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Abstract.

We present a detailed description of N = 2 stationary BPS multicenter black hole so-

lutions for quadratic prepotentials with an arbitrary number of centers and scalar fields

making a systematic use of the algebraic properties of the matrix of second derivatives of

the prepotential, S, which in this case is a scalar-independent matrix. The anti-involution

matrix S can be understood as a Freudenthal duality x̃ = Sx. We show that this duality

can be generalized to “Freudenthal transformations”

x → λ exp(θS)x = ax + bx̃

under which the horizon area, ADM mass and intercenter distances scale up leaving con-

stant the scalars at the fixed points. In the special case λ = 1, “S-rotations”, the transfor-

mations leave invariant the solution. The standard Freudenthal duality can be written as

x̃ = exp
(
π
2
S
)

x. We argue that these generalized transformations leave invariant not only

the quadratic prepotential theories but also the general stringy extremal quartic form Δ4,

Δ4(x) = Δ4(cos θx + sin θx̃) and therefore its entropy at lowest order.

1 N2 D4 SUGRA and Special Kähler geometry

The field content of the N = 2 supergravity theory coupled to nv vector multiplets consists of 1

{
eμ

a , Aμ
I , zα , ψμ

r , λr
α
}
, (1)

with α = 1, . . . , nv, and I = 0, . . . , nv. The theory also contains some hypermultiplets, which can be

safely taken as constant or neglected (further details can be found in [1], whose notation and concepts

we generally adopt). The bosonic N = 2 action can be written as

S =

∫
M(4d)

R � 1 + Gαβ̄dzα ∧ �dz̄β̄ + FI ∧GI . (2)

ae-mail: etl@um.es
1See [1] and references therein for notation fixing and a review of the topic.
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The fields FI ,GI are not independent: FI
= dAI and GI = aIJ FI

+ bIJ � FI with scalar-dependent

coefficients aIJ and bIJ . Abelian charges with respect the U(1)nv+1 local symmetry of the theory are

defined by means of the integrals of the gauge field strengths. The total charges are

q ≡ (pI , qI) ≡ 1

2π2

∫
S∞

(FI ,GI) . (3)

The theory is defined, making use of the special geometry formalism, by some projective scalar coor-

dinates XI , as for example, ‘special’ projective coordinates zα ≡ Xα/X0. By introducing a covariantly

holomorphic section of a symplectic bundle, V , we are able to arrange 2nv quantities that transform as

a vector under symplectic transformations at any point of the manifold. V has the following structure

V = V(z, z̄) ≡ (VI ,VI) and satisfies the following identities:

〈
V

∣∣∣ V̄
〉
≡ VtωV̄ ≡ V̄ IVI − VIV̄I = −i , (4)

where ω is the symplectic form.2

The scalar kinetic term in the action can be written in terms of V as Ls,kin ∼ i
〈
DμV̄

∣∣∣ DμV
〉

and

the scalar metric is given by Gαβ̄ = ∂α∂β̄K where the Kähler potential K is defined by the relations

V = exp(K/2)Ω being Ω ≡ (XI , FI) a holomorphic section and

e−K = i
(
X̄I FI − XI F̄I

)
= i

〈
Ω

∣∣∣ Ω̄〉
. (5)

The central charge Z is

Z(zα, q) ≡ 〈V | q〉 = eK/2
(
pI FI − qI X

I
)
. (6)

The embedding of the isometry group of the scalar manifold metric Gαβ̄, into the symplectic group

fixes, through the Kähler potential K , a functional relation between the lower and upper parts of V

and Ω [? ? ],

FI = FI(X
I) , (7)

VI = VI(V
I) . (8)

There always exists a symplectic frame under which the theory can be described in terms of a single

holomorphic function, the prepotential F(X). It is a second degree homogeneous function on the

projective scalar coordinates XI , such that FI(X) = ∂I F(X). For simplicity, we will assume the

existence of such prepotential along this study although the results will not depend on such existence.

Using the notation FIJ = ∂I∂J F, the lower and upper components of Ω are related by

FI = FIJ XJ . (9)

The lower and upper components of V are related by a field dependent matrix NIJ , which is

determined by the special geometry relations [2]

VI = NIJV J , (10)

Dı̄V̄I = NIJ Dı̄V̄
J . (11)

2We choose a basis such that ω =

(
0 −1nv

1nv 0

)
.
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The matrix N, which also fixes the vector couplings (aIJ , bIJ) in the action, can be related to FIJ

[3] by

NIJ = F̄IJ + TITJ , (12)

where the quantities TI are proportional to the projector of the graviphoton, whose flux defines the

N = 2 central charge [3]. For our purposes, it is convenient to write the relation between NIJ and FIJ

as

NIJ ≡ FIJ + N⊥
IJ

= FIJ − 2iIm (FIJ) + 2i
Im (FIK) LKIm

(
FJQ

)
LQ

LPIm
(
FPQ

)
LQ

, (13)

where we have decomposed the matrix NIJ into “longitudinal” (the FIJ themselves) and “transversal”

parts (N⊥
IJ

). The perpendicular term (defined by the expression above) annihilates LI , or any multiple

of it,

N⊥
IJ(αLJ) = 0 . (14)

From this, (10) can be written as

VI = NIJ LJ
=

(
FIJ + N⊥

IJ

)
LJ

= FIJ LJ . (15)

Thus, the upper and lower components of V and Ω are connected by the same matrix FIJ .

The existence of functional dependencies among the upper and lower components of the vectors

V or Ω imply further relations between their respective real and imaginary parts. They are related by

symplectic matrices S(N),S(F) ∈ S p(2nv + 2,R) which are respectively associated to the quantities

NIJ , FIJ as follows:

Re (Ω) = S(F)Im (Ω) , (16)

Re (V) = S(N)Im (V) = S(F)Im (V) . (17)

The last expression is obtained by means of the relation (15). These same relations (16)-(17) are valid

for any complex multiple of Ω or V . It is straightforward to show, for example, that for any λ ∈ C, we

have

Re (λV) = S(N)Im (λV) = S(F)Im (λV) . (18)

The form of the matrices S(F),S(N) is explicitly given in [1].

In N = 2 theories, S(N) always exhibits a moduli dependence [4]. However, this is not the case

for S(F). We will focus in this work on the particular case of theories with quadratic prepotentials,

F(X) =
1

2
FIJ XI XJ , (19)

where FIJ is a complex, constant, symmetric matrix. Then, the corresponding matrix S(F) is a field-

independent, constant matrix. We can assume that Re (FIJ) = 0 and Im (FIJ) is negative definite.

In what follows, we will use the notation S ≡ S(F). The condition e−K > 0 and the expression (5)

implies a restriction on the prepotential.
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1.1 General supersymmetric stationary solutions

The most general stationary (time independent) 4-dimensional metric compatible with supersymmetry

can be written in the IWP form [5–7],

ds2
= e2U(dt + ω)2 − e−2Udx2. (20)

Supersymmetric N = 2 supergravity solutions can be constructed systematically following well

established methods [8, 9]. In this section we will closely follow the notation of ref.[9]. The 1-form

ω and the function e−2U are related in these theories to the Kähler potential and connection, K ,Q [7].

We demand asymptotic flatness, e−2U → 1 together with ω → 0 for |x| → ∞. BPS field equation

solutions for the action above (for example, quantities that appear in the metric, as e−2U or ω) can be

written in terms of the following real symplectic vectors R and I

R = 1√
2

Re

(
V

X

)
,I = 1√

2
Im

(
V

X

)
. (21)

X is an arbitrary complex function of space coordinates such that 1/X is harmonic. The 2nv + 2

components of I and R are real harmonic functions in R3. There is an algebraic relation between R
and I and the solutions can be written in terms only of the vector I. By making use of (16)-(18), we

can write the equation

R = SI . (22)

In practice, specific solutions are determined by giving a particular, suitable, ansatz for the symplectic

vector I as a function of the spacetime coordinates.

Using these symplectic vectors we rewrite the only independent metric component as

e−2U
= e−K =

1

2|X|2 = 〈R | I〉 = 〈SI | I〉 . (23)

Similarly, the time independent 3-dimensional 1-form ω = ωidxi satisfies the equation

dω = 2 〈I | �3dI〉 , (24)

where �3 is the Hodge dual on flat R3, together with the integrability condition

〈I | ΔI〉 = 0 . (25)

The asymptotic flatness condition implies

〈R∞ | I∞〉 = 〈SI∞ | I∞〉 = 1 . (26)

The gauge field equations of motion and Bianchi identities can be directly solved in terms of spatially

dependent harmonic functions [9]. The modulus of the central charge function defined in (6) can be

written, taking into account (23), as

|Z(q)|2e−2U
= | 〈R | q〉 |2 + | 〈I | q〉 |2 . (27)

At spatial infinity, by assuming the asymptotic flatness condition (26), we arrive to

|Z∞(q)|2 = | 〈R∞ | q〉 |2 + | 〈I∞ | q〉 |2 . (28)
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The, assumed time independent, nv complex scalar fields zα solutions to the field equations, are

given in this formalism by

zα =
Ω
α

Ω0
=

Vα/X

V0/X
=
Rα + iIα
R0
+ iI0

. (29)

This is, in general, a formal expression as the I orR quantities may be scalar dependent.3 These scalar

fields can, in principle, take any values (z∞) at infinity. These values will appear as free parameters in

the ansatz that we give for I. Nevertheless, according to the attractor mechanism, the moduli adjust

themselves at some fixed points.

We are interested in this work in extremal, single- or multi-center black hole-type solutions deter-

mined by an I ansatz with point-like singularities of the form

I = I∞ +
∑

a

qa

|x − xa|
, (30)

where a = 1, . . . , na being the number na arbitrary and qa = (pa
I , qaI) and I∞ real, constant, symplec-

tic vectors.

For this kind of solutions, the quantities I∞ are related to the values at infinity of the moduli while

the “charge” vectors qa are related to their values at the fixed points. The fixed values of the scalars,

z(x) → z(xa) = za
f
, are the solutions of the following attractor equations [2, 10, 11]:

qa
= Re

(
2iZ̄(za

f )V(za
f )
)
. (31)

The prepotential performs its influence throughout V and Z (cf. (6)). The scalar attractor values are

independent of their asymptotic values and only depend on the discrete charges za
f
= za

f
(qa).

2 The stabilization matrix, its adjoint and the attractor equations

It can be shown by explicit computation that the real symplectic matrices SN ,S ≡ SF ∈ S p(2nv+2,R)

defined by (16)-(17), whose explicit expressions are (??), satisfy the relations (see also [3] )

S2
N = S2

F = −1 . (32)

We define the projector operators P± = 1±iS
2

. They satisfy the following straightforward properties

P2
± = P± , (P±)∗ = P∓ .

SP± = ∓iP± , (33)

For X, Y arbitrary real vectors, we have

P±X = P±Y ⇒ X = Y . (34)

P± are the projectors on the eigenspaces (of equal dimension) of the matrix S. W can be decomposed

into eigenspaces of the matrix S: W = W+ ⊕ W− , where W± ≡ P±W. For an arbitrary function of S,

f (S), necessarily a linear function of it, f (S) ≡ a + bS ≡ λ exp(θS), we have

f (S)P± = f (∓i)P±. (35)

3Even for a scalar independent ansatz I, the matrix S is, in general, scalar dependent.

ICNFP 2014

04068-p.5



Complex conjugation interchanges W+ and W− subspaces, both subspaces are isomorphic to each

other and of dimension nv + 1.

For arbitrary λ ∈ C and V ∈ W, for which there is a relation between its real and imaginary parts

of the form Re (V) = SIm (V), we have

λV = Re (λV) + iIm (λV) = 2iP−Im (λV) . (36)

Thus, the full vector V can be reconstructed applying one of the projectors either from its real or imag-

inary part. Such vectors are fully contained in the subspace W− or, equivalently, they are eigenvectors

of S
SV = 2iSP−Im (V) = 2P−Im (V) = iV . (37)

We define the adjoint operator S† of the matrix S, with respect to the symplectic bilinear product

so that, for any vectors A, B ∈ W, 〈SA | B〉 =
〈
A

∣∣∣ S†B
〉
. S† is given by S† = −ωStω. Under the

assumption of a symmetric FIJ matrix, it is given by

S† = −S . (38)

S defines an (almost) complex structure on the symplectic space. This complex structure preserves

the symplectic bilinear form, the matrix S is an isometry of the symplectic space,

〈SX | SY〉 = 〈X | Y〉 . (39)

From (38), we see that S is an element of the symplectic Lie algebra sp(2nv + 2). Moreover, the

bilinear form defined by g(X,Y) ≡ 〈SX | Y〉 is symmetric.4

In general, the matrices SN ,SF are scalar dependent. Only one of them, SF , is constant, in the

case of quadratic prepotentials. Let us write S f

N
≡ SN(z f ) S f

F
≡ SF(z f ) for the matrices evaluated

at (anyone of) the fixed points. Let us use the sub/superindex f to denote any quantity at the fixed

points. We arrive to (using (17) and (18)

S f

N
qa
= S f

N
Re

(
2iZ̄ f V f

)
= S f

F
Re

(
2iZ̄ f V f

)
= Sqa . (40)

The attractor equations can be written yet in another alternative way. By using (36) and (31), we

can write

iZ̄ f V f
= 2P−iZ̄

f V f
= P−q. (41)

That is, the attractor equations simply equalize (a multiple of) the vector V (which, as we have seen

above, lies in the subspace W−) with the part of the charge vector which lies in W−.

From (41) and taking
〈
V

∣∣∣ V̄
〉
= −i, we arrive to

|Z f |2 =
1

2
〈Sq | q〉 . , (42)

Moreover the consistency condition e−K > 0 can be written as (see (5))

e−K = i
〈
Ω

∣∣∣ Ω̄〉
= 2 〈Re (Ω) | Im (Ω) 〉

= 2 〈SIm (Ω) | Im (Ω) 〉 > 0. (43)

This condition is not automatically satisfied as the symmetric quadratic form g is indefinite. 5

4The quadratic form g(X, X) is also known as the “I2(X)” in the literature. The corresponding quartic invariant in this case

can be written as I4(X, ...) = 〈X | X〉2.
5The matrix ωS it has an even number of negative eigenvalues as detωS = (−1)2nv+2

= 1. The signature of g is (2nv, 2).
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2.1 S transformations and Freudenthal duality

Let us consider “S-transformations” of the type

X → X′
= f (S)X,

where f is an arbitrary function. f (S) can be written with full generality as a linear expression

f (S) ≡ a + bS

or in “polar form”

f (S) ≡ λ exp(θS)

where a, b or λ, θ are real parameters. The adjoint is f (S)† = f (S†) = f (−S), f † f = a2
+ b2

= λ2.
Under these transformations f = f (S) the symplectic and g bilinear products become scaled:

〈X′ | Y ′〉 = λ2 〈X | Y〉 , (44)

〈SX′ | Y ′〉 = λ2 〈SX | Y〉 . (45)

If λ = 1 both products are invariant under the Abelian U(1)-like group of transformations

UF(θ) = exp θS,

the “S-rotations”. Any physical quantity (entropy, ADM Mass, scalars at fixed points, intercenter

distances, etc.) written in terms of these products (as it will clearly appear in the next sections) will

automatically be scaled under the general transformations or invariant under the rotations.

On the other hand it can be easily checked that the “degenerate” Freudenthal duality transforma-

tion [12–15]. is given in our case by the the anti-involutive transformation

X̃ = ω
∂g(X, X)

∂X
= SX , (46)

with ˜̃X = −X.

The Freudenthal duality corresponds to a particular S-transformation, a S-rotation of the type

f (S) = exp((π/2)S). (47)

Invariance of quantities as ADM mass and entropy under Freudenthal duality is a special case of a

more general behavior of the solutions under the (Abelian) group of general S-transformations. A

general S-transformations can be written in terms of Freudenthal duality as

X → X̃(a, b) = aX + bX̃, (48)

or,

X̃(λ, θ) = λ cos θX + λ sin θX̃. (49)

3 Complete solutions for quadratic prepotentials

3.1 Behavior of the scalar field solutions

In the previous section we have obtained some general results without assuming a specific form for the

solutionsI. In this section we will make use of the ansatz (30) for theories with quadratic prepotentials

to obtain a full characterization of the solutions.

ICNFP 2014

04068-p.7



Let us insert the ansatz (30) into the general expression for the complex scalars, (29). The values

for the time independent nv complex scalars, solutions to the field equations, are explicitly given by

zα(x) =
(P−I)α

(P−I)0
. (50)

This expression interpolates between the values at the fixed points and at infinity. It can be written as

(cα∞(x) and cαa (x) are spatial dependent complex functions)

zα(x) = cα∞(x)zα∞ +
∑

a

cαa (x)zαa, f . (51)

The scalar charges Σα associated to the scalar fields can be defined by the asymptotic series

zα(r → ∞) = zα∞ +
Σ
α

r
+ O

(
1

r2

)
. (52)

Expanding (??), we have

zα(r → ∞) = zα∞ +
r0(zα

f
(Q) − zα∞)

r
+ O

(
1

r2

)
, (53)

and thus the scalar charges are given by

Σ
α
= r0

(
zαf (Q) − zα∞

)
. (54)

Hence, the scalar charges are fixed in terms of the charge vectors and the asymptotic moduli. In the

special case of a single center solution, the expression (54) is in agreement with the well known fact

that the scalar charges vanish for double extremal black holes. In the multicenter case, from this

formula we infer a similar result: the scalar charges vanish if

zα∞ = zαf (Q) . (55)

Obviously, this does not mean that the scalar fields are constant in all space. Therefore, the conditions

(55) could be considered a convenient generalization of double extremal solutions in the multicenter

case. Taking into account the considerations of the previous section, (??), a possible vector I∞
corresponding to this solution would be of the form

I∞ = ± Q√
〈SQ | Q〉

, (56)

and the scalar fields would be parametrized at any point of the space by

zα(x) = cα∞(x)zαf (Q) +
∑

a

cαa (x)zαf (qa) . (57)

3.2 Intercenter distances and S-transformations

The charge interdistances are restricted, from the 1-form ω condition of integrability [9], we have (for

any charge center qb )

〈I∞ | qb〉 +
∑

a

〈qa | qb〉
rab

= 0 , (58)
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where rab = |xa − xb|. The solutions for this set of equations give the possible values of the center

positions.

Let us study the effect of S-transformations on the intercenter distances for transformed I∞ and

charge symplectic vectors. The vector I∞ is constrained by the asymptotic flatness condition to a unit

fixed g-norm, 1 = 〈SI∞ | I∞〉. We consider therefore set of transformations of the type

I∞ → Ĩ∞(θ) = exp(θS)I∞, (59)

qa → q̃a(λ, θ) = λ exp(θS)qa. (60)

Under these transformations the equations (58) become

λ 〈I∞ | qb〉 + λ2
∑

a

〈qa | qb〉
r̃ab

= 0. (61)

Then

rab → r̃ab = λrab, (62)

the intercenter distances scale (remain invariant) under general S-transformations (S-rotations or

Freudenthal dualities) of the charge and I∞ vectors.

Let us see the consequence of the integrability equations for a double extremal two center config-

uration. In this case, if I∞ = λQ, we have

0 = λ 〈Q | q2〉 + 〈q1 | q2〉
r12

= 〈q1 | q2〉
(
λ +

1

r12

)
.

If we compare this equation with (56), we conclude that, if 〈q1 | q2〉 � 0, we have to choose the

negative sign there and the double extremal intercenter distance is given by

r2
12

∣∣∣
double ext.

= 〈SQ | Q〉 . (63)

In the case 〈q1 | q2〉 = 0 the intercenter distance is not restristed by the compatibility equation Eq.(58).

3.3 Near horizon and infinity geometry

The metric has the form given by (20), with the asymptotic flatness conditions −grr = 〈R∞ | I∞〉 = 1

and ω(|x| → ∞) → 0. For point-like sources, as those represented by the ansatz (30), the compatibility

equation (25) takes the form [9]

N ≡
∑

a

〈I∞ | qa〉 = 〈I∞ | Q〉 = 0 . (64)

An explicit computation of the total field strength shows that (64) is equivalent to the requirement of

absence of NUT charges: only after imposing the condition N = 0, the overall integral of the (FI ,GI)

field strengths at infinity is equal to Q =
∑

qa. Another consequence of the condition N = 0, which

can be checked by direct computation from (24), is that the 1-form ω takes the same value at any of

the horizons of the centers that make up the multicenter black hole. This value is also equal to its

value at spacial infinity, which can be taken to be zero.
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We can write, using (22) and the ansatz (30), the expression

−grr = 〈R | I〉 =

1 + 2
∑

b

〈SI∞ | qb〉
|x − xb|

+

∑
a,b

〈Sqa | qb〉
|x − xa||x − xb|

, (65)

where we have used the property S† = −S and the asymptotic flatness condition 〈SI∞ | I∞〉 = 1.

We introduce now the quantities

Ma ≡ 〈SI∞ | qa〉 , (66)

Aab ≡ 〈Sqa | qb〉 , (67)

where Aab is symmetric in its indices due to the property (??). The metric element is then

−grr = 1 + 2
∑

a

Ma

|x − xa|
+

∑
a,b

Aab

|x − xa||x − xb|
. (68)

If the metric element (68) describes a black hole, then the right part should be kept always positive

and finite for any finite |x|.6 A sufficient condition for its positivity is, for example, that the mass-like

Ma and area-like Aab parameters are all positive.

Behavior at fixed points and at infinity

At spatial infinity |x| → ∞, 1/|x− xa| → 1/r, the metric element (68) becomes spherically symmetric:

−grr = 1 +
2
∑

a Ma

r
+

∑
ab Aab

r2
+ O

(
1

r3

)
.

Then

MADM =

∑
a

Ma = 〈SI∞ | Q〉 , (69)

A∞ =
∑
ab

Aab = 〈SQ | Q〉 . (70)

The central charge at infinity, (28), becomes then

|Z∞|2 = | 〈P+I∞ | Q〉 |2=| N + iM |2 (71)

= M2
ADM + N2 (72)

where N is defined by (64). The compatibility condition N = 0 is equivalent to the saturation of a

BPS condition

|Z∞|2 = M2
ADM = | 〈SI∞ | Q〉 |2 . (73)

Let us suppose a configuration with null scalar charges. In this case I∞ = ±λQ, λ =

1/
√
〈SQ | Q〉. We have MADM = ±/λ, the positivity of MADM obliges us to choose the positive

sign. For a two center case this in turn implies 〈q1 | q2〉 = 0 and r12 unrestricted (see section (3.2)).

6Consider, for example, that −grr ∼ e−K > 0.
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Such I∞ trivially satisfies the absence of NUT charge (N = 0) condition, and for it zα∞ = z f (Q). This

configuration can be considered a multicenter generalization of the double extremal solutions.

For x → xa the metric element given by (68) becomes spherically symmetric. Moreover, it can

be shown that, by fixing additive integration constants, we can take ωa = ω(x → xa) = 0 at the same

time that ω∞ = ω(x → ∞) = 0. As a consequence, the metric at any of the horizon components with

charge qa approaches an AdS 2 × S 2 metric of the form

ds2
=

r2

〈Sqa | qa〉
dt2 − 〈Sqa | qa〉

r2
dx2 . (74)

This is a Robinson-Bertotti-like metric. The Robertson-Bertotti-like mass parameter MRB is given by

M2
RB,a = 〈Sqa | qa〉 , (75)

this is a charge extremal condition impliying the positivity of the charge products: 〈Sqa | qa〉 > 0. 7

Then, the near horizon geometry is completely determined in terms of the individual horizon areas

S h,a = 〈Sqa | qa〉. The horizon area S h is the sum of the areas of its disconnected parts

S h =

∑
a

S h,a =

∑
a

〈Sqa | qa〉 = 2
∑

a

|Zf ,a|2 . (76)

This expression can be compared with the area corresponding to a single center black hole with the

same total charge Q =
∑

a qa, which is given by S h(q = Q) = 〈SQ | Q〉.
Let us finally remark that under S-transformations I∞ → Ĩ∞(θ), qa → q̃a(λ, θ) the ADM mass

and the horizon areas scale as

M̃ADM = λMADM , (77)

S̃ h = λ2S h . (78)

Under the same transformations, the scalars at the fixed points and at infinity remain invariant whereas

the intercenter distances rab scale as (62).

4 Freudenthal duals and charge vector expansions

Any real symplectic vector X can be expanded as

X = 2Im
(
Z(X)V̄ + gαβ̄DαZ(X)D̄β̄V̄

)

with Z(X) = 〈V | X〉. The existence and properties of such expansions are based on the symplectic

properties of V and its derivatives as well as on the existence of a anti-involution S(N) for which

S(N)V = iV and S(N)DαV = iDαV .8

We will define here alternative expansions using the properties of the matrix S ≡ S(F). As

we have seen before, the projectors P± split the (2nv + 2)-dimensional space W into two (nv + 1)-

dimensional eigenspaces

W = W+ ⊕ W− ,

7The positivity of these quantities implies diverse restrictions as the quadratic form g(X,Y) = 〈SX | Y〉 is undefinite with a

signature including an even number of negative signs.
8See for example Section 2.2.2 in [16] and references therein.
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in which the eigenvectors of S (therefore eigenvectors of general S-transformations) with eigenvalues

±i, respectively, lie (cf. Section 3).

Given a set of generic real charge vectors (q1, . . . , qn), the sets (P+qa), respectively (P−qa), possibly

completed with additional suitable vectors, can be considered a basis for the eigenspaces W+, respec-

tively W−. Let us consider the W subspace B(qn) generated by eigenvectors of the matrix S associated

to center charges, directly of the complex form

B(qn) ≡ Span(P±q1, . . . , P±qn) , (79)

or, equivalently, in the real basis formed by charge vectors and their Freudenthal duals q̃i = Sqi

B(qn) ≡ Span(q1, . . . , qn,Sq1, . . . ,Sqn) . (80)

In particular, we can consider the subspace B(qna) generated by the na pairs (qa, Sqa) of center charges,

whose dimension is, in general, dim B(qna) ≤ 2na. The dimension of the orthogonal complement to

this space, B(qna)⊥, i.e. those vectors s such that 〈q | s〉 = 〈Sq | s〉 = 0 is, generically, dim B(qna)⊥ =
2(nv − na) + 2.9 This dimension is zero for one scalar, one center black holes (nv = 0, na = 1). The set

of vectors (qa, Sqa) may form themselves a (maybe overcomplete) basis for the (2nv + 2) symplectic

space. Otherwise, they can be extended with as many other vectors (si) as necessary to complete such

basis. Any real symplectic vector of interest (e.g. I∞) can be conveniently expanded as

X = 2ReαaP+qa + 2Re γiP+si , (81)

where αa, γi are complex parameters or, equivalently, as

X = αaqa + α̃
aSqa + γ

i si + γ̃
iSsi , (82)

where αa, α̃a, γi, γ̃i are in this case real parameters.10 Let us note that under this same expansion the

dual vector X̃ = SX has respectively complex components (−iα, . . . ) or real ones (−α̃a, αa, . . . ).

We can use expansions of different quantities in such a basis formed by charge and extra vectors,

to get different results. See [1] for some illustrative cases.

5 Concluding remarks: more about Freudenthal transformations

The anti-involution matrix S can be understood as a Freudenthal duality q̃ = Sq [12, 13]. Under

this transformation of the charges the horizon area, ADM mass and other properties of the solutions

remain invariant. We have shown, for the quadratic prepotential theories studied here, that this duality

can be generalized to an Abelian group of transformations (“Freudenthal transformations”) of the

form

x → λ exp(θS)x = ax + bx̃.

Under this set of transformations applied to the charge vectors and I∞, the horizon area, ADM mass

and intercenter distances scale up, respectively, as

S h → λ2S h, MADM → λMADM , rab → λrab, (83)

9Or equivalently, B(qna)⊥ is defined as the set of vectors s such that h(s, q) = 0 for all q ∈ (qna), where h is the Hermitian

inner product defined in Section 2.
10Naturally, other bases are possible or convenient, as for example bases including linear combinations of the charge vectors,

the total charge vector Q, I∞, etc.
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leaving invariant the values of the scalars at the fixed points and at infinity. In the special case λ = 1,

“S-rotations”, the transformations leave invariant the solution. The standard Freudenthal duality can

be written as the particular rotation

x̃ = exp(π/2S)x.

It is immediate to ask the question whether such transformations can be generalized to 4d theories

with general prepotentials, not associated to “degenerate” U-duality groups, including stringy black

holes. We can see that this is indeed the case using a simple argument as follows (a more detailed

investigation is presented in [17]). The U-duality quartic invariant defined ([12], using here a slightly

adapted notation ) as

2Δ4(x) ≡ 〈T (x) | x〉
can be written also, using the definition of Freudenthal duality, as

Δ4(x) =
1

4
〈x̃ | x〉2 .

Let us note then that, for a general transformation this quantity scale as

2Δ4(ax + bx̃)1/2
=

〈
˜ax + bx̃

∣∣∣ ax + bx̃
〉
= 〈ax̃ − bx | ax + bx̃〉 (84)

= (a2
+ b2) 〈x̃ | x〉 (85)

= 2(a2
+ b2)Δ4(x)1/2. (86)

where we have used the property ˜ax + bx̃ = ax̃ − bx This is a non trivial property as x′ = x̃ is a

non-linear transformation, linearity is only guaranteed in the F-plane. For a2
+ b2

= 1, a S-rotation,

the quantity Δ4 for any U-duality group, and then the lowest order entropy of any extremal stringy

black hole, is invariant under these transformations.
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