in stack traces, which is not source
code. Lines 3 and 4 are part of a patch and start with + or - to mark added or deleted lines.

Removing these special cases and recomputing the Levenshtein distance, only 378 lines re-
mained: the 3% on the total number of lines with code fragments. Since we considered sta-
tistically significant sample sets for the creation of our benchmark, this 3% ratio is a value that
is to be found also in the whole mailing list populations.

Simply removing the special starting characters in Figure 7.10, and trailing and leading whites-
pace, we can use the same approaches explained for the line classification and obtain the perfect
extraction of the source code for all the lines, except -at maximum- for those 3% that also include
other not relevant characters. Since we want to maintain our methods fast and simple, we deem
this result as acceptable.

111

Chapter 7 Detecting Lines of Source Code in Development Emails

7.4 Discussion

We presented a number of approaches to detect emails and lines that contain source code frag-
ments. Table 7.6 summarizes the average effectiveness of the methods over the 5 systems, in
terms of precision, recall and F-Measure.

Table 7.6: Average effectiveness of detection methods

Method Precision Recall F-Measure

email classification

Special characters and keywords 0.24 0.97 0.37

End of lines and reg. exp. 0.94 0.85 0.89
line classification

Special characters and keywords 0.14 0.98 0.24

End of lines and reg. exp. 0.93 0.84 0.88

Beginning of block 0.77 0.87 0.81

Since the methods vary with respect to the precision and recall they achieve, choosing the most
appropriate method depends on the relative weight of precision and recall, for a given task. If
practitioners want to retrieve most of the source code, at the cost of many email lines without
source code (i.e., they want a very high recall at the price of a lower precision) the best method is
the one based on the occurrences of special character and keywords. On the other hand, if one
is interested in correctly retrieving only documents with source code (e.g., for time reasons), at
the price of not retrieving all of the documents (i.e., favoring precision over recall), then “end of
lines with regular expression” is the most appropriate method. It should be also selected when
precision and recall have the same importance, since it offers the highest F-Measure. When good
overall effectiveness (indicated by the F-Measure) are required, the mixed method based on end
of lines, regular expression and keywords at the beginning of the line, is the best performer.

Comparison with similar approaches. In Section 7.5 we reported two approaches tackling a similar
problem, one by Bettenburg et al. [30] and one by Tang et al. [185]. Bettenburg et al. detected
bug reports containing source code fragments using an approach based on island parsing. Their
technique reached results better than ours, with a precision of 0.98 and a recall of 0.99, an almost
perfect classification. However, it is difficult to compare the results of the approaches, as they
are applied on different data sets, with different characteristics (bug archive and development
mailing list). Moreover, our methods have two main benefits over their approach: (1) they are
faster and more scalable than island parsing and (2) they work correctly also at the line level.

Tang et al. applied a technique based on machine learning to detect source code fragments in
a data set similar to ours but larger. In terms of precision, we reported similar results: they
reached a precision of 0.93 and our best is 0.94 at the email level and 0.93 at the line level. We
achieved better results in the recall value: 0.84 against 0.72.

112

7.5 Related work

Limitations. Due to different developer cultures, the style of emails in discussion lists may vary.
To alleviate this, we considered five different open source software systems emerging from dif-
ferent communities, in which the usage, the participants, and the age of the mailing lists vary.

The main limitation of our experiment consists in considering only the Java programming lan-
guage. However, we devised methods that are based on characteristics available in many dif-
ferent programming languages, ¢.g., keywords, special characters, and peculiar end of lines.

We inspected accurately all the emails in the sample sets. However, since human beings are
involved, there is the possibility that they made mistakes in the analysis. To avoid this problem
we devised a web application to ease the task, and we manually re-inspected a relevant number
of false negatives and false positives generated by our approaches during their construction,
without finding errors.

7.5 Related work

Recovering Traceability Links

Our research is influenced by the seminal work of Murphy and Notkin [138]. They proposed
a lightweight lexical approach, based on regular expressions, to extract models of a software
system from different software artifacts. Software engineers can obtain consistent models from
any kind of textual artifacts concerning software with such approach. The engineer must follow
three steps: (1) define patterns (using regular expressions) that describe source code constructs
of interest in a software artifact, e.g., function calls or definitions; (2) establish the operations to be
executed whenever a pattern is matched in an artifact being scanned; and (3) implement post-
processing operations for combining information extracted from individual files into a global
model. Although this approach is lightweight, flexible, and tolerant, the first step is non-trivial,
especially when dealing with unstructured artifacts written in natural language, such as emails.
Choosing the best approach to expose source code fragments of interest requires an accurate
analysis of the advantages and drawbacks that the different regular expressions offer. Practi-
tioners could find it difficult to perform this task through the iterative trial and error process
proposed by Murphy and Notkin.

To our knowledge, little research has been performed to extract source code snippets from nat-
ural language written artifacts.

Bettenburg et al. proposed four filtering techniques to extract patches, stack traces, source code
snippets, and enumerations from the textual descriptions that accompany bug reports [30]. The
authors report results only on the effectiveness of their techniques in differentiating documents
that contain source code snippets from those that do not contain source code. In this task, using
island parsing [136], they reached almost perfect results, i.e., a precision value of 0.98 and recall
of 0.99. Since using a parser requires a high computational effort and scaling up to archives
containing tens of thousands of documents can be problematic, we propose fast and lightweight
techniques, based on regular expressions and pattern matching. In addition, we consider de-
velopment mailing list archives as our natural language documents, which are more prone to
noise not related to system development, if compared to bug reports. Finally, we evaluate the
effectiveness of our techniques in detecting not only emails that contain source code, but also
lines, and in extracting the fragments.

113

Chapter 7 Detecting Lines of Source Code in Development Emails

Bird et al. proposed an approach to measure the acceptance rate of patches submitted via email
in open source software projects [35]. They have been able to classify emails containing source
code patches. However, since email classification was not the focus of the work, the authors
provided little information about their extraction techniques and no details on the benchmark
they used to assess their effectiveness.

Dekhtyar et al. discussed the opportunities and challenges for text mining applied to software
artifacts written in natural language [62].

Information Retrieval

Related work can also be found in the information retrieval and data mining field: A number of
approaches in the information retrieval field are related to our work. Tang et al. addressed the
issue of cleaning the email data for subsequent text mining [185]. They propose a cascaded ap-
proach to clean emails in four passes: (1) non-text filtering, (2) paragraph, (3) sentence, and (4)
word normalization. In the first pass, what they consider non-text are actually email headers,
signatures, and source code snippets. They randomly chose a total of 5,459 emails from 14 unre-
lated sources (e.g., development newsgroups at Google) and created 14 data sets in which they
manually labeled headers, signatures, quotations, and program codes. They used an approach
based on Support Vector Machines (SVM) to detect source code fragments. They evaluated the
effectiveness of the method at line level, and achieved reasonable results, i.e., 0.93 in precision,
and 0.72 in recall. These findings are promising, and in the data mining field, much research is
devoted to extract information that has specific patterns using methods based on probabilistic
and machine learning models (e.g., Maximum Entropy Models [26] or Hidden Markov Models
[24]). However, such approaches require more effort in the data collection, that could discourage
an utilization by practitioners.

For this reason, we devised lightweight approaches based on simple methods to extract source
code fragments from emails. Our approaches use lightweight and easy to implement techniques
based on regular expressions that exploit intrinsic characteristics of source code elements.

7.6 Summary

In this work we tackled the issue of detecting and extracting source code fragments in develop-
ment emails, at document level and at line level. We devised lightweight techniques that, on the
basis of simple text inspections, exploiting characteristics of source code text, can detect source
code fragments in emails, fast and with a high accuracy. A practitioner can precisely classify
thousands of emails, even at run-time. We also proposed novel methods for classifying lines
that enclose source code. Using refined approaches, based on those used for the complete docu-
ment classification, our methods achieve performance higher than the ones previously obtained
through complex machine learning techniques. Moreover, almost all methods we developed
can be configured with a threshold parameter that allows choosing the best trade-off between
precision and recall, according to the user’s needs.

To assess our techniques, we created a statistically significant, easily extensible, and publicly
available (http://miler.inf.usi.ch/code) benchmark: It features sets of sample emails, ran-
domly extracted from five unrelated OSS systems written in Java, which we analyzed to label
source code fragments. Using our benchmark, we conducted a statistical analysis of the email

114

http://miler.inf.usi.ch/code

7.6 Summary

content and assessed that the vast majority of source code fragments are mentioned as lines
separated from the natural language text. Our work shows that lightweight methods are to be
preferred to heavyweight ones in identifying lines of source code from development emails.

Reflection. Even though our lightweight approaches to detect source code achieves good results
in terms of effectiveness and practical performance, they specifically focus on recognizing code
and can only be partially used in the context of a more comprehensive email text classification.
For example, they merge lines of stack traces, patches, and actual source code, under the um-
brella of code fragments. Although such an approach can be useful for certain system analyses,
it generates a classification that does not allow one to (1) parse and extract meaning from the
structured fragments detected, (2) distinguish lines written in NL; (3) recognize patch context
and headers; (4) distinguish complete blocks of stack traces; (5) remove the non-relevant infor-
mation. In the rest of this part, we present the methods we devised to address these concerns.

115

Chapter 8

Recovering Structured Fragments from
Unstructured Data

In the previous chapter, we devised and evaluated lightweight techniques able to identify lines
of Java code in emails. Since we found that the last character is a good indicator of the nature
of a line, we implemented simple lexical rules, mainly based on pattern matching and regular
expression. For example, we were able to detect most Java fragments by selecting lines ending
with curly brackets or semicolons. By applying our previous approach on the text in Figure 8.1,
we would identify that lines 12 and 14 are code.

Because of problems with "argoHome" location, I imported
java.net.URLDecoder and added the line
URLDecoder.decode(argoHome); just below this one:

public void loadModulesFromDir(String dir) in ModuleLoader.java.

Another problem in ModuleLoader:
since the cookbook explains how to make a PluggableDiagram (that's
exactly what I am doing, so I extend this class), I have not found

W N0 U W N R

where the JMenuItem returned by method getDiagramMenuItem() in

()

PluggableDiagram is attached in Argo menus. It seems this is not yet

[y
o

implemented, even though PluggableDiagrams implements Diagram.

o
~ o

So I have added those lines:

[y
[\S]

void append(PluggableDiagram aModule) {

[ary
w

ProjectBrowser.TheInstance

i
»

.appendPluggableDiagram((PluggableDiagram)aModule); }

o
(6

Of course, such modifications must be reflected in ProjectBrowser.

Figure 8.1: Example document enclosing structured information

Although this result is precise, it is a simple binary classification: Code or non-code. After lines
are classified as code, we would need an additional parser to first understand their content and
meaning (e.g., the whole block is the declaration of the method append) and then derive a model
with the contained information. This is not feasible in practice, because our previous technique
often loses the context (e.g., line 13 is not recognized, thus we lose the method declaration con-

117

Chapter 8 Recovering Structured Fragments from Unstructured Data

text), and is not able to recognize code fragments embedded in natural language lines (e.., the
methods in lines 4 and 8) and class names.

To derive correct and complete information from structured fragments in natural language arti-
facts, we need a more robust approach that allows the identification, the extraction and the parsing
of the structured fragments occurring in artifacts written in natural language. In other words,
we must be able not only to detect source code fragments, but also we must precisely determine
the nature of those fragments (e.g., decide whether a fragment is a method invocation or a class
declaration), extract the contained information (e.g., the name of the declared class), and derive
models from them. In this chapter, we present and validate two approaches to accomplish this,
which are the results of subsequent improvements in our research. To provide more evidence
toward our thesis, we also show how these can be applied to support software understanding
and development.

8.1 Overview

In software engineering, textual software artifacts (e.g., emails) comprise natural language text
that is interleaved with languages following a formal and structured syntax, like source code
fragments, stack traces, patches, efc. Applying IR methods (e.g., hierarchical clustering from
Data Mining (DM), or Natural Language Processing (NLP)) without first recognizing structured
fragments reduce the quality, reliability, and comprehensibility of the available information, be-
cause they are not expected to work with languages other than natural language; they have been
proven limited or too laboriously tailored to the intricacies of the underlying data and intended
use cases.

For this reason, an adequate analysis of artifacts containing both structured and unstructured
fragments requires using different techniques for these two different classes. A better analysis
exploits NLP or IR on relevant and well-formed natural language sentences and uses parsers
on structured content, such as code or log snippets. To enable this, it is necessary to exactly
filter out natural language sentences from structured data. Although structured elements are
defined through formal grammars, this separation is non-trivial because structured elements
are rarely complete and well-formed in natural language documents; instead, they may appear
as incomplete, such as method definitions lacking their body.

This chapter contributes to the extraction of structured fragments in natural language software
artifacts. We developed two approaches, named 1LANDER and PEetitIsLanD, based on the con-
cept of island parsing [136], that can be used to extract, parse, and model structured data found
within artifacts containing arbitrary text, such as development emails (but also forum posts, is-
sue reports, requirements, efc.). Island parsing is the conceptual foundation of our approach:
it describes parsing of interesting structures, the islands, from a “sea” of filtered strings. While
using island parsing to separate natural language text from structured fragments is not new, we
introduce two novel and effective approaches to implement island parsing in this context.

Contributions of the chapter. In this chapter, we present the following contributions:

* We identify the importance of understanding the structured content in email data. We realize
this cannot be achieved using a lexical approach and regular expressions, but it requires a
full-fledged parsing approach, which we devise.

118

8.2 Grammars and Island Parsing

* We devise ILANDER, an island parser to recognize, extract, and model source code fragments im-
mersed in natural language text. ILANDER is based on the ASF-SDF Meta-Environment [196],
and we evaluate it extracting information from email data.

o We produce a benchmark for evaluating the recognition, extraction, and modeling of Java content
in email data. We create our benchmark by reading and labeling sample emails from four
unrelated Java OSS systems. It comprises 188 labelled emails with structured fragments.

* We use ILANDER to conduct a number of software evolution analyses. We reconstruct the model
of a software system from its emails and we detect salient moments in its history.

* We created PeTITISLAND, a flexible and extensible framework for building and composing island
parsers. PeTITISLAND is written in Smaritark and is based on the parser generator PeriT-
Parser. We evaluate it by extracting source code fragments from Stack Overflow posts.

* We adapt and improve a previously published benchmark to assess the recognition of source code
fragments in Stack Overflow posts. The renovated benchmark comprises 188 posts embed-
ding more than 350 code fragments.

Structure of the chapter. Section 8.2 illustrates the grammar concepts used in the chapter and
the parsing techniques that we used to implement our approach. Sections 8.3 to 8.6 present
our first approach, ILANDER: Section 8.3 details its rationale and implementation, Section 8.4 its
validation, Section 8.5 the modeling of source code data, and Section 8.6 its applications. Sec-
tions 8.7 to 8.9 present our second approach: PeritIsLaND: Section 8.7 motivates its advantages
over the previous approach and present its implementation, Section 8.8 describes its validation,
and Section 8.9 discuss its applications. Section 8.10 illustrates the related work. Section 8.11
summarizes the contributions of this chapter.

8.2 Grammars and Island Parsing

In this section we introduce basic grammar and parsing concepts used in this chapter.

A generative grammar, or simply a grammar, is a formalism used to mathematically define a lan-
guage. A grammar is composed of a set of terminal symbols (or simply terminals), a set of nonter-
minal symbols (or nonterminals), and a set of productions. Terminals and nonterminals constitute
two disjoint sets. The set of terminals identifies the symbols that compose each possible string
of the language to be defined. In programming languages, terminal symbols are all characters
valid in the language; they typically include special characters, punctuation, brackets, etc.

By means of a grammar, language designers define a syntax through the application of produc-
tions, which essentially denote string rewriting. Each production is composed of a left-hand side
(LHS) and a right-hand side (RHS): The former identifies a set of symbols that can be rewritten
to the latter.

Programming languages are commonly defined using a particular class of grammars, context-free
grammars, where the LHS contains only one nonterminal symbol. Each application of a produc-
tion rewrites a nonterminal into a sequence of other symbols, which can be either terminal or
nonterminal. The successive application of productions (i.e., rewriting) starts from a special ini-
tial nonterminal symbol and rewrites it until obtaining a string composed of terminals only. The
resulting string is a valid string of the language. A derivation is a sequence of production appli-
cations that leads to a string of terminals. For programming language grammars, nonterminals

119

Chapter 8 Recovering Structured Fragments from Unstructured Data

are used to define the possible syntax of particular constructs, such as function declarations,
invocations, statements, efc.

A parse tree can represent the syntactic structure of a string belonging to a language defined with
a grammar. A parse tree is a rooted tree where all internal nodes are labeled with nonterminals,
while leaves are labeled with terminals. A parser is an algorithm that produces a parse tree from a
given string. Parsers are commonly produced by parser generators, which take a grammar as input
and produce a parser for the language described by the grammar. Different parser generators
support different classes of grammars with potential restrictions on the grammar structure.

If a grammar is ambiguous, multiple parse trees can be obtained from parsing the same given
input string. An ambiguous grammar can produce a given string in different ways, through
different sequences of productions, leading to different parse trees, i.e., to a parse forest. Disam-
biguation mechanisms can be applied to prune a parse forest and select a preferred parse tree,
by using priority mechanisms between alternative productions. A typical example of ambiguous
grammar is the following, for arithmetic expressions including sum, product and constants.

1 A— A+A | AxA | x

The grammar above is ambiguous for two reasons: (1) each rule describing binary operators can
be parsed with different (left or right) associativity; (2) the grammar admits different parse trees
where sums, for example, may have a higher priority than products. While different associativity
for the same operator does not change the semantics of the evaluation of expressions, giving
different priority to product and sum may produce wrong evaluations.

Figure 8.2 shows two parse trees for the expression 2*1+3 parsed with the grammar above; the
parse tree on the left is wrong, since sum should not have a higher priority than product.

@ -

2 * 1 + 3 2 * 1 + 3
Figure 8.2: Two different parse trees for the expression2 * 1 + 3.
Most context-free grammar parser generators can handle ambiguities by providing ad-hoc tech-
niques to select the right parse tree among a parse forest. In Yacc/Bison [158], for example,

operator tokens like + and * appearing in ambiguous rules can be given priorities and associa-
tivity rules.

120

8.3 1LaNDER: The Parsing Approach
8.2.1 Island Grammars and Their Parsing

Our approach to extract structured content like source code from NL documents relies on is-
land grammars. Island grammars are defined as “detailed productions describing certain con-
structs of interest (the islands) and liberal productions that catch the remainder (the water)”
[136]. In our case, structured fragments (e.g., source code fragments) constitute the islands to be
extracted, while the rest (e.g., NL sentences) is considered as water. The grammar required to
correctly parse arbitrary structured fragments, such as source code, may reach the full complex-
ity of context-free languages in terms of expressiveness.

Other approaches for the extraction of source code from NL artifacts (e.g., [30; 167]) used reg-
ular expressions to deal with the extraction, mainly for performance reasons. However, since
programming languages are not regular languages, but typically contain recursive structures
(e.g., nested blocks) of context-free languages, these approaches are prone to providing low pre-
cision and recall. With regular expressions alone, it is theoretically impossible to correctly parse
parenthesized expressions or nested blocks, which are present in almost every programming
language. For this reason, a precise island parser for code fragments immersed in a sea of NL
requires—at least—the capability of parsing context-free languages.

Parser generators for programming languages separate the tokenization phase from the parsing
phase. At first, the input code is scanned with regular expressions to classify elements as ei-
ther keywords, identifiers, operators, or other tokens like brackets. However, island grammars
are inherently ambiguous, also at the token level. For example, it is impossible to determine,
without its context, if the word public belongs to a NL sentence (e.g., “This is a public APL")
or to a structured element like a Java class definition (e.g., public class Tree();). For this
reason, the separation between tokenization and parsing in island grammars is not convenient,
and may complicate the grammar structure for parsing. For this reason, island grammars prefer
scannerless parsing techniques [136].

Our application of island parsing requires parsing techniques that handle ambiguous grammars.
Few parsing algorithms support the full flexibility of context-free grammars with ambiguities,
such as Generalized LR [192], with its scannerless version called SGLR, or the Earley [65] algorithm.
In the next sections, we present our solution to implement island parsing using GLR parsing
and a scannerless approach based on the SDF grammar definition formalism [197]. Spr (Syntax
Definition Formalism) is able to specify ambiguous grammars and provides specific techniques
to parse such grammars and solve ambiguities.

8.3 ILANDER: The Parsing Approach

We base our implementation on the ASF-SDF Meta-Environment [196]. Among other things
discussed later, we use it to define the context-free grammar necessary for our approach, by
means of the syntax definition formalism (Sp¥r) [96]. We briefly outline the key features that we
employ in our work.

By using Spr, we define context-free grammars in a modular way, thus facilitating the derivation
of an island grammar from any existing programming language grammar. Within Spr, we can
use a Scannerless Generalized LR parser (SGLR), which does not impose any restrictions on the
grammar. This property is essential when parsing artifacts based on island grammars, which

121

Chapter 8 Recovering Structured Fragments from Unstructured Data

are ambiguous by nature. For ambiguity management, we make use of the disambiguation con-
structs, such as priorities, restrictions, or preference attributes to favor one particular production
when several alternatives exist. Finally, we use traversal functions [195], which enable the anal-
ysis and rewriting of complex parse trees by focusing only on particular nodes of interest (e.g.,
code fragments).

Input and Output. Our extraction process takes text files as input (e.g., Figure 8.1) and outputs
the set of structured fragments they contain (highlighted parts in Figure 8.1). For each frag-
ment, our approach keeps track of the exact location (i.e., the area) within the container file. An
extracted structured fragment consists of a list with three elements (e.g., Listing 8.1): (1) the cor-
responding nonterminal to which the fragment has been reduced, i.e., the fragment type (lines
1,4, and 7 in Listing 8.1), (2) the file name and the fragment’s coordinates within it (lines 2, 5,
and 8), and (3) the fragment content (lines 3, 6, and 9-11).

(CLASS_NAME :
area-in-file("exampleDocument", area(2, 0, 2, 19, 57, 19))
java.net.URLDecoder)

1
2
3
3
4 (METHOD_INVOCATION :

5 area-in-file("exampleDocument", area(3, 0, 3, 29, 96, 29))
6 URLDecoder.decode(argoHome);)

6

7

8

9

(METHOD_DECLARATION :
area-in-file("exampleDocument", area(l2, 0, 14, 62, 608, 131))
void append(PluggableDiagram aModule) {
10 ProjectBrowser.TheInstance
11 .appendPluggableDiagram((PluggableDiagram)aModule); })

Listing 8.1: Examples of extracted structured information

Grammar Notation. The grammar fragments used in this part are written in Spr notation. It
is important to underline that in Spr, the left-hand side (LHS) and right-hand side (RHS) of
grammar productions are swapped when compared to BNF-like notations. In other words, a
production normally written in BNF as lhs ::= rhs, is denoted as rhs — lhs in Spr. Consider for
example the following Spr production:

1 Modifier* MethodRes MethodDeclarator Throws? — MethodHeader

In this case, MethodHeader (at the right of —) is the LHS of the production and defines the
syntax of a method header. Spr also supports special symbols to define repetition and optional
constructs. For example, the question mark after the Throws nonterminal in the aforementioned
production notifies that the construct is optional, that is, it might not be present in a valid method
header. Instead, the star in the Modifier nonterminal notifies that a valid method header can
have multiple modifiers. Other productions define the syntax of the other constructs present in
the production, like Throws constructs, efc.

122

8.3 1LaNDER: The Parsing Approach
8.3.1 Island Definition

Common programming language grammars describe different constructs at different abstrac-
tion levels, which range from simple identifiers and keywords to whole compilation units.

We can define an island as a piece of code that can be reduced to any possible nonterminal in
the grammar. For example, an interesting fragment could be a piece of code that can be parsed
and reduced to a nonterminal MethodDeclaration (e.g., lines 12-14, Figure 8.1, repeated in Fig-
ure 8.3, are reduced to the block (lines 7-11) in Listing 8.1).

12 void append(PluggableDiagram aModule) {
13 ProjectBrowser.TheInstance
14 .appendPluggableDiagram((PluggableDiagram)aModule); }

Figure 8.3: Example lines from Figure 8.1 enclosing structured information

Ambiguities in Definitions. By considering every possible nonterminal as an island, we might
introduce ambiguities that must be resolved and that could affect the performance and the effec-
tiveness of the fragment extractor. For example, we consider the following syntax productions
of the Java grammar:

1 Modifier* MethodRes MethodDeclarator Throws? — MethodHeader
2 Type — MethodRes

The last production declares that any Type is also a valid MethodRes, which is a valid return
type for a method in this context. If the aim is to extract both Type and MethodRes nonterminals
emerging from water, a parser for the island grammar should be able to resolve the ambiguity
between these two nonterminals: For example we should define the preferred among every pos-
sible equivalent alternatives. This ambiguity management degrades performance and should be
avoided. We limited ambiguities from productions, and their resolutions, to a few cases, for ex-
ample the extraction of some classes of valid identifiers, such as class and package names. In
Section 8.3.2 we describe how we resolve ambiguities for this specific class of nonterminals by
using naming conventions.

Productions. The choice of productions is related to the abstractions we want to derive from the
fragmented information in an artifact. Since our aim is to derive structured information about
a target software system, many possible fragments corresponding to some rules are irrelevant.
For example, isolated expressions or generic statements seldom carry relevant information in
terms of methods or classes of the system. Instead, they carry structural information if, and only
if, they contain specific sub-operands (as in the case of expressions) or are specific statements.
For example, in the valid Java expression getInteger() / n, the most interesting information
is the method invocation. Thus, instead of choosing the nonterminal Expression as a valid
source fragment, we choose only those subexpressions that carry information about the system
structure, such as method and constructor invocations.

Incomplete Productions. Incomplete productions are a source of differentiation from a tradi-
tional programming language grammar. As an example, we consider line 4 in Figure 8.1 (re-
peated in Figure 8.4): It explicitly references a method signature but the body is missing.

123

Chapter 8 Recovering Structured Fragments from Unstructured Data

4 public void loadModulesFromDir(String dir) in ModuleLoader.java.

Figure 8.4: Incomplete method declaration from Figure 8.1

The standard Java grammar includes only method definitions that are followed by either a semi-
colon (when they appear in interfaces) or the whole method body. By considering only the
fragments that can be reduced to a nonterminal in the standard grammar, we might lose rel-
evant information, such as the incomplete method declaration in Figure 8.4. For this reason,
we also extract incomplete information corresponding to a subset of a production that does not
reduce to any nonterminal in the standard programming language grammar.

Considering every possible incomplete production would result in another source of ambiguity,
which in turn would affect the performance of the fragment extractor. Incomplete productions
must be selected according to the kind of model that needs to be extracted from the artifact.

Since they add relevant structural information, our island grammars include incomplete pro-
ductions of the nonterminals representing declarations of methods, constructors, and classes.
Such incomplete productions do not require a final semicolon or a block with the body of the
construct. For example, the following production has been introduced to extract incomplete
constructor declarations:

1 Modifier* ConstructorDeclarator Throws? — IncompleteConstructorDeclaration

Our approach also extracts the entity declaration even in the case of a body which is incomplete
or contains non valid fragments. For example, for a class declaration with a partial body, our
method extracts a single fact for the declaration, as an incomplete class declaration, and parses
the partial body as if it was a sentence of the island grammar.

1 On 4/12/07 Bob wrote:

2 [...]

3 > public class Bicycle {

4 >

5 > void changeCadence(int newValue) {
6 > cadence = newValue;

7 > }

8 >

9 > void changeGear(int newValue) {

10 > gear = newValue * 2;

11 > }

12 Bob I believe you should change this method to fix the bug.
13 >}

Figure 8.5: Examples of incomplete class declaration with partial body

If we consider the document in Figure 8.5, the declaration of the class Bicycle is not correct,
because line 12 is not a valid Java sentence. In this case, we prefer to loose the binding between

124

8.3 1LaNDER: The Parsing Approach

the declaration and the elements of the partial body: We extract a single fact for the incom-
plete declaration of class Bicycle and parse the partial body as it was a sentence of the island
grammar, thus extracting the two complete method declarations (i.e., changeCadence(int) and
changeGear(int)). A more complicated alternative is the islands with lake [136] approach that
enables the extraction of bodies with water.

Another kind of incomplete fragments containing interesting structural information are class
relationships. These express inheritance and implementation relations between classes and in-
terfaces. For example, in line 10 of Figure 8.1, we find two potential class names separated by
the keyword implements. From this, we can derive that Diagramis an interface, and there is an
implementation relation between the two entities.

Additional Structured Data. Programming languages like Java are composed not only of the
language definition, but also of additional components, such as the virtual machine, for which
new entities are defined with a precise syntax. Such entities range from stack traces to simple
file name requirements for compilation units. These entities, usually language-specific, carry
interesting information about the system. Within the documentation produced during devel-
opment phases, those external entities are usually present between code and natural language
sentences, and thus they can be extracted as relevant structured facts. We chose to enrich the
island grammar to support the extraction of Java stack traces and file names that follow the lan-
guage naming conventions [184]. For example, we added the following production to support
stack trace lines:

1 "at" (Name ".")? Identifier "." Identifier
2 "(" LexJavaClassFileName LexJavaExtension ":" DecimalIntegerLiteral ")" —
JavaStackTraceLine

In this case, the two identifiers are always used to define the class name and the method name
where the exception has been (re)thrown, while between the parentheses we can find a file name
of a Java class containing the class definition. Instead, we structure a Java class name reference
as in the following:

1 (LexPackagePath LexPathSep)? LexJavaClassFileName LexJavaExtension —
JavaFileName

The above production describes a filename where the extension can be either . java or .class,
and where the path is optional and might be an existing package (e.g., in Figure 8.5, the last part
of line 4 is recognized and reduced to this production).

Table 8.1 summarizes the nonterminals of the Java programming languages that we chose to
extract as source fragments.

8.3.2 Ambiguity Resolution

Island grammars are inherently ambiguous: Water is defined as anything that is not an interesting
fragment (i.e., an island). Language definition systems supporting ambiguous grammars, like
Spr, provide constructs to resolve ambiguities. To choose between alternative derivations, we
use two disambiguation keywords offered by Spr:

* Avoid. The parser removes alternative derivations that have avoid at the top node, but
only if there are no other alternative derivations with avoid at the top node.

125

Chapter 8 Recovering Structured Fragments from Unstructured Data

Table 8.1: Source fragments recognized in ILANDER

Nonterminal Description Nonterminal Description
CompilationUnit Class declaration with package imports JavaStackTraceLine Stack Trace lines
ClassDeclaration (In)complete class declaration IfThenStatement -

) . Conditional Blocks
MethodDeclaration (In)complete method declaration IfThenElseStatement
ConstructorDeclaration (In)complete constructor declaration TryStatement Try/Catch blocks
FieldDeclaration Class field declaration WhileStatement
MethodInvocation Method invocation ForStatement Loops
Constructorinvocation Constructor invocation DoStatement
JavaClassName Java Class names ClassRelationshipFragment Implements/Extends relations
JavaFileName Java File Names Block Alone blocks

¢ Prefer. The parser removes all other derivations that do not have prefer at the top node.

By using the avoid keyword for any reduction to water, we favor any other production against it,
i.e., we prefer islands. We exploit the same mechanism to give preference to some island struc-
tures. For example, consider the complete method declaration in Figure 8.3 (lines 12-14). As
shown in Table 8.1, at the same level of MethodDeclaration, we have Block and Incomplet-
eDeclaration. Thus, the construct in the example is ambiguous: It can be parsed either as a
MethodDeclaration or as a sequence of IncompleteDeclaration plus Block. To disambiguate,
we favor the solution that reduces to a single nonterminal, this is coherent with the aim of keep-
ing the binding between the parts.

Additionally to basic ambiguity resolution techniques, such as the aforementioned ones, we
support more complicated cases. Consider the fragment “by method getDiagramMenultem()” (Fig-
ure 8.1, line 8, repeated in Figure 8.6).

8 where the JMenuItem returned by method getDiagramMenuItem() in

Figure 8.6: Ambiguous method invocation from Figure 8.1

The island grammar described in the previous section would select “method getDiagramMenu-
Item()” as a valid IncompleteMethodDeclaration fragment: “method” is a valid identifier, and
thus a lexically valid return type for the Java grammar. However, Java naming conventions [184]
prescribe that class names must be capitalized, thus, “method” violates the naming conventions.
We exploit this to exclude those reductions to incomplete method declarations where the sup-
posed return type is likely to be invalid.

For every extracted fragment, we define an ASF function, called isvalidsource, which takes a
source fragment as input and returns true iff the fragment is valid. The base case for that func-
tion is true for any fragment. For incomplete method declarations, we define isvalidsource to
return true iff the return type is void, a primitive type, or an identifier that respects to naming
conventions. With the ASF syntax, the rule is declared with three different cases:

1 isValidSource(#IncompleteMethodDeclaration) = true when
2 void #MethodDeclaration := #IncompleteMethodDeclaration

126

8.4 1LanpEr: Validation

3 isValidSource(#IncompleteMethodDeclaration) = true when
4 #PrimType #MethodDeclaration := #IncompleteMethodDeclaration

(6]

isValidSource(#IncompleteMethodDeclaration) = true when

(o)}

#Identifier #MethodDeclaration := #IncompleteMethodDeclaration,
7 isAClassName(#Identifier) == false

Similar definitions are done for potential constructor declarations, which must respect valid
naming conventions.

Going back to the previous example, the “method getDiagramMenultem()” is not a valid method
declaration, but it can be restructured as a method invocation fragment “getDiagramMenultem()” .
We define an ASF transformation rule to translate what was parsed as a method declaration to
a method invocation:

1 extractCodeFragments(#Source,#ExtractedSourceFragments)
= #ExtractedSourceFragments
(MethodInvocation : getLocation(#MethodDeclaration)
#Identifier()) when
#IncompleteMethodDeclaration := #Source,
#MethodRes #MethodDeclaration := #IncompleteMethodDeclaration,
#Identifier() := #MethodDeclaration,
isValidSource(#IncompleteMethodDeclaration) == false

0 g 0 U1 B W N

The rule takes a fragment parsed as an incomplete method declaration violating the naming
conventions, extracts the identifier corresponding to the method name, and produces a source
fragment of type MethodInvocation. The location of the transformed fragment is the same as
#MethodDeclaration, the nonterminal corresponding to the method name and its formal pa-
rameter declaration, which here is empty. This transformation must be applied only to methods
without parameters.

8.4 ILANDER: Validation

We validate our approach by performing a case study with real world software systems. We
consider three OSS systems developed in Java: ARcoUML, Freener, and MiNa (see Section 3.4
for more details on these systems). To improve generalizability, we picked systems from different
domains that are developed by distinct free software communities.

8.4.1 Text normalization of emails

Due to the noisy nature of email content, we devised the following pre-processing text normal-
ization phase.

Header and quotation removal. We remove the email metadata and the occurrences of the
character > at the beginning of lines (used to mark different quotation levels).

127

Chapter 8 Recovering Structured Fragments from Unstructured Data

Patch preprocessing. When communicating about implementation of entities, developers often
exchange information in the form of code patches to show how parts of code have been changed.
Figure 8.7 shows an example.

@@ -64,4 +72,7 @@
*/
public void actionPerformed(ActionEvent event) {
super.actionPerformed(event);

+ if (ImporterManager.getInstance().hasImporters()) {
new Import(ArgoFrame.getInstance());

+

1

2

3

4

5 - new Import(ArgoFrame.getInstance());

6

7

8 } else { LOG.info("Import sources dialog not shown"); }
9

Figure 8.7: Example patch

The common format for patches is the unified diff format[198], which uses a header that is not
ambiguous with natural text (e.g., line 1). New added lines are marked with a + sign (e.g., lines
6-8), while removed lines have a - sign (e.g., line 5). Lines without special signs give the context
in the code. As the special signs can interfere with the parsing process, we perform a normal-
ization process that 1. detects a patch fragment (using the header), 2. removes the lines marked
as deleted (to avoid recovering what is explicitly no longer valid), and 3. removes the + signs at
the beginning of the lines.

Stack trace normalization. When the execution of a Java application is interrupted by an unhan-
dled exception, the program outputs a trace of the calling stack. Developers share such traces to
discuss the debugging process and to communicate about problems. Since stack traces also pro-
vide significant insights on dynamic dependencies between entities, we take them into account
(see Section 8.3.1). Stack trace lines, however, often exceed the maximum line length allowed in
many email clients (i.e., 80 characters), thus they may appear truncated (Figure 8.8).

1 at org.apache.jmeter.junit.JMeterTest.testGU
2 IComponents(JMeterTest.java:72)

Figure 8.8: Example interrupted stack trace line

By exploiting the regular structure of stack traces, we devised a regular expression for their
normalization. The expression matches the candidate lines, even if scattered over many lines,
and removes all unwanted line breaks.

Content splitting. Our fragment extraction phase must handle and filter a high number of am-
biguities in the email text, generated by NL and incomplete and scattered fragments. Hence, an
email with ample content requires considerable time to be parsed and might create scalability
problems. Since our technique has to handle tens of thousands of documents in a reasonable
time, we split the email in self-contained blocks to reduce ambiguities and the parsing time.

First, the splitting process divides the body in multiple parts according to the quotation levels:
Each time we encounter a change in the quotation level we create a new split, preserving the

128

8.4 1LanpEr: Validation

correct order. Different quotation levels are already separate blocks, which respect the intention
of the email’s author, thus they are not disruptive with respect to the meaning of the parts.
We analyze each split, and apply further splitting techniques when it is longer than a specified
threshold (i.e., 50 lines):

¢ Code patches Starting from the beginning of the split, when we encounter the header of
a code patch, we create a new split. When referring to the same file, blocks of patches are
independent, and are treated separately by the parser, with no information loss.

* Stack trace lines Starting from line 50 (to avoid the generation of too many splits), we
split when we encounter a stack trace line. These lines can be analyzed separately without
losing any contextual information.

¢ Natural language lines If we reach line 80 without having split before, we try to find lines
with only NL, because they can be separated without breaking the structure of any code
fragment. To recognize NL lines, we use the technique we previously devised (see Chap-
ter 7), by which we can determine, with a considerable precision, whether a line is code.
Since the method does not assure perfection, we split when it finds four consecutive non-
code lines.

¢ Forced splitting If we reach line 150 without any split, we divide the content as soon as we
encounter a line not containing an open parenthesis, or curly brackets. This forced splitting
can alter the context, but, in practice, is applied to a very small fraction of emails.

8.4.2 Empirical Validation

To analyze the effectiveness of our extraction technique from two perspectives, we measure the
capacity of our method in locating the chosen structured elements and assess whether the gram-
mar production assigned to the fragments is correct. Table 8.9 details the results.

Figure 8.9: Systems’ Mailing Lists and Results

Emails Results
System
Population with code Sample Precision Recall
ArgoUML 24,876 12% 50 99% 95%
Freenet 22,095 9% 39 99% 97%
Mina 12,869 29% 99 99% 94%

In the second column, we report the mailing list size, after filtering out emails automatically
generated (e.g., by issue tracking systems).

We randomly chose a statistically significant sample of emails with code to inspect. Based on our
previous work on classifying emails and lines containing source code (see Chapter 7), we know
the proportion of messages with code in the chosen mailing lists (reported in the third column
of Table 8.9). This allows us to use this information for calculating the size of significant samples
[193]. The fourth column of Table 8.9 reports the number of emails from which we randomly

129

[y

Chapter 8 Recovering Structured Fragments from Unstructured Data

selected samples. With these sample sizes, we are 95% confident that the emails represent the
population with an error of 9%!.

To evaluate the techniques to detect documents and lines containing source code fragments, we
use two well known IR metrics presented in Section 4.2.4: precision (Equation 4.2), and recall
(Equation 4.3).

Before manually creating a benchmark with all the emails in our samples, we processed emails
with our normalization phase (Section 8.4.1). Then, we manually inspected each email and la-
beled all structured fragments with the correct grammar production. Conducting the normal-
ization phase before the annotation had the beneficial side effect that it allowed us to verify the
normalization process. Automating the comparison of the expected result (i.e., the annotations
in the emails) with the outcome of our approach can lead to problems in the evaluation itself.
For example, a complete compilation unit in the benchmark could be recognized as a sequence
of distinct pieces by our technique (e.g., because it has been divided in multiple email splits).
Classifying this behavior as completely erroneous would misreport the effectiveness. Hence,
we manually inspected and compared the outcome of the approach to the benchmark.

The right-hand side of Table 8.9 shows the results obtained by the approach applied to the 183
emails containing code that we manually labeled. It achieved very high precision on the com-
plete dataset for all three systems, with almost no NL words classified as parts of structured
fragment. The recall shows that the method recognized almost all the required fragments. We
found no error in the grammar productions in the recognized fragments.

Error Inspection. By manually inspecting the entire output of our technique, even though
severely time-consuming, we gained a qualitative knowledge of the cause of the few errors gener-
ated. The majority of the false negatives (which affect the recall) were caused by the noisy nature
of emails. In particular, a few code fragments were truncated in the middle of an identifier, thus
hindering a correct complete identification (although the surroundings were recognized).

In Figure 8.10, the argument url of the method invocation openProject is truncated.

1 ActionOpenProject.getInst().openProject(ur
2 I);

Figure 8.10: Example truncated code fragment

Our approach only recognizes the first method invocation ActionopenProject.getInst() (which
has class scope), thus generating a false negative. This also underlines the role of manually eval-
uating the output: not considering the first method invocation as correctly recognized would
be an error. Examples of false positives are the strings “Java(TM)” and “developer(s)”, which
are wrongly reported as method invocations. Since such cases occur rarely, their impact on the
model produced is insignificant. Still, they could be easily removed through post-processing,
for example with statistical parsing.

This only validates the quality of sample sets as an exemplification of the populations, it is not related to the precision
and recall values.

130

8.5 1LANDER: Model Extraction

8.4.3 Threats to Validity

Threats to external validity. These threats concern the generalizability of our results. The
approach we propose is built on a single object-oriented programming language, Java. Even
though we relied on Java specific naming conventions (e.g., camel casing) to disambiguate some
constructs, similar, or even identical, conventions are used in a number of other widely spread
programming languages, such as C#, PyrHoN, JavaScripr. In addition, we introduced minor
modifications in the standard Java grammar, thus we expect our approach to be easily adapted
to other object-oriented languages with small effort.

Even though we evaluated the source extraction and model reconstruction phases on only three
systems, we considered statistically significant sample sets and we achieved very promising
results. In addition, the manual inspection of the results helped identifying future improve-
ments.

Threats to construct validity. These threats regard measured variables that may not actually
measure the conceptual variable. In our case, to assess the source fragment extraction phase,
we relied on human judgment, both to label emails with the expected productions, and to eval-
uate the output. This process can be error-prone; to alleviate this, we did not directly evaluate
the output on non-annotated emails, but we clearly separated the two phases. In the first one,
we labeled emails without knowing the results of our approach. This allowed us to effectively
verify all the expected source fragments. We decided to make use of human validation also for
evaluating precision and recall. This choice is guided by the fact that the errors in an automated
process would have been probably more significant than those of a human reviewer. Moreover,
the human inspection allowed us to obtain a qualitative evaluation of our results.

Threats to statistical conclusion validity. These threats concern the relationship between the
treatment and the outcome. In our approach for source code extraction evaluation, we consid-
ered samples to represent the population with an error of 9% at a confidence level of 95%.

8.5 ILANDER: Model Extraction

The model extraction process aims at analyzing the code fragments extracted in the previous
phase to derive structural information about a system, thus supporting software understand-
ing and development. The quality of the derived information depends on the number and
nature of the available source code fragments. For instance, a method invocation like URLDe-
coder.decode() suggests the existence of both a class URLDecoder and a static method decode
belonging to it. In contrast, a fragment with a complete compilation unit conveys more infor-
mation on classes, methods, and relationships.

We implemented the model extraction phase using ASF-SDF. Our main extraction function takes
as input a set of extracted code fragments and returns the set of model facts that can be derived.
For example, Figure 8.11 shows the output of our approach applied to the second block (lines
4-6) in Listing 8.1.

For extracting basic model facts from each type of code fragment summarized in Table 8.1, we
specified dedicated traversal functions that may call each other and may recursively call them-
selves. For example, if a MethodDeclaration includes some MethodInvocation s, the func-
tion that extracts facts from method declarations needs to invoke the function that extracts

131

Chapter 8 Recovering Structured Fragments from Unstructured Data

1 (ISLAND.Class

2 (id: 3)

3 (name 'URLDecoder')
4 (startLine 3)

5 (startColumn 0)

6 (endLine 3)

7 (endColumn 29))

8 (ISLAND.Method

9 (id: 4)
10 (belongsTo (idref: 3))
11 (name 'decode')
12 (hasClassScope true)
13 (startLine 3)
14 (startColumn 0)
15 (endLine 3)
16 (endColumn 29))

Figure 8.11: Example of extracted facts

model facts from method invocations. Similarly, a method invocation might consist of a chain
of method invocations, hence the need for recursion.

Each extracted model fact receives a unique identifier in the form of an integer attribute (id, as in
Figure 8.11, lines 2 and 9), which is recursively incremented during the parse tree traversal and
is used to express links between separate model facts. Most model extraction functions have
an owner fact id argument, which allows referring to a previously extracted model fact, when
relevant (e.g., line 10 in Figure 8.11 sets that the method belongs to the class).

To ensure traceability, each resulting model fact is linked to the fragment from which it was
derived, using the exact code fragment location in the NL artifact (e.g., lines 13-16).

8.5.1 Metamodel

We model the facts that we extract according to the FAMIX metamodel [181], a language inde-
pendent metamodel of the static structure of object-oriented systems. It defines entities such
as NameSpace, Class, Method, Inheritance, Invocation, Parameter, Attribute, etc. We ex-
tended FAMIX to handle the peculiarities of the fragmented information we are manipulating,
and changed the prefix of the entities to ISLAND (e.g., lines 1 and 8 in Figure 8.11).

The previous phase (Section 8.3) extracts a sequence of fragments from textual artifacts. Since
each fragment is isolated from the others, any extracted structural information is partial, i.e.,
the model fact extraction process results in several partial models, one for each source fragment,
which need to be merged in a post-processing step. We identified heuristics that help to recover
missing links, e.g., it is likely that the same class corresponds to multiple class fact occurrences in
the output. In this case, fact merging could be based on fact names (see the case study we present
later). A more complex merge consists in exploiting the source fragment locations associated to

132

8.5 1LANDER: Model Extraction

different facts. For example, in Figure 8.1, line 4, the class name ModuleLoader and the method
declaration 1oadModulesFromExtensionDir are in the same natural language sentence, thus one
could formulate the hypothesis that the method belongs to the class.

8.5.2 Transformation Example

The whole ASF-SDF grammar and rules implemented for our approach are available, with ex-
amples, at: miler.inf.usi.ch/iLander. Here we show a descriptive example.

4 public void loadModulesFromDir(String dir) in ModuleLoader.java.

Figure 8.12: Incomplete method declaration from Figure 8.1

Let us consider the incomplete method declaration in Figure 8.1, line 4 (repeated in Figure 8.12);
Figure 8.13 shows the output produced by the previous extraction phase. Incomplete method
declarations contain the information on the existence of a method (e.g., loadModulesFromDir),
with additional optional classes specified by the formal parameters (e.g., String).

1 (IMETHOD_DECLARATION :
2 area-in-file("exampleDocument", area(4, 0, 4, 43, 148, 43))
3 public void loadModulesFromDir(String dir))

Figure 8.13: Extracted incomplete method declaration

We define a traversal rule (Listing 8.2) to model relevant facts from these declarations.

The parsing of each declaration appends three parts to the list of model facts already extracted
from the same document. The first set of facts, #Facts1, is produced by the function extractRT-
Facts, and returns the facts corresponding to the return type of the method (in our example, the
declaration has no return type). #FactID corresponds to the id of the return type as generated by
the function. The rule, then, produces a new ISLAND.Method, with the corresponding attributes,
some of them produced by appropriate functions, such as getModifierAttributes, which gen-
erates access control attributes. The parameter #0owner1D, which is passed to the function, is
propagated in the case of method declarations inside class declarations to create the ownership
binding. The function getBelongsToAttributeIfAny creates this binding iff the passed value
is strictly greater than o; calling functions pass the value 0 when the method declarations are
isolated and thus the binding cannot be determined. The set of facts, #Facts2, is constructed
by the call to the function extractFacts on formal parameters. This function call creates a new
ISLAND.FormalParam, which models a formal parameter, together with the corresponding facts
for the parameter type. Figure 8.14 details the final output of the model extraction phase, when
applied to the incomplete method declaration in Figure 8.13.

Another interesting case comes from field declarations. For example, the fragment “private My-
Class field = new MyClass()” contains three pieces of information: the presence of a field, a class,
and a constructor invocation. Since the fragment is extracted as a field declaration, the rule in
Listing 8.3 is applied.

133

miler.inf.usi.ch/iLander

Chapter 8 Recovering Structured Fragments from Unstructured Data

1 extractFacts(#IncompleteMethodDeclaration,

2 result(#Facts,#FactID),

3 #Location)

4 = result (#Facts #Factsl

5 (ISLAND.Method

6 (id: #FactID1)

7 (isConstructor false)

8 (signature toSignature(#Identifier,#FParams))

9 (name toString(#Identifier))

10 getModifierAttributes(#Modifiers)

11 (declaredType (idref: #FactID1l))

12 #Facts2,#FactID2)

13 when #Modifiers #MethodRes #Identifier (#FParams)

14 := #IncompleteMethodDeclaration,

15 result(#Factsl,#FactIDl) :=

16 extractRTFacts(#MethodRes,result(,#FactID+1),#Location)
17 result(#Facts2,#FactID2) :=

18 extractFacts(#FParams,result(,#FactID1+1),#Location,#FactID1,0)

Listing 8.2: ASF traversal rule for incomplete method declaration

The field declaration rule considers the structure as imposed by the language grammar and pro-
duces an ISLAND.Attribute fact, together with the corresponding facts coming from the type
of the field. In this case, they would correspond to a class fact. Thus, we must analyze the right
hand side of the assignment, that is, what the grammar specifies to be a varIinitializer. The
traversal function would traverse the parse tree, and eventually reach the nonterminal corre-
sponding to a ConstructorInvocation, and then extract the appropriate facts (Listing 8.4).

A generalization of the previous example would be a field declaration like “private MyClass field
= new OtherClass()”. This fragment adds additional information, i.e., the class otherclass is
assignable to Myclass. This could be the case of an inheritance relationship, according to FAMIX,
but it is not the only case: the information is relatively loose. For example, we can neither deter-
mine if MyClass is an interface or a class; nor at which level of the inheritance hierarchy the two
classes are located, that is, if there is a class IntermediateClass that extends Myclass, such that
OtherClass extends it. More complex examples involve generic expression in field declaration
assignments that would require a type inference mechanism.

8.6 ILANDER: Disclosing New Directions for Analyses

1ILANDER creates one model for each document analyzed. This enables, for example, the recon-
struction of the system model described in a design document, by processing the structured
data it contains. In the output model, we would expect to find the most important components
of a system, from an architectural perspective, and their relations. A comparison of this model
with that obtained from the actual source code would spot inconsistencies or implementation
issues not envisioned at design time, thus serving both developers and engineers. A work of
document-to-classes traceability (see Chapter 4 would only connect the parts of the document

134

8.6 1LaNDER: Disclosing New Directions for Analyses

(ISLAND.Method
(id: 5)
(isConstructor false)

1
2
3
4 (signature 'loadModulesFromDir(String)')
5 (name 'loadModulesFromDir')

6 (accessControlQualifier public) ...)

7 (ISLAND.Class

8 (id: 6)

9 (name 'String') ...)

10 (ISLAND.FormalParameter

11 (id: 7)

12 (name 'dir')

13 (parentBehaviouralEntity (idref: 5))
14 (declaredType (idref: 6))

15 (position 0) ...)

Figure 8.14: Facts from an incomplete method declaration

with the corresponding (if any) entities in the system: It would not recover the system'’s “view”
that a different model offers, it would not spot missing relationships, or it would not even inform
about entities described in the documents that do not exist in the system. Only by recovering
the alternative model, we can access this new information.

Similarly, when 1LANDER is applied to a thread of emails (treated as a single document) discussing
the same topic, it generates the system model as it emerges from the discussions and develop-
ers’ view. We can thus analyze how developers envisioned a topic and get guidance to better
comprehend the evolution of a system.

As a proof of concept, we apply 1ILANDER to the entire content of a mailing list pertaining to the
development of a software system. Our purpose is showing how the information extracted offers
a new perspective on the system, which can be used for software reconstruction and analysis.

We focus on ARGoUML (see Section 3.4), since its developers have been using the public mailing
list as their main form of communication for nearly 10 years. Hence, we expect it to contain
relevant structured information about the system. We use our approach on the complete mailing
list from its inception (January 2000) to the start of 2010.

8.6.1 Model reconstruction

By applying 1ILANDER to a stream of documents, we obtain multiple models of the system that
is discussed: One for each document analyzed. In fact, our approach treats each document
separately and produces facts that are not connected to those generated from other documents.
For example, in the case of the chosen mailing list, although we might find data about the same
entities of the system multiple times across the emails (e.g., the class ProjectBrowser appears
in 306 emails), the models are independent.

135

Chapter 8 Recovering Structured Fragments from Unstructured Data

1 extractFacts(#FieldDeclaration,

2 result(#Facts, #FactID),

3 #Location, #OwnerID)

4 = result (#Facts

5 (ISLAND.Class

6 (id: #FactID)

7 (name toString(#Identifierl))

8 getLocationAttributes(#Location))

9 (ISLAND.Attribute

10 (id: #FactID + 1)
11 (name toString(#Identifier2))
12 (declaredType (idref: #FactID))
13 getModifierAttributes(#Modifiers)
14 getBelongsToAttributeIfAny(#0wnerID)
15 getLocationAttributes(#Location))
16 #Facts2, #NewFactID)
17 when #Modifiers #Identifierl #Identifier2 = #VarInitializer; :=

#FieldDeclaration,

18 result (#Facts2, #NewFactID) :=
19 extractFacts(#VarInitializer, result(,#FactID+2),#Location)

Listing 8.3: ASF traversal rule for FieldDeclaration

For this reason, the first step is to obtain a single and coherent model of the system. We achieve
that by following the temporal stream of the emails and by adding step-by-step the modeled in-
formation, from the past to the present. For example, first, we might discover the presence of
a class a, then, we could learn that it belongs to the namespace z.y, along with other classes.
Then, in more recent emails, we may find the methods declared in a. In the case of inconsis-
tent information (e.g., first we find that the class a extends the class B, then that it extends the
class ¢), we drop the older data and replace it with the new knowledge. With this approach, we
gradually build a coherent and unified model.

Once we obtain the unified model, we assess its consistency with respect to a model of the system
extracted from its source code?, and we measure the percentage of information about it that the
mailing list provides.

We compare the models at the level of classes, since the class is the fundamental building block
of object-oriented systems. We consider that we have information about a class when we find at
least one email with a structured fragment related to it. For many of the classes, our approach
extracts and reconstructs methods of classes, invocations, attributes, and more structural infor-
mation (e.g., relationships between classes), but, for the sake of simplicity, in this validation we
focus on the existence of classes in the mailing list.

Table 8.2 reports the result we obtained in the model reconstruction. The first column contains
the number of classes in the system, the second reports how many of these classes we also extract
from the mailing list. The third column expresses the percentage of classes extracted. The last

We consider ARcoUML 0.29.4, the first release in 2010.

136

8.6 1LaNDER: Disclosing New Directions for Analyses

1 extractFacts(#ConstructorInvocation,

2 result(#Facts,#FactID),

3 #Location)

4 = result (#Facts

5 (ISLAND.Class

6 (id: #FactID)

7 (name toString(#Identifierl))

8 getLocationAttributes(#Location))

9 (ISLAND.Method

10 (id: #FactID + 1)

11 (name toString(#Identifier2))

12 (isConstructor true)

13 (belongsTo (idref: #Integer))

14 getLocationAttributes(#Location))

15 #Facts2, #NewFactID)

16 when new #Identifierl (#MethodArgs) := #ConstructorInvocation,
17 result (#Facts2, #NewFactID) :=

18 extractFactsFromArgs (#MethodArgs, result(,#FactID + 2), #Location,0),
19 isAClassName(#Identifierl) == true

Listing 8.4: ASF traversal rule for ConstructorInvocation

column is the minimum number of developers who must have worked on a class for counting

the class itself.

Table 8.2: Percentage of system reconstruction from emails

Classes Classes

Developers Developers

in system in emails ratio in system in emails ratio
1,853 823 44% 1 339 289 85% 9
1,818 819 45% 2 239 212 89% 10
1,548 781 50% 3 186 169 91% 11
1,252 684 55% 4 138 127 92% 12
956 565 59% 5 94 87 93% 13
688 478 69% 6 63 61 97% 14
559 417 75% 7 41 41 100% 15
439 353 80% 8

The first row shows that we find information about 44% of the system entities simply by process-
ing the content of its mailing list. Even though we consider this to be a good result, we note that
more than half of the entities are never considered in the structured fragments of discussions.

We postulated two hypotheses for interpreting this observation: 1. the code is highly modular-
ized, thus only entities exposing behavior to other modules are discussed in the mailing list, and
2. entities which are under the responsibility of a single or few developers are less likely to be
discussed with the whole community.

137

Chapter 8 Recovering Structured Fragments from Unstructured Data

To explore the first hypothesis, we manually inspected the modules of the system and we found
a recurring pattern. As an example, we consider the module that manages the importing of
C# code into ARcoUML. This module contains 114 classes, but only two of them appear in the
mailing list: csModeller and Parser. The latter is the core of the implementation of the mod-
ule, while the former is the only class that exposes methods called by other modules. Another
example is the module that manages the deployment of the UML diagram in the user interface.
This module contains 19 classes, with only two reconstructed from the mailing list. Similarly
to the previous case, these classes, Figobject and UMLDeploymentDiagram, are respectively the
interface for the other modules, and the core class of the module itself. The same pattern occurs
in other modules and packages corroborating our first hypothesis.

To investigate the second hypothesis, we considered classes of the system that have been devel-
oped by more than n developers in their history (the values of n are in the column bevelopers of
Table 8.2). The data shows that the more people worked on a class, the more likely our technique
recovers the class from the emails. This supports our hypothesis that classes with a few authors
are less discussed.

These findings open up questions: Is it appropriate that some parts of the system, being under
the responsibility of a few developers, are not discussed with the community? What would
be the impact in case such developers leave the project? Our technique is able to reveal that a
relevant part of the system is never discussed among developers on the official channel. Should
they be discussed more, or documented externally?

Another question takes into account classes that can be reconstructed from the mailing list: Are
these classes the most important from a structural perspective, since they involve more devel-
opers and are connecting points among modules? If so, are these classes a good entry point to
be studied by a new developer joining the project? These are questions that might trigger future
research starting from these new analyses.

8.6.2 System analysis

On the one side, as just presented, our approach allows us to reconstruct a model of the system
that is as close as possible to the one extracted found in the source code. On the other side, a re-
searcher can use ILANDER to build new perspectives on the system. We suggest here one approach
taking this direction.

Figure 8.15 shows a graph where the classes extracted from the mailing list are the nodes. The
size of the nodes is proportional to the number of emails from which we could recover these
classes, and the color denotes the date of the last email with a reference (darker nodes represent
classes referenced more recently). The edges connect classes that appear together in at least k
emails (for readability, we only show nodes that have at least one connection). In our case study,
we found that k values between 15 and 25 show interesting clustering behaviors.

The graph puts in evidence that some classes are very popular in the mailing list. These classes
are also among those mentioned most recently, and form cohesive clusters. By inspecting the
graph node by node, we find a cluster formed by Java library classes that are significant for the
system, such as trend management classes (used for the visualization of the UML diagrams) and
exception classes. Other classes are also put in evidence by the graph, because of their size and
connections. These classes can be good candidates for program analysis. We use our data to
perform an analysis of the trend of their popularity in the mailing list, in order to gain in-depth
insights about which emails can be the most significant to read.

138

8.6 1LaNDER: Disclosing New Directions for Analyses

- = °0 e-0-0 o
e° O S . *
ey ol e ®
[e] 0) o]
o) ° o @ o
. . O o Q Qe 1\ o p/ . é o
Model (1)m==="T 5 T
y % \.‘.3 o O.O o 3 ..
ModelFacade (2)=T, ’,, O e o
@/ O ®
ProjectManager (3)=m « o c® o
c- P (o] 5 '
ProjectBrowser (4) &% . .. iy .
8 (o]
° O y >3~
o . o7
N Q
. O . ° .
Java library classes S e ® .
[Yo {] . ¢ ® . o]
; [®
N ® o y o 4
% e o * @
®© O

Figure 8.15: Class fragments popularity and relationships in emails

We divide the overall time interval of the mailing list into equally spaced time bins (by consider-
ing the amount of emails exchanged in the ARcoUML mailing list, we divide in bins of 90 days,
which is a good trade off between precision in finding trends, and the number of emails to read
in an interesting period), then we calculate, in each time interval, the number of distinct mes-
sages with fragments related to the chosen classes, and we assign it to the time bin. Finally, we
normalize the value for each time bin (by the maximum number of emails referencing the class),
to have a value between 0 and 1. Figure 8.16 shows the result. The area is colored according to
the overall popularity of the classes under analysis.

Figure 8.16 shows that all the classes have a single period in which they gained high popularity.
Our hypothesis is that knowing the period in which a critical event in the life of a class occurs
can help to understand important aspects of the evolution and the design of a system. With this
trend analysis we find such moments in time. In order to investigate our hypothesis, we read all
the emails in the “hot” periods.

In the emails related to the Model class in the second trimester of 2005, we discover that the class
was at the center of a conspicuous refactoring: The developers decided to change the metamodel
they have been using for modeling UML diagrams. That decision impacted the rest of the history
of the system.

ModelFacade was also used in the implementation of the previous metamodel, and was trans-
formed in multiple interfaces after a major refactoring and deprecated with the move to the new
metamodel. This occurred after the period of major popularity of the class, in which developers
discussed about how to improve it and, then, to eventually deprecate it.

139

Chapter 8 Recovering Structured Fragments from Unstructured Data

Model (1)

‘ ModelFacade (2)

ProjectManager (3)

ProjectBrowser (4)

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Figure 8.16: Trends in popularity of fragments of classes

We discover that ProjectManager is a class still used in ARcoUML for handling the project of the
user. The emails in the peak of popularity are related to periods in which it was causing failures
due to its defective loading functionality, and then fixed. By reading emails in the second peak
(late 2005), we learn that ProjectManager was also involved in a metamodel change.

Analyzing the emails in the most relevant period for ProjectBrowser, we discover that in 2003
the class “is used everywhere in the argo code”, and developers wanted to migrate part of its respon-
sibilities to other classes. By looking at the whole subsequent releases of the code, we confirmed
how the amount of entities in the system referencing this class drops significantly, while it still
remains present in the system until the most recent versions (as spotted also by the continuous
messages referencing it).

8.7 PeTiTIsLAND: The Parsing Approach

In the previous sections, we showed our 1ILANDER approach, which uses GLR parsing to imple-
ment island parsing using a scannerless approach based on the SDF grammar definition for-
malism. Due to the time complexity, our preliminary results were not satisfactory in terms of
performance. Moreover, we found it difficult to evolve and maintain it, due to its underlying pro-
gramming environment. For these reasons, we adopted a different approach to island parsing
that avoids dealing with ambiguities with context-free grammars and provides better perfor-
mances. Moreover, we managed to implement our approach into our MiLer toolset and devise
it as a framework that we named PetiTIsLAND.

PetitIsLanD exploits different parsing methodologies while combining the best properties of
each of them, in order to achieve:

e accuracy and efficiency, by using parsing expression grammars (PEGs) [74], that enable pre-
cise island parsing in linear time;

* flexibility with scannerless parsers, enabling the disambiguation between different alterna-
tives using lexical properties of tokens, like letter case;

140

8.7 PemitlsLanp: The Parsing Approach

e extensibility, realized with parser combinators, that enable easy and modular description
of different structured fragments embedded in arbitrary text.

We implemented PerirIsLanD using the parser framework PeritParser [163], which supports all
the parsing techniques described above.

8.7.1 Parsing Expression Grammars

PetitIsLAaND is based on Parsing Expression Grammars (PEGs). Instead of expressing a language
in a generative manner, like context-free grammars, PEGs use avoid expressing equivalent non-
deterministic choices between alternative productions. They use an ordered choice operator, usu-
ally denoted with /. Such an operator lists each alternative in a prioritized order; thus, in a PEG,
the first of the alternatives that successfully matches is chosen. For example, the following PEG
parses arithmetic expressions with sums and products, giving priority first to product, then to
sum; thus, it produces the parse tree on the right of Figure 8.2.

1 Term < Prod + Term / Prod
2 Prod < X * Prod / X

PEGs are a powerful formalism that is essentially recognition-oriented; a PEG can be consid-
ered as a formal description of a top-down parser. However, PEGs have more expressiveness
of typical classes of grammars associated with top-down parsers, and they can also recognize
non-context-free languages. Because of their recognition-oriented nature, and the use of ordered
choice, PEGs parse languages in linear time [74].

8.7.2 Implementation

We implemented our island parsing approach, PeritIsLaND, in PETITPARSER, a parser framework
to model grammars and parsers with scannerless parsing, parser combinators, and parsing ex-
pression grammars [163]. We adopted the SmarLraLk version of PeritPAarsER, which has a con-
venient syntax°.

PeTiTPARSER in a Nutshell

PeriTPARSER grammars are specified by means of primitive parser objects (see Table 8.3) that are
composed into other parsers using parser combinators (see Table 8.4%).

A PemiTPaRsER parser for an identifier, for example in the form of a letter followed by zero or
more letters or digits, can be implemented as follows:

1 identifier := #letter asParser ,
2 (#letter asParser / #digit asParser) star.

3 http://scg.unibe.ch/research/helvetia/petitparser
4 The entire list can be found in www.lukas-renggli.ch/blog/petitparser-1.

141

http://scg.unibe.ch/research/helvetia/petitparser
www.lukas-renggli.ch/blog/petitparser-1

Chapter 8 Recovering Structured Fragments from Unstructured Data

Table 8.3: A Selection of The Parser Combinators in PetitParser

Terminal Parser Description
$a asParser Parses the character ‘a’.
abc’ asParser Parses the string ‘abc’.
#any asParser Parses any character.
#digit asParser Parses the digits ‘0..9’.
#letter asParser Parses the letters ‘a..z’ and ‘A..Z’.

#uppercase asParser Parses the letters ‘A..Z".

Table 8.4: A Selection of Terminal Parsers in PetitParser

Parser Combinator Description
p1,p2 Parses ‘p1’ followed by ‘p2’.
p1/p2 Parses ‘p1’, if that fails parses ‘p2’.
p star Parses zero or more ‘p’.
p plus Parses one or more ‘p’.
p end Parses ‘p’ and succeeds at the input end.

The expressions #letter asParser and #digit asParser return parsers that accept a single
character of the respective character class; the , operator combines two parsers into a sequence
parser; the / operator combines two parsers into an ordered choice parser, and the star operator
accepts zero or more instances of this ordered choice parser.

By subclassing the PETiTPARsER class that implements composite parsers (i.e., PPCompositeParser),
grammars can be defined as parts of a class. Each production is implemented with an instance
variable and a method returning the grammar of the rule. For example, we can re-define our
parser for identifiers more verbosely with the following class PPIdentifier:’

1 PPCompositeParser subclass: #PPIdentifier
2 instanceVariables: 'validCharacters'

Beginning with the mandatory method start, that specifies the starting production, the class
ppIdentifier declares the following methods to define the grammar:

1 PPIdentifier>>start
2 A#letter asParser , validCharacters

3 PPIdentifier>>validCharacters
4 A(#letter asParser / #digit asParser) star

We expanded the identifier production in two productions to highlight how instance variables
and methods are used. The result is a parser made of a graph of connected parser objects, which
can be used to parse input text:

See www. lukas-renggli.ch/blog/petitparser-2 for more detailed examples.

142

www.lukas-renggli.ch/blog/petitparser-2

8.7 PemitlsLanp: The Parsing Approach

1 parser := PPIdentifier new.
2 parser parse: “exl'. This returns an abstract syntax tree.
3 parser parse: - 2ex'. This returns a parse failure.

Island Parsing with PETITISLAND
Thanks to parsing combinators and PEGs, we can define the basis of our entire island parsing
approach in four productions. By using PeriTPARSER, we implemented this in PPIsland:

1 PPCompositeParser subclass: #PPIsland
2 instanceVariables: 'island water waterBlob'

We define the first production in the start method:

1 PPIsland>>start
2 A(island / water) plus end

The start production builds on the ordered choice provided by PEG: We specify that the island
production has precedence over the water one (i.e.,, island / water). Moreover, we set (using
plus) that the text might contain one or more occurrences of island and/or water and must be
parsed to the end (using end).

The second production we define is the island: method:

1 PPIsland>>island: aParser
2 island := aParser

In this method, the island production must be declared externally and passed to the PPIsland
parser as an argument (this is usually done when the PPIsland class is instantiated). Thanks to
parsing combinators, we can leave the definition of island(s) external and have an approach to
island parsing that is reusable out-of-the-box, under any definition of island.

The third and fourth productions regard the water:

1 PPIsland>>water

2 AwaterBlob / #any asParser

3

4 PPIsland>>waterBlob

5 A(#letter asParser / #digit asParser) plus

The most conservative solution to define water would use the #any asParser expression, which
consumes one single character of any kind (see Table 8.3). In practice, with this approach, the
start production first tries to match an island, then, in case of failure, it matches and consumes
any character (i.e., water, defined as #any asParser), and it starts again from the subsequent
character. Structured fragments do not start in the middle of a word, so we also defined wa-
terBlob: A production that consumes an entire word instead of a single character (also speeding
up the parsing).

To clarify the functioning of our island parsing approach, we present an example in which we
plug a small parser into it. Let us assume we want to create a parser to recognize, within an

143

Chapter 8 Recovering Structured Fragments from Unstructured Data

arbitrary text, all the occurrences of words starting with an uppercase letter. First, we write a
parser for the content we want to extract (i.e., words starting with uppercase letters):

1 wUp := #uppercase asParser, #letter asParser star

We plug this parser into a new instance of PPIsland, creating a customized island parser, to
parse an example text:

1 islandParser := PPIsland newWithIsland: wUp.
2 islandParser parse: 'an Example tExt.'.

Start reading
the input.
Consume input until end of

< match. Update AST and input
4 position accordingly.

#any asParser.

End and 3 4
nd and return .
<—Yes Is input at the end?
No
.-
e
ConS|_der|ng : Ves
island ,
L}
'
]
. . '
Considering
water !
(]
' Match with
X
(]

Figure 8.17: The parsing process, showing the role of precedences.

Figure 8.17 depicts the parsing process, underlining the flow and precedences of the parsers.
Figure 8.18 depicts the final result of the parsing.

The islandParser starts from position 1 (Figure 8.18) containing the first character a. According
to the start production, which specifies the main precedence, islandParser first tries to find a
match with the island parser (Point 1, Figure 8.17). In this case, the island parser corresponds
to the plugged wup parser. Since wUp fails, the islandParser does not consume the input and
rolls back to the water parser (Point 2). The water parser, in turn, first tries to match with wa-
terBlob (Point 2a). From position 1, waterBlob successfully matches (and consumes the input,
Point 3) up to position 2 included (Figure 8.18); it also updates the resulting abstract syntax tree
(AST) accordingly. After this, the islandParser continues from position 3 trying to match other

144

8.7 PemitlsLanp: The Parsing Approach

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

a|n E|x|a|m|p | e t E | x t

wUp K waterBlob
island ESXJ#any asParser water

Figure 8.18: Parts matched with a small island parser.

islands and water (due to the plus in the start rule), always giving precedence to the former.
From position 3 the only parser that matches is the #any asParser (thus reaching Point 2b in
Figure 8.17), so a single character is consumed. From position 4, the wup parser matches the
input and consumes it up to position 11. The process goes on similarly until it reaches the end
of input (due to the end in the start rule).

By using a transformation or subclassing PPIsland, it is possible to ignore water and return an
AST with only islands.

Islands with Lakes: In documents, such as emails or website pages, that do not have to comply
with a formal grammar, structured fragments often embed parts that are extraneous to their
grammar. Figure 8.19 shows a classical example: Lines 2-6 contain a method declaration in
which parts of the content are omitted and replaced with ellipses (lines 3 and 6).

Here you find a code example to answer your question:
public void setEnclosingFig(Fig each) {

m = (MNamespace) each.getOwner(); }

}

1
2
3 e
4 if (each == null || (each.getOwner() instanceof MPackage)) {
5
6
7 The key point is the condition. [...]

Figure 8.19: Structured fragment embedding water and islands: Island with lakes.

These fragments are named islands with lakes [136], because are islands that embed water. We im-
plemented a class PPIslandwithLakes, subclassing PPIsland and overriding the start method,
to support these types of constructs:

1 PPIsland subclass: #PPIslandWithLakes
2 instanceVariables: 'startParser stopParser'

3 PPIsland>>start

4 AstartParser ,
5 (island / (stopParser not , water)) star ,
6 stopParser

Differently from PPIsland, this parser also requires a startParser and a stopParser, which
define the boundaries. Any definition of island can be plugged also in this case. After the starting

145

Chapter 8 Recovering Structured Fragments from Unstructured Data

boundary is found (i.e., startParsers matches), the parser tries to match zero or more islands
and lakes (i.e., (island / (stopParser not , water)) star). When no island is matched,
PPIslandWithLakes tries to match with water, but only in the case it does not find a stopParser
(i.e., stopparser not , water). Whenever it finds something matched by the stopParser,
PPIslandWithLakes stops

To clarify the functioning of our island with lake parsing approach, we show how we can define
a parser for recognizing the structured fragment in Figure 8.19. If we already defined a parser
able to recognize the header of a method declaration (e.g., the one in line 2 in Figure 8.19), we
would define the parser for the method declaration body, and combine them:

1 methodDeclHeader := [definition of parser |

2 methodDeclBody := PPIslandWithLake

3 newWithIsland: blockStatement

4 start: ${ asParser

5 stop: $} asParser.

6 methodDecl := methodDeclHeader , methodDeclBody.

We embed the methodDecl parser into a new instance of island parser (as previously done with
the wup parser):

1 islandParser := PPIsland newWithIsland: methodDecl.

This islandParser is able to correctly parse the example in Figure 8.19, thus extracting the
method declaration and its non-water content.

8.7.3 Summary

In this section we detailed our approach to island parsing as it is implemented in PETITPARSER.
We showed the importance of the ordered choice provided by PEG and how we use the flexibility
granted by parser combinators. Using these concepts we created PetitIsLanD, a framework that
is simple, yet powerful enough to define island grammars for various needs and seamlessly
combine them. In the following section, we validate our approach by defining a complex island
grammar to parse source code fragments written in Java, building on top of our PeritIsLanp
framework.

8.8 PEeTITISLAND: Validation

To validate the effectiveness of our approach to island parsing, we use it to extract and parse
Java source code fragments embedded in NL text. Given the complexity, ambiguous nature,
and size of a programming language grammar, we consider extracting source code fragments to
be a veritable acid test to validate our approach to island parsing.

We started by implementing into PP the entire latest specification of the official Java language
[83]. In practice, we created a class PPJavasyntax by extending the PP class PPCompositeParser
and implemented each production in the language specification with an instance variable and

146

8.8 PeritlsLanp: Validation

a method returning the grammar of the production (see Section 8.7.2 for details). For explana-
tory purposes, the authors of the language specification described many productions with left-
recursive rules, as in the following;:

1 TypeDeclarations:
2 TypeDeclarations , TypeDeclaration
3 TypeDeclaration

Since left-recursive rules cannot be directly implemented into PEGs [74], we re-wrote all these
rules to avoid left-recursion.

8.8.1 Productions

The Java grammar has a starting production, which we implemented in PpJavasyntax through
the following method:

1 PPJavaSyntax>>compilationUnit
2 A(annotations optional , packageDeclaration) optional , importDeclaration

star , typeDeclaration plus

This can be plugged into an instance of PPIsland by defining it as the is1land (see Section 8.7.2).
In this way, however, only this production would be recognized within NL documents, while
many others that often appear (e.g., method invocations or declarations, if or do statements)
would be lost. For this reason, we defined a catalogue of productions, listed in Table 8.5, that we
want to recognize regardless of their surrounding context of NL sentences.

Table 8.5: Considered Java productions, in priority order (top to down, then left to right)

Nonterminal

compilationUnit

packageDeclaration
typeDeclaration
methodDeclaration

incomplete TypeDeclaration

incompleteMethodDeclaration
strictFieldDeclaration

creatorWithOptSemicolon

assertStatement
ifStatement
switchStatement

Description
Class declaration with package
imports
Package declaration
Class or interface declaration
Method declaration

Incomplete class or interface
declaration

Incomplete method declaration
Strict field declaration

Constructor invocation with
optional semicolon

Assertion predicate

Conditional blocks

Nonterminal

forStatement
whileStatement
doStatement
breakStatement
continueStatement
tryStatement
throwStatement
synchronizedStatement
returnStatement
classRelationship
strictVariableDeclaration
strictExpressionStatement
strictMethodInvocation
strictAnnotation

Description

Loops

Execution statements

Exception statements

Mutual exclusion statements
Method return statement
Implements or extends relations
Strict variable declaration

Strict expression statement
Strict method invocation

Strict annotation

Exploiting the PEG ordered choice, we ordered the considered productions from the most com-
prehensive down, before plugging them into a new instance of PPIsland. In this way, we do
not lose the binding among the parts in case of larger productions. For example, consider the
fragment in Figure 8.20.

147

Chapter 8 Recovering Structured Fragments from Unstructured Data

This is the class implementing the Fibonacci algorithm:
package com.stackoverflow;
import java.io.*;

[omitted code]
}

1

2

3

4 class Fibonacci {

5

6

7 Please note that this is a recursive solution.

Figure 8.20: Example text with a compilation unit.

In this case, by first trying to match a compilationunit (which also includes the optional pack-
ageDeclaration), we realize that the Fibonacci class is defined in the com.stackoverflow
package. If we tried to match first the single packageDeclaration, we would have lost the con-
nection between the package and the class declaration.

Some of the considered grammar productions (Table 8.5) are translated to our approach from the
Java language specification. This is the case of conditional blocks (e.g., ifstatement), loops, and
execution or exception statements. Other productions, described in the following, are derived
or inspired from the original ones specifying correct Java syntax and from other programming
customs, like naming conventions. Such new productions are needed to support island parsing
and are a source of differentiation from traditional programming language grammars; they are
needed, for example, to parse incomplete fragments or island with lakes. We implemented an is-
land parsing Java PEG grammar in a new class: PPJavaIsland, which subclasses pPPJavasyntax.
In this way, we only had to implement changed and new productions.

We defined the considered productions, shown in Table 8.5, in the new method islands:

1 PPJavaIsland>>islands
2 A(compilationUnit / packageDeclaration / importDeclaration / [... continues
with all the productions in Table 8.5, in order.])

Then, we defined the island parser by plugging the parser for the consider productions into a
new PPIsland instance:

1 javaProductions := PPJavalsland new.
2 islandParser :=
3 PPIsland newWithIsland: (javaProductions islands)

The derived productions enable the parsing of the following specific island parsing structures:
e incomplete productions, w.r.t. the original Java language productions;

* productions respecting naming conventions, that help disambiguate some specific Java frag-
ments that may appear in NL sentences;

* additional productions, and strict productions that enable, for example, parsing of class rela-
tionships appearing in the text;

e island with lakes, that is, islands containing embedded NL text (i.e., water, hence a lake).

148

8.8 PeritlsLanp: Validation

Incomplete Productions. Incomplete productions are the first source of differentiation from the
standard grammar. As an example, we consider lines 2-3 in Figure 8.21.

1 [..] how I solved it. WallSetter implements AsyncTask, you
2 should not forget to implement the method protected void
3 onPostExecute(String result).

4 Your other class, instead, should look like this:

5 public class Square extends Shape {

6 private length = 5;

7 public Square(){...}

8

9 public double area(){ return length * length; }

10 }

11 So that your last class can call the method area() to get it.

Figure 8.21: Example text with various source code fragments.

The document author is explicitly referencing a method signature, but the body is missing. The
standard Java grammar includes only method definitions that are followed by either a semicolon
(when they appear in interfaces) or the whole method body. By considering only the fragments
that can be reduced to a nonterminal in the standard grammar, we might lose several structured
fragments, such as the one in the example above. For this reason, we also extract fragments
corresponding to a subset of a production that does not reduce to a nonterminal in the standard
language specification.

Although every possible incomplete production can be supported, for this validation we limit
ourselves to the most popular incomplete productions found in NL documents: incomplete
method and type declarations. Such incomplete productions do not require a final semicolon or
a block with the body of the construct. For example, we implemented the following production
in PPJavaIsland to support incomplete method declarations (as the one in Figure 8.21):

1 PPJavaIsland>>incompleteMethodDeclaration

2 AmethodModifiers optional, typeParameters optional , (voidType / ncrType)
optional, identifier , ncrStrictFormalParameters ,
emptySquaredParenthesis star , throws optional

Naming Conventions Respectful Productions. The aforementioned incompleteMethodDeclaration
method includes nonterminals that start with the prefix ner and are extraneous to the official
grammar (e.g., ncrType). The acronym ncr stands for naming convention respectful; the corre-
sponding productions are included to reduce some of the ambiguities that might arise from
parsing Java fragments in NL documents, by exploiting Java naming conventions [184].

Consider, for example, the fragment “method area()” (Figure 8.21, line 11). By using the stan-
dard type instead of ncrType, the incompleteMethodDeclaration parser would match “method
area()” as a valid fragment: “method” is a valid identifier, and thus a lexically valid return type
for the Java grammar. However, Java naming conventions prescribe that class names must be
capitalized, thus “method” violates the naming conventions. The name ncrType indicates that
we implemented the production in a way that only a type that respects the naming conventions

149

Chapter 8 Recovering Structured Fragments from Unstructured Data

will be accepted. We exploit this to exclude the reductions where the supposed types are likely
to appear by chance and thus be invalid.

Additional Productions. Class relationships are another kind of structured fragment containing
interesting information to be extracted. They express inheritance and implementation relations
between classes and interfaces. For example, in line 1 of Figure 8.21, we find two potential class
names separated by the keyword implements. From this fragment, we could derive that Async-
Task is an interface, and there is an implementation relation between the two entities.

These fragments can be recognized as follows:

1 PPJavalsland>>classRelationship
2 AncrStrictIdentifier, (extends / implements), ncrStrictIdentifier

Strict Productions. We also defined some productions whose name starts with, or includes, the
prefix strict (e.g., strictAnnotation Or ncrStrictIdentifier). In these cases, we exploit the
scannerless parsing approach (Section 8.2.1) for disambiguation.

Consider, for example, the fragment “I solved it. WallSetter implements AsyncTask” (line 1 in Fig-
ure 8.21). By using a standard identifier (or even a ncrIdentifier) the classRelationship
parser (see Section 8.8.1) would match: “it. WallSetter implements AsyncIask”, thus recognizing
it. wallSetter as an identifier. In fact, the Java grammar allows identifier with qualifiers
separated by spaces. However, this is not recommended by the naming conventions. Since we
do not have a separate tokenization phase, as we rely on scannerless parsing, we can specify that
certain productions require a more “strict” tokenization, by not allowing whitespace between
certain parts. For example, ncrStrictIdentifier does not allow whitespace in a type name,
and strictAnnotation does not allow whitespace between the @ and the identifier.

Productions with Lakes. Some of the considered productions, when appearing in arbitrary doc-
uments, might contain embedded water. This mainly affects productions with a body, such
as the one in declarations and loops, that includes multiple statements. Figure 8.21 shows an
example of a class declaration (lines 5-9) and a method declaration (line 8) that contain water.
To correctly support these cases, in PPJavaIsland, we overrode the methods defining body pro-
ductions; for example, this is how the production for a block (used, for example, by loops) looks
like to support embedded water:

1 PPJavalIsland>>block

2 APPIslandWithLake

3 newWithIsland: blockStatement
4 start: ${ asParser

5 stop: $} asParser.

150

—_

OO N

8.8 PeritlsLanp: Validation

8.8.2 Results

As a case study to validate our approach to recognize Java code fragments in NL artifacts, we
focus on Stack Overflow®. Stack Overflow is a web service providing developers with the infras-
tructure to exchange knowledge in the form of questions and answers: Developers ask questions
and receive answers regarding issues from people that are usually not part of the same project.
Post authors can include fragments of source code and tag them, so that they appear formatted
in the most appropriate way, with text highlighting.

The advantage of using Stack Overflow data is that it is already code tagged, by external people
not involved with the evaluation, and that it corresponds to a real-world scenario for applying
our approach. The sample of questions considered in the benchmark is the same used by Rigby
and Robillard [167]. It is composed of 188 answers, taken from posts with project tags related to
three Java applications: HttpClient”, Hibernate®, and Android’. The three project tags crosscut
a diverse set of topics. We downloaded the dataset kindly provided by Rigby and Robillard
and adapted it to our task. In fact, some of the answers where not correctly code tagged by their
authors: Sometimes the code tag was used to format differently a certain piece of text that was
not real source code. We manually re-inspected all the 188 answers and fixed incorrect code
tags. The final benchmark is publicly available.

With the benchmark in place, we applied our approach to island parsing to the raw text and
wrote a script to automatically compare what we extracted to what was tagged as code in the
benchmark. To quantify the effectiveness of our approach, we use two well known IR metrics
presented in Section 4.2.4: precision (Equation 4.2), and recall (Equation 4.3). Table 8.6 describes
the datasets and the results obtained, by project tag. Our approach reached an average precision
of 98% and recall of 96%. This means that in all three project tags, the approach recognized the
vast majority of the required fragments, almost with no errors.

Table 8.6: Dataset description and results, by project tag

. Sample Results
Project Tag
Answers Code Fragments FP FN Precision Recall
Android 63 120 2 5 98% 96%
Freenet 51 68 1 2 98% 97%
Mina 74 163 3 6 98% 96%

The automatic comparison we set up is very strict. Consider the code fragment in Figure 8.20
(repeated in Figure 8.22).

The expected outcome is a single code fragment, which corresponds to a compilation unit. If
our approach did not recognize this as a single piece, but as two or more pieces (e.g., a pack-
ageDeclaration, followed by an importDeclaration, plusa typeDeclaration), we would have

http://stackoverflow.com/
http://hc.apache.org

http://www.hibernate.org
http://developer.android.com/about/index.html
http://swevo.cs.mcgill.ca/icse2013rr

151

http://stackoverflow.com/
http://hc.apache.org
http://www.hibernate.org
http://developer.android.com/about/index.html
http://swevo.cs.mcgill.ca/icse2013rr

11

Chapter 8 Recovering Structured Fragments from Unstructured Data

2 package com.stackoverflow;
3 import java.io.*;

4 class Fibonacci {

5 [omitted code]

6 }

Figure 8.22: Source code from Figure 8.20.

counted one false negative and as many false positives as the separated fragments proposed (e.g.,
three). Also in the case of partial extractions, we count an incomplete fragment as both a false
positive and a false negative. For example, if we extracted onPostExecute(String result)
from Figure 8.21 (repeated in Figure 8.23 instead of protected void onPostExecute(String
result), we would have counted a false negative (for the missed fragment) plus a false positive
(for the partially wrong extraction).

2 should not forget to implement the method protected void
3 onPostExecute(String result).

Figure 8.23: Example lines with code from Figure 8.21.

Error Inspection. We manually inspected the errors generated by our approach to understand
their causes and whether they could be addressed. Most errors were due to ambiguities that
cannot be resolved without a deeper understanding of the meaning of the text. For example, in
the sentence “A new openConnection() method has been added”, our parser recognized a constructor
invocation: new openConnection(). This error could only be avoided knowing that new was part
of the discourse, rather than a valid fragment of code. Fixing this error with a lexical parsing
approach like ours is possible by either excluding similar cases from the available productions or
devising stricter rules for recognizing them. Both these solutions would fix such a false positive,
but they could introduce new false negatives, with the final result of only rebalancing the trade-
off between precision and recall.

8.8.3 Summary

In this section, we validated our approach to island parsing by extracting source code fragments
from NL documents. This task is useful for a number of applications, such as mining API usages
[204], improving traceability methods [33; 167], or extracting diverse models of software systems
[138]. In particular, we extracted Java source code from 188 Stack Overflow posts. Concerning
accuracy performance, results show that our approach accomplishes the required task with a
very low number of errors, in terms of both precision and recall. Moreover, concerning time
performance, our approach is able to compute the extraction in linear time; this translated, in
practice, to a computation time of few seconds to parse 188 documents.!! This means that our
approach is not only effective, but also actionable.

We achieved this using the SmarLraLk version of PP. The Java implementation is one order of magnitude faster http:
//www.lukas-renggli.ch/blog/petitparser-java-dart

152

http://www.lukas-renggli.ch/blog/petitparser-java-dart
http://www.lukas-renggli.ch/blog/petitparser-java-dart

8.9 PemitlsLanp: Applications
8.9 PEemiTIsLAND: Applications

Motivated by the effectiveness of our approach applied to the extraction of Java source code
fragments from NL documents, we applied it to two other scenarios: (1) classification of the
lines of development emails, into source code, stack traces, patch, noise, and NL, (2) creation of
a higher level parser of source code to extract only necessary information. The first application
is presented in Chapter 9, here we detail the second application, which was at the technical basis
of our investigation described in Chapter 4. We also envision other scenarios for application.

8.9.1 Extracting source models from system artifacts

One of the first applications envisioned for the usage of island parsers is the extraction of source
code models from system artifacts [136]. In fact, island parsing has the advantage, over tradi-
tional parsers, to be more robust and support the extraction of models from problematic source
code. For example, island parsers can deal with source code that does not compile, is incom-
plete, or contains syntax and semantic errors, like undeclared variables or modules outside of
the class path. Island parsers can also help with legacy source code where the grammar is not
fully available; or they are useful to avoid implementing complete parsers and dealing with the
intricacies of writing rules for every low level productions, when these are not necessary for the
models that researchers and data scientists need to extract.

This example is another real-world application in which we successfully applied our approach
to island parsing. Since PeritIsLanp works with arbitrary text, we can also use it for extracting
customized models from source code. In Chapter 4 we dealt with the problem of recovering
traceability links between emails and source code. In particular, we wanted to verify whether
lightweight lexical approaches based on text matching we devised could be as effective as full-
fledged IR techniques (i.e., vector space model, with #f-idf and latent semantic analysis) for re-
trieving traceability links.

For this task, we decided to compare the effectiveness of the linking techniques when dealing
with diverse syntaxes and naming conventions. For this reason, we considered three mailing
lists pertaining to Java systems, one to a PHP system, one to an AcTioNScripT system, and one
to a C system. To conduct our comparison, we had to extract information from the source code
of these systems written in four different programming languages. In particular, to apply IR
techniques we had to extract a model with the name of the classes and the terms included in their
definitions (as depicted in Figure 8.24), so that we could compare their vocabulary (including,
or not, keywords) with that of each candidate email. The most traditional approach to extract
the model is to use specialized parsers for each language and model their output. However, the
specialized parsers were available in different programming languages, and generated AST in
different formats that should have been visited with different procedures. Although we adopted
this approach in a first attempt, we figured out the severe drawbacks of using so diverse parsing
approaches for model extraction, especially in terms of maintainability and evolution.

For this reason, we devised an approach, based on PetitIsLanD, to extract the necessary mod-
els from the source code. This allowed us to use the same technology for the parsing of each
language, thus having consistent implementation, output, and subsequent transformation pro-
cedure. This solution improved the maintainability and extensibility of our analysis.

For the purpose of conducting our analysis, we were only interested in extracting type decla-
rations and their bodies, so that we could extract type names and the terms contained in their

153

Chapter 8 Recovering Structured Fragments from Unstructured Data

package ch.usi.inf;

CLASS:
public class Fibonacci { ch.usi.inf.Fibonacci
public static long fib(int n) {
if (n <= 1) VOCABULARY:
return n; public static long fib int n if n 1 return n
else else return fib n 1 fib n 2 public static
return fib(n-1) + fib(n-2); ..» void main String[] args int N

} Integer.parseInt args 0 for int i 1 i N i
System.out.println i fib i

public static void main(String[] args) { | = rrrtrorreerrerssieeiieii it

int N = Integer.parseIlnt(args[0]); VOCABULARY WITHOUT KEYWORDS:
for (int i = 1; i <= N; i++) fibnnln fib n 1 fib n 2 main String[]
System.out.println(i + ": " + £fib(i)); args N Integer.parseInt args 0 i 1 i N i
} System.out.println i fib i

Figure 8.24: Class modeling for text analysis.

body declarations and compare to the terms found in emails. For this task, it is useless to have
a parser that recognizes very detailed productions, such as statements or expressions; a parser
that recognizes type declarations and collect the text within their body (without parsing it) is
sufficient. Implementing such a parser, with our approach to island parsing, is orders of mag-
nitude less time consuming than implementing a full-fledged parser. We implemented four
specialized parsers, one for each considered language.

For the Java programming language, we took advantage of PPJavaIsland and we reduced it to a
minimal version. We removed all the productions more detailed than type declarations. For the
other three programming languages, we wrote the parsers with a top-down approach, starting
from the most comprehensive production (i.e., compilation units) down to type declarations. Be-
ing type declarations very high-level productions, we managed to complete our parsers writing
less than ten productions each.

To verify the quality of our parsing, we compared its output to the one generated by the spe-
cialized parsers (e.g., INFusion, see Section 3.2.1). For all the cases, except Java, the result of
the different techniques were matching: We have been able to replicate the output of the other
parsers, by applying our approach to island parsing and using a limited number of productions.
In the case of Java, our parser was able to retrieve approximately 10% more classes and defini-
tions than the specialized parser. We informed the authors of the specialized parser about this
issue and they found a bug in their modeling procedure fixed in the subsequent release.

With respect to the validation and the previous application, in this case we also show that with
our approach we can not only extract the fragments in which we are interested, but also conduct
fact extraction by modeling the fragments to exploit the information they contain, as we did with
1ILANDER (see Section 8.5).

8.9.2 Other applications

We reported on two concrete scenarios for which our approach to island parsing has proved to
be effective and efficient. We believe that this approach could also be helpful in various other
application contexts in the broad domain of software engineering. We briefly anticipate two:

Analysis of software under development. Since our approach can parse incomplete or incorrect
source code fragments, it also opens new perspectives for software developers. The latter could

154

8.10 Related Work

benefit, for instance, from a tool that automatically relates the code just being written to natural
language artifacts, such as requirements documents, documentation, emails, bug reports, chats,
meeting minutes, efc. In this direction, we already started to use island parsing to automatically
suggest related Stack Overflow questions and answers from within the Eclipse IDE, while the
developer is programming [157].

Analysis of systems of systems. Our parsing approach may also prove convenient in the con-
text of software ecosystems analysis, where several software projects, development teams and
repositories are involved, and where the implicit relationships between them must be revealed
in support to program understanding, bug fixing, impact analysis, or change propagation, just
to name a few.

8.10 Related Work

Our approach hinges on island grammars and is inspired by a number of works that concern the
extraction of source code from software engineering artifacts that contain natural language.

One of the pioneering approaches in this area is the work of Murphy and Notkin [138], who
proposed a lexical approach based on regular expressions to extract models of a software sys-
tem from diverse software artifacts. Software engineers can obtain consistent models from any
kind of textual artifacts concerning software, by: (1) defining patterns (by using regular ex-
pressions) that describe source code constructs of interest in a software artifact, e.g., function
calls or definitions; (2) establishing the operations to be executed whenever a pattern is matched
in an artifact being scanned; and (3) implementing post-processing operations for combining
information extracted from individual files into a global model. Although the approach is light-
weight, flexible and tolerant, it is based on regular expressions (to be written by practitioners)
that are theoretically less powerful than a full-fledged parsing approach.

These steps are non-trivial, especially when dealing with unstructured artifacts written in natu-
ral language, such as emails. For example, choosing the best approach to expose code fragments
of interest requires an accurate analysis of the advantages and drawbacks that the different reg-
ular expressions offer; moreover, what is extracted by regular expressions must be parsed to
extract the meaning of the fragment. Practitioners could find it difficult and time-consuming to
perform these tasks through an iterative trial and error process.

In our previous work (see Chapter 7), we created an automatic method to address the first step
of the approach by Murphy and Notkin: We devised and evaluated lightweight techniques able
to identify lines of Java code in emails. Since we found that the last character is a good indicator
of the nature of a line, we implemented simple lexical rules, mainly based on pattern matching
and regular expressions. For example, we were able to detect most Java lines by selecting lines
ending with curly brackets or semicolons. However, this is not a parsing approach, it often loses
the context between lines and it cannot be used for further fact extraction and modeling.

Island-based parsing. The use of island parsing for the automated analysis of textual artifacts is
not new. Back in 1988, Stock et. al [182] proposed a technique for analyzing complex sentences
written in natural language. The processing starts from easily identifiable fragments (the islands)
and then extends the search scope bidirectionally to detect missing fragments in the sentence.
Moonen [136] showed how island grammars may allow the derivation of robust parsers for pro-
grams written in a particular programming language. Our work is at the intersection of those

155

Chapter 8 Recovering Structured Fragments from Unstructured Data

two approaches; in fact, we use island grammars to offer a new approach to extracting struc-
tured elements from natural language text. Rigby et al. [167] performs source code extraction
from natural language documents and uses it for recovering traceability links, using regular ex-
pressions to perform extraction. Our approach, using a full-fledged island parser that supports
more expressive context-free structures, outperforms it in terms of effectiveness.

Source code identification/extraction from natural language artifacts. Bettenburg et al. devised
INFOZILLA, a tool to recognize patches, stack traces, source code snippets, and enumerations in
the textual descriptions that accompany issue reports [31]. INFOZiLLA is composed of four in-
dependent filters, one per category, that are used in cascade to process the text. The source
code snippet filter exploits an approach inspired by island parsing [136], while the other filters
are based on text matching implemented through regular expressions. The authors reported
results on the effectiveness of INFoZ1LLA in differentiating documents, i.e., deciding whether they
contain or not each category. They reached almost perfect results, and subsequently they used
INFOZILLA in a work that investigated the features that are important when submitting bug re-
ports [211]. Given the target of the roZiLLa article (i.e., classification), the authors did not
conduct further code extraction and provided little details about the island parser implemen-
tation. Moreover, similarly to Rigby et al. [167], Bettenburg et al. also used regular expressions
to perform extraction, thus supporting less expressive context-free structures and limiting the
parser effectiveness.

Bird et al. [35] proposed an approach to measure the acceptance rate of patches submitted via
email in open-source software projects. They classified emails with source code patches, but
provided little information about their extraction techniques and no details on the evaluation
benchmark. Tang et al. [185] addressed the issue of cleaning email data for subsequent text
mining. They propose a cascaded approach to clean emails in four passes: 1) non-text filtering,
2) paragraph, 3) sentence, and 4) word normalization. Dekhtyar ef al. [62] discussed challenges
and opportunities in using text mining techniques to natural language software artifacts.

Fact extraction from source code. Basten and Klint [22] describe DeFacto, a generic fact extrac-
tion technique based on the ASF'2+SDF technology, which includes SGLR parsing. The tech-
nique consists in annotating the grammar of a language of interest with fact annotations. Based
on those annotations, local facts are automatically extracted from actual source code by a generic
fact extractor. Specific software analysis tasks may then start by further enriching the extracted
elementary facts. In Basten and Klint’s approach, each extracted source code fact corresponds
to one particular syntax production. Techniques for fact extraction can benefit from our struc-
tured fragment extraction approach, as they could use different sources of analysis like natural
language documents, which gives hints on a system’s design decisions during development.

8.11 Summary

Software is, above all, a product by humans for humans. By having at disposal all the structured
information stored in unstructured NL artifacts, such as emails, IRC chats, documentations, bug
comments, we can perform more accurate analyses, and thus enrich our perception of software
systems and their evolution.

We have presented two approaches to perform island parsing and mine structured information
within NL artifacts. The first approach, ILANDER, is based on the ASF-SDF technology and, in

12 Algebraic Specification Formalism

156

8.11 Summary

three phases, extracts structured fragments embedded in NL text, parses their content, and mod-
els the information according to a meta-model that describes the structure of object-oriented
systems. We evaluated each phase by applying our approach to a statistically significant set of
emails, and reached very high accuracy values, despite the noisy nature of email content. We
shows that the system model extracted from NL documents can be used to conduct novel system
analyses that better approach the developers’ point of view. For example, we can compare the
impact of a change as envisioned by developers discussing it in emails to the actual implementa-
tion. We applied 1LANDER to thestream of development emails in the ARcoUML mailing list, and
extracted a comprehensive system model, which we used to analyze aspects of ARcoUML.

1ILANDER does not come without its limitations, especially with respect to performance, flexibil-
ity, and extensibility. For this reason, we devised a second approach, which is implemented
as an island parsing framework: PeriTIsLanp. To make PermitIsLanp flexible, accurate, and ex-
tensible, we exploited different parsing methodologies: PEGs, scannerless parsers, and parser
combinators. We explained how each of these methodologies is embedded in our framework
and their usefulness. We implemented PetitIsLanD in a working tool (within our MILEr toolset),
written in SMALLTALK, by using the parser framework PeriTPARSER.

The architecture of our framework PetitIsLaND is based on pluggable extensions: Users can plug
different parsers for the specific structured data fragments they have to analyze. To validate our
approach, we implemented a parser for Java source code fragments, we plugged it in our frame-
work, and we used this composition to extract source code fragments from 188 Stack Overflow
posts. We reached very high accuracy values, despite the intricacies of Java grammar specifica-
tion. Moreover, the approach has computational costs that make it scalable.

We showed how we used PeriTIsLAND to extract ad-hoc models from source code artifacts by im-
plementing tiny parsers for the target languages. Another application is presented in Chapter 9.
These applications show how the approach can be used in practice and demonstrate its extensi-
bility. Additionally, we envisioned other possible applications of our approach. The complete
implementation of PeritIsLAND, together with clarifying examples and the experiment dataset,
are available on the website http://miler.inf.usi.ch/PetitIsland.

Reflection. We claimed that recognizing the structured parts embedded in textual development
artifacts, such as emails, is essential for conducting an appropriate mining and extract informa-
tion that is useful for program understanding and software development. Nevertheless, we also
mentioned that development emails are also made of a large amount of irrelevant information,
or noise. The techniques presented in this chapter are not able to deal with this additional noise,
because only focus on certain fragments. In the next chapter, we make a step further and we em-
ploy our PemitlsLaND approach in conjunction with machine learning to fully classify the content
of development emails, so that also noise can be removed and natural language sentences can
be correctly recognized.

157

http://miler.inf.usi.ch/PetitIsland

Chapter 9

Classification of Lines in Development Emails

In the previous chapter we presented techniques for recovering structured fragments embedded
in natural language text. In this chapter, we show how they can be used together with machine
learning to achieve a precise classification of the lines of development emails. In this way, it
is possible to know exactly which “languages” compose a text and apply to most appropriate
techniques for extracting reliable information from them.

9.1 Overview

We present a work for advancing the analysis of the contents of development emails. We argue
that we should not create a single bag with terms indiscriminately coming from natural lan-
guage parts, code fragments, email signatures, patches, efc. and treat them equally. We need to
recognize every language in an email to enable techniques exploiting the peculiarities of each
category. This work contributes to a deeper and more detailed analysis of email communication
among developers and is also applicable to similar “unstructured” data.

We propose an approach, based on a combination of parsing techniques and machine learning
methods, to classify the contents of development emails in five categories: natural language,
source code, patch, stack trace, and junk (text that does not add valuable information, such as
auto-generated disclaimers, authors’ signatures, or erroneous characters). Our technique works
at the line level, which—by inspecting hundreds of emails—we found to be the appropriate
granularity for email content classification. We created a web application to manually classify
email content in the chosen categories. We classified a statistically significant set of emails from
four Java OSS systems, used to evaluate the accuracy of our approach.

Contributions of the chapter. In this chapter, we present the following contributions:

o We identify that development emails are composed of a number of languages that have to be recog-
nized to enable subsequent ad-hoc analyses. We motivate the importance of the work presented
in this chapter in the next section.

o We create a novel approach that fuses island parsing and machine learning techniques for classifica-
tion of email lines. Our approach, named Mucca, is able to perform automatic classification
of the content of development emails into five language categories: natural language text,
source code fragments, stack traces, code patches, and noise.

o We create a web application to manually classify email content. We extend the MiLer GaME by
creating a novel user interface and adding new features.

159

Chapter 9 Classification of Lines in Development Emails

Alice wrote: (17) public void setEnclosingFig(Fig each) {
> On Mon 23, Bob wrote: (18) super.setEnclosingFig(each);
>> Dear list, (19) if (each != null Il (each.getOwner() instanceof MPackage)) {
>> When starting up ArgoUML on my MacOS X system (Java 2) (20) = (MPackage) each.getOwner(); }
>> it throws a NullPointerException very soon. You'll find the
>> trace below. | hope someone knows a solution. Thanks a lot! !(21)The problem is in the condition, | attach the diff with this version:
] § (22) --- src/org/argouml/ui/explorer/Explorer.java (revision 14338)
g (7) >>Exception in thread "main" java.lang.NullPointerException §(23) +++ src/org/argouml/ui/explorer/Explorer.java (working copy)
g(a) >> at §(24)@@ -147,1 41471 @@
g (9) >> javax.swing.event.SwingSupport.fireChange(SwingChange.java) § [...]
é (10)>> at javax.swing.AbstractAction.setEnabled(AbstractAction java) X\ (25) super.setEnclosingFig(each);
é [...] §(26) - if (each != null Il (each.getOwner() instanceof MPackage)) {
% (11)>> at uci.uml.Main.main(Main.java:148) § (27) + if (each != null && (each.getOwner() instanceof MPackage)) {
§(28) m = (MPackage) each.getOwner(); }

12)> I'm sorry | can't help you Bob but thanks for sharing the stack...

(

(13)>Alice.

(14)>-- (30
(

| hope this change is fine by you, if so, please apply it =)
Cheers, Carl.

9)
)
15) > "Beware of programmers who carry screwdrivers." --L. Brandwein : (31)-- | used to have a sig, but it took up much space so | got rid of it!
.) . X . X (32)
I (16) Alice, | believe we must change Explorer.java to fix Bob's problem: (33) To unsubscribe, e-mail: dev-... @argouml.tigris.org
(34) For additional commands, e-mail: dev-... @argouml.tigris.org
I NL text @ source code patch % stack trace junk

Figure 9.1: Example development email with mixed content

* We produce a benchmark to evaluate the classification of email lines into five categories, i.e., natural
language, source code, patch, stack trace, and noise. Our benchmark features more than 1,400
emails comprising almost 69,000 manually classified lines.

Structure of the chapter. In Section 9.2 we motivate our work and show how it can improve
software analyses. In Section 9.3 we show how we collected and manually annotated the email
data. In Section 9.4 we detail our classification methods and their evaluation. We discuss threats
to validity in Section 9.5. In Section 9.6 we describe the related work. We summarize our contri-
butions and conclude in Section 9.7.

9.2 Motivation

Figure 9.1 shows the body of an example development email. Due to the variety of languages
used, if we consider the content of such email as a single bag of words, we will obtain a motley
set of flattened terms without a clear context, thus severely reducing quality and amount of
available information. Inversely, by automatically distinguishing the parts composing the email,
we support many tasks, such as:

Traceability Recovery. In Figure 9.1, the email is referring to several classes (e.g., Main, Fig,
and MPackage), but only the class Explorer is critical to the discussion: It causes a failure and
the email’s author changed it to provide a solution. We realize the importance of Explorer by
reading the NL line 16. While analyzing emails for program comprehension (see Chapter 6), we
often found this pattern: Artifacts mentioned in natural language parts of emails are more rele-
vant to the discussion than artifacts mentioned in other contexts (e.g., stack traces). A traceability
method based on bags of words (e.g., those presented in Chapter 4) cannot recognize whether
references to artifacts appear in a natural language context, to increase the link relevance. Such
a method can only use the number of occurrences to weight more certain terms [123], leading

160

9.3 Data Collection and Classification

to imprecise results. In Figure 9.1, a weighting based on occurrences would give the most rel-
evance to class MPackage (mentioned 5 times), which is actually marginal to the discussion. By
recognizing the context in which a term appears, one can elicit weights for words appearing in a document
dynamically and more accurately, improving the traceability links” quality and giving more information
to the user.

Stop Words Removal. To better characterize documents, IR research invites to remove stop words,
i.e., very common words [123], thus weighting more the peculiar terms of a document. This
approach is less beneficial when applied to development emails: By removing stop words, one
reduces the noise in natural language parts, but also deletes information in parts with a different
vocabulary (e.g., source code). For example, deleting the stop word “each” from the content of
Figure 9.1 means also deleting a variable name in a code fragment (lines 17-20) and a patch (25-
28). This is suboptimal, since variable names provide relevant information [111]. Similarly, we
delete important information when we remove programming language keywords from natural
language. By recognizing the different parts that compose an email, one can use different common terms
removal techniques, thus exposing the most relevant information.

Artifact Summarization. Due to the amount of data produced during a system’s evolution,
researchers investigated how to expose only the significant parts to reduce information overload
(e.g., [160]). The proposed techniques are tailored to specific types of artifact (e.g., code [89],
natural language documents [99]) and cannot be applied to mixed documents, such as emails. By
recognizing the different parts of an email, one can use the most suited summarization technique according
to each part’s type and extract correct information.

Fact Extraction. To know the facts expressed in code fragments, patches, or stack traces, one can
use ad hoc parsers. In Figure 9.1, using a parser for patches, one recognizes that the file being
modified is Explorer (lines 22-23). Similarly, natural language text can be analyzed with NLP
techniques [101]. However, ad hoc parsers cannot be applied to mixed content, because they are
not robust enough to manage unexpected data. By distinguishing the type of each email line, we can
exploit ad hoc analysis techniques to extract precise information.

Non-essential Information Removal. In Figure 9.1, 8 lines out of 34 contain irrelevant data—
“junk”. Previous research indicated that some changes in version history are not essential, and
that their detection and filtering can improve change-based analysis techniques [102]. Similarly,
the detection and removal of junk from email content increase the data quality [32], thus improv-
ing the quality of analyses. By recognizing the noise in emails, the important data emerges, improving
the information extraction quality.

9.3 Data Collection and Classification

Since we strive for devising a method for reliably and precisely classifying email lines, with the
aim of improving data quality and comprehension, we need data sets that are accurate, compre-
hensive, and of statistically significant sizes. This is critical for the validation and leads to more
reliable training for the supervised classification methods. To this aim, we extended the MiLEr
GAME (see Section 3.2.1) to assist the manual classification of email content in categories.

161

Chapter 9 Classification of Lines in Development Emails

9.3.1 Data Collection

Different software systems often use different applications to manage email repositories. We
tackled this using our issue by importing data using our MiLer importer for MARKMAIL (see
Section 3.2.1).

Table 9.1: Email data sets used in the experiment, by system

S Emails
ystem Population Filtered Sample
ArgoUML 25,538 25,538 379
Freenet 23,134 23,134 378
JMeter 24,005 5,814 361
Mina 21,384 14,499 375
Total 94,061 68,985 1,493

Table 9.1 shows the four software systems and mailing lists we considered (for more informa-
tion on the systems see Section 3.4). We selected unrelated systems emerging from the context
of different free software communities, i.e., Apache, ARGoUML, and Freener. The development
environment and paradigms, and the usage of the mailing lists are likely to differ, thus mit-
igating external validity threats. We imported all the messages starting from the mailing list
inception (second column in Table 9.1) to the end of 2010. The only pre-processing conducted
on the emails was filtering out messages automatically generated by bug tracking systems and
versioning systems, since they have an easily parseable structure that can bias the results.

From each filtered mailing list, we extracted statistically significant sample sets (last column,
Table 9.1), which were used by the approach without any pre-processing on the text. Since we
had no prior knowledge on the distribution of line categories in the populations, we opted for
simple random sampling [193] to pick the emails. The chosen sizes have a 95% confidence level
and a 5% error margin (see Section 4.2 for more information about sample size determination).

9.3.2 Data Classification

To test our approach and train supervised machine learning classifiers, we needed to manually
classify the 1,493 sample emails. To ease this manual task and alleviate its error-proneness, we
devised MaILPEEk, a web application written in SmMarLTaLk and embedded in our MILER toolset
(see Section 3.2.1).

Figure 9.2 shows MaLPeek’s main window, as it appears in a web browser after a user selects a
mailing list of interest and the application extracts a random email among those not automati-
cally filtered. MarLPEek displays the email metadata (Point 1), and content (Point 2) with vertical
bars to show indentation levels and increase readability.

Users conduct the classification task at the character level: To label a block, they (1) click on
starting and ending characters, (2) verify the correctness of the selection (which is shown in a
yellow background), and (3) apply the appropriate category, either by clicking on a button in
the left menu (Point 3), or by using keyboard shortcuts. The character granularity provided us

162

9.3 Data Collection and Classification

8 O (,/o [seaside)
€ 9 C | ® che.inf.usi.ch:7171/mailpeek?_s=7gR6LOXccekXU-gc&_k=f2kyB40OJAkpQCS7d Pkt §
M
Mailpeek! _@
|Home Mailing Lists Markmail Downloader Q
rom: Thomas N. (thn...@gmx.de)
Date: 2001-10-25T04:32:55Z
Mail id: gkiu3hixbsaxccsm
text (1) Mailing List: org.tigris.argouml.dev

|Back Save Skip Next |

- Re: Rationale for Th;ead.sleep(looo) in Worker ?
II can add the comments into the code, but I looked in the trunk, @

|
patch (3) Iand the code is a little different.

stacktrace (4)

would also be very useful:

if (selector.keys().isEmpty()) { synchronized (lock)

{ if (selector.keys().isEmpty())) { worker = null;
! break; }
=

S
This relates to the question of visibility you mentioned

|

|

|

|

| . .

| A comment in that same method for this chunk of code
|

|

|

|

|
|
| earlier. Why are we stopping here? A comment would be great!
|

Figure 9.2: Mailpeek: our web app for classifying email content

the basis to decide which granularity was appropriate for the automatic classification, i.e., line
granularity (see Section 9.3.3).

When users hover with the mouse on any character in the email content area (Point 2), the char-
acter font size triples (Point 4). According to Fitts” Law [119], this eases the selection, thus de-
creasing fatigue and errors.

Once an email is completely classified, the user clicks on save (Point 5) and MarLPEex loads
another random email among those not yet classified. The skip link allows the user to leave out
non-valid emails that were not removed by the automatic filtering phase. The top menu (Point
6) allows users to change mailing list or trigger the importer.

Two graduate students from the REVEAL Research Group at the University of Lugano, with
several years of Java programming experience, conducted the manual classification task on two
distinct sets of emails. We evaluated the inter-rater agreement by asking them to also classify 5%
of the emails analyzed by the other person. In this sample, we found 12 non-concordant lines
(less than 0.2%).

163

Chapter 9 Classification of Lines in Development Emails

9.3.3 Data Distribution

Table 9.2: Distribution of the categories per line, by system

ArgoUML Freenet JMeter Mina

NL Text l 10,945 47.2% 7,923 59.6% 7,778 41.8% 6,496 51.2% 33,142 48.9%

Junk 11,122 47.9% 4,096 30.8% 9,734 52.3% 4,633 36.5% 29,585 43.6%

Patch 470 20% 986 74% 339 18% 287 23% 2,082 3.1%

Source Code 304 13% 29 02% 591 32% 990 7.8% 1,914 28%

Stack Trace 364 16% 254 19% 165 09% 286 23% 1,069 1.6%
Total 23,205 13,288 18,607 12,692 67,792

Table 9.2 reports categories’ distributions in the sample sets. Most lines are NL; more than 30% of
lines are junk, thus stressing the impact of noise on email data; the frequency of other categories
is lower and the ranking changes according to the mailing list. The different composition of the
email sets” contents reflects the different usage of mailing lists among the communities. Some
lines are hybrid: they belong to more than one category, and are mostly composed of junk not
separated by the NL text. They account for less than 5% of the population (i.e., 3,362 lines). To
mitigate the bias in the experiment we include them as separated instances.

9.4 Experiment

We created a number of techniques based on ideas gathered both from the IR field, which we
reshaped and adapted, and from language programming parsing. Even though the techniques
can be used in isolation, we achieved the best results by creating a unified approach (detailed in
Section 9.4.5).

9.4.1 Term Based Classification

“Most current IR systems are based on a kind of extreme version of compositional semantics in which the
meaning of a document resides solely in the set of words it contains” [101]: In IR systems, documents
are considered as bags of words, where syntactic information, ordering, and constituency of the
words play no role in determining their meaning. In practice, this is the same as vector space
modeling, which we used in Chapter 4: Each document is modeled as a vector of features, which
correspond to terms in the corpus vocabulary. For example, if we consider a document (d), the
cardinality of the vocabulary (|C]), and how many times each term (¢;) occurs in d, we could
define the document vector as in Equation 4.5.

This vector modeling has been widely used with supervised machine learning algorithms to
achieve very effective results in automatic text classification [123; 176]. We ground the first tech-
niques on the same basis: We consider lines as vectors of terms and use machine learning for
their classification (as in Figure 9.3)

164

9.4 Experiment

t1 b t3 t4 tc
Ly 0 1 3 O 0
L, O 1 0 2
I 0O 0 1 2 .- 1

Figure 9.3: Lines modeled as vector of term-features

In the following we describe and motivate our choices in terms of the used machine learning
technique and vector features (i.e., terms), which cannot be based on results from the IR field, as
they refer to other domains and classification tasks.

Machine-Learning Method. We employ Naive Bayes, a method of supervised learning (i.e., machine
learning algorithms that use classified training examples to infer the classification function).
Naive Bayes relies on the conditional independence assumption: The presence of a feature is unre-
lated to the occurrence of the other features. Even though the assumption is a strong simplifi-
cation, the method often outperforms more sophisticated techniques [101]; in particular in text
classification, Naive Bayes achieves significant results [42]. An asset of Naive Bayes is its lin-
ear complexity, which allows training and classification to be performed efficiently, even with a
very large number of features.

The method uses Bayes’ rule [101] to compute the probability that a line /, made of t; terms,
belongs to class c:

P(c|l) = P(c) [[P(tkle) (9.1)

k

It computes the posterior probability P(c;|l) for each class and chooses the one with the highest
probability. This is the maximum a posteriori (MAP) hypothesis [101]:

Chrrap = arg gg)cg P(c|l) = arg il:gé P(e) 1;[P(tglc) (9.2)

If we want to classify the line d = ““Alice wrote :” as text, junk, or code, the algorithm first
computes the probabilities as: P(text|l) = 0.43, P(junk|l) = 0.55 and P(code|l) = 0.02, then
selects the value 0.55, thus classifying [as junk.

Given the high number of probability multiplication performed, the calculated values may be-
come too small to be represented by float numbers: This may introduce the risk of underflow.
To avoid this issue, Naive Bayes computes the values as logarithms. Moreover, when a term
does not occur in the training test, the calculated probability would be zero, thus Naive Bayes
also applies a Laplacian smoothing to the product.

165

Chapter 9 Classification of Lines in Development Emails

Selection of the Terms. The selection of the terms is essential to the right functioning of this
approach. This is how we considered the terms:

Words. They are the fundamental tokens of all the languages we want to classify. We judge the

words in our corpus of 67,792 non-empty lines to be proper features for line modeling.
Contrarily to most IR methods, we do perform neither stop word removal (i.e., excluding
very common words), as we expect very frequent words to be representative of a class
(e.g., Java keywords in code), nor stemming (i.e., collapsing the morphological variants of
a word), as we expect some variants to be more characteristic of certain classes (e.g., verb
tenses in NL text).

Punctuation. We must distinguish lines written in languages with different syntaxes, thus we

consider punctuation to be a valuable aspect. Unless the punctuation marks are separated
by words or spaces (e.g., the dots in javax.swing., are two occurrences of the feature
javax.swing.), we consider them as a single term, thus recognizing special characters,
such as javax.swingee in line 24 in Figure 9.1. We do not consider email reply threading
characters (e.g., > and >> in lines 2-15 in Figure 9.1) at this point, as they do not have a
definite role for line classification.

Bi-grams. Naive Bayes relies on the conditional independence assumption, which makes the

modeling of NL text features feasible. However, the other considered languages have a
stricter syntax where patterns of terms appear together (e.g., “public void” in code). To
model this dependency characteristic of some terms, thus also reducing the negative ef-
fects of Naive Bayes’ assumption, we also consider bi-grams (i.e., pairs of terms appearing
one after the other).

Context. All the features considered so far are extracted only from the line under classification.

However, some of the considered classes (i.e., patch and stack trace) have a structure rec-
ognizable only by considering surrounding lines. For example, line 18 and line 25 have the
same content, thus can be mapped to the correct class only considering the context lines.
Researchers proposed to solve a similar problem by adding features with characteristics
of lines close to the one under classification [43; 185]. We adapt this approach to our case
and consider what appears in the preceding and following lines. For example, in addition
to @@, we have the features ee-1lineBefore, and ee-lineaAfter.

Table 9.3: Results with term based classification, by feature sets

Number 10-fold cross validation Mailing list cross validation
of Features Correct Lines Impr. sig. Correct Lines Impr. sig.
Words 12,658 46,555 68.6% 46,056 67.9%
Words, Punctuation 19,384 62,938 92.8% p <0.001 58,172 85.8% p <0.001
Words, Punctuation, 145,187 63,413 935% p<0.001 58,568 86.4% p < 0.001
Bi-grams
Words, Punctuation, 435561 63,708 93.9% p < 0.001 60,580 89.4% p <0.001

166

Bi-grams, Context

9.4 Experiment

Line Modeling. After defining the aforementioned features, we modeled each line as vector a of
n + 1 dimensions. The first n elements are the chosen features, while the last one is the manual
classification value (e.g., patch). The first column of Table 9.3 shows the values of n according
to the considered subset of features. Each feature is populated with the corresponding term’s
occurrences in the line (e.g., if the feature ¢; stands for the term “public”, and the line [contains
two occurrences of it, then in v;, we have ¢;;) = 2). When a line contains terms that are not
mapped as feature, they are discarded.

9.4.2 Training and Testing

Since we use a supervised machine learning algorithm, we need to train it on classified data.
We use two different approaches for training the model and show how this affects the results
when testing of the model’s accuracy. To evaluate the model’s accuracy, we count the number
of correctly classified lines and we use the IR metrics presented in Section 4.2.4: precision (Equa-
tion 4.2), recall (Equation 4.3), and F-measure (Equation 4.4). T'P (true positives) are correctly
classified lines, F'P (false positives) are not correctly classified lines.

Ten-Fold Stratified Cross-Validation. As a first step, we apply 10-fold stratified cross validation
[193]: We split the dataset in 10 folds, use 9 folds (90% of the lines) to train the prediction model,
and use the remaining fold to test the model’s accuracy. This process is repeated 10 times rotating
the training and testing folds. The distribution of classes is kept equal in training and test sets.
Columns 2 and 3 in Table 9.3 show the results. Each subset of features adds information that
increases the results in a significant way (column 3). When considering all the features, the ratio
of correctly classified instances reaches almost 94%.

Mailing List Cross-Validation. Different mailing lists discuss about different systems and are likely
to use different words and jargon. For example the mailing list signature (e.g., lines 32-34 in Fig-
ure 9.1) have different terms in each mailing list. Thus, term-features that work for one mailing
list may not be useful for others. To better test the generalizability of the results achieved by the
classifier, we conduct a “mailing list cross validation.” In practice, it is a 4-folds cross validation,
in which folds are neither stratified nor randomly taken, but correspond exactly to the different
mailing list: We train the classifiers on three mailing lists and we try to predict the classification
of the remaining mailing list. We do this four times rotating the mailing lists and we measure
the average results. Columns 4 and 5 in Table 9.3 show the results.

As expected, testing with mailing list cross validation, the classifier performance drops, even
when considering all the features. However, this is a more relevant test to understand the results
of the classifier applied to unseen Java development mailing lists, and we use it in following.

Table 9.4 reports the confusion matrix [123], precision, recall, and F-measure values for the clas-
sification with all the term-features (i.e., words, punctuation, bi-grams, and context). The best
results are achieved in classifying text, junk, and stack trace, while patch and code are often mis-
classified among themselves. This is reasonable, since recognizing those lines requires a large
context: Even a human reader cannot determine to which class line 28 in Figure 9.1 belongs
without inspecting many lines. However, differentiating code and patches might be useful for
various tasks, such as improving traceability links or automatically estimating the topic and
purpose of the email (see Section 9.2).

167

Chapter 9 Classification of Lines in Development Emails

Table 9.4: Mailing list cross validation on the best set of features
Source Stack

classified as > NL Text Junk Patch Precision Recall F-Measure
Code Trace

NLText] 32062 1,046 20 8 6 0894 0967 0.929

Junk il 3,269 26,225 54 14 23 0.942 0.886 0.913

Patch s 207 343 946 585 1 0.452 0.454 0.453

Source Code [309 121 1,074 410 0 0.403 0.214 0.280

Stack Trace 2 35 97 0 0 937 0.969 0.877 0.920

9.4.3 Term Based Features and Overfitting

By considering the entire set of features (i.e., words, punctuation, bi-grams, and context), we
obtain a complex classification model with more features than training instances. In such a
scenario, overfitting is likely to occur—this hypothesis is supported by the reduced performances
of the classifier in mailing list cross validation (see Table 9.3). By reducing the features that are
not valuable to correctly predict instances outside the training set, we decrease overfitting and
increase the generalizability of the results.

Since we use words and punctuation to describe the common traits of each language, we hy-
pothesize that the terms that rarely occur in the corpus are less relevant and can be removed.
We investigate this hypothesis by gradually filtering out features (from all four kinds) that ap-
pear in less than ¢ lines and inspecting the results. We consider all the values of ¢ from 1 to 22,769
(i.e., lines in which the most occurring term . appears).

Ratio of correctly classified lines
1

/—Best result on Training, 1 line threshold

k
\0

Best result on Testing, 11 lines threshold

0.9
= Training results
0.8)
Testing results Y
\Highest ratio between results
0.7 of testing and training, 548 lines threshold
0.65 ; : ; ; ‘
0 1000 2000 3000 4000 4600

Minimum number of lines in which a term must appear to be considered as a feature

Figure 9.4: Results on training and test sets, by line threshold for features

168

9.4 Experiment

Figure 9.4 shows the average classifier’s performance in mailing list cross validation, with ¢ rang-
ing from 1 to 4,587 (higher values reduce the number of features to less than 10 greatly reducing
the results). The blue dashed line (above) is the average percentage of correctly classified lines
on the training set, while the red solid line (below) is the average percentage on the test set. The
best result on the training set (i.e., 96.1%) is set at ¢ value of 1, (i.e., we consider all the features,
115,864 on average when training on three mailing lists), while the best result on the testing set
(i.e., 89.9%) is set at ¢ value of 11 (i.e., 5,618 features on average), which reduces some noise. The
optimal ¢ value for the best testing set results, however, changes according to the mailing list:
Two lists have a ¢ value of 2, one of 25, and one of 46. A valid approach to find a good value
for ¢, also for unseen data, is to consider the point with the highest ratio between testing results
and training results [193]. We find this hot spot with a threshold of 548 lines (i.e., 122 features on
average). Interestingly the number of features is a tiny fraction of the initial ones, but the testing
results are reduced only by a 1.5% (i.e., 88.3%). Higher thresholds lead to lower performances.

9.4.4 Parsing Based Classification

We tackle the classification from a different perspective and use a different approach: parsing.
In fact, three of the considered classes (i.e., stack trace, patch, and source code), which are either
produced or consumed by a machine, present a clearly structured and defined syntax that may
be recognized even if embedded in a noisy unstructured context. We use PeritlsLanD described
in Chapter 8 to write a specialized parser per each class (excluding NL text), based on the concept
of island parsing [136]. We detail only the most salient features of each parser. The complete
source code is available at http://mucca.inf.usi.ch.

Stack trace island parsing. To illustrate how we implemented island parsing of stack traces, we
define some terminology to refer to the various parts of their structure. Consider, for example,
Figure 9.1:

¢ the exceptionMessage refers to the natural language message usually included at the be-
ginning of stack traces (e.g., line 7);

¢ the atLine refers to a line that reports a method invocation occurred in a specific file (e.g.,
lines 8-11);

* theellipsisLineisaline used toreducelengthy stack traces and has the form: “... <number>
more”;

¢ the causedByLine is a line that might appear at any point in a stack trace to introduce a
new nested trace and has the form: “Caused by: <stacktrace>".

We defined a parser class for parsing stack traces:

1 PPCompositeParser subclass: #PPStackTrace
2 instanceVariables: 'stackTrace stackTraceLine atLine ellipsisLine [...]

Among the productions, we defined atLine and ellipsisLine because they have the most rec-
ognizable form. By plugging PPStackTrace into a new instance of PPIsland and testing our
approach on the whole corpus we found no errors in extracting these parts of the stack trace:

169

http://mucca.inf.usi.ch

Chapter 9 Classification of Lines in Development Emails

PPStackTrace>>atLine
Aat , qualifiedMethod ,
leftParenthesis , classFile ,

1

2

3

4 ((colon , number)

5 / (comma, compiledCode)

6 / (leftParenthesis , compiledCode , rightParenthesis)) optional ,
7

rightParenthesis

8 PPStackTrace>>ellipsisLine
9 Aellipsis, number, more

The exceptionMessage and the causedByLine elements have a mostly unpredictable structure
(e.g., different Java virtual machine versions may output the same error message differently),
thus they cannot be parsed with a specific grammar. To overcome this issue we use a double-
pass approach: In the first pass, we recognize and mark all the occurrences of atLine and el-
lipsisLine; in the second pass, we look for each line that contains strings such as “exception”,
“error”, “failure”, etc. When such a line exists, if the next n lines belong to those lines marked in
the first step, we classify it and all the lines up to the first atLine as stack trace. We empirically
found the n value equals to 3, to be a good tradeoff between precision and recall.

For example, if we apply our stack trace parser to the email in Figure 9.1, in the first pass, it
would classify lines 8-11 as stack trace; in the second pass, it would consider lines 5 and 7 as
exceptionMessage candidates, since they both contain the string “exception”. Finally, it will
only pick line 7, because in the next 3 lines there is an atLine element (in this heuristic, we also
count the empty lines, such as the line between 6-7).

Since this method does not require training, we tested it on the all manually classified instances,
reaching an F-measure value of 99.1% in the classification of stack trace lines. The complete
results are reported in the first row of Table 9.5.

Patch Island Parsing. For the patch parser, we also define some terminology for their typical
structure. Again, consider Figure 9.1:

¢ the patchHeader refers to the first two lines of a patch, which contain the reference to the
modified file and, optionally, the revision versions (e.g., lines 22-23);

¢ the patchBlockHeader refers to the lines detailing the modification done by the patch on
a chunk (e.g., line 22);

* the patchBlock refers to all the lines in the chunk (e.g., lines 25-28).

A single patch has only one patchHeader, while it might have multiple occurrences of patch-
BlockHeader followed by the respective patchBlock

We devised a parser, PPPatch, adopting an approach similar to the one of the stack trace parser:
We started from the most recognizable lines and expanded to include the more ambiguous ones.
The parsing is done in a single pass: We wrote a production for the patchHeader, even if split
on multiple lines, by using the tokens ---, +++, and ee as hooks; then we generated a parser that
first recognizes the patchBlockHeader (thanks to its clear structure), then matches the following
patchBlock. The patch blocks are problematic, since they have variable length and their ending
is not clearly defined. In fact, after the deleted and added lines (which are marked with initial

170

9.4 Experiment

+ or - signs, as in lines 26-27), patches include some contextual lines: Their number may vary
between zero and three, or more if not well formatted. Bird et al. tackled the patch block ending
issue both by using the information about the range to be found in the patchBlockHeader and
by analyzing how a line starts (usually the context lines should be preceded by a space) [35].
However, in our dataset we found this information to be not reliable, because of unexpected
line breaks and wrong formatting. For this reason, we implemented a lookahead heuristic that
checks whether the lines after the + or - signs might be good candidates as patch. The heuristics
checks whether the lines are source code, by using a reduced version of the PPJavaIsland parser,
and in the positive case it classifies them as patch.

The complete results are reported in the second row of Table 9.5. As expected, since we used a
conservative lookahead threshold (maximum four lines), we have a higher precision and lower
recall. By manually inspecting the false negatives, we noticed that the low recall is also due to
some patch lines that have neither patchHeader nor patchBlockHeader, thus resulting ignored
by our parser.

Source Code Island Parsing. Among the three classes with structured language (i.e., stack trace,
patch, and source code), code is the most ambiguous. We used a preliminary version of the
PPJavaIsland presented in Section 8.8. We note that our island parser for source code would
match most of the content of a patchBlock, because they do contain valid source code. This
increases the number of false positives. For this reason, we chain the source code parsing to the
patch parsing: We first detect the patches, then, on the lines that are not classified as patch, we
run the source code parser. As a beneficial side effect, this chained procedure reduces the text
and the ambiguities to be managed by the island parser, thus increasing the performances. The
complete results are reported in the third row of Table 9.5.

Junk Parsing. Noisy text, such as authors’ signatures, is hard to automatically distinguish from
NL text; however, some peculiar common patterns can be matched with a parser. This approach
is made of three steps: (1) matching and classification of email headers (e.g., lines 1 and 2 in
Figure 9.1) with a regular expression; (2) identification and extraction of signatures of mailing
lists (e.g., common lines added to the end of every email sent to the same list, such as lines 32-34)
and authors; and (3) usage of the recognized signatures to automatically compose a grammar for
generating a parser to match them, under any possible formatting or position in the email body.
To recognize signatures, we consider all the emails whose last block of text is not quoted from
previous emails (this can be easily achieved by considering lines that do not end with email reply
threading characters, such as > and >> in lines 2-15 in Figure 9.1). In these emails, the authors
themselves conclude the message and most probably include their signatures. For example, the
email in Figure 9.1 contains the author’s signature in the last block. Among the selected emails,
we only consider the last not quoted block. We analyze it backward starting from the last line
(e.g., from line 34 up to 16). When we encounter a line that starts with, or is only composed of,
two or more dashes, underscores, or stars, we take out the lines up to the bottom and consider
it as a signature. The process continues up to the top of the not quoted block. For example, the
algorithm applied to the email in Figure 9.1 extracts lines 32 to 34, and line 31 as signatures.

By classifying these blocks as junk, we would miss the cases in which signatures are in quoted

text (e.., lines 14-15). We, thus, conduct the third step: We automatically define a grammar from
each extracted string able to recognize the signature in any possible position or formatting the

171

Chapter 9 Classification of Lines in Development Emails

text; then, we use these grammars to automatically generate the relative parsers; finally we clas-
sify matched lines as junk. This approach reaches an F-measure value of 81.2%, by recognizing
more than 65% of the junk lines.

Results. Table 9.5 reports the results of each parser in the classification of the lines into the
corresponding type. For example, the first line covers the results in using the Stack trace parser
to classify lines as stack trace. The false positives (e.g., 4 in the first row) are lines classified as
stack trace by the method, but with a different manual classification.

Table 9.5: Single classification results achieved by using parsers

Total Instances TP FP Precision Recall F-Measure
Stack trace parser 1,069 1,054 4 0.996 0.986 0.991
Patch parser 2,082 1,996 0 1.000 0.959 0.979
Source code parser 1,914 1,715 74 0.959 0.896 0.926
Junk parser 29,585 20,372 226 0.989 0.689 0.812

All the parsers reach high classification values, while being mailing list independent and requir-
ing no training. However, parsers have limitations: (1) They are manually implemented, and for
this reason they cannot predict or cover all the possible variants of the patterns that they match,
especially due to truncated content; (2) the values reached in classifying junk are lower than
those achieved with the machine learning approach.

We argue that these parsers are not only valuable thanks to the high classification values they
achieve, but also because they are mailing list independent and require no training to be used.
The former feature is given by the fact that the parsers rely on syntactical characteristics of pro-
gramming languages, stack traces, and patches, that are the same across all the mailing list per-
taining to Java systems; the latter feature allows their usage on any textual source of data.

Next, we present a method that overcomes these issues by fusing machine learning and parser-
based approaches and create a more complete, precise, and robust approach.

9.4.5 Unified Approach

This approach fuses the term based classification and the parser-based approaches.

Adding Parsing Results to Naive Bayes. Naive Bayes is not limited to use terms as features: One
can include any relevant aspect as a feature in the classification process. Given these premises,
we add the parser-based classification output to improve the Naive Bayes machine learning pro-
cess. We do this by adding four new features to the feature-vectors, in addition those presented
in Section 9.4.1. Each new feature maps the output of a parser: The value is 1 when the cor-
responding parser matches the specific line, 0 otherwise. We used Naive Bayes and performed
mailing list cross validation. For example, Tang et al. considered the quotation level in which an
email line resides as a valuable feature for recognizing noise [185].

Given these premises, our intuition is that we can add the output of the parser-based classifi-
cation to improve the Naive Bayes machine learning process. We do this by adding four new

172

9.4 Experiment

features to the feature-vectors, in addition to words, punctuation, and bi-grams. Each new fea-
ture maps the output of a parser: Its value is one when the corresponding parser-based classifier
matches the specific line, and it is zero in the other cases. For example, we expect the feature-
vectors corresponding to lines 31 to 34 in Figure 9.1 to have the feature junk parser with value
one, while the other parser-based features with value zero; similarly, we expect the “stack trace
parser” feature to be one for the vector of line 10, while the others to be zero on the same line. It
would be possible that, in a few cases, more than one parser-based features have value one.

With these new features in place, we used again the Naive Bayes machine learning process and
conducted training and evaluation as presented in Section 9.4.2.

Results. Varying the value of the threshold ¢ (see Section 9.4.3), we found the best average results
to be at t = 11. Table 9.6 shows the confusion matrix on the best results achieved by adding the
four parser-based features to the Naive Bayes approach. It correctly classified 62,093 instances
(91.3%), 1,513 more than the previous approach.

Table 9.6: Results adding parser-based features

classified as=> NL Text Junk Patch Sgg;c;e ?::gle(Precision Recall F-Measure

NL Text I 31,898 960 97 158 29 0.908 0.962 0.934
Junk 3,087 25,787 325 203 183 0.962 0.872 0.915

Patch s 55 29 1,719 278 1 0.739 0.826 0.780
Source Code @ 78 13 185 1,636 2 0.719 0.855 0.781
Stack Trace z 9 6 1 0 1,053 0.830 0.985 0.901

Comparing the confusion matrices of the machine learning approaches (Table 9.6 and Table 9.4),
we see that the new features helped to decrease the instances wrongly classified as NL text. Being
NL the most frequent class (see Table 9.2), it has a strong impact on the evaluation of the MAP
hypothesis of Naive Bayes (see Equation 9.2); since the new features reduced the NL class impact,
they play a major role in the classification.

Although achieving the best results so far, this approach has drawbacks. We note that both patch
and code have more than 150 wrongly classified instances: This contradicts the high precision
values of the single parsers. It is probably due to the fact that, even if these parser features have
a high weight in the computation, they are at the same level of the other features that, being
a large number, also influence the results. We expect an approach not having the conditional
independence assumption of Naive Bayes to better model the new features, which are highly
inter-dependent. In the following we explore a two-pass classifier approach to better exploit
parsers, yet relying on Naive Bayes qualities.

Unified Classification Approach. To explain our unified classification approach, we refer to Fig-
ure 9.5. The idea behind this approach is using Naive Bayes to evaluate a partial classification
only on the features based on ferms, and then using another machine learning classifier to model
the fusion of Naive Bayes results and parser-based classifications.

173

Chapter 9 Classification of Lines in Development Emails

— 2 2
Emails [Emails [Emails

Mailing List 1 Mailing List2 ~ Mailing List 3
’

Training Phase

4 ’

,I ’ I I I: |:| R
I "' @ —,—"'
’ 2 L]
- \

\\:
~
S
N
N
N\
N\
\
N

AN
*®

Parser classifiers

Learner

- Merge _
Learner 4 \\‘\\A
Training Set Eﬂ H H @OG @ '

g Phase

' --> D] D D ------ ’ T " L e e e e e e e
! vid OIo @ OIIrmem o
AP
— Classifier H—H—H H—'—H—E —
> > o’ -~ .o -..> $ ©o©oocoooooan
[TestingSet EHH O@‘ glinnnun] (ENEEE S
aive Bayes machine- * / Decision tree machine-
@ learning learning

Parser classifiers —_— -:D

- Classification
m}

=, i
Manual . Automatic
\ E - Comparlson — ! Classification

Emails g Classification

Z ——— Testini

ailing List 4

Figure 9.5: Training and Test Process of the Unified Classification Approach

Training. We first (Point 1) extract the emails from the three mailing lists on which we want to

Testi

174

train the machine learning algorithms, then we provide them—along with the manual
classification—both to the parser-based classifiers (Point 2) and to the Naive Bayes learning
algorithm (Point 3), in the form of feature-vector on words, punctuation, bi-grams, and
context. Naive Bayes trains a classifier, but instead of returning the instance classifications,
it outputs a 5-dimension vector for every line: Each dimension represents a class (e.g.,
junk) and the value is the probability of the line belonging to that class, as evaluated by
Naive Bayes. In other words, instead of picking the highest value and providing the final
classification, we output all the 5 probabilities and we map them to features, thus reducing
the initial features to 5. At the same time, the parsers create other four features, as in the
previous approach. Once both feature sets are evaluated, they are merged into a vector
of 9 dimensions, plus the manual classification (Point 5). This vector is treated by another
machine learning algorithm to train the final classifier (Point 6): The actual output of the
training. The choice of the machine learning technique for the second step is critical: We
need an algorithm to correctly model the peculiar characteristics of our features. We tried
different machine learning approaches, finding that the decision tree [133] is the best suited
one, since it is favorable to the parsers’ features, which are almost mutually exclusive.

ng. The test process is depicted in the bottom half of Figure 9.5. We take emails from the
fourth mailing list and we remove the manual classification. Then, we provide the emails to
the parsers (Point 8) and create the feature-vectors, to be given as an input to the previously
trained Naive Bayes classifier (Point 7). Subsequently, the output of the two technique is

9.5 Threats to Validity

merged in a unified 9-dimensions vector, which it is used as input to the second machine
learning classifier, previously trained, which outputs the final classification. We compare
this classification (Point 10) to the manual one (Point 9) and we evaluate the results. The
training and test phases are repeated 4 times rotating the four mailing lists. We tested the
approach with a range of ¢ values. The highest ratio of correct instances (94.1%) is at t=120,
which is in the range described in Section 9.4.3. The lowest ratio of correct instances with
a t value (i.e., 11) within the range is 92.1%; out of the range, values are lower.

Table 9.7: Results of the unified approach on mailing list cross validation

Source Stack

Precision Recall F-Measure
Code Trace

classified as = NL Text Junk Patch

NL Text I 31,584 1,470 0 87 1 0.937 0.953 0.945

Junk 1,958 27,498 12 115 2 0.943 0.929 0.936

Patch s 68 49 1,935 30 0 0.990 0.929 0.959
Source Code @ 86 118 8 1,702 0 0.880 0.889 0.885
Stack Trace % 18 12 0 0 1,039 0.997 0.972 0.984

Results. Table 9.7 shows the results achieved by the approach on the best ¢ value. This two-steps
approach, which differently merges and model the information, improves the results for all the
classes by increasing not only the results related to the parser classifiers (i.e., patch, stack trace,
and code), but also those connected to the Naive Bayes algorithm. The F-measure values are all
increased, with a decrease in precision of junk classification and in recall of NL classification,
probably due to the overall lower weight given to Naive Bayes results.

9.5 Threats to Validity

Construct Validity. To classify email content we rely on error-prone human judgment. To al-
leviate this issue, we devised a web application to ease the annotation process. Two annotators
cross-inspected 10% of the emails. They found only 12 erroneously classified lines. We corrected
these 12 errors in the set of email that was used for the experiments. Even though we expect the
same low error proportion in the rest of the sample, it may affect the accuracy of the results.

Statistical Conclusion. We took representative samples of email populations with a 95% confi-
dence and a 5% error level, which are standard values. Our corpus has 67,792 not empty lines.

External Validity. The approaches we tried may show different results when applied to other
software systems and mailing lists. To alleviate this, we chose 4 systems with unrelated charac-
teristics and developed by separate communities. The usage of the mailing list varies, as con-
firmed by the different line class distributions. To test the generalizability of our approach we
conducted cross mailing list validation. A second threat concerning the generalizability is that
our approach is tailored to a single object-oriented programming language, i.e., Java. How-
ever, since most of the language related line recognition relies on island parsers, it can be easily

175

Chapter 9 Classification of Lines in Development Emails

adapted to other programming languages that have a similar structure (e.g., C, PytHON), without
the need of changing the ground concepts.

9.6 Related Work

Researchers applied natural language analysis techniques to software-related documents and
devised approaches to improve the comprehension of the natural language parts. For example,
Dekhtyar et al. [62] discussed the promises and perils of text mining for natural language soft-
ware artifacts. Here we focus on research on the recognition of the different parts that compose
natural language artifacts.

The work by Bettenburg et al. [32] focuses on making the research community aware of the
noise in email data and presents the importance of a proper cleaning pre-processing phase. The
authors suggest possible filtering heuristics to recognize noise and irrelevant information. Later,
Bettenburg et al. devised INFOZILLA, a tool to recognize and extract patches, stack traces, source
code snippets, and enumerations in the textual descriptions that accompany issue reports [31]. It
is composed of four independent filters, one per category, which are used in cascade to process
the text. The source code filter exploits an approach inspired by island parsing [136], while
the others are based on text matching implemented through regular expressions. In the task
of differentiating documents (i.e., deciding whether they contain or not each category), INFOZ1LLA
reached almost perfect results, with precision and recall values above 0.95 in all the categories.
INFoZiLLa has been applied to investigate relevant features of text in issue reports [211].

Development emails differ from bug comments, as the former ones (1) contain a larger natural
language vocabulary, since the discussion is not limited to bug related issues; (2) present more
noise, generated for example by email headers and authors’ signatures; and (3) pose greater
challenges in text recognition, since many email clients automatically wrap long lines of text,
thus breaking the right formatting [35]. Bird et al. proposed an approach to measure the accep-
tance rate of patches submitted via email in OSS projects [35]. They extracted code patches from
emails and used them to analyze the developers’ interactions.

Some information retrieval approaches targeted the classification of text or the recognition of
information with specific patterns [101], exploiting probabilistic and ML models (e.g., Maxi-
mum Entropy Models [25] or Hidden Markov Models [24]). Tang et al. addressed the issue of
cleaning the email data for text mining [185]. The authors proposed a four-step approach to
clean emails: (1) non-natural language text filtering, (2) paragraph recognition, (3) sentence
boundaries detection, and (4) word normalization. Their method first filters out email headers,
signatures, and program code (without a distinction from patches or stack traces); then it recog-
nizes the paragraphs and sentences that compose the remaining natural language text; finally, it
corrects misspelled words. The authors randomly chose a total of 5,459 emails from 14 unrelated
sources (e.g., newsgroups at Google) and created 14 data sets in which they manually labeled
headers, signatures, quotations, and program codes. Given the labelled data, the authors im-
plemented a classifier for each step of their approach. All the classifiers use Support Vector
Machines (SVM) and are based on specific features (e.g., number of words). At line level clas-
sification, they achieved an f-measure of 0.81 in recognizing code, and 0.98 and 0.90 for header
and signature.

176

9.7 Summary

Carvalo and Cohen devised methods to recognize signature blocks and reply lines in emails
[43]. They worked at the line level and tested the effectiveness of a set of features with many ML
classifiers. In the signature detection task the methods reached an f-measure value of 0.97.

In our previous chapter we proposed two approaches based on island parsing to identify, parse,
and model the structured fragments in development emails. In this chapter we embed them
within machine-learning techniques. Machine-learning helps us to avoid the cost of hand-coding
all the classification rules and cover unexpected cases, thus obtaining a more robust classification
approach. We strived for an approach with a fine granularity and a wide breadth, to provide a
robust classification that can be used to increase the quality of subsequent analyses.

9.7 Summary

Email communication contains valuable information to support software development, compre-
hension, and analysis. In this chapter, we presented a technique to automate the analysis of such
valuable, but also voluminous, data that is specifically tailored for software engineering.

We presented a unified 2-step approach that fuses supervised machine learning approaches with
island parsing to perform automatic classification of the content of development emails into five
language categories: natural language text, source code, stack traces, code patches, and junk.
The results obtained are very positive, even with cross mailing list validation. In fact, parser-
based classifiers are mailing list independent and offer a solid basis made more robust by the
probabilistic machine learning approach.

Reflection. This work is a step toward a more effective exploitation of email data. Although it
does not prove our thesis by itself, it is a valuable mining approach for unstructured data that al-
lows improved traceability recovery techniques, refined artifact summarization approaches, and
more precise fact extraction methods. These are all activities that have been proved to support
software understanding and development.

177

Part IV

Epilogue

179

In Part Il and Part 111, we aimed at proving our thesis by creating approaches to overcome the challenges
in mining unstructured software data, and then by building on top of these approaches to devise analyses
and tools to support software development and program comprehension. In the following (and last) part
of this dissertation, we take a step back from our approaches and findings, and we conclude our work.

In this dissertation, we particularly focused on development mailing list, especially because of their noisy
and mixed language content that constitutes a veritable acid test for our mining approaches. Moreover, we
chose OSS development mailing lists for our analyses, because they have been considered—historically—
the hub of project communication at the inception of the first OSS communities, such as Linux and Apache.
For this reason, when studying OSS developers’ communication, many researchers focused on develop-
ment mailing lists: For example, to investigate the handling of patches [35; 1651, or developers” social
networks [361. We followed the same path.

As a first step in this epilogue, in Chapter 10, we re-investigate the role of OSS development mailing lists,
which have been the subject in most of our dissertation. In fact, during our analyses we sensed that mailing
lists in OSS communities have been facing a shift with respect to their usage in the first years of the first
OSS projects. Future work should be based on informed assumptions, thus we decided, before concluding,
to conduct a work to update our knowledge on the mailing list data available nowadays and probably in the
future. This helps us to target our future research to the most important information available in mailing
list and also to the most promising repositories of unstructured data.

In Chapter 11, we conclude this work, by enumerating the contributions we made in the course of our
dissertation and by describing steps we envision as valid future work.

181

Chapter 10

Communication in OSS Mailing Lists

Open source software (OSS) development teams use electronic means, such as emails, instant
messaging, or forums, to communicate. Conversations in OSS settings are typically conducted in
an open public manner and are stored for later reference [36]. For this reason, OSS communica-
tion repositories offer a rich source of historical information, which can be used, for example, to
observe software processes [175], to understand software developers’ communication dynamics
[172], and to improve development practices [178].

Mailing lists have been considered—historically—the hub of project communication at the in-
ception of the first OSS communities, such as Linux and Apache. For this reason, when studying
OSS developers’ communication, many researchers focused on development mailing lists: For
example, to investigate the handling of patches [35; 165], traceability concerns [18], or develop-
ers’ social networks [36].

These and other studies (e.g., [146; 38; 154; 171; 12; 168]) are mostly based on the conventional
wisdom that the role and usage of the development mailing lists (of the analyzed project) are
similar to that of Linux [162] or Apache [134] in their first years. This leads to a number of
assumptions, such as that development mailing list “are primarily concerned with the software under
development” [154], and that “communications by means of [elmail is the only possible way for [OSS
developers] to interact with each other.” [23]

Nevertheless, there is no clear, updated, and well-rounded picture of the communication taking
place in open source development mailing lists that supports these assumptions. In fact, at our
disposal, we only have either abstract and outdated knowledge (e.g., obtained as a side effect of
the analysis of the Linux project), which does not consider the recent shift of interest to new social
platforms (e.g., GitHub and Jira), or a very specialized understanding (e.g., regarding specific
information, such as the process of code review [168]), which does not take into account all the
information that can be distilled from development emails.

In the previous parts of this thesis, we (mostly quantitatively) analyzed a large number of emails,
and we sensed a change in the usage of development mailing lists across OSS systems. In this
chapter!, we present an analysis to update our knowledge on development mailing lists, so that
we can better guide future work on mining this source of information.

1 the work presented in this chapter was performed in collaboration with Anja Guzzi, Delft University of Technology.

183

Chapter 10 Communication in OSS Mailing Lists
10.1 Overview

Our goal is to increase our understanding of development mailing lists communication: What
do participants talk about? How much do they discuss each topic? What is the role of the devel-
opment mailing lists for OSS project communication? Answering these questions can confirm or
cast doubts on the previous assumptions, and it can provide insights for future research on min-
ing developers’ communication and for building tools to help teams communicate effectively.

To answer these questions, we conducted an in-depth analysis of the communication taking
place in the development mailing list of one major OSS software system, i.c., the Apache Lucene
project. We set up our study as an exploratory investigation. We started without hypotheses
regarding the content of the development mailing list, with the aim of discovering the topics of
communication, the prominency of implementation details, the position of developers, and the
role of the development mailing list as communication channel. To that end, we manually in-
spected and classified 506 email threads comprising over 2,400 messages, we manually resolved
the aliasing among more than 310 email addresses, and focused on gaining a holistic view on
the information exchanged in the mailing list.

Our results show that, although the declared intent of development mailing list communication
is to discuss project internals and code changes/additions, only 35% of the email threads regard
the implementation of code artifacts. Instead, development mailing list communication also
covers a number of other topics, such as social norms and infrastructure. Also, project develop-
ers participate in less than 75% of the overall threads and they start only half of the discussions.
Finally, the development mailing list is not the sole player in OSS project communication: It is
complemented by other channels (e.g., issue repository) from which it is disconnected.

Contributions of the chapter. In this chapter, we present the following contributions:

* We conduct a qualitative study to understand what data can be found in OSS mailing lists. We
conduct this research to guide future work on this form of unstructured software data.

» We create a coding system that is reusable for analysis of developer communication in general, and
mailing lists in particular.

» We assess the frequency of discussion topics in development mailing list. In particular, we found
that implementation details are not extremely prominent.

* We create two benchmarks: one for email thread categorization and one for resolving aliases of par-
ticipants. Our benchmark are comprised of more than 500 manually classified threads and
more than 310 resolved aliases and email addresses.

Based on our findings, we analyze and discuss the implications for researchers and practitioners
(Section 10.10).

Structure of the chapter. In Section 10.2 we present the methodology we followed in this work,
also presenting the research questions. In Section 10.3 we derive the topics discussed in the de-
velopment mailing list of Lucene. In Section 10.4 we study the distribution of discussion topics.
In Section 10.5 we study the participants of the mailing list, in particular the developers taking
place in the discussions. In Section 10.6 we discuss the current role of development mailing list
in the analyzed project. In Section 10.7, based on our findings, we analyze and discuss the im-
plications for researchers and practitioners. We present the limitations in Section 10.8 and the
related work in Section 10.9. Section 10.10 summarizes the chapter.

184

10.2 Methodology

10.2 Methodology

To explore and understand the communication taking place in development mailing lists, we
performed an in-depth analysis of the development mailing list of Apache Luceng, an OSS in-
formation retrieval framework and API.

We chose Lucene for the following reasons: (1) Lucene is a mature project with a large user
base and an established community of developers. (2) It was started in 1999 by a single de-
veloper, who initially guided it as a “benevolent dictator”. In 2001, Lucene joined the Apache
Software Foundation and became a foundation, with a well-organized, hierarchical governance
structure and formalized policies®. (3) The previous work describing the communication oc-
curring in the development mailing list of OSS projects (e.g., [162; 112]) dates back to the early
2000s, it is high-level and focuses on Linux, which is more of an exception than the rule in OSS
projects [162]. Luceng’s organizational structure sets it apart from the benevolent dictatorship of
Linux; by choosing LuceNE we aim at having an updated knowledge of contemporary develop-
ers’ communication in the development mailing list in a more common OSS setting. (4) LuceNg
has a publicly archived development mailing list with a declared intent: The developer discussion
develucene list is “ where participating developers of the Java Lucene project meet and discuss issues
concerning Lucene [...] internals, code changes/additions, etc.”*

10.2.1 Research Questions

Our investigation revolves around four research questions:

RQ1: What topics are development mailing list participants talking about?

RQ2: How often do participants talk about each topic? How prominent are implementation
details?

RQ3: Is the development mailing list just for developers? What do developers focus on?

RQ4: What is the role of the development mailing lists for the communication in the OSS at
large?

10.2.2 Research Method

We followed the approach depicted in Figure 10.1: (1) we modeled all the mailing list emails, (2)
we reconstructed threads of discussion (removing auto-generated ones), and (3) we randomly
extracted 1,000 threads. Using open card sort [20] (see Section 10.2.4), we manually analyzed
the threads and extracted categories of discussion (4). To ensure the integrity of the extracted
categories, we sorted threads several times and iteratively refined the catalogue (5). During the
cart sort, we took notes about the mailing list, its role, and the communication occurring in it
(6). We validated the resulting catalogue of categories using closed card sort (7). We comple-
mented the automatically collected email data by resolving aliases and by adding information
about which participants were developers (8). Finally, we conducted a statistical analysis on the
obtained categorized threads (9).

2 http://www.apache.org/foundation/
3 http:/ /lucene.apache.org/core/discussion.html

185

http://www.apache.org/foundation/

Chapter 10 Communication in OSS Mailing Lists

Data Collection

— ()
&

— ——
iR SVN
Discussion M§I|Ing
Threads |ISF
archive Lucene
Sep 2001 website

13,000 111,366 Nov 2012

@ Data Analysis Aliasing and
1,000

E IR G—

Developers

Email Lucene

:> authors committers

Catalogue
of
categories

Validation Outcome

Figure 10.1: The mixed approach research method applied.

10.2.3 Data Collection

We collected the necessary data using the MBox importer in MiLEr (see Section 3.2.1). We also
processed the data in the following way:

Reconstructing threads. An email discussion thread is a set of messages that are logically related,
i.e., replies in the same chain of emails. To reconstruct discussion threads, we use two
complementary heuristics: (1) Whenever possible, we consider the ‘message-ID’ (a glob-
ally unique identifier for emails) and “in-reply-to’ (used to specify the ‘message-ID’ of the
email that it is replying to) fields to reconstruct threads. (2) Otherwise, we consider email
subjects. By manually inspecting the Lucene mailing list, we found that participants are
conservative in keeping the subject consistent with the discussion: When a thread changes
topic, participants accordingly modify the subject of the subsequent emails. Thus, if two

186

10.2 Methodology

emails have the same subject, or two slight variations of it (e.g., they are prefixed by Re:),
we place them on the same thread, using the timestamp for sorting.

Removing automatically generated emails. Many OSS projects forward a number of special auto-
matically generated emails to development mailing list, for example, from the versioning
or the issue tracking systems. For the purpose of our research, aimed at understanding
what participants talk about in a mailing list, we filter out these automatically generated
emails, unless they are answered by a person. Although this filter has to be customized to
the mailing lists under analysis, we used an approach that can be adapted to other lists.
It focuses on the quantity and the thread subject. In fact, automatically generated emails
often outnumber those manually generated and have a well defined subject pattern. We
aggregated threads with a subject starting with the same 10 characters and manually an-
alyzed their distribution. This approach found almost all generated emails.

10.2.4 Card Sort

To group the email threads we used card sort, a technique used in information architecture to
create mental models and derive taxonomies from input data [20]. We used it to organize the
threads into groups to abstract and describe mailing list communication. A card sort has 3 steps:
(1) preparation (select card sort participants and create the cards); (2) execution (sort cards into
meaningful groups); and (3) analysis (form abstract hierarchies to deduce general categories).

Preparation. We created all cards from the sample resulted from the data collection. Each card
(exemplified in Figure 10.2) represents a thread and includes: (1) number of emails,
(2) subject, (3) duration, with timestamp of the first and last emails, (4) the first 15 lines
(removing white lines) in the body of the initial email, (5) email addresses of the partici-
pants involved, and (6) an univocal id for later reference.

Execution phase. The first two authors analyzed the cards applying open (i.e., without predefined
groups, as they emerge and evolve during the sorting process) card sort, adapting the
guidelines for the analysis of qualitative data with grounded theory [81]: They avoided
information related to LuceNE (e.g., its website) and the literature closely related to mail-
ing list communication, as this could have sensitized them to look for concepts related
to existing theory, thus hindering innovation in organizing the threads. They often inter-
rupted the card sorting to memo an idea or concept potentially useful for later analysis (see
Section 10.6). When necessary they consulted the entire thread online. Since the rigor of
the card sorting method is in its analysis [129], instead of working separately on different
cards, and checking the consistency of the sorting and merging the cards in a later phase,
they used pair-sorting. This requires significantly more time, but it brings more value to
the analysis as they discussed discrepancies in their thoughts for each card during the card
sorting itself.

Analysis phase. To ensure the integrity of the emerging categories, the first two authors did a
second pass on all the analyzed cards, starting from small groups that could not be in-
cluded in any larger group, and re-categorizing these cards by redefining some categories.
Subsequently, they analyzed the remaining cards to completely describe the catalogue of
thread categories (see Section 10.3).

We conducted a validation to verify whether the catalogue was written in a clear and under-
standable way that was capturing all the facets of each category (see Section 10.8).

187

Chapter 10 Communication in OSS Mailing Lists

preoreeeooooloiiiieaoo ®

|| was just wondering what is the current development plan status for
jLucene? | have been monitoring the developer's list for some time, and
|have seen very little in the way of CVS commits. | know that may not be
|an accurate barometer of development activity, but there it is.

|Is there any plan for continuing active development of Lucene? How many
|people are working on it? Why aren't there more, and if so, how can we
|recruit them?

11 am willing to help contribute, but without some other active
|developers, I'm not sure how useful it will be.

| The frustrating thing is that from the users list, we all know that

|there is a significant amount of interest in the product, and some
|feature requests, etc.

|Thanks

|Peter Mularien

16 = ['carlson@bookandhammer.com', 'pmularien@deploy.com', 'brian@quiotix.com', |
|'otis_gospodnetic@yahoo.com', 'cmad@lanlab.de’, 'cutting@lucene.com'] @

Figure 10.2: Card Sort: Example Card

10.2.5 Aliasing and ldentification of Developers

Resolving multiple identities (aliases) is fundamental to prepare mailing list data for the statis-
tical analysis of the participants [38]. Although a number of approaches to solve aliasing have
been proposed (e.g., [36; 87]), this task cannot be fully automatized. To avoid bias in our statis-
tical results, we manually resolved aliasing in our data. We started by aggregating on email ad-
dresses, to resolve cases with multiple author names. Then, we manually inspected all possible
combinations of names and email addresses. One challenge we encountered regards a hand-
ful of participants using distinct names and addresses (e.g., John: johnseaddressi.com’, and
‘spacej: spacejeaddress2.co.uk’). To resolve these cases, we read the emails sent from these
addresses. To answer the research question regarding developers communicating in the mailing
list participants (i.e., RQ3), we also identified the official committers of the project: We matched
names and addresses in our sample with the official list of committers*. We also extracted devel-
oper user names from the versioning system log. Matching developers was time-consuming, as
only few developers use their [user-name]eapache . com address listed on the LuceNE website.

10.3 What are mailing list participants talking about?

We extracted email data from the Lucene development mailing list,” from its inception (Sep 2001)
to Nov 2012, totaling 111,366 emails. We aggregated them into threads and removed automati-
cally generated messages. From the resulting 13,019 discussion threads we randomly sampled

http://lucene.apache.org/whoweare.html
org.apache.lucene. java-dev

188

http://lucene.apache.org/whoweare.html
org.apache.lucene.java-dev

10.3 What are mailing list participants talking about?

1,000 threads and printed the corresponding cards for the card sort. After sorting the first ca.
300 cards, the new threads started merging in the same groups, reaching a saturation effect [81].
To add confidence that the saturation point was reached, and to improve the significance of the
subsequent statistical analysis, another 200 cards were sorted, reaching a sample of 506 threads.
The remaining cards were discarded.

Through the card sort 34 groups emerged. During the sorting process we iteratively gave ex-
planatory names to groups and reflected on how they could be clustered into higher level themes.
At the end of this phase, we had clustered the 34 groups into 6 categories and 24 subcategories.
We now describe each category and the corresponding subcategories.

Implementation. The IMPLEMENTATION category covers the threads related to the implementation
of source code artifacts. It comprises topics spanning from proposing new features to be im-
plemented, to discussing implementation details, to contributing with patches. It also includes
emails aimed at understanding the system’s implementation, or the rationale behind an imple-
mentation choice. It comprises four subcategories:

(A.1) CompreHENSION: Participants start comprehension threads to understand (parts of) the
implementation, to verify if their knowledge is correct and up-to-date, and to request clarifi-
cations on the rationale behind a particular choice (e.g., a used pattern or a threshold).

(A.2) Discussion: Participants initiate discussion threads to ask the opinion of others (e.g., “what
do you think about [this]”), or to propose one or more possible solutions or ideas (e.g., “we could
do it like [this], or like [that]”). Usually, discussions revolve around improving an existing code
artifact, and start from the comments on a recent feature implementation, bug fix, or submitted
patch.

(A.3) FEATURE sUGGESTION: Participants initiate this kind of threads to describe new features
from a high-level perspective. Often participants requesting a feature on the mailing list are
not directly volunteering to do it: They mostly propose something for others to do.

(A.4) CopE conTRIBUTION: Participants start these threads to let the community know that they
have working source code ready to be merged in the system. The code may implement new
features; or it may tackle issues that were found by the email author or that were reported in
the official bug repository. Contributions are in the form of patches, pull requests, external
links, or attached code.

Technical Infrastructure. Most OSS software projects rely on a technical infrastructure to sup-
port development, maintenance, and the building process, and to facilitate the communication
among project contributors [73]. This category covers email threads related to such an infras-
tructure; the topics of discussions are (B.1) BUILDING sYsSTEM (e.g., notification of problems with
the building system), (B.2) bocUMENTATION (e.g., decisions on the javadoc), (B.3) 1sSUE TRACK-
ING (e.g., move to a new tracking system), (B.4) MAILING LisTs (not only the development mailing
list itself, but also e.g., the user mailing list), (B.5) PROGRAMMING LANGUAGE (e.g., the version of
[programming language] to use), (B.6) TESTING (e.g., how to use the continuous testing system),
(B.7) VERSIONING (e.g., discussions on branches), and (B.8) wessiTE (e.g., threads on what content
to put in the website). Authors of infrastructure threads write to the list for different reasons,
such as sending notifications, discussing problems, and posing questions.

189

Chapter 10 Communication in OSS Mailing Lists

Project Status. As described in previous work (e.g., [162; 134; 38]), development mailing lists are
also used to raise awareness on the status of the project and to discuss future steps. This category
regards these kind of topics, and includes two groups of threads: those about (C.1) PLANNING
the future development of the project, and those about (C.2) ReLEasEs. Authors of PROJECT sTATUS
threads write to the mailing list to announce a new release, to decide which issues to fix for a
milestone, or to discuss the ongoing activity on the project.

Social Interactions. Socializing is essential for the long-term survival of OSS projects [64], and
mailing lists play an important role in this context [73]. Participants write to the mailing list
about the norms, values, and perspectives that are part of the community’s operational struc-
ture, and to coordinate with others. This category revolves around these social interactions, and
threads are about (D.1) aAckNowLEDGEMENT of efforts (e.g., replying to a code commit to thank
the author), (D.2) cOORDINATION (e.g., raising awareness about an issue in the bug repository,
or notifying a participant’s absence), greetings and suggestions to (D.3) NEW CONTRIBUTORS, and
(D.4) sociaL NoRMs governing the behavior of mailing list participants (e.g., advices on success-
fully submitting a patch). Authors of such threads notify their absence, welcome new members,
thank someone for a well-done bug fix, and tell everyone about newly submitted issues.

Usage. The usaGk category comprises threads with questions and problems about the usage of
the software being developed by the programmers enrolled in the development mailing list, and
it also includes threads related to external projects. It comprises three subcategories:

(E.1) ProBLEMS AND BUGS: Authors ask advice on how to solve issues they have operating the
project, or report a general problem they have found. Participants may also bring up a dis-
cussion about a problem by forwarding emails sent to other mailing lists, or by answering
automatic messages from the issue tracking system.

(E.2) INFORMATION SEEKING: Authors write to ask advice on how to complete an operation (e.g.,
“How to do [this]?”"), on where to find usage related resources (e.g., documentation, examples),
and on the right approach to choose among different usage options (e.g., “What is the proper
means to do [this]?”).

(E.3) ExTerNAL PROJECTS: Participants write, for example, to raise awareness about their own,
external, software project. They ask to be included among the online list of applications using
the main project (e.g., “Powered by”). Participants developing other systems also ask about
including their work as part of the main project.

Discarded. This category groups the threads that do not fit into the categories previously de-
scribed. They are of three kinds:

(F.1) Auto-GENERATED: Auto-generated threads, such as emails from the continuous building
system or the wiki, that were not filtered out by our heuristics.

(F.2) TrasH: Threads exclusively composed of unreadable emails (i.e., due to formatting prob-
lems), and spam emails that are not pertaining to the content of the mailing list (i.e., unsolicited
commercial emails).

(E.3) TurTLE: Email threads that are unrelated to any other thread, or very difficult to classify
due to the nature of their content (e.g., meaningless because out of context).

190

10.4 How often do participants talk about each topic?

10.4 How often do participants talk about each topic?

Our second research question seeks to understand how much participants discuss each topic
and how prominent are implementation details.

Figure 10.3 shows the distribution of the threads among the different categories (see also column

‘threads’ in Table 10.1).

Implementation
Comprehension
Discussion

Feature Suggestions
Contribution

Technical Infrastructure
Bug Tracking

Building
Documentation

Mailing List
Programming Language
Testing

Versioning

Website

Project Status
Planning
Release

Social Interaction
Social Norm
New Contributors
Acknowledgment
Coordination

Usage

Problems & Bugs
Information Seeking
External Project

Discarded

Automatically Generated
Trash

Turtle

L q

0 20 40 60 80 100 120 140 160 180

Figure 10.3: Distribution of threads per category.

IMPLEMENTATION is the most frequently occurring category, comprising 36% of the threads. Since
the declared aim of the development mailing list of LUCENE is to be where “participating developers
[...] meet and discuss issues concerning LUCENE [...] internals, code changes/additions, etc.”, we were

191

Chapter 10 Communication in OSS Mailing Lists

surprised that—in reality—IMPLEMENTATION threads count for just a bit more than a third of all
the threads. This changes from the Linux kernel mailing list (often used for studying developers’
interaction), where impLEMENTATION threads “form the large majority of the traffic on the list.” [85]

In comparison, we found the ratio of usace threads in the mailing list to be surprisingly high
(27%). In particular, half of these threads regard INFORMATION SEEKING (13% overall), in spite of a
note on the LucenE website exhorting participants to “not send mail to this list with usage questions
or configuration questions and problems”. Moreover, threads regarding PROBLEMS AND BUGS account
for 8%. Even considering sampling limitations (see Section 10.8), in Lucenk these threads would
corresponds to less than half of the bugs reported in Jira (up to one fifth, when considering
other types of issues), meaning that in LucenE the mailing list may not be the primary channel
for discussing and reporting problems and bugs.

Threads regarding TECHNICAL INFRASTRUCTURE total 16%. The less frequent thread categories are
SOCIAL INTERACTION and PROJECT STATUs. It was surprising to us that, despite the mailing list always
having been considered the hub for OSS project communication [162; 73], only 7% of the threads
in our sample regard the project status, and 6% regard social interactions among participants.

Finally, there is a not negligible portion (8%) of threads piscarbep during the card sorting. Be-
sides 10 threads with no clear meaning (TurTLE), and—despite the fact that we performed an
rigorous pre-processing and data cleaning phase (Section 10.2)—a substantial amount of noise
(7% of the total threads, from AUTOMATICALLY GENERATED and TRAsH threads) was still present our
sample. We also notice that these threads cannot be clearly distinguished from the other cate-
gories: a third of them are replied (e.g., there are threads automatically generated from the wiki,
which all have the same subject and thus get threaded), almost a third include developers in the
emails (e.g., svn commits initially sent to the mailing list results as sent by the developer author
of the commit), and finally almost a fourth of these threads contain code (e.g., svin commits, and
change logs from the wiki pages).

10.4.1 How prominent are implementation details?

To better understand how prominent implementation details are, we analyzed the distributions
of threads containing code entities (e.g., class names). Are mentioned code artifacts an indication
of discussion about implementation details?

In previous work, Bird et al. reported that the mailing list is made of more than implementation.
They distinguish between process and product, and use the presence of source code names, such as
class names, as classifiers: “Messages that include these source code names are classified as product and
the rest are classified as process” [38]. We also apply this distinction to our data and verify whether
and how it fits to our categories. We considered the entities mentioned in all the releases of
Luceng, and we analyzed threads to determine whether they contained code entities. Results
from our analysis can be seen in the column “with code entities”.

Our results show that 57% of all the analyzed threads contain code entities, and at least a third
of threads in each category contains code entities (except piscarpeD threads, 28%). Of IMPLEMEN-
TATION threads, 77% contains code.

To verify to which degree Bird et al.’s classification fits to our data, we first need to define which
of our own categories are part of product. According to the description, these would correspond
to our IMPLEMENTATION category alone. However, usace and piscarpeD threads would not fit in

192

10.5 Is the development mailing list only for developers?

either definition: we decided to include usaGe as product (since Lucene is an API, many usage
questions regards its code artifacts), while we consider pISCARDED as process.

Our data shows that when only considering threads containing code entities, only 76% of these
threads would be regarding product (i.e., IMPLEMENTATION and usaGe), while the remaining 24%
would actually be about process. Moreover, we would only select 70% of all the iMPLEMENTA-
TION+USAGE threads. This is in contrast with Bird et al. findings, where they estimated a correct
classification in 90% of the cases.

Finally, we used the Fisher’s exact test [193] to test whether there is an association between refer-
encing a code entity and the two categories product and process. The test resulted in a p-value
of < 0.001 indicating the existence of such an association. Next, we investigated the strength
of this association by computing the odds ratio (OR) [193]. OR measures the probability of a
thread referencing at least one code entity to be categorized as product compared to a thread
not referencing any code entity. We obtained an odds ratio of 4.082 with a lower and upper
confidence interval of 2.781 and 6.038. Consequently this probability is four times higher, thus
confirming the association between referencing a code entity and the categorization of threads
into product or process.

10.5 Is the development mailing list only for developers?

Once our categories were stable, and after performing several card sort iterations to ensure the
integrity of our categories, we resolved aliasing and determined which participants were project
developers (i.e., those with commit privileges). Table 10.1 shows the statistical information we
collected on the sample of threads categorized in the card sorting process. We include email
granularity for completeness.

10.5.1 What do developers focus on?

The overall ratio of threads in which at least one developer participated (column ‘with devel-
opers’) is quite high: Developers are present in more than 75% of the treads in each category,
except in UsaGe (55%) and DISCARDED (35%). In PROJECT STATUS and TECHNICAL INFRASTRUCTURE
threads, developers are present in more than 90% of these threads.

Our results also show that in some categories there is a prevalence of threads ‘started by devel-
opers’. However, overall, only half of all the analyzed threads has been started by a developer.
Developers start the majority of threads in Project status (89% of the threads in this category),
TECHNICAL INFRASTRUCTURE, (78%), and socIAL INTERACTION (70%). Only 54% of the IMPLEMENTA-
TION threads are started by a developer. If we look at the subcategories, we can see that only a
third of conTRIBUTION threads was started by developers. This is also due to the OSS structure
in general, where a person can be a contributor without committing rights. Participants write
to the mailing list offering their contributions, hoping that a developer might integrate it in the
project. Moreover, users also occasionally write to the development mailing list with program
comprehension questions or feature requests.

Furthermore, we notice that only 21% of the usaGe threads were started by a developer, and,
in particular, only 4% of the INFORMATION SEEKING threads. It is not very surprising that these
threads are not started by Lucene developers. However, developers also start EXTERNAL PROJECT

193

Chapter 10 Communication in OSS Mailing Lists

categories

A.1 Comprehension
A.2 Discussion
A.3 Feature Suggestion
A.4 Contribution
A Implementation
(36%)
B.1 Bug Tracking
B.2 Building
B.3 Documentation
B.4 Mailing List
B.5 Programming Language
B.6 Testing
B.7 Versioning
B.8 Website
Technical
Infrastructure (16%)
C.1 Planning
C.2 Release
c Project
Status (7%)
D.1 Social Norm
D.2 Contributors
D.3 Acknowledgment
D.4 Coordination
Social
Interaction (6%)
E.1 Problems & Bugs
E.2 Information Seeking
E.3 External Project
E Usage
(27%)
F.1 Auto Generated
F.2 Trash
F.3 Turtle
F Discarded
(8%)
Total

Table 10.1: Categorization of email threads.

46
85
13
36

180

3
19
22

3

4
13
10

7

81

16
21

37

135
24

10
43
506

threads replied

74%
80%
54%
75%

76%

100%
84%
59%
33%

100%
77%
80%
86%

75%

88%
71%

78%
33%
71%

0%
35%

40%
58%
68%
59%

63%
33%
33%
60%

40%

67%

with

74%
86%
77%
81%

81%

100%
95%
95%
67%

100%
92%
90%

100%

94%

94%
90%

92%
100%
86%
100%
65%
7%
70%
47%
52%
55%
25%
44%
50%
35%

73%

developers developers

43%
68%
54%
33%

54%

67%
53%
86%
67%
75%
92%
80%
100%

78%

88%
90%

89%
100%
71%
100%
59%
70%
35%
4%
41%
21%
21%
44%
30%
28%

50%

started by with code unique

entities authors

78%
78%
62%
81%

77%

0%
37%
45%

0%
50%
62%
20%

0%

36%

56%
38%

46%
0%
29%
33%
47%
37%
80%
60%
30%
60%
29%
11%
40%
28%

57%

66
87
19
56

155

25
33

27
21
28
13

76

48
34

63

15

17
30

53
99
45

164

16
19

34
315

developers emails

39%
39%
53%
39%

26%

88%
56%
73%
75%
52%
81%
61%
85%

43%

54%
56%

48%
75%
80%

100%
47%

57%
34%
24%
36%

20%
50%
63%
42%

44%
16%

208
551

35
135

929

24
54
78
4
100
71
76
32

439

233
126

359

26

29
64

128
210
86

424

156
30
27

213
2428

from
developers
60%
70%
66%
59%

66%

92%
72%
83%
75%
54%
94%
78%
94%

7%

84%
85%

84%
83%
85%

100%
41%

66%
45%
37%
52%

43%

5%
77%
44%

20%

63%

with code
entities

72%
70%
51%
62%

69%

0%
24%
37%

0%
18%
42%

4%

0%

21%

19%
28%

22%
0%
19%
33%
38%
27%
81%
61%
24%
60%
19%
20%
33%
21%

46%

threads: They often have side projects, built on top of Lucenk, they want to mention in the

mailing list (e.g., announcing a new release).

10.5.2 Dynamics of interactions

By analyzing the population of mailing list participants, we found that only 16% of the partici-
pants are official committers (column ‘developers’). Thus, the vast majority of participants in the
development mailing list are not Lucene developers. We asked ourselves: How are participants

interacting via the mailing list? Do developers have a particular position?

The column “Unique participants’ indicates the number of individual people participating to
discussions threads. When the number of participants is lower than the number of threads, this
means that people are participating in more than one thread (e.g., this is the case in the MpLE-

194

10.5 Is the development mailing list only for developers?

MENTATION category). Similarly, a higher number of participants than the number of discussion
threads indicates “one-timers” (we observe this in the usaGe and PrROJECT sTATUS categories).

To better understand where participants interact, we counted threads that are replied to (i.e., with
more than one email). The analysis of the replied threads by category gives an idea of the re-
sponsiveness of the mailing list and the “rhytm” of talks within each category. Interestingly,
the threads that are responded the least are those about the sociaL INTERACTION (40% overall).
We also analyzed multi-email threads in terms of first-response rate (i.e., how long before the
first reply). Threads are answered within a day: TECHNICAL INFRASTRUCTURE and SOCIAL INTERAC-
TION threads get faster reactions (first reply within two hours), while impLEMENTATION and USAGE
threads might take up to 21 hours to be replied to. We also measured if there was a difference in
responsiveness depending on who sent the first email (i.e., a developer or not): We did not find
a statistically significant difference.

10.5.3 The overall picture

Figure 10.4 puts all the threads in our sample in a nutshell: It shows, by category, how many
threads are with vs without code entities (left vs right side), with vs without participating devel-
opers (top vs bottom bar), and how many of the latter have been initiated by a developer (light
vs dark color). The exact amount of threads is reported for each “type”.

without code |with code

Implementation (35%) 10 | 24
EREE 74 4
Technical (16%) 4] 1
Infrastructure [10_]38 %5 | 3
Project Status (7%) 0
16 |1

D without developers
[34

Usage @7%) o

19 | 35 | |:| with developers

3
17
Social Interaction (8%) 5]|2
173 8 |1
7

i initiated by a developer
Discarded (8%) 5 [[] initiated by a develop
1 5|2

23
T T T T T T T T 1
60 40 20 0 20 40 60 80 100 120

Figure 10.4: Distribution of the types of threads.

We see a large amount of threads without developers in the usaGe category compared to other
categories, a prevalence of developers on IMPLEMENTATION and TECHNICAL INFRASTRUCTURE, and
many threads without developers in the UsaGE category compared to other categories.

195

Chapter 10 Communication in OSS Mailing Lists

10.6 What is the role of the development mailing list?

By answering the previous research questions, we found that the official description of the aim of
the development mailing list does not correspond to its real usage. Our fourth research question
seeks to understand the role of development mailing lists for the communication in OSS at large.
We attempt to achieve this by triangulating the information that we obtained by reading the 506
threads during the card sort, by analyzing the statistical data on the categories, and by searching
more facts in the rest of the mailing list.

10.6.1 Is in the mailing list where all the communication occurs?

Previous literature stated that mailing lists are “the bread and butter of project communications”
[73], and in particular that “the developer mailing list is the primary communication channel for an OSS
project” [85]. Reading the analyzed emails, however, makes it clear that the development mailing
list is just one of the communication channels used in a OSS project; in fact, other channels also
play an important role:

Issue Repository: Many threads provided evidence that a significant amount of communication
takes place in the Jira issue repository: Participants often reference Jira issues in emails, or
omit details because already mentioned in the issue discussions. Although project members
started using Jira only in mid 2005, in our entire population of emails (Sep 2001 to Nov 2012),
we found 69,632 (63%) messages automatically forwarded from discussions taking place in Jira,
still showing a clear increasing trend in its usage.

IRC: Participants talk about the project and implementation details also on the development IRC
channel (created in Apr 2010): “I propose that we chat on irc at #lucene-dev [...]. I'd like to discuss the
core elements of the Spatial Strateqy API, namely makeQuery, [...], and SpatialOperation.” The channel
was created in Apr 2010, and the project currently keeps a log® of it.

User Mailing List: The user list also plays a role in the project and developers’ communication.
Developers monitor it, for example, to understand the the system’ usage (e.g., “I am wondering if
TermVectorsWriter is still used [...]. The reason I am asking is the java-user [email subject]”), to improve
the documentation (e.g., “about the exposure of FieldCache in the documentation [...] see for instance
this discussion in the user list”’), and to forward interesting discussions to other developers.

In person: We found evidence that developers also have a number of in person meetings where
they discuss on project details (e.g., “[Developer] and I talked a little bit about this at the ApacheCon”).
This is in line with the findings of Aranda and Venolia concerning software defects. They found
that “histories of even simple bugs [...] cannot be solely extracted through the automated anal-
ysis of software repositories.” [5]

10.6.2 Is the mailing list for driving coordination?

Previous work reported that a portion of the communication taking place in the mailing list
regards coordination between developers as they work together on the software [162; 38]. Sur-
prisingly we found a very small amount (3%) of coorpiNaTION threads, with an average of less

6 http://colabti.org/irclogger/irclogger_logs/lucene-dev

196

http://colabti.org/irclogger/irclogger_logs/lucene-dev

10.6 What is the role of the development mailing list?

than two emails per thread; moreover, most of these threads were not for fostering collaboration
on the implementation, but for raising awareness on already accomplished work.

By reading emails, we found evidence that developers, instead of using the mailing list, prefer to
coordinate through items in the issue tracking system. For example, one developer who sent an
email with: “If you can help, please coordinate here on this thread, so that we don’t stomp on each other.”
afterwards corrected himself in a second message: “Sorry, should have said, please coordinate on the
Jira issue”. Another developer, who was guiding a newcomer through the coordination norms
in the project, wrote: “You will not fall out of sync in short order, especially if you work with JIrA so
others know what you are doing.”

In addition to the issue tracking system, developers also coordinate in the IRC channel: “As we
discussed on IRC yesterday, the number of people [...] qualified to write [code] will still be very small”;
or in person: “I talked about this with [list of developers] in Berlin, and they all like this proposal.”
Moreover, developers remain coordinated by keeping track of code changes. They do this by
reading emails generated by the versioning system, sometimes forwarding these emails to the
development list along with their comments.

10.6.3 Is the mailing list used for peer code review?

Rigby et al. reported that OSS mailing lists are also used for submitting patches and performing
peer code reviews [168]. We indeed found that most patches led to a purely technical discussion,
while some others also led to a discussion of project objectives, scope, or politics.

The vast majority of threads with patches in our sample was sent earlier than the introduction
of the Jira issue tracking systems: After mid 2005, we saw the number of patches drastically
diminishing. Reading emails, we found additional evidence that patches, nowadays, are not sent
anymore to the mailing list, but they are sent, discussed, peer-reviewed, and approved /rejected
in the issue tracking system. For example, when a contributor asked to go to the issue repository
to review a patch: “[issue id] Did anyone try out or took a look at my redesign [...]? I'd love some
feedback.” A senior developer explained: “You should submit *all* patches you want to commit to
Jira first to give others the chance to review and possibly vote against the patch.” This is inline with the
project website: “How to contribute: [...] Finally, patches should be attached to a bug report in JIRA.”

10.6.4 Is the mailing list the hub of project communication?

Although other researchers also found that the development mailing list is not the only channel
of communication in OSS projects (e.g., [38; 171]), it has always been considered the hub of project
communication. For example, Mockus et al. reported that developers use “email lists exclusively
to communicate with each other” and that “due to some annoying characteristics of the [issue tracking
system)], very few developers keep an active eye on [it].” [134].

When more communication repositories exist, the policy of most OSS projects is to transfer all
the official decisions and useful discussions to the mailing list [73], so that they can be later re-
trieved. These traceability links between the development mailing list and other communication
repositories must be manually created and updated. We found some cases in which the trace-
ability link was established, but, more often and in line with the findings of Sarma et al. [171], we
found a clear disconnection among repositories, which led to coordination issues and duplicat-
ed/lost information. For example, because of multiple communication repositories, developers

197

Chapter 10 Communication in OSS Mailing Lists

need to raise inter-repository awareness (e.g., “I submitted a patch for [Jira issue] a month ago, [...]
it hasn't been picked by anybody yet”), ask where a discussion takes place (e.g., “were there emails
about it or it has been discussed on IRC?”), and go back and forth between the same discussion
taking place in more venues (e.g., “We would like to implement [this], which was discussed in JIrRA”).
Overall, our investigation provides evidence that the various communication channels work in
parallel, remain disconnected between one another, and the development mailing list does not
play (anymore) the role of a hub.

10.7 Implications

From our investigation, we found that the role of the development mailing list, previously con-
sidered as the place for discussing code artifact implementation and as the hub of all project
communication, has changed. In the following we describe some of the implications deserving
future research.

On Communication. Communication is scattered among repositories. This once again un-
derlines the importance of adopting a holistic view and considering software repositories as
a whole, not only in research but also in practical development. In fact, even project developers
have problems in maintaining awareness of each other’s work in the current situation.

Automatically recovering traceability links among communication repositories would free de-
velopers from the task of recovering scattered traces of previous communication, and would
help researchers having a more complete picture of the development process. More tools for
maintaining awareness would be also necessary to improve developers’ productivity. Since the
advent of better issue tracking systems led to a shift in the habits of OSS participants toward
different communication means, we should investigate the features in issue tracking systems
that produced this change of direction. As a long-term vision, we could consider the creation of
Integrated Evolution Environments (IEE) that would aggregate all the facets of software devel-
opment into a single comprehensive scenario; this in opposition to current Integrated Develop-
ment Environments (IDE) that offer a partial view by focusing only on the source code.

On Data Quality. Different communication topics take place in the development mailing list; to
extract valuable information we have to take this into account. We have to improve our methods
for removing noise (8% of our sample, even after a careful pre-processing phase), then there are
the premises for future work on automatic classification of threads of discussions, so that only
the relevant categories would be taken into account for analysis. We also underlined the impor-
tance of a correct aliasing resolution, which still cannot be fully automatized. We provide our
complete aliasing and thread categorization to benchmark novel automatic techniques. Never-
theless part of the communication data is going to be lost, because we found that communication
takes place in unrecorded places, even in OSS systems. We have to take this into account in our
statistical analyses.

On Software Development. Not only committers respond to the development mailing list, but
also other people are very active. We could consider techniques for finding code experts not
only among active contributors, but also among active respondents of the mailing list. Moreover,
considering the shift to other communication repositories, mailing list may not be the right venue
for studying code review anymore. In this context we can further investigate the role of issue
tracking systems and social coding websites such as GitHus.

198

10.8 Limitations

10.8 Limitations

One potential criticism is that a case study with one project may provide little value. Histori-
cal evidence shows otherwise: Flyvbjerg gave many examples of individual cases contributing
to discoveries in physics, economics, and social science [71]. To understand mailing list com-
munication we read emails spanning 11 years of mailing list usage, and written by 155 diverse
participants. To answer our research questions, we also analyzed data from the code repository,
the project website, and email threads external to our sample. Nevertheless, our study needs to
be replicated to reach more generalizable conclusions to the posed research questions.

To ensure that the thread categories emerged from the card sort were clear and accurate, and to
judge whether our set of category provides an exhaustive and effective way to organize mailing
list communication, we conducted a validation phase that involved three people external to the
pair-card sort. Three software engineering researchers conducted a closed card sort on 50 cards
(10%) randomly selected from our sample. They observed that the 6 main categories were clear
and covered all thread topics. We measured inter-rater agreement: The Fleiss” Kappa value for
the four ratings of the random sample was 0.657 (i.e., substantial agreement) for the six cate-
gories, and 0.505 (i.e., moderate agreement) for the 24 sub-categories (which were more difficult
to be all recalled by participants). To verify whether there was a systematic error in our cat-
alogue, we also measured the inter-rater agreement among the three experiment participants.
Their agreement was 0.592 for the main categories, and 0.458 for sub-categories (both corre-
sponding to a moderate agreement, suggesting there was no systematic misinterpretation).

Threats to validity—Concerning internal threats, the sample size (506) of threads provides a 98%
confidence level and 5% error on subsequent estimations of proportions [193]. Concerning exter-
nal threats, other OSS projects use communication tools similar to Luceng, for example, 87 other
Apache projects are also using the Jira issue tracking system and have IRC channels. However,
team dynamics may differ and our research should be repeated in other contexts.

10.9 Related Work

By analyzing OSS development mailing lists, researchers provided insight in social aspects of
software development. For example, researchers exploited email metadata (e.g., author, date, and
time) to conduct quantitative social analyses: Bird et al. proposed techniques to mine email social
networks [36], and investigated social interactions in OSS projects [38]; Ogawa et al. visualized
social interaction among participants in OSS projects [146]; Tang et al. proposed techniques for
identifying the country of origin of participants in OSS mailing lists, and conducted a geographic
analysis [186]; and Shihab et al. showed that mailing list activity is related to source code activity
[178]. Researchers also quantitatively analyzed the fext of emails: Pattison ef al. studied the
frequency with which terms of software entities are mentioned in emails, and correlating it with
the number of system changes [154]; and Baysal and Malton searched for a correlation between
discussions and software releases [23].

Most of the aforementioned work is quantitative and based on the premise that development
mailing list communication mostly regards the implementation of source code artifacts. This
assumption derives from the knowledge about OSS systems provided by seminal literature such
as “The Cathedral and The Bazaar” [162]. Few studies analyzed the content of OSS mailing
list communications and mostly focused on specific traits of the communication. Gutwin ef al.

199

Chapter 10 Communication in OSS Mailing Lists

read mailing list archives to study group awareness in distributed development [85]. Rigby et
al. analyzed mailing lists to study the OSS code reviewing process (e.g., [168]). Mockus et al.
studied the Apache Server development process finding that the mailing list play a central role
for communication, coordination, and awareness [134]. We wanted to obtain a comprehensive
knowledge of communication in development mailing lists of OSS projects.

Our work is also related to data quality: By knowing what data is available in mailing list repos-
itories, we can devise better techniques for extracting relevant, unbiased, and comprehensible
information. In this vein, researchers have studied bug repositories [211] and code repositories
[102] to understand what information is more relevant. They also analyzed the impact of data
quality on mining approaches and analyses (e.g., [187]). In the context of mailing list data, Bet-
tenburg et al. showed the risks of using email data without a proper cleaning pre-processing
phase [32].

10.10 Summary

We investigated the communication taking place in OSS development mailing lists, finding that
email threads cover a range of topics, and that communication on implementation is only a
portion of them. We found that code artifacts are also mentioned in topics not related to imple-
mentation, and that project developers are not the majority of the participants. We established
that the development mailing list is only one of the communication channels used in an OSS
project, and we found evidence of a shift in the communication habits with an increased usage
of the issue repositories. We hope that the discovered insights will lead to a more comprehensive
analysis of communication repositories and improved tools to aid developers communicate.

Reflection. The findings of this chapter show that the usage and content development mail-
ing lists in OSS projects could be different from what we might assume from previous work.
Although the results we found in previous chapters are not invalidated by the findings of this
chapter, we deem that it is appropriate to take this change of communication trend in considera-
tion, especially when deciding which unstructured data repositories to analyze. In fact, mailing
lists might be not the best source of information about a software system and might be not opti-
mal to study certain software development processes. The techniques we presented in the Part II
and Part III can also be used in the case that the unstructured repositories to be mined are not
development mailing lists.

200

Chapter 11

Conclusion

In this dissertation we proposed our thesis, which asserts that by mining the email data pro-
duced during the evolution of a software project, we are able to disclose a new source of infor-
mation that can be used to understand and support software development.

We presented the motivation behind our work, we explained the approach we followed, and
we presented the challenges we faced. To validate our thesis, we focused on email data and we
took two interconnected directions: (1) We used the unstructured and qualitative information
in mailing lists to enrich models obtained through the analysis of structured data, and (2) we
considered mailing lists as an alternative data source that give additional and complementary
information, which is independent from other forms of data.

In the former direction, we developed methods for restoring traceability links among emails and
classes, we devised a new set of “popularity” metrics, and we included email information in the
IDE. In the latter direction, we tackled the issue of extracting the structured data embedded
in the natural language of emails. We reached interesting classification results, by using lexical
methods, currently, we are also implementing more sophisticated techniques based on island
parsing that also allows us to understand and expose the meaning of extract structured informa-
tion from emails. We showed that our mining techniques are valuable for supporting software
understanding and development.

11.1 Contributions

During the course of this dissertation, we made a series of contributions to the state of the art in
mining unstructured data to support software understanding and development. We summarize
the major ones in the following.

11.1.1 Exploratory Investigation

To mine unstructured data, researchers have been experimenting with technologies adopted
from related research fields. Techniques such as topic models from Information Retrieval, hier-
archical clustering from Data Mining, or Natural Language Processing have been proven limited,
in a sense that they are often laboriously tailored to the intricacies of the underlying data and
intended use cases. As a result, a plethora of hand-crafted techniques emerged and have been
proposed to mine unstructured data. The ad-hoc nature and terse documentation of these tech-
niques, however, hinder their use for other tasks: this variety makes it hard for researchers and
practitioners to determine the appropriate technique(s) to deal with the problem at hand and

201

Chapter 11 Conclusion

ways to use the selected technique effectively. Moreover the challenges of using unstructured
data were not clear, since too much scattered across different analyses.

Therefore, we decided to focus especially on one form of unstructured data, i.e., development
emails, and carry out our research in an iterative explorative fashion, to find the challenges that
we had to face to prove our thesis that the content of unstructured data is a valuable information
source to support software engineering activities. During our investigation, and by studying
the work in the area of mining software repositories (see Chapter 2) we found two challenges
in exploiting email data for software engineering: (1) disconnection between emails and code
artifacts, and (2) the noisy and mixed-language nature of email content. .

In Section 3.2, we introduced our toolset MiLER, which we progressively and iteratively devised
to import, process, store, and analyze both email and source code data, during our research.
Among the features of MiLEr we have: (1) tools to import and model email and code data
according to a meta-model we devised; (2) a transparent storage of imported data into a database
for persistence; (3) an extensible web application for visually interacting with imported emails;
(4) tools for recovering traceability links, extracting metrics, detecting structured fragments; and
(5) a framework for island parsing.

11.1.2 Email Data and Source Code Artifacts Reconnected

In the second part of the dissertation, we presented the importance of reconnecting email data to
source code artifacts for using the former to support software understanding and development.
We presented a comparison of techniques for recovering the traceability links between emails
and source code artifacts, and then we presented two analyses aimed at using this information
in software analyses and development.

Recovered the traceability links between emails and source code. In Chapter 4, we presented differ-
ent lightweight approaches we devised that, by exploiting the nature of emails and naming con-
ventions of software artifacts, are capable of establishing a bi-directional link between source
code entities and emails. Our approaches do not require pre-computation (which usually is
time-expensive and compromises dynamism and interactivity of applications), but can be di-
rectly used at run-time, for example to catalogue an email with its references, or to check for the
references to one class in all the e-mails archive. Implementing these techniques is not enough:
One needs to be sure they perform correctly. With a manually created benchmark, we showed
that approaches can reach significant results in terms of accuracy. This indicates that heavy-
weight techniques may be not necessary to achieve good results in finding the traceability links
between source code and emails. We confirmed this hypothesis in the second part of the chapter
were we compared our techniques to more sophisticated IR methods (i.e., vector space model
and latent semantic indexing), which have proved to be effective in other traceability tasks.

Improved defect prediction with email data. In Chapter 5, thanks to the recovered traceability links
between emails and source code, we presented a first set of new metrics we devised to enrich
a system model with information extracted from email archives. Such metrics seize the “pop-
ularity” of source code entities in the discussions taking place in emails. In mailing lists, the
entities that are discussed are not only the most relevant for the development, but also the most
exploited during the software usage. Moreover, the email content is expressed using natural
language, which does not require the writer to carefully explain all the abstractions using the

202

11.1 Contributions

same level of importance, but permits to generalize or focus on specific concepts. We used our
new popularity metrics to perform defect prediction for object-oriented systems at class level,
and we compared their predictive power to that of metrics obtained through structured data
(i.e., object-oriented metrics, change/defect metrics). We achieved results similar to source code
metrics, but inferior to change metrics. However, the most interesting contribution of our met-
rics is that, combining the metrics extracted from repositories with different form of data, we can
improve the overall predictive power (more than 15% on average). This shows that the data we
find in development email archives provides new information that is orthogonal to that offered
by structured data sources, such as source code or SCM systems.

Integrated Email Communication in the IDE. In Chapter 6, thanks again to the recovered traceability
links between emails and source code, we presented REmar, an Eclipse plugin to integrate email
communication in the IDE. REMAaIL recommends the emails that are related to specified code ar-
tifacts, by using the aforementioned lightweight linking techniques we devised. This reduces
the amount of messages to be read by orders of magnitude, and lets practitioners focus on the
emails related to their tasks. In addition, REmaLL is a modular plugin for the Eclipse IDE, thus
among other benefits, it allows developers to (1) simultaneously inspect code and content of
messages, easily (2) prompt recovered traceability links between code and emails, and (3) mini-
mize the disruptive context switches necessary to access email data while programming. In the
second part of the chapter, we studied two OSS systems by using REmaIiL and we found that the
email information, as displayed by REmarL, helps to find entry points in an unknown system,
understand software evolution, identify experts, and complement missing documentation.

11.1.3 Unstructured Data Restructured

In the third part of the dissertation, we presented the importance of giving a structure to the
content of development emails, in order to extract relevant, meaningful, and contextualized in-
formation. We presented three techniques aimed at facing this challenge. The techniques focus
respectively on identifying lines of code, parsing any structured fragment, and recognizing the
kind of “languages” used in development emails, so that we can apply ad-hoc analysis tech-
niques to exploit their peculiarities.

Detected lines of source code in emails. In Chapter 7, we conducted a first work toward finding
the structure in email content. Frequently development emails pertaining to a software sys-
tem report parts of text written in other languages, especially source code snippets or stack
traces. We devised lightweight techniques that, on the basis of simple text inspections, exploit-
ing characteristics of source code text, can detect source code fragments in emails, fast and with
a high accuracy. A practitioner can precisely classify thousands of emails, even at run-time. We
also proposed novel methods for classifying lines that enclose source code. Using refined ap-
proaches, based on those used for the complete document classification, our methods achieve
performance higher than the ones previously obtained through complex machine learning tech-
niques. Moreover, almost all methods we developed can be configured with a threshold param-
eter that allows choosing the best trade-off between precision and recall, according to the user’s
needs. To assess our techniques, we created manual benchmark. Using our benchmark, we also
conducted a statistical analysis of the email content and assessed that the vast majority of source
code fragments are mentioned as lines separated from the natural language text.

203

Chapter 11 Conclusion

Recovered the structured fragments in textual artifacts. In Chapter 8, we implemented two approaches
based on island parsing [136] to extract structured fragments embedded in natural language
written documents. Our approaches, ILANDER and PEetitIsLAND, tested on development mail-
ing lists and Stack Overflow posts, showed extremely accurate results in extracting the whole
structured information embedded in natural language text. We showed how this structured in-
formation can be successfully used to conduct novel system analyses, such as reconstructing an
entire alternative model of a system by simply mining its mailing list, and analyzing the trends
in discussion in a stream of textual documents. Our PetitIsLanDp framework has been devised
to be not only accurate and efficient, but also flexible and extensible. We showed how we used
it, for example, to create lightweight parsers for source code files, to support software analysis
based on text mining.

Classified the lines of development emails. In Chapter 9, we conducted a work to finely classify
the content of development emails in different categories: natural language, source code, stack
traces, patches, and junk (i.e., irrelevant information). Given the diversity of languages used
in the example email, we realized that by considering the content of emails as a single bags of
words, we would obtain a motley set of flattened terms without a clear context, and we would
severely reduce the quality and the amount of available information. On the contrary, by auto-
matically distinguishing the parts that form the content of an email, we provide better support
for many tasks, such as better traceability link recovering, better content parsing, and improved
artifact summarization. We devised Mucca, an approach based on a combination of parsing
techniques (based on our PetitlsLaAND framework) and machine-learning methods, to classify
the contents of development emails in the chosen five categories. Our technique works at the
line level, which-by inspecting hundreds of emails—we found to be the appropriate granularity
for email content classification. We evaluated the effectiveness of our approach on a manually
created benchmark created from the mailing lists of four OSS projects. Using mailing list cross
validation, we found that our approach reacher very high results both in precision and recall.

11.1.4 Updated our knowledge on OSS mailing list communication

In Chapter 10, we analyzed the communication that takes place in OSS development mailing list,
with the aim of updating our view on the content they archive. In fact, even though mailing lists
have been considered—historically—the hub of project communication, during our analyses we
sensed a change in the usage of development mailing lists across OSS systems. This called for an
extensive investigation of the status of mailing list communication. We qualitatively analyzed
the threads exchanged in the development mailing list of LuceNE, across its entire history. We
found that indeed the role of the development mailing list changed, by diminishing its impor-
tance in OSS project communication. At the same time, the issue repository (i.e., Jira, in the case
of LuceNE) is emerging as a very interesting source of unstructured data. In fact, this repository
is used no longer only for submitting requests for fixing defects, but also by users and develop-
ers to interact, set new milestones, and discuss about the details of the project. Given how we
devised our approaches, the techniques we presented in this dissertation to deal with mailing
list data can be adapted to issue repository data, which is less noisy and more structured than
email messages.

204

11.1 Contributions
11.1.5 Benchmarks

As an additional contribution, we implemented a number of benchmarks to support the research
presented in this dissertation.

Linking emails and code. For the study in Chapter 4, we produced two benchmarks for evaluating
the recovery of traceability links between emails and source code artifacts. We created them by
analyzing the mailing lists of six diverse OSS systems written in four different programming
languages. It includes more than 5,000 manually annotated emails, with links to all the code
artifacts considering the whole history of the analyzed systems.

Recognizing source code lines. For the study in Chapter 7, we produced a benchmark that fea-
tures sets of sample emails, randomly extracted from five unrelated Java OSS systems, which
we manually read to label structured fragments, using our MiLer GaMme application. It includes
more than 1,800 emails in which all the lines of code are manually labeled.

Recognizing structured fragments in emails. For validating 1LANDER (Section 8.3) we produced a
benchmark for evaluating the recognition, extraction, and modeling of Java content in email
data. We created it by analyzing sample emails from four unrelated Java OSS systems, which we
manually read to label and describe embedded structured fragments. It comprises 188 labeled
emails with described structured fragments.

Recognizing source code fragments in Stack Overflow posts. For validating our second approach to
island parsing, (i.e., PeritIsLaND, presented in Section 8.7), we adapted and improved a previ-
ously published benchmark to assess the recognition of source code fragments in Stack Overflow
posts. It comprises 188 posts embedding more than 350 code fragments.

Classifying lines of development emails. To evaluate our Mucca approach, we produced a bench-
mark to evaluate the classification of email lines into five categories, i.e., natural language, source
code, patch, stack trace, and noise (see Chapter 9). It features more than 1,400 emails comprising
almost 69,000 manually classified lines.

Aliasing resolution. To conduct statistical analyses in our qualitative work on mailing list com-
munication (see Chapter 10), we had to manually resolve aliases for participants. This bench-
mark comprises the resolution of the aliases for 200 email addresses, and can be used to evaluate
automatic technique to solve the same task.

Development email categorization. In Chapter 10 we produced a manual classification of devel-
opment mailing list threads into categories of discussions. We used card sorting to create the
categories and we sorted more than 500 cards. This dataset can be used to evaluate techniques
for automatic classification or for additional data analyses.

205

Chapter 11 Conclusion
11.2 Future Work

In our thesis, we showed that natural language documents—if correctly mined, measured, and
made available-can integrate, consolidate, and complement the data extracted from structured
sources, because they include human factors and can be used as a source of qualitative data. The
repositories that store artifacts with textual narrative, however, are still largely unexplored by
researchers and not exploited by software developers. On the one hand practitioners do not em-
ploy textual artifacts during development for many reasons: Developers do not know whether
a specific topic is expressed in these artifacts, fast full-text search is not always implemented,
different kinds of artifacts provide different search and browsing tools, there is no consistency
among different repositories and tools, and it is hard to know whether an artifact contains up-
dated information or not. On the other hand, researchers must still find appropriate techniques
for extracting relevant data by parsing natural language text. Our vision is that in the next years
we will have to tackle both issues: We will have to make our results more accessible to practition-
ers (for example by devising recommender systems and relying on multiple source of unstruc-
tured data seamlessly), and we will continue to refine our ability to extract relevant information
from unstructured content.

During the work on this dissertation, we also encountered promising future short-term research
directions. Some of them are ideas on how to overcome limitations of our approach. In the fol-
lowing, we outline possible future work, discussing also—when appropriate—the shortcomings
that originate them.

Improved Traceability Links. In our work on REmaiL, we verified its usefulness for program
comprehension: By reading emails related to the classes at hand, we could improve our specific
and general program knowledge. At the same time, this work allowed us to understand how
some of the emails related to an entity have more significance than others. In emails, entities
can be mentioned in code snippets, patches, stack traces, or in natural language sentences. We
noticed that, in most of the cases, entities mentioned in natural language sentences give us true
qualitative information: Stack traces can be a list of classes with no special meaning, but a class
included in a broader natural language sentence is often well contextualized and explained.
Thanks to our work on Mucca, we can answer quantitative questions about mailing list content
and usage (e.g., are developers sharing code? Or, do users report stack traces in mailing list?),
and we can give a classification to our traceability links. Links would be associated with a tag
distinguishing the text in which the entity is referenced, e.g., natural language or stack trace. We
believe that links with natural language tags might be useful for qualitative analysis, while links
with other tags might be useful for quantitative analysis.

Chat coupling. Change coupling [76] detects evolutionary and implicit dependencies among
artifacts of a system, by analyzing the history of their co-changes. We believe that we might
analogously relate the artifacts that are often discussed together: If classes are mentioned in the
same discourse, they could be logically connected. This information could reinforce the same
structure we find in the source code, could confirm change coupling information, or could give
insights on unexpected implicit dependencies. On top of the classification provided by Mucca,
we plan to conduct a case study to test the importance of this metric for software engineering.

Opinion metrics. Our work on popularity, which relates the email popularity and defects of
code artifacts, relies on simple quantitative data. Popularity counts the number of emails dis-
cussing about a class, the number of threads, the number of authors, etc., but it does not seize
what these authors in these emails say. We plan to improve our work by performing analysis
of the opinions and sentiments, including methods from the IR and natural language processing

206

11.2 Future Work

fields (e.g., [58; 207]). Our target is understanding whether email authors are sharing an opinion
about a source code entity: We expect negative opinions to better correlate with defects than
mere number of emails, or give us more information about where we can improve a software
system. This work requires a survey of the state of the art in opinion mining and sentiment anal-
ysis, in order to find the most appropriate approach for our domain. From our first analysis, we
realized that it could be conducted only with the classification provided by Mucca in place, as
these techniques can only be applied to clean natural language text.

Events and trends in natural language artifacts. Our work on trend and event analysis is still
very preliminary, for this reason we envision future work on this direction. The amount of nat-
ural language artifacts generated around a software system can form a very extensive amount
of information. For example, in the Linux kernel mailing list, developers and users currently ex-
change more than 10,000 emails a month. Finding the most interesting or relevant information
in this amount of data can be a daunting task, especially for not experts of the system. We believe
we can adopt methods from the IR research field to help us to find the way to the most important
details enclosed in NL artifacts that create temporal streams (e.g., emails, issue reports, forum
posts). More precisely, we are considering that the study of unexpected events and emerging trends
might conduct us to interesting results. Our idea is that a moment in time in which we discover
an unexpected event (e.g., something almost never discussed appears) can be symptom of prob-
lems in the system or in the development team; similarly, an emerging trend might be a prelude
of a change in the system. We believe that we can study these trends and events from a historical
perspective to guide us to emails that could explain how and why a system reached a certain
status. From a development point of view, we can keep track of emerging trends and unex-
pected events in projects we rely on. For example, if we use open source libraries, our analysis
could monitor their mailing lists and issue repositories and alert us when we should be aware
of upcoming changes, without the need of constantly reading the exchanged documents.

11.2.1 Lessons learned by mining development emails

To provide evidence toward our thesis, we decided to focus on development emails. Consider-
ing other data sources (e.g., design documents) would have introduced a series of slight varia-
tions (e.g., in our data importers and metamodels), thus potentially hindering our progress; we
decided to solve the problem in the most appropriate way on a single data source.

Among the available repositories, we decided to analyze emails for a number of reasons: For
example, because email text is completely free form, public software repositories provide a very
large amount of email data pertaining to diverse software projects, and email communication
has been central to the life of many industrial and OSS software systems.

During our research we have been witnessing a transition from mailing lists to more specialized
communication channels. As also pointed out in Chapter 10, mailing lists are quickly losing out
to issue trackers, code reviews, and online forums (such as Q&A websites). A practitioner, or a
researcher, might be interested in applying the principles presented in this thesis to other data
sources (e.g., issue repositories, online forums, chat logs). To help porting the principles of our
work to other sources and to fulfill the wider initial aim of the thesis, we present the lessons we
have learned while mining development emails.

Know the data and the mining techniques. By mining development emails we found that tech-
niques that worked correctly in previous research when applied other unstructured data sources
(e.g., for software requirements) cannot be applied as they are to mailing lists. For example, when

207

Chapter 11 Conclusion

conducting the research presented in Chapter 4, we used techniques from related work (e.g., LSI
and vector space model) to email data. We found that results were not satisfying as expected
from reading previous applications. This was due to the fact that, although the used method
was fully functional, we provided it with a very poor input data and suboptimal configuration
settings. We came to this conclusion, only after a number of iterations and trial and errors, in
which we often blamed the method to be inappropriate for the task.

The lesson learned is to not expect a method to work off-the-shelf on a novel data source. To
achieve the best results, we first have to understand the theory on which the chosen method is
based and how the data source we want to use as an input differs from data on which the method
was previously used. For example, only when we acknowledged the relevance of noise in emails
and the presence of named references to code artifacts, we could start tackling the problem with
previously devised techniques in an effective way.

Everything needs to change, so everything can stay the same. The one thing we can count on in
software development is change. We found that this holds also in explorative research on mining
unstructured data. For this reason, we decided to implement MILER, our toolset, in a dynamically
typed programming language, which allows faster modifications to the underlying metamodel,
thus better supporting iterative explorative research. For the same reason, we found convenient
to adopt a document-oriented database in our REma1L implementation. On the other hand, how-
ever, we decided not to create single use throw away scripts to conduct our experiments, but we
created a full-fledged toolset to explore, expose, and exploit email data. This greatly helped us
to reuse components across experiments and build increasingly sophisticated solutions.

The lesson learned is that some software design principles can be applied to achieve successful
research in mining unstructured data. In particular, one design principle suggests identifying
the aspects of the application that vary and separate them from what stays the same; we found
it essential to adapt this principle to our mining unstructured data research. Metamodels and
approaches do vary, but they have to be integrated in a common flexible infrastructure, so that
they can be taken to the next step.

Find the latent structure. In Part Il we approached the linking between emails and source code
artifacts considering email text as a mere bag of words. Even though we successfully employed
a number of IR methods in conjunction with more lightweight textual matching techniques, we
found it problematic to bring our research to the next step by only using this approach. In fact,
bag of words do not consider the relation among words and, to give more meaningful results,
statistical methods require a very large number of documents, which may not be available.

One of the most important lessons that we learned from this situation is that it is greatly benefi-
cial to discover the latent structure of unstructured documents. Giving an appropriate structure
to a textual document helps finding its real meaning and applying the most appropriate tech-
niques for exposing the enclosed information. For example, as mentioned in the future work,
knowing that a certain entity is mentioned in a certain block of text helps giving the traceability
more or less relevance to the user. Giving a structure to unstructured documents is a very chal-
lenging endeavor and requires a deep knowledge of the studied documents, their content, their
usage, and their peculiarities. We were able to achieve this only in a later time in our research.
However, the practitioner or the young researcher should not be discouraged by this difficulty,
because the achieved benefits will exceed the initial effort spent.

208

11.3 Closing Words

11.3 Closing Words

In this dissertation, we showed that exploiting the information gathered from unstructured data
produced during the evolution of a software system leads to novel techniques for both software
evolution analysis and for supporting program comprehension tasks. We showed that software
evolution should not be considered as a process where the changing source code is the only
important aspect: Software evolution is a complex process with many dimensions, which leave
traces in distinct repositories. Unstructured data, written by people for the other people involved
in the life of a software project, opens new perspectives on the evolution. However, the best
results are achieved when the data from novel repositories is connected to the code.

This dissertation, while showing the importance of mining and integrating unstructured soft-
ware data in our analyses and development, is only another step toward capturing software
evolution as a complex and holistic phenomenon.

209

Bibliography

[1]

[2]

[3]

[4]

5]

6]

(7]

(8]

[91

[10]

[11]

[12]

A. Abadi, M. Nisenson, and Y. Simionovici. A traceability technique for specifications.
In Proceedings of ICPC 2008 (16th IEEE International Conference on Program Comprehension),
pages 103-112, 2008.

G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-G. Guéhéneuc. Is it a bug or an en-
hancement?: a text-based approach to classify change requests. In Proceedings of CASCON
2008, pages 304-318. ACM, 2008.

G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo. Recovering traceabil-
ity links between code and documentation. IEEE Transactions on Software Engineering,
28(10):970-983, 2002.

G. Antoniol, B. Caprile, A. Potrich, and P. Tonella. Design-code traceability for object-
oriented systems. Annals of Software Engineering, 9(1-4):35-58, 2000.

J. Aranda and G. Venolia. The secret life of bugs: Going past the errors and omissions in
software repositories. In Proceedings of ICSE 2009 (31st ACM/IEEE International Conference
on Software Engineering - New Ideas and Emerging Results Track), pages 298-308, 2009.

L.]J. Arthur. Software Evolution: The Software Maintenance Challenge. John Wiley and Sons,
1988.

H. U. Asuncion, A. U. Asuncion, and R. N. Taylor. Software traceability with topic mod-
eling. In Proceedings of ICSE 2010 (32nd ACM/IEEE International Conference on Software En-
gineering), pages 95-104. ACM, 2010.

D. L. Atkins, T. Ball, T. L. Graves, and A. Mockus. Using version control data to evaluate
the impact of software tools. In Proceedings of the 21st International Conference on Software
Engineering (ICSE 1999), pages 324-333. ACM, 1999.

A. Bacchelli, L. Baracchi, and M. Lanza. Remail -blending talk and work in eclipse. In In
Proceedings of Eclipse-IT 2011 (6th Workshop of the Italian Eclipse Community), pages 303-306,
2011.

A. Bacchelli, A. Cleve, M. Lanza, and A. Mocci. Extracting structured data from natural
language documents with island parsing. In In Proceedings of ASE 2011 (26th IEEE/ACM
International Conference On Automated Software Engineering), pages 476—479, 2011.

A. Bacchelli, T. dal Sasso, M. D’Ambros, and M. Lanza. Content classification of devel-
opment emails. In In Proceedings of ICSE 2012 (34th ACM/IEEE International Conference on
Software Engineering), pages 375-385, 2012.

A. Bacchelli, M. D’Ambros, and M. Lanza. Are popular classes more defect prone? In
Proceedings of FASE 2010 (13th International Conference on Fundamental Approaches to Software
Engineering), pages 59-73, 2010.

211

Bibliography

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

212

A. Bacchelli, M. D’Ambros, M. Lanza, and R. Robbes. Benchmarking lightweight tech-
niques to link e-mails and source code. In Proceedings of WCRE 2009 (16th IEEE Working
Conference on Reverse Engineering), pages 205-214. IEEE CS Press, 2009.

A. Bacchelli, M. Lanza, and M. D’Ambros. Miler - a tool infrastructure to analyze mailing
lists. In Proceedings of FAMOQOSr 2009 (3rd International Workshop on FAMIX and Moose in
Reengineering), 2009.

A. Bacchelli, M. Lanza, and M. D’Ambros. Miler: A toolset for exploring email data. In
Proceedings of ICSE 2011 (33rd ACM/IEEE International Conference on Software Engineering),
pages 1025-1027, 2011.

A. Bacchelli, M. Lanza, and V. Humpa. Towards integrating e-mail communication in the
IDE. In Proceedings of SUITE 2010 (2nd International Workshop on Search-driven Development:
Users, Infrastructure, Tools and Evaluation), pages 1-4, 2010.

A. Bacchelli, M. Lanza, and V. Humpa. RTFM (Read The Factual Mails) —-augmenting
program comprehension with remail. In Proceedings of CSMR 2011 (15th IEEE European
Conference on Software Maintenance and Reengineering), pages 15-24, 2011.

A. Bacchelli, M. Lanza, and R. Robbes. Linking e-mails and source code artifacts. In
Proceedings of ICSE 2010 (32nd International Conference on Software Engineering), pages 375—
384. ACM Press, 2010.

T. Ball,].-M. K. Adam, A. P. Harvey, and P. Siy. If your version control system could talk.
In Workshop on Process Modelling and Empirical Studies of Software Engineering 1997 (19th
International Conference on Software Engineering). IEEE Computer Society Press, 1997.

I. Barker. What is information architecture? http://www.steptwo.com.au/, May 2005.

V. R. Basili, L. C. Briand, and W. L. Melo. A validation of object-oriented design metrics
as quality indicators. IEEE Transactions on Software Engineering, 22(10):751-761, 1996.

H. Basten and P. Klint. Defacto: Language-parametric fact extraction from source code.
In Proceedings of SLE 2008 (International Conference of Software Language Engineering), pages
265-284. Springer, 2008.

O. Baysal and A.]J. Malton. Correlating social interactions to release history during soft-
ware evolution. In Proceedings of MSR 2007 (4th International Workshop on Mining Software
Repositories), page 7. IEEE Computer Society, 2007.

M. J. Beal, Z. Ghahramani, and C. E. Rasmussen. Factorial hidden markov models. In
Machine Learning, pages 29-245. MIT Press, 1997.

A. L. Berger, V. J. Della Pietra, and S. A. Della Pietra. A maximum entropy approach to
natural language processing. Computational Linguistics, 22(1):39-71, 1996.

T. Bergin and R. G. (Eds.). History of Programming Languages-II. Addison-Wesley, 1996.

A. Bernstein, J. Ekanayake, and M. Pinzger. Improving defect prediction using temporal
features and non linear models. In Proceedings of IWPSE 2007 (9th International Workshop
on Principles of Software Evolution (International Workshop on Principles of Software Evolution),
pages 11-18. IEEE CS Press, 2007.

M. Berry and M. Browne. Understanding Search Engines - Mathematical Modeling and Text
Retrieval. SIAM, 2nd edition, 2005.

http://www.steptwo.com.au/

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Bibliography

M. W. Berry, S. T. Dumais, and T. A. Letsche. Computational methods for intelligent
information access. In Proceedings of SC 1995 (ACM/IEEE Conference on Supercomputing),
1995.

N. Bettenburg, S. Just, A. Schroter, C. Weiss, R. Premraj, and T. Zimmermann. What makes
a good bug report? In Proceedings of SIGSOFT "08/FSE-16 (ACM SIGSOFT International
Symposium on Foundations of software engineering), pages 308-318. ACM, 2008.

N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim. Extracting structural informa-
tion from bug reports. In Proceedings of MSR 2008 (5th IEEE Working Conference on Mining
Software Repositories), pages 27-30. ACM, 2008.

N. Bettenburg, E. Shihab, and A. E. Hassan. An empirical study on the risks of using off-
the-shelf techniques for processing mailing list data. In Proceedings of ICSM 2009 (25th IEEE
International Conference on Software Maintenance, pages 539 —542. IEEE Computer Society,
2009.

N. Bettenburg, S. W. Thomas, and A. E. Hassan. Using code search to link code fragments
in discussions and source code. In Proceedings of CSMR 2012 (16th European Conference on
Software Maintenance and Reengineering), pages 319-329. IEEE, 2012.

C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov, and P. Devanbu. Fair
and balanced? bias in bug-fix datasets. In Proceedings of the the 7th joint meeting of the
European software engineering conference and the ACM SIGSOFT symposium on The foundations
of software engineering, pages 121-130. ACM, 2009.

C. Bird, A. Gourley, and P. Devanbu. Detecting patch submission and acceptance in OSS
projects. In Proceedings of MSR 2007 (4th International Workshop on Mining Software Reposi-
tories), pages 26-29. IEEE Computer Society, 2007.

C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan. Mining email social
networks. In Proceedings of MSR 2006 (3th International Workshop on Mining Software Repos-
itories), pages 137-143. ACM, 2006.

C. Bird, A. Gourley, P. T. Devanbu, M. Gertz, and A. Swaminathan. Mining email social
networks in Postgres. In Proceedings of MSR 2006, pages 185-186, 2006.

C. Bird, D. Pattison, R. D’Souza, V. Filkov, and P. Devanbu. Latent social structure in open
source projects. In Proceedings FSE 2008 (16th ACM SIGSOFT International Symposium on
Foundations of Software Wngineering), pages 24-35. ACM, 2008.

D. M. Blei, A. Y. Ng, M. L. Jordan, and J. Lafferty. Latent dirichlet allocation. Journal of
Machine Learning Research, 3:993-1022, 2003.

L. C. Briand, J. W. Daly, and]. Wiist. A unified framework for coupling measurement in
object-oriented systems. IEEE Trans. Software Eng., 25(1):91-121, 1999.

R. G. Burgess. In the Field: An Introduction to Field Research. Unwin Hyman, 1st edition,
1984.

R. Caruana and A. Niculescu-Mizil. An empirical comparison of supervised learning al-
gorithms. In Proceedings of ICML (23rd International Conference on Machine learning), pages
161-168. ACM, 2006.

V. R. Carvalho and W. W. Cohen. Learning to extract signature and reply lines from email.
In Proceedings of CEAS 2004 (1st Conference on Email and Anti-Spam), 2004.

213

Bibliography

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]
[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

214

M. Cataldo, J. D. Herbsleb, and K. M. Carley. Socio-technical congruence: a framework
for assessing the impact of technical and work dependencies on software development
productivity. In Proceedings of ESEM "08 (the Second ACM-IEEE international symposium on
Empirical software engineering and measurement), pages 2-11. ACM, 2008.

X. Chen and J. Grundy. Improving automated documentation to code traceability by com-
bining retrieval techniques. In Proceedings of ASE 2011 (26th IEEE/ACM International Con-
ference on Automated Software Engineering, pages 223-232, 2011.

S. Chidamber and C. Kemerer. A metrics suite for object oriented design. IEEE Transactions
on Software Engineering, 20(6):476-493, June 1994.

J. Conklin and M. L. Begeman. gIBIS: a hypertext tool for exploratory policy discussion.
In Proceedings of CSCW 1988 (3rd ACM conference on Computer-supported cooperative work),
pages 140-152. ACM, 1988.

M. E. Conway. How do committees invent? Datamation, 14(4):28-31, 1968.

T. A. Corbi. Program understanding: challenge for the 1990’s. IBM System Journal,
28(2):294-306, 1989.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT
Press, Cambridge, MA, second edition, 2001.

T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley-Interscience, 1991.

M. D’Ambros. On the Evolution of Source Code and Defects. PhD thesis, University of Lugano,
Switzerland, Oct. 2010.

M. D’Ambros, A. Bacchelli, and M. Lanza. On the impact of design flaws on software
defects. In Proceedings of QSIC 2010 (10th International Conference on Quality Software), pages
23-31. IEEE CS Press, 2010.

M. D’Ambros, H. Gall, M. Lanza, and M. Pinzger. Analyzing software repositories to
understand software evolution. In Software Evolution, pages 37-67. Springer, 2008.

M. D’Ambros and M. Lanza. Software bugs and evolution: A visual approach to uncover
their relationship. In Proceedings of CSMR 2006 (10th IEEE European Conference on Software
Maintenance and Reengineering), pages 227-236. IEEE CS Press, 2006.

M. D’Ambros, M. Lanza, and M. Pinzger. The metabase: Generating object persistency
using meta descriptions. In Proceedings of FAMOOSR 2007 (1st Workshop on FAMIX and
Moose in Reengineering), 2007.

F.]. Damerau. A technique for computer detection and correction of spelling errors. Com-
munications of the ACM, 7(3):171-176, 1964.

K. Dave, S. Lawrence, and D. M. Pennock. Mining the peanut gallery: opinion extraction
and semantic classification of product reviews. In Proceedings of WWW 2003 (12th interna-
tional conference on World Wide Web), pages 519-528. ACM, 2003.

A.De Lucia, R. Oliveto, and G. Tortora. Adams re-trace: traceability link recovery via latent
semantic indexing. In In Proceedings of ICSE 2008 (30th ACM/IEEE International Conference
on Software Engineering), pages 839842, 2008.

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]
[68]

[69]

[70]

[71]

[72]
[73]
[74]

[75]
[76]

[77]

[78]

Bibliography

S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman. Indexing by
latent semantic analysis. Journal of the American Society for Information Science, 41:391-407,
1990.

A. Dekhtyar and J. Hayes. Good benchmarks are hard to find: Toward the benchmark for
information retrieval applications in software engineering. In ICSM 2006 Working Session:
Information Retrieval Based Approaches in Software Evolution, 2007.

A. Dekhtyar, J. H. Hayes, and T. Menzies. Text is software too. In Proceedings of MSR 2004
(1st International Workshop on Mining Software Repositories), pages 22-26, 2004.

S. Ducasse, L. Renggli, D. Shaffer, R. Zaccone, and M. Davies. Dynamic Web Development
with Seaside. Square Bracket Associates, 2010.

N. Ducheneaut. Socialization in an open source software community: A socio-technical
analysis. CSCW, 14(4):323-368, 2005.

J. Earley. An efficient context-free parsing algorithm. Commun. ACM, 13(2):94-102, Feb.
1970.

K. E. Emam, W. Melo, and J. C. Machado. The prediction of faulty classes using object-
oriented design metrics. Journal of Systems and Software, 56(1):63-75, 2001.

L. Erlikh. Leveraging legacy system dollars for e-business. IT Professional, 2(3):17-23, 2000.

J. Estublier, D. Leblang, A. van der Hoek, R. Conradi, G. Clemm, W. Ticky, and D. Wiborg-
Weber. Impact of software engineering research on the practice of software configuration
management. ACM Transactions on Software Engineering and Methodology, 14(4):383-430,
2005.

M. Fischer, M. Pinzger, and H. Gall. Populating a release history database from version
control and bug tracking systems. In Proceedings of ICSM 2003 (19th IEEE International
Conference on Software Maintenance), pages 23-32. IEEE Computer Society, 2003.

R. Fiutem and G. Antoniol. Identifying design-code inconsistencies in object-oriented soft-
ware: a case study. In Proceedings of ICSM 1998 (14th IEEE International Conference on Soft-
ware Maintenance), pages 94-102. IEEE Computer Society, 1998.

B. Flyvbjerg. Five misunderstandings about case-study research. Qualitative inquiry,
12(2):219-245, 2006.

K. Fogel. Open Source Development with CVS. Cariolis Open Press, November 1999.
K. Fogel. Producing Open Source Software. O’'Reilly Medjia, first edition, 2005.

B. Ford. Parsing expression grammars: a recognition-based syntactic foundation. SIG-
PLAN Not., 39(1):111-122, Jan. 2004.

R. Frost. Jazz and the eclipse way of collaboration. IEEE Software, 24(6):114-117, 2007.

H. Gall, M. Jazayeri, and J. Krajewski. CVS release history data for detecting logical cou-
plings. In Proceedings of INPSE 2003, pages 13—. IEEE CS, 2003.

D. M. German, A. Hindle, and N. Jordan. Visualizing the evolution of software using
softchange. In Proceedings of the 16th International Conference on Software Engineering &
Knowledge Engineering (SEKE 2004). ACM Press, 2004.

T. Gilb. Software Metrics. Winthrop, 1977.

215

Bibliography

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

216

R. Gillespie. Manufacturing Knowledge: A History of the Hawthorne Experiments. Cambridge
University Press, 1st edition, 1993.

T. Girba. Modeling History to Understand Software Evolution. PhD thesis, University of Berne,
November 2005.

B. G. Glaser and A. L. Strauss. The Discovery of Grounded Theory: Strategies For Qualitative
Research. Aldine, 1967.

T. Gleixner. The realtime preemption patch: Pragmatic ignorance or a chance to collab-
orate? In Keynote of ECRTS 2010 (22nd Euromicro Conference on Real-Time Systems), 2010.
http://lwn.net/Articles/397422/.

J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley. The Java Language Specification.
Oracle, 4th edition, 2012.

T. L. Graves and A. Mockus. Inferring change effort from configuration management
databases. In Proceedings of the 5th International Symposium on Software §Metrics (METRICS
1998), pages 276-273. IEEE Computer Society, 1998.

C. Gutwin, R. Penner, and K. A. Schneider. Group awareness in distributed software de-
velopment. In Proc. of CSCW'04, pages 72-81, 2004.

A. Guzzi, A. Bacchelli, M. Lanza, M. Pinzger, and A. van Deursen. Communication in
open source software development mailing lists. In Proceedings of MSR 2013 (10th IEEE
Working Conference on Mining Software Repositories), page to be published, 2013.

A.Guzzi, A. Begel, J. K. Miller, and K. Nareddy. Facilitating enterprise software developer
communication with cares. In Proc. of ICSM’12, pages 527-536, 2012.

T. Gyiméthy, R. Ferenc, and I. Siket. Empirical validation of object-oriented metrics
on open source software for fault prediction. IEEE Transactions on Software Engineering,
31(10):897-910, 2005.

S. Haidug, J. Aponte, and A. Marcus. Supporting program comprehension with source
code summarization. In Proceedings of ICSE 2010 (32nd ACM/IEEE International Conference
on Software Engineering), pages 223-226. ACM, 2010.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and 1. H. Witten. The weka
data mining software: an update. SIGKDD Explor. Newsl., 11(1):10-18, Nov. 2009.

R. W. Hamming. Error detecting and error correcting codes. Bell System Technical Journal,
26(2):147-160, 1950.

A. E. Hassan. The road ahead for Mining Software Repositories. In Proceedings of FoSM
2008 (Frontiers of Software Maintenance), pages 48-57, 2008.

A. E. Hassan. Predicting faults using the complexity of code changes. In Proceedings of
ICSE 2009 (31st International Conference on Software Engineering), pages 78-88, 2009.

A. E. Hassan and R. C. Holt. The top ten list: Dynamic fault prediction. In Proceedings
of ICSM 2005 (21st IEEE International Conference on Software Maintenance), pages 263-272.
IEEE CS, 2005.

A. E. Hassan, R. C. Holt, and A. Mockus. MSR 2004: International workshop on mining
software repositories. In Proceedings of the 26th International Conference on Software Engi-
neering (ICSE 2004), pages 770-771. IEEE Computer Society, 2004.

http://lwn.net/Articles/397422/

Bibliography

[96]]. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers. The syntax definition formalism
SDF—reference manual—. SIGPLAN Notices, 24(11):43-75, 1989.

[97] R.Holmes and A. Begel. Deep intellisense: a tool for rehydrating evaporated information.
In Proceedings of MSR 2008 (5th Working Conference on Mining Software Repositories), pages
23-26. ACM Press, 2008.

[98] W.M. Ibrahim, N. Bettenburg, E. Shihab, B. Adams, and A. E. Hassan. Should I contribute
to this discussion? In Proceedings of MISR 2010 (7th IEEE Working Conference on Mining
Software Repositories), pages 181-190. IEEE CS Press, 2010.

[99] K.S.Jones. Automatic summarising: The state of the art. Information Processing and Man-
agement, 43:1449-1481, 2007.

[100] J. B. Jr., E.J. Whitehead, S. Kim, and M. Godfrey. Facilitating software evolution research
with kenyon. In Proceedings of the 10th European Software Engineering Conference Held Jointly
with 13th ACM SIGSOFT International Symposium on Foundations of Software Engineering
(ESEC/FSE-13), pages 177-186. ACM, 2005.

[101] D. Jurafsky and J. H. Martin. Speech and Language Processing: An Introduction to Natural
Language Processing, Computational Linguistics and Speech Recognition. Prentice Hall, 2nd
edition, 2009.

[102] D. Kawrykow and M. P. Robillard. Non-essential changes in version histories. In Pro-
ceedings of ICSE 2011 (33rd International Conference on Software Engineeering), page to be
published, 2011.

[103] M. Kersten and G. Murphy. Using task context to improve programmer productivity. In
Proceedings of FSE 2006 (16th SIGSOFT Symposium on the Foundations of Software Engineer-
ing), pages 1-11. ACM Press, 2006.

[104] M. Kersten and G. C. Murphy. Mylar: a degree-of-interest model for IDEs. In Proceedings
AOSD 2005 (4th international conference on Aspect-oriented software development), pages 159—
168. ACM, 2005.

[105] S.Kim, T. Zimmermann, J. Whitehead, and A. Zeller. Predicting faults from cached history.
In Proceedings of ICSE 2007, pages 489-498. ACM, 2007.

[106] V.C.Klemaand A.]J. Laub. The Singular Value Decomposition: Its computation and some
applications. IEEE Transactions on Automatic Control, 25(2):164-176, 1980.

[107] A.Knight. Glorp: generic lightweight object-relational persistence. In OOPSLA "00: Ad-
dendum to the 2000 proceedings of the conference on Object-oriented programming, systems, lan-
guages, and applications (Addendum), pages 173-174. ACM Press, 2000.

[108] D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern matching in strings. SIAM Journal
on Computing, 6(2):323-350, 1977.

[109] A.J.Ko,R.DeLine, and G. Venolia. Information needs in collocated software development
teams. In Proceedings of ICSE 2007 (29th ACM/IEEE International Conference on Software
Engineering), pages 344-353. IEEE Computer Society, 2007.

[110] R. Kollmann, P. Selonen, and E. Stroulia. A study on the current state of the art in toolsup-
y P
ported uml-based static reverse engineering. In Proceedings of the Ninth Working Conference
on Reverse Engineering, pages 22-32, 2002.

217

Bibliography

[111] A.Kuhn, S. Ducasse, and T. Girba. Semantic clustering: Identifying topics in source code.
Information and Software Technology, 49(3):230-243, 2007.

[112] K. Kuwabara. A bazaar at the edge of chaos. First Monday, 5(3), 2000.
[113] M. Lanza and R. Marinescu. Object-Oriented Metrics in Practice. Springer-Verlag, 2006.

[114] T. LaToza, G. Venolia, and R. DeLine. Maintaining mental models: a study of developer
work habits. In Proceedings of ICSE 2006 (28th ACM International Conference on Software
Engineering), pages 492-501. ACM, 2006.

[115] M. Lehman. Programs, life cycles, and laws of software evolution. Proceedings of the IEEE,
(9):1060-1076, 1980.

[116] M. Lehman and L. Belady. Program Evolution: Processes of Software Change. London Aca-
demic Press, 1985.

[117] T. C. Lethbridge, S. E. Sim, and J. Singer. Studying software engineers: Data collection
techniques for software field studies. Empirical Software Engineerng, 10:311-341, 2005.

[118] P.L.Li,J. Herbsleb, and M. Shaw. Finding predictors of field defects for open source soft-
ware systems in commonly available data sources: A case study of openbsd. In METRICS
‘05: Proceedings of the 11th IEEE International Software Metrics Symposium, page 32. IEEE
Computer Society, 2005.

[119] W. Lidwell, K. Holden, and J. Butler. Universal Principles of Design. Rockport, 2003.

[120] M. Lormans and A. van Deursen. Can Isi help reconstructing requirements traceability
in design and test? In Proceedings of CSMR 2006 (10th European Conference on Software
Maintenance and Reengineering), pages 47-56, 2006.

[121] M. Lungu. Reverse Engineering Software Ecosystems. PhD thesis, University of Lugano,
Switzerland, Oct. 2009.

[122] J. B. MacQueen. Some methods for classification and analysis of multivariate observations.
In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, pages
281-297. University of California Press, 1967.

[123] C.Manning, P. Raghavan, and H. Schiitze. Introduction to Information Retrieval. Cambridge
University Press, 2008.

[124] T. D. Marco. Peopleware - Productive Projects and Teams. Dorset House, 1999.

[125] A. Marcus, A. De Lucia, J. H. Hayes, and D. Poshyvanyk. Working session: Information
retrieval based approaches in software evolution. In Proceedings of ICSM 2006 (22th IEEE
International Conference on Software Maintenance), pages 197-209. IEEE CS Press, 2006.

[126] A.Marcus and J. Maletic. Recovering documentation-to-source-code traceability links us-
ing latent semantic indexing. In Proceedings of ICSE 2003 (25th International Conference on
Software Engineering), pages 125-135. IEEE CS Press, 2003.

[127] A. Marcus, D. Poshyvanyk, and R. Ferenc. Using the conceptual cohesion of classes for
fault prediction in object-oriented systems. IEEE Transactions on Software Engineering,
34(2):287-300, 2008.

218

Bibliography

[128] R. Marinescu. Detection strategies: Metrics-based rules for detecting design flaws. In
Proceedings of ICSM 2004 (20th IEEE International Conference on Software Maintenance), pages
350-359. IEEE Computer Society Press, 2004.

[129] B. Martin and B. Hanington. Universal Methods of Design. Rockport, 2012.

[130] R.McNaughton and H. Yamada. Finite automata and their decision problems. IBM Journal
of Research and Development, 3:114-125, 1959.

[131] R. McNaughton and H. Yamada. Regular expressions and state graphs for automata. IRE
Transactions on Electronic Computers, 9(1):39-47, 1960.

[132] H. Mills. Software development. IEEE Transactions on Software Engineering, 2, 1976.
[133] T. Mitchell. Machine Learning. McGraw Hill, 1nd edition, 1997.

[134] A. Mockus, R. T. Fielding, and J. D. Herbsleb. A case study of open source software de-
velopment: the apache server. In Proc. of ICSE’00, pages 263-272, 2000.

[135] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case studies of open source software
development: Apache and Mozilla. ACM Transactions on Software Engineering and Method-
ology, 11(3):309-346, 2002.

[136] L. Moonen. Generating robust parsers using island grammars. In Proceedings of WCRE
2001 (8th Working Conference on Reverse Engineering), pages 13-22. IEEE CS, 2001.

[137] R. Moser, W. Pedrycz, and G. Succi. A comparative analysis of the efficiency of change
metrics and static code attributes for defect prediction. In Proceedings of ICSE 2008 (30th
International Conference on Software Engineering), pages 181-190, 2008.

[138] G. C. Murphy and D. Notkin. Lightweight lexical source model extraction. ACM Transac-
tions on Software Engineering and Methodology, 5(3):262-292, 1996.

[139] G. C. Murphy, D. Notkin, and K. J. Sullivan. Software reflexion models: Bridging the gap
between design and implementation. IEEE Transactions on Software Engineering, 27(4):364—
380, 2001.

[140] N. Nagappan and T. Ball. Static analysis tools as early indicators of pre-release defect
density. In Proceedings of ICSE 2005 (27th International Conference on Software Engineering),
pages 580-586. ACM, 2005.

[141] N. Nagappan and T. Ball. Use of relative code churn measures to predict system defect
density. In Proceedings of ICSE 2005 (27th International Conference on Software Engineering),
pages 284-292. ACM, 2005.

[142] N. Nagappan, T. Ball, and A. Zeller. Mining metrics to predict component failures. In
Proceedings of the ICSE 2006 (28th International Conference on Software Engineering), pages
452-461. ACM, 2006.

[143] N. Nagappan, B. Murphy, and V. Basili. The influence of organizational structure on soft-
ware quality: an empirical case study. In Proceedings of ICSE '08 (30th international confer-
ence on Software engineering), pages 521-530. ACM, 2008.

[144] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller. Predicting vulnerable software
components. In Proceedings of CCS 2007 (14th ACM Conference on Computer and Communi-
cations Security), pages 529-540. ACM, 2007.

219

Bibliography

[145] O. Nierstrasz, S. Ducasse, and T. Girba. The story of Moose: an agile reengineering en-
vironment. In Proceedings of ESEC/FSE 2005 (5th Joint Meeting of the European Software En-
gineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engi-
neering), pages 1-10. ACM Press, 2005.

[146] M. Ogawa, K.-L. Ma, C. Bird, P. T. Devanbu, and A. Gourley. Visualizing social interaction
in open source software projects. In 6th International Asia-Pacific Symposium on Visualization,
pages 25-32, 2007.

[147] N.Ohlsson and H. Alberg. Predicting fault-prone software modules in telephone switches.
IEEE Transactions on Software Engineering, 22(12):886-894, 1996.

[148] P.W.Oman and T. G. Lewis. Milestones in Software Evolution. IEEE Computer Society Press,
1990.

[149] A. Oram and G. Wilson. Making Software. O’Reilly, 2010.

[150] T.J. Ostrand and E. J. Weyuker. The distribution of faults in a large industrial software
system. SIGSOFT Software Engineering Notes, 27(4):55-64, 2002.

[151] T.J. Ostrand, E. J. Weyuker, and R. M. Bell. Where the bugs are. In Proceedings of ISSTA
2004 (ACM SIGSOFT International Symposium on Software testing and analysis), pages 86-96.
ACM, 2004.

[152] T.J. Ostrand, E. J. Weyuker, and R. M. Bell. Predicting the location and number of faults
in large software systems. IEEE Transactions on Software Engineering, 31(4):340-355, 2005.

[153] T.J. Ostrand, E. J. Weyuker, and R. M. Bell. Automating algorithms for the identification
of fault-prone files. In Proceedings of ISSTA 2007 (ACM SIGSOFT International Symposium
on Software testing and analysis, pages 219-227. ACM, 2007.

[154] D. Pattison, C. Bird, and P. Devanbu. Talk and Work: a Preliminary Report. In Proceedings
of MSR 2008 (5th International Working Conference on Mining Software Repositories), pages
113-116. ACM, 2008.

[155] A. Perer, B. Shneiderman, and D. W. Oard. Using rhythms of relationships to understand e-
mail archives. Journal of the American Society for Information Science and Technology, 57:1936—
1948, 2006.

[156] F. A. C. Pinheiro and J. A. Goguen. An object-oriented tool for tracing requirements. I[EEE
Software, 13(2):52-64, 1996.

[157] L. Ponzanelli, A. Bacchelli, and M. Lanza. Leveraging crowd knowledge for software com-
prehension and development. In Proceedings of CSMR 2013 (17th European Conference on
Software Maintenance and Reengineering), page to be published. IEEE CS Press, 2013.

[158] H. Ramankutty. Yacc/bison - parser generators - part 1. Linux Gazette, 87, 2003. http:
//tldp.org/LDP/LGNET/issue87/ramankutty.html.

[159] B.Ramesh and V. Dhar. Supporting systems development by capturing deliberations dur-
ing requirements engineering. IEEE Transactions on Software Engineering, 18(6):498-510,
1992.

[160] S. Rastkar, G. C. Murphy, and G. Murray. Summarizing software artifacts: a case study
of bug reports. In Proceedings of ICSE 2010 (32nd ACM/IEEE International Conference on
Software Engineering), pages 505-514. ACM, 2010.

220

http://tldp.org/LDP/LGNET/issue87/ramankutty.html
http://tldp.org/LDP/LGNET/issue87/ramankutty.html

Bibliography

[161] D. Ratiu, S. Ducasse, T. Girba, and R. Marinescu. Using history information to improve
design flaws detection. In Proceedings of CSMR 2004, page 223. IEEE CS, 2004.

[162] E.Raymond. The Cathedral and the Bazaar - Musings on Linux and Open Source by an Accidental
Revolutionary. O'Reilly, 1999.

[163] L.Renggli, S. Ducasse, Girba, and O. Nierstrasz. Practical dynamic grammars for dynamic
languages. In Proceedings of DYLA 2010 (4th Workshop on Dynamic Languages and Applica-
tions), 2010.

[164] A.Riel. Object-Oriented Design Heuristics. Addison-Wesley, 1996.

[165] P.C. Rigby, D. M. German, and M.-A. Storey. Open source software peer review practices:
a case study of the Apache server. In Proceedings of ICSE 2008 (30th International Conference
on Software Engineering), pages 541-550. ACM, 2008.

[166] P. C. Rigby and A. E. Hassan. What can oss mailing lists tell us? a preliminary psycho-
metric text analysis of the apache developer mailing list. In Proceedings of MSR 2007 (4th
International Workshop on Mining Software Repositories), pages 23—. IEEE Computer Society,
2007.

[167] P.C. Rigby and M. P. Robillard. Discovering essential code elements in informal documen-
tation. In Proceedings of ICSE 2013 (35th International Conference on Software Engineering),
pages 832-841. ACM, 2013.

[168] P. C. Rigby and M.-A. Storey. Understanding broadcast based peer review on open source
software projects. In Proceedings of ICSE 2011 (33rd International Conference on Software
Engineering), pages 541-550. ACM, 2011.

[169] M. Robillard, R. Walker, and T. Zimmermann. Recommendation systems for software
engineering. IEEE Software, 27:80-86, 2010.

[170] M.J. Rochkind. The source code control system. IEEE Transactions on Software Engineering,
1(4):364-370, 1975.

[171] A.Sarma, L. Maccherone, P. Wagstrom, and J. Herbsleb. Tesseract: Interactive visual ex-
ploration of socio-technical relationships in software development. In Proceedings of ICSE
2009 (31st International Conference on Software Engineering), pages 23-33. IEEE Computer
Society Press, 2009.

[172] A.Schréter, J. Aranda, D. Damian, and I. Kwan. To talk or not to talk: factors that influence
communication around changesets. In Proc. of CSCW’12, pages 1317-1326, 2012.

[173] D. Schuler and T. Zimmermann. Mining usage expertise from version archives. In Pro-
ceedings of MSR 2008, pages 121-124. ACM, 2008.

[174] R. C. Seacord, D. Plakosh, , and G. A. Lewis. Modernizing Legacy Systems: Software Tech-
nologies, Engineering Process and Business Practices. Addison-Wesley, 2003.

[175] C. B. Seaman. Qualitative methods in empirical studies of software engineering. [EEE
Transactions on Software Engineering, 25:557-572, 1999.

[176] F.Sebastiani. Machine learning in automated text categorization. ACM Computing Surveys,
34:1-47, 2002.

221

Bibliography

[177] M. Sefika, A. Sane, and R. H. Campbell. Monitoring compliance of a software system with
its high-level design models. In Proceedings of ICSE 1996 (18th international conference on
Software engineering), pages 387-396. IEEE Computer Society, 1996.

[178] E. Shihab, Z. M. Jiang, and A. E. Hassan. Studying the use of developer irc meetings in
open source projects. In Proceedings of ICSM 2009 (25th 1IEEE International Conference on
Software Maintenance), pages 147-156. IEEE CS Press, 2009.

[179] S. E. Sim, S. Easterbrook, and R. C. Holt. Using benchmarking to advance research: a
challenge to software engineering. In Proceedings of ICSE 2003 (25th International Conference
on Software Engineering), pages 74-83. IEEE Computer Society, 2003.

[180] M. Smith, D. Weiss, P. Wilcox, and R. Dewar. The OPHELIA traceability layer. In Coopera-
tive Methods and Tools for Distributed Software Processes (2nd Workshop on Cooperative Supports
for Distributed Software Engineering Processes), pages 150-161. FrancoAngeli, 2003.

[181] Software Composition Group. The FAMIX official website, 2010. http://www.

moosetechnology.org/docs/famix/3.0.

[182] O. Stock, R. Falcone, and P. Insinnamo. Island parsing and bidirectional charts. In Pro-
ceedings of the 12th Conference on Computational Linguistics, pages 636-641, 1988.

[183] R.Subramanyam and M. S. Krishnan. Empirical analysis of ck metrics for object-oriented
design complexity: Implications for software defects. IEEE Transactions on Software Engi-
neering, 29(4):297-310, 2003.

[184] Sun Microsystems, Inc. Code conventions for the Java™programming language, 1999.
http://www.oracle.com/technetwork/java/codeconvtoc-136057.html.

[185] J. Tang, H. Li, Y. Cao, and Z. Tang. Email data cleaning. In Proceedings of KDD 2005 (11th
ACM SIGKDD international conference on Knowledge discovery in data mining, pages 489-498.
ACM, 2005.

[186] R.Tang, A. E.Hassan, and Y. Zou. Techniques for identifying the country origin of mailing
list participants. In Proc. of WCRE 2009, pages 36—40. IEEE CS Press, 2009.

[187] A. E. H. Thanh H. D. Nguyen, Bram Adams. A case study of bias in bug-fix datasets. In
Proceedings of WCRE 2010 (17th IEEE Working Conference on Reverse Engineering), pages 259
-268. IEEE CS Press, 2010.

[188] S. W. Thomas. Mining Unstructured Software Repositories Using IR Models. PhD thesis,
School of Computing, Queen’s University, Canada, December 2012.

[189] G.C.M. Thomas Fritz, Jingwen Ou and E. Murphy-Hill. A degree-of-knowledge model to
capture source code familiarity. In Proceedings of ICSE 2010 (32nd ACM/IEEE International
Conference on Software Engineering), pages 385-394. IEEE Computer Society, 2010.

[190] K. Thompson. Regular expression search algorithm. Communications of the ACM,
11(6):419-422, 1968.

[191] W. Tichy. Design, implementation, and evaluation of a Revision Control System. In Pro-
ceedings of the 6th International Conference on Software Engineering (ICSE 1982), pages 58-67.
IEEE Computer Society Press, 1982.

222

http://www.moosetechnology.org/docs/famix/3.0
http://www.moosetechnology.org/docs/famix/3.0
http://www.oracle.com/technetwork/java/codeconvtoc-136057.html

Bibliography

[192] M. Tomita. An efficient context-free parsing algorithm for natural languages. In Proceed-
ings of the 9th international joint conference on Artificial intelligence - Volume 2, IJCAI'85, pages
756-764, San Francisco, CA, USA, 1985. Morgan Kaufmann Publishers Inc.

[193] M. Triola. Elementary Statistics. Addison-Wesley, 10th edition, 2006.

[194] D. Cubrani¢, G. C. Murphy, J. Singer, and K. S. Booth. Hipikat: A project memory for
software development. IEEE Transactions on Software Engineering, 31(6):446-465, 2005.

[195] M. van Den Brand, P. Klint, and J. J. Vinju. Term rewriting with traversal functions. ACM
TOSEM, 12(2):152-190, 2003.

[196] M. van den Brand, A. van Deursen, J. Heering, H. de Jong, M. de Jonge, T. Kuipers, P. Klint,
L. Moonen, P. Olivier, J. Scheerder, J. Vinju, E. Visser, and J. Visser. The ASF+SDF Meta-
Environment: a Component-Based Language Development Environment. In Proceedings
of CC 01 (International Conference on Compiler Construction), pages 365-370. Springer, 2001.

[197] M. G.J. van den Brand, A. van Deursen,]. Heering, H. A. d. Jong, M. d. Jonge, T. Kuipers,
P. Klint, L. Moonen, P. A. Olivier, J. Scheerder, J. J. Vinju, E. Visser, and J. Visser. The
asf+sdf meta-environment: A component-based language development environment. In
Proceedings of the 10th International Conference on Compiler Construction, CC ‘01, pages 365—
370, London, UK, UK, 2001. Springer-Verlag.

[198] G. van Rossum. Unified diff format, June 2006. http://www.artima.com/weblogs/
viewpost.jsp?thread=164293.

[199] D. Cubrani¢ and G. C. Murphy. Hipikat: recommending pertinent software development
artifacts. In Proceedings of ICSE 2003, pages 408-418, 2003.

[200] G. Venolia. Textual allusions to artifacts in software-related repositories. In Proceedings of
MSR 2006, pages 151-154. ACM, 2006.

[201] R. Wettel, M. Lanza, and R. Robbes. Software systems as cities: A controlled experiment.
In Proceedings of ICSE 2011 (33rd International Conference on Software Engineeering), pages
551 - 560. ACM Press, 2011.

[202] 1. H. Witten, G. W. Paynter, E. Frank, and C. G. C. G. Nevill-Manning. KEA: practical
automatic keyphrase extraction. In Proceedings of DL 1999 (4th ACM conference on Digital
Libraries), pages 254-255. ACM, 1999.

[203] T. Wolf, A. Schroter, D. Damian, and T. Nguyen. Predicting build failures using social net-
work analysis on developer communication. In Proceedings of ICSE 2009 (31th International
Conference on Software Engineering), pages 1-11. IEEE Computer Society, 2009.

[204] T. Xie and J. Pei. MAPO: mining api usages from open source repositories. In Proceedings
of MSR 2006 (3th International Workshop on Mining Software Repositories), pages 54-57. ACM,
2006.

[205] K. C. B. Yakemovic and E. J. Conklin. Report on a development project use of an issue-
based information system. In Proceedings of CSCW 1990 (5th ACM conference on Computer-
supported cooperative work), pages 105-118. ACM, 1990.

[206] S.S. Yau,]. S. Colofello, and T. MacGregor. Ripple effect analysis of software maintenance.
In I. C. S. Press, editor, Proceedings of the 2nd IEEE International Conference on Computer
Software and Applications (COMPSAC 1978), 1978.

223

http://www.artima.com/weblogs/viewpost.jsp?thread=164293
http://www.artima.com/weblogs/viewpost.jsp?thread=164293

[207] J.Yi, T. Nasukawa, R. Bunescu, and W. Niblack. Sentiment analyzer: Extracting sentiments
about a given topic using natural language processing techniques. In Proceedings of ICDM
2003 (3rd IEEE International Conference on Data Mining), pages 427—. IEEE, 2003.

[208] A.Zeller. Yesterday, my program worked. today, it does not. why? ACM SIGSOFT Software
Engineering Notes, 24(6):253-267, 1999.

[209] W. Zhao, L. Zhang, L. Yin, L. Jing, and J. Sun. Understanding how the requirements
are implemented in source code. In Proceedings of APSEC 2003 (10th Asia-Pacific Software
Engineering Conference), pages 68-77. IEEE Computer Society, 2003.

[210] T. Zimmermann and N. Nagappan. Predicting defects using network analysis on depen-
dency graphs. In Proceedings of ICSE 2008 (30th International Conference on Software Engi-
neering), 2008.

[211] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schroter, and C. Weiss. What makes
a good bug report? IEEE Transactions on Software Engineering (TSE), 36(5):618-643, 2010.

[212] T. Zimmermann, R. Premraj, and A. Zeller. Predicting defects for eclipse. In Proceedings of
PROMISE 2007, page 76. IEEE CS, 2007.

[213] T. Zimmermann, P. Weissgerber, S. Diehl, and A. Zeller. Mining version histories to guide
software changes. IEEE Transactions on Software Engineering, 31(6):429-445, 2005.

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Prologue
	Introduction
	The Problem
	Thesis Statement
	Contributions
	Outline

	State of the Art
	A Historical Perspective
	Mining Software Repositories
	Linking Software Data Sources
	Structured and Unstructured Software Data
	Emails as an Unstructured Data Source of Information

	Summary

	Methodology, Replicability, and Subject Systems
	Iterative Explorative Approach
	Tool Based Research
	A Walk Through Miler

	Benchmark and Replicability
	Subject Systems for the Analyses
	Summary

	Linking Unstructured Data and Source Code Artifacts
	Recovering Traceability Links Between Emails and Source Code Artifacts
	Overview
	Benchmark Creation With the Miler Toolset
	Importing Email Data
	Importing Source Code Data
	Manual Benchmark Creation With the Miler Game
	Evaluation

	Lightweight Traceability Linking
	Artifact Name, Case Insensitive
	Artifact Name, Case Sensitive
	Strict Regular Expression
	Loose Regular Expression, Case Sensitive
	Mixed approaches
	Discussion

	Information Retrieval Techniques
	Vector Space Model (VSM)
	Latent Semantic Indexing (LSI)
	Results

	Lightweight vs Heavyweight
	Results of Lightweight Methods
	Comparison
	Discussion
	On The Threats to Validity

	Related work
	Summary

	Improving Defect Prediction Approaches With Email Data
	Overview
	Methodology
	Experiments
	Correlations Analysis
	Defect Prediction

	Discussion
	Threats to validity
	Related Work
	Summary

	Supporting Program Comprehension With Emails
	Overview
	REmail: Recommending Emails
	Data-collection Mechanism
	Recommendation Engine
	User Interface

	Program comprehension through emails
	Entry points from class popularity in emails
	Software Evolution Analysis
	Expert finding
	Recovering Additional Information

	Related Work
	Summary

	Structuring Unstructured Software Data
	Detecting Lines of Source Code in Development Emails
	Overview
	Benchmark and Evaluation
	Subjects of the experiment
	Benchmark creation
	Evaluation

	Experiments
	Classification of emails including source code fragments
	Classification of text lines including source code fragments
	Source code extraction

	Discussion
	Related work
	Summary

	Recovering Structured Fragments from Unstructured Data
	Overview
	Grammars and Island Parsing
	Island Grammars and Their Parsing

	iLander: The Parsing Approach
	Island Definition
	Ambiguity Resolution

	iLander: Validation
	Text normalization of emails
	Empirical Validation
	Threats to Validity

	iLander: Model Extraction
	Metamodel
	Transformation Example

	iLander: Disclosing New Directions for Analyses
	Model reconstruction
	System analysis

	PetitIsland: The Parsing Approach
	Parsing Expression Grammars
	Implementation
	Summary

	PetitIsland: Validation
	Productions
	Results
	Summary

	PetitIsland: Applications
	Extracting source models from system artifacts
	Other applications

	Related Work
	Summary

	Classification of Lines in Development Emails
	Overview
	Motivation
	Data Collection and Classification
	Data Collection
	Data Classification
	Data Distribution

	Experiment
	Term Based Classification
	Training and Testing
	Term Based Features and Overfitting
	Parsing Based Classification
	Unified Approach

	Threats to Validity
	Related Work
	Summary

	Epilogue
	Communication in OSS Mailing Lists
	Overview
	Methodology
	Research Questions
	Research Method
	Data Collection
	Card Sort
	Aliasing and Identification of Developers

	What are mailing list participants talking about?
	How often do participants talk about each topic?
	How prominent are implementation details?

	Is the development mailing list only for developers?
	What do developers focus on?
	Dynamics of interactions
	The overall picture

	What is the role of the development mailing list?
	Is in the mailing list where all the communication occurs?
	Is the mailing list for driving coordination?
	Is the mailing list used for peer code review?
	Is the mailing list the hub of project communication?

	Implications
	Limitations
	Related Work
	Summary

	Conclusion
	Contributions
	Exploratory Investigation
	Email Data and Source Code Artifacts Reconnected
	Unstructured Data Restructured
	Updated our knowledge on OSS mailing list communication
	Benchmarks

	Future Work
	Lessons learned by mining development emails

	Closing Words

