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Abstract. Cellulose nanocrystals (CNCs) exhibit advantageous chemical and mechanical 
properties that render them attractive for a wide range of applications. During the life-cycle of 
CNC containing materials the nanocrystals could be released and become airborne, posing a 
potential inhalatory exposure risk towards humans. Absent reliable and dose-controlled models 
that mimic this exposure in situ is a central issue in gaining an insight into the CNC-lung 
interaction. Here, an Air Liquid Interface Cell Exposure system (ALICE), previously designed 
for studies of spherical nanoparticles, was used for the first time to establish a realistic 
physiological exposure test method for inhaled fiber shaped nano-objects; in this case, CNCs 
isolated from cotton. Applying a microscopy based approach the spatially homogenous 
deposition of CNCs was demonstrated as a prerequisite of the functioning of the ALICE. 
Furthermore, reliability and controllability of the system to nebulise high aspect ratio 
nanomaterials (HARN, e.g. CNCs) was shown. This opens the potential to thoroughly 
investigate the inhalatory risk of CNCs in vitro using a realistic exposure system. 

1.  Cellulose nanocrystals: composition and applications 
Cellulose is the most abundant organic polymer on earth [1]. Individual cellulose molecules consist of 
linear chains, each of about 10,000 linked D-glucose units, and are the main component produced by 
condensation reactions of glucose during photosynthesis within the primary cell wall of green plants 
[1, 2]. Cellulose microfibrils contain both a crystalline and an amorphous fraction. The repeated 
crystalline domains that are formed via hydrogen bonds are disrupted by disordered regions of 
cellulose chains, which is the amorphous part. The ratio between the two fractions varies by species 
specificity, although in each case forms a natural composite material that provides a highly rigid 
structure (e.g. plant cell walls) [1]. The amorphous part can be degraded via controlled hydrolysis with 
mineral acids creating high aspect ratio cellulose nanocrystals (CNCs). Depending upon the source 
(e.g. cotton, soft wood pulp, rice and banana husks, bacteria, tunicates) rod shaped crystals with 
typical diameters of 5-50 nm and a length of 100-2,000 nm can be obtained [3-7]. Thus, CNCs 
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represent high aspect ratio nanoparticles (HARNs) with an aspect ratio typically between 10 and 100 
[8]. 

These characteristics, together with outstanding material properties, i.e. high strength and stiffness 
(elastic modulus ~80-150 GPa) give rise to the potential use of CNCs in many applications, including 
for example high-performance polymer nanocomposites [9], mechanically adaptive materials [10], 
membranes for water purification [11] and photonic films [12]. Overall CNCs may be viewed as an 
oil-independent, lightweight and inexpensive alternative to carbon nanotubes (CNTs) [8]. 

2.  Opportunities and risks of CNCs 
Due to their low cost and ease of availability, combined with their properties and the possibility to 
simply modify the surface, CNCs have gathered increased attention within the field of material science 
in the past decades [2]. Taking into consideration the high potential for their industrial exploitation, it 
is essential to look into the potential risk posed by this nanomaterial [13].  

The life-cycle of CNCs that are produced from different sources and embedded into polymers to 
form composites for specific applications includes the isolation of CNCs, compounding with 
polymers, incorporation into a product, processing and eventually their disposal. During these steps 
the materials undergo mechanical mixing processes as well as possible finishing steps such as sanding, 
drilling, abrasion and degradation. Thus, contained CNCs may be released as single nanocrystals, 
small agglomerates or even composite dust into the air and therefore potentially reach the human body 
via inhalation [14, 15]. There are three main exposure routes for nano-objects into the human body 
that highlight occupational, consumer related and environmental exposure: via the skin, the 
gastrointestinal tract and the respiratory tract. The lung, due to its large surface area is widely accepted 
as the primary entry route for ambient particulate materials into the human body [16]. Therefore, 
CNCs pose not only an occupational but also a consumer related and an environmental exposure risk 
[17]. One reason for a thorough investigation into the potential inhalatory risk of CNCs is due to their 
similarity to CNTs, especially in terms of their physico-chemical characteristics. Previously it has 
been reported that long, straight and stiff CNTs that were injected into the abdomen of mice caused 
severe adverse effects (i.e. inflammatory granulomas), which highlighted the discussion as to whether 
or not the ‘asbestos-like effects’ reported should be considered for any fiber shaped particle in the 
nano-dimension [18]. In accordance with previous fiber toxicology research that formed the ‘fiber 
paradigm’ (i.e. fibers must be long, thin and biopersistent) [19, 20], it has emerged in recent years that 
to fully understand the potential advantages of nanofibers, the interaction of HARN with biological 
systems must be taken into consideration. 

In addition, it should also be highlighted that there is considerable investigation into the adverse 
health effects with humans following exposure to cotton dust. Workers of cotton mills, weaving and 
soft tissue paper-producing industries have been shown to suffer from reduced lung function, airway 
obstruction, ‘flu-like’ symptoms, also called byssinosis (brown lung disease), eye and skin problems 
due to exposure to cotton dust when compared with silk mill workers [21, 22]. A distinction of the 
observed health effects within occupational settings induced from the different fractions of cotton dust, 
including cotton fibers, is currently limited. Furthermore the role of bacteria, fungi [23] and related 
contents such as endotoxin [24, 25] and spores existing in the air due to growing on the cotton material 
is under debate for the determined occupational related health problems. These aspects indicate that 
not only the shape and size of CNCs must be taken into consideration but also the material itself 
(cotton), its composition and purity, when assessing the potential associated adverse effects of CNCs. 

Studies for the release kinetics of CNCs from nanocomposites do currently not exist, since these 
materials are not yet produced at a large scale. In the case of CNTs, however, which are at a state of 
mass production, the potential aerosol exposure to carbon nanofibers and multiwalled carbon 
nanotubes (MWCNTs) during production was shown in several cases due to poorly controlled transfer 
and bagging of the material or within a blending laboratory [26, 27]. Wohlleben et al. investigated the 
potential release of nanofillers such as CNTs and silica from different polymer matrices [28]. The 
authors were unable to show, however, that a countable fraction of single CNTs are released into the 
air following different abrasion scenarios. In contrast, Schlagenhauf et al. showed the release of CNTs 
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in an abrasion scenario with CNT nanocomposites, freeing single CNTs as well as agglomerates in the 
size range of 13 nm up to 20 μm [29]. 

Therefore, according to the potential heightened use and broad interest in the application of CNCs 
in nanocomposites, due to their outstanding characteristics and renewable nature, their potential health 
risk must be investigated. The comparability of CNTs and CNCs in terms of dimensions, stiffness and 
application justifies the need for a thorough investigation of the potential impact of CNCs on 
biological systems in general and on the human respiratory system in particular. 

2.1.  In vitro and in vivo interactions of CNCs: an evaluation of recent findings 
Up to now scientists have mainly focussed upon the improvement of protocols for CNCs in terms of 
their mechanical, thermal or chemical characteristics [5, 30-34]. Risk assessment of any CNC-based 
nanomaterial or CNCs themselves has so far been limited. Despite this, due to the plethora of 
applications associated with CNCs, research is beginning to focus upon the biological interaction of 
CNCs.  

One of the first studies to address the potential risk upon inhalation of CNCs was performed using 
CNCs derived from cotton (220±67 x 15±5 nm) and assessed their effects with a novel 3D triple cell 
co-culture model of the human epithelial airway barrier [35]. This model consists of a layer of a 
human bronchiolar epithelial cell line (16HBE14o-) forming a polarised cell layer and specific 
characteristics such as tight junctions after differentiation [36]. Human peripheral blood monocyte 
derived macrophages (MDMs) and dendritic cells (MDDCs) are added to form a stratified, in vivo like 
multicellular layer, enabling the interaction between the different cell types [37-39]. Applying the 
different test materials via suspensions (0.005-0.03 mg/mL) to the apical side (MDM and epithelial 
cell side) of the cell model it was shown that upon interaction with the MDM contained in the 
multicellular system, MWCNTs and crocidolite asbestos fibers (CAFs) induced a significantly higher 
(pro-)inflammatory response when compared to the cotton derived CNCs used in the study. In contrast 
to CNCs, CAFs showed classical frustrated phagocytosis, a phenomenon commonly associated with 
asbestos fibers due to the inability of the leukocyte (e.g. macrophage) to adequately engulf a long, stiff 
fiber [40]. In addition to this, other studies have also shown induction of cell alterations and 
genotoxicity by nanofibers derived from cotton and curaua (0.01-1 %; 130-180 x 6-14 nm) [41]. Jeong 
and co-workers could not detect any adverse effects upon the exposure to bacterial cellulose under the 
investigated conditions in vitro (0.1-1.0 mg/mL) nor in vivo (0.5-5 mg/mL) [42]. A set of classical 
toxicological tests conducted with nanocrystalline cellulose (NCC, typically 200 x 10 x 5 nm; at a 
range of concentrations from 0.03 to 10 g/L) by Kovacs et al. revealed no concerning effects with 
organisms representing different trophic levels of the aquatic ecosystem, representing the receiving 
environment for NCC production site effluents [43]. 

In addition, several research groups performed animal experiments with cellulosic fibers, more 
precisely microfibrillated cellulose, of different dimensions (mass median aerodynamic diameter 
4.8 μm up to 15 μm), origin (cotton dust, commercial cellulose powder, mechanical wood pulp dusts), 
doses (0.75 mg/100 g animal - twice per week - 6 weeks, 15 mg single dose, 300-757 fibers/cm3 within 
2 weeks, 106-109 fibers) and application mode (inhalation, intratracheal instillation, intraperitoneal 
injection) [44-51]. The various exposures showed that instillation into the lung, pleura or peritoneal 
cavity or inhalation of the cellulosic materials can lead to inflammation, fibrosis, granulomata, 
sarcomas as well as fibrosing bronchio-/alveolitis under the employed conditions with rats and 
hamsters [45-52]. For all detected effects the authors associated the biopersistence of the cotton fibers 
within the lungs. In vivo for example, Muhle et al. reported that cellulose fibers (4.2 μm x 0.87 μm, 
instillation dose 2 mg) were present in the lung after one year, with a calculated half-time of fiber 
clearance of about 1,000 days [52]. Compared to the existing number of publications concerning the 
risk of CNTs and their biological interactions, knowledge as to their potential interactions and effects 
of CNCs is severely limited. As previously highlighted, although CNCs could pose (potential) risk as 
CNTs, cellulose and its derivatives are perceived as benign materials, which is subverted by the 
findings of the research discussed above. 

Despite such results, however, these studies [35, 41-52] have to be carefully evaluated. Due to 
different production protocols (milling vs. acid hydrolysis) or sources (cotton, wood pulp, paper, 
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plants, bacteria) the dimensions and composition (surface charge, surface groups) of the CNCs vary 
dramatically and were often not reported in detail. This lack of characterisation and the application of 
the potentially inappropriate techniques can have a significant influence on the evaluation of resultant 
biological effects following exposure. When characterising high aspect ratio nanomaterials there is 
controversial debate as to the gold standard methods that should be used, such as employing 
measurements of zeta potential for the materials’ surface charge, or dynamic light scattering for its 
dimensions (underlying algorithms for these methods are generated on spherical particle behaviour in 
an electric field and the diffusion motion in liquid, respectively). Generally, the importance of close 
material characterisation has been highlighted and a minimum set of physico-chemical characteristics, 
such as dimensions, surface area, chemical composition (production protocols, purity) or aggregation 
behaviour have been widely accepted in order to properly conduct a risk assessment of any 
nanomaterial [53]. Furthermore, instillation of extremely high doses, so-called ‘overload situations’, 
might not necessarily reflect realistic exposure scenarios, but on the other hand might reveal the risk 
potential in a worst case scenario or highlight possible translocation (if exposed to a material over an 
elongated period of time), as shown with CNTs [18]. Furthermore, detailed knowledge is lacking as to 
whether observed effects are provoked solely from the fiber fraction of the investigated substances or 
are due to a combination with impurities (e.g. bacteria, fungi, pesticides, wood matter) contained 
within the sample [50, 51]. It is also important to highlight that results from in vivo and in vitro studies 
are also not directly comparable, taking into consideration the close interplay of different cell types 
within the exposed organ. In the process of understanding a potential risk in occupational, consumer 
related or environmental exposure scenarios towards nanoparticles the route of inhalation should be 
especially focussed upon as previously highlighted. Therefore, with regards to assessment of the 
exposure risk of CNCs, a relevant in situ exposure system, realistic doses and systematic 
characterisation of the material, as well as a suitable in vitro model of the investigated organ (e.g. the 
human lung) are of prime importance when investigating their biological impact. 

3.  In situ scenarios and the 3R`s concept 
With emerging nanotechnology products there are more and more materials to be tested for their 
potential risks towards human health [54]. Efficient and reliable tests are necessary to evaluate in 
which context these materials can be used or should be modified in order to avoid any harmful effects 
to humans and the environment [55]. Alternatives to animal testing are, therefore, a required 
prerequisite not only from an ethical perspective but also when considering significant differences 
when comparing reactions of the rodent and human immune system (i.e. inflammatory reactions) [56, 
57]. Within the aim of the three R’s concept (refinement, reduction and replacement) [58] it is 
therefore important to develop, validate and use in vitro models. In addition, high throughput test 
strategies are of highest importance regarding the growing field of nanotechnology and the emerging 
need for risk assessment [55].  

In conjunction, several in vitro systems have been under investigation to copy the in vivo situation 
(e.g. in the lung). Researchers simulated the alveolar-capillary barrier in vitro as principle biological 
barrier in the lower respiratory tract [59]. Rothen-Rutishauser et al. described a triple cell co-culture 
model forming the defined architecture of the human epithelial airway barrier (section 2.1) [37]. Other 
approaches focus on the interplay of different cell types with little regard to the in vivo structure of the 
lung [60]. Investigation of such systems highlight the differences in the biological response when 
comparing mono- and co-culture techniques (two, three or four cell types) and show different 
reactions toward nanoparticle exposure which have to be closely discussed and compared as is widely 
highlighted in literature [35, 36, 57, 61]. An additional aim when using optimal in vitro systems is to 
realistically investigate the potential biological impact of nanoparticle exposure. This can be achieved 
by the simulation of the in situ application of nanoparticles. For studying the potential risks of 
inhalation of nanoparticles many systems have already been established for spherical or atmospheric 
(nano)particles including a glove-box system for occupational exposure [62] and air–liquid interface 
cell exposure systems for exposure of engineered nanoparticles [63], as well as to study the 
environmental exposure to both exhaust emissions and brake wear particles [64-66]. Other 
possibilities to generate nanoparticle aerosols and facilitate the investigation of inhaled nanoparticles 
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either in the field of basic research or for risk oriented purposes were highlighted by Creutzenberg et 
al., including spark generators, dry dispersion techniques, using pressurised air or aerosolising particle 
suspensions to form droplet aerosols [67]. These systems have the advantage to overcome artefacts 
derived from suspension related exposure set-ups that include agglomeration and sedimentation of 
nanoparticles or cell medium interactions (protein interactions), which can influence observed effects 
as shown in different studies [68, 69]. Additionally, the direct comparison of aerosol and suspension 
exposure in vitro revealed considerably different outcome concerning the dose-response relationship 
and effective moment of maximum development of the investigated parameters following exposure to 
zinc oxide nanoparticles [70]. On the other hand, the comparison offers the possibility to distinguish 
exposure to nanoparticle containing aerosols composed of particulate and gaseous phase versus 
exposure in suspension to solely the particle-associated effects [70]. These studies contribute to the 
trend aiming at the most realistic exposure scenario depending on the research focus (occupational 
exposure, basic research) overcoming experimental artefacts (aggregation, sedimentation, interaction 
with cell medium), together with sophisticated in vitro systems, although, as of yet none have been 
used with HARN. 

4.  The Air Liquid Interface Cell Exposure system (ALICE) for HARN 
As previously mentioned, the use of realistic in vitro models in combination with a relevant exposure 
system is of the utmost importance when evaluating the effects of the nanoparticle-cell interaction. In 
order to mimic the exposure to airborne nanoparticles via inhalation, an Air Liquid Interface Cell 
Exposure system (ALICE) was used [63]. The ALICE consists of an exposure chamber in which a 
perforated vibrating membrane nebuliser (customised eFlow, PARI Pharma GmbH, Germany) 
equipped with a class 45 nominal size aerosol head which produces a dense cloud of 6.00 μm (mass 
median diameter) droplets that fills the chamber and settles gently onto the cells. The chamber is 
connected to a continuous air-flow system that is generated by a pump. Humidity and temperature are 
controlled to create a stable physiological environment for the cells. Filters present at the inlet and 
outlet permit a ‘semi-sterile’ environment. Additionally, the deposition via ALICE nebulisation of any 
material can be monitored by a quartz crystal microbalance (detection limit 90 ng/cm2) which is 
inserted into the chamber prior to the nebulisation process. This system has previously been described 
in accordance with studies of in vitro exposure to spherical particles (e.g. gold nanoparticles [71]) 
where it has been shown to provide an efficient, repeatable, dose controlled and spatially uniform 
deposition [63]. 

For the first time, the ALICE was applied for the nebulisation of suspended HARN, specifically 
CNCs derived from cotton (168±72 nm x 19±7 nm; Figure 1). CNCs were obtained from Whatman 
No.1 filter paper via hydrolysis with concentrated sulphuric acid following the protocol of Dong et al. 
[72]. Subsequent sonication for 4 h led to a well dispersed CNC suspension. Since anisotropic 
particles differ much in their physical properties from spherical particles, a close investigation of the 
nebulisation process is indispensable to ensure the previously described functioning of the ALICE 
[64]. A schematic drawing of the system is given in Figure 2. 
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shaped or already compacted in spherical shaped droplets both observed by TEM after exposure 
(Figure 4, inset).  

Nevertheless, the proof of spatially uniform deposition of aerosolised CNCs with the ALICE is of 
greatest importance when subsequently analysing deposited mass with the integrated quartz crystal 
microbalance and also the exposure of in vitro systems to study the biological impact of CNC-
interactions in a controlled and dose-dependent manner. 

5.  Conclusion 
The emerging field of nanotechnology gathers much attention due to the outstanding properties of 
nanoparticles that can be used in many different applications. CNCs in particular propose high chances 
for industrial exploitation due to their advantageous physico-chemical characteristics. In the field it is 
widely accepted that new materials are required to be closely investigated in regard to their potential 
adverse health effects prior to application. Only with the combination of novel, sophisticated cell 
culture models and realistic exposure systems together with close characterisation of the material and 
appropriate material doses close to the reality of occupational settings can the potential adverse effects 
of CNCs be determined. In the case of CNCs derived from cotton, the basis for an in-depth risk 
assessment of inhalatory exposure is now possible due to the establishment of nebulising these high 
aspect ratio nanomaterials with the existing ALICE system. For the first time the fulfilment of 
functioning cornerstones of the ALICE such as spatially uniform deposition, as well as reliability and 
controllability of the deposited dose have been experimentally verified, which facilitates the 
investigation of the potential adverse effects of inhaled CNCs with in vitro assays. 
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