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Abstract
This paper addresses the blog distillation problem, that is, given

a user query find the blogs that are most related to the query topic.
We model each post as evidence of the relevance of a blog to the
query, and use aggregation methods like Ordered Weighted Averaging
(OWA) operators to combine the evidence. We show that using only
highly relevant evidence (posts) for each blog can result in an effective
retrieval system. We also take into account the importance of the posts
in a query-based cluster and investigate its effect in the aggregation
results. We use prioritized OWA operators and show that considering
the importance is effective when the number of aggregated posts from
each blog is high. We carry out our experiments on three different
data sets (TREC07, TREC08 and TREC09) and show statistically
significant improvements over state of the art model called Voting
Model.

1 Introduction

Recently, user generated data is growing rapidly and becoming one of the

most important source of information in the web. This data has a lot of
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information to be processed like opinion, experience,etc which can be useful

in many applications. Forums, mailing lists, on-line discussions, community

question answering sites and social networks like facebook are some of these

data resources that have attracted researchers lately.

Blogosphere (the collection of blogs on the web) is one of the main source

of information in this category. Millions of people write about their experi-

ence and opinion in their blogs everyday, and this provides a huge amount

of information to be processed. Due to the importance of this information,

TREC (Text REtrieval Conference) has started a new track for blog analy-

sis including opinion detection, polarity mining and blog distillation (Mac-

donald, Ounis, & Soboroff, 2007; Ounis, De Rijke, Macdonald, Mishne, &

Soboroff, 2006).

In this paper we focus on the blog distillation task which is: given a

user query find the blogs that are most related to the query topic. In other

words, we want to find the most important blogs for a specific topic which

by reading them, user will have as much information as possible.

There are some properties of blogs that make blog analysis different from

usual text analysis. One of these properties is related to the time stamp

assigned to each post; it is possible that the topics of a blog change over time

and this can affect blog relevance to the query. For example a blog which has

more relevant posts lately would be more relevant to the query than a blog

with the same number of relevant posts that are older. Also each post in a

blog can have viewer generated comments that can change the relevance of
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the blog to the query if these are considered as part of the content of the blog.

Another property is related to the meaning of the links between blogs which

are different than links between websites. Links in the blogosphere show

content relation between the source and the destination that can be similarity

or agreement or disagreement about a topic, while links between websites are

more about trust and can be used as a measure of authority of the destination

(Kleinberg, 1999). Finally, blog distillation is different from traditional ad-

hoc search since the retrieval unit is a blog (a collection of posts), instead of

a single document. With this view, blog distillation is similar to the task of

resource selection in federated search (Elsas, Arguello, Callan, & Carbonell,

2008). In this paper we focus on this last mentioned property and try to use

aggregation methods like Ordered Weighted Averaging (OWA) operators to

combine post relevance and compute blog relevance as a whole.

The rest of the paper is organized as follows: in section 2 we review

related work, specially voting models as the state of the art fusion methods

applied to blog distillation. Section 3 includes description of the Ordered

Weighted Averaging operators as the aggregation methods implemented in

our experiments. Section 4 explains a graph based method for calculating

the importance of posts in a query-based cluster, which we involve it later

in the aggregation. Section 5 shows our experimental results and section 6

gives conclusions and future work.
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2 Related Work

The main research in blog distillation started after 2007, when TREC or-

ganizers proposed this task in the blog track. Researchers have applied dif-

ferent methods from similar problems to blog distillation like ad-hoc search

methods, expert search algorithms or methods from resource selection in

distributed information retrieval.

In (Efron, Turnbull, & Ovalle, 2007), authors use ad-hoc search methods

for finding relevant blogs to a specific topic, where they treat each blog as

one long document created by the concatenation of all its posts. Given a

query q they derive a score for each blog b in the corpus using the negative

KL-divergence between the query language model and the language model

of b as a whole. Authors in (Nunes, Ribeiro, & David, 2008) use temporal

evidence as an extra feature of blogosphere beside content of the blogs. They

use temporal span and temporal dispersion as two measures of relevance over

time and show that these features can help in blog retrieval.

Expert Search is a task in TREC Enterprise Track where systems are

asked to rank candidate experts with respect to their predicted expertise

about a query, using documentary evidence of the expertise found in the

collection (Soboroff, de Vries, & Craswell, 2006). In (Macdonald & Ounis,

2006b), authors create a voting model for expert search and later they use

this model for blog search (Hannah, Macdonald, Peng, He, & Ounis, 2007).

In this model, each post in a blog has be seen as a weighted vote for that blog
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to have an interest in the query topic. Then using data fusion models they

combine these votes to compute the final relevance score of the blog. They

also try to use other features like cohesiveness (on average, how different each

post is from the blog as a whole) and anchor text similarity to the query(the

anchor text of links that point to the blog). However, their experiments show

that these features do not improve performance of the system.

Resource selection in distributed information retrieval is another similar

problem and some of its methods are applied to blog distillation. In dis-

tributed information retrieval, because searching all servers for each query is

so expensive, some server selection algorithms should be used (Hawking &

Thomas, 2005). Queries are sent to servers that have more relevant docu-

ments to the query. Authors in (Elsas et al., 2008; Arguello, Elsas, Callan, &

Carbonell, 2008) deal with blog distillation as a recourse selection problem.

They model each blog as a collection of posts and use a language modelling

approach to select the best collection. Similar work has been introduced

in (Seo & Croft, 2008), called Pseudo Cluster Selection, where they create

topic-based clusters of posts in each blog and select blogs which have the

most similar clusters to the query.

Our work in this paper is similar to resource selection algorithms for

distributed information retrieval, where we want to use aggregation methods

to combine available evidence and find the most relevant blogs. The intuition

in this paper is mostly inspired by work in (Lee, Na, Kim, Nam, Jung, &

Lee, 2008), which says ”a few posts that are highly relevant to a given topic
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represent the blog feed relevance”. We try to show that fixed number of

highly relevant posts in each blog is a good indicator of relevance of that

blog to the query. So we do not need to use all the posts in the blog to

find if it is relevant or not. It makes the retrieving process faster, and the

experimental results show that it works well on real data and improves on

the state of the art methods.

As the baseline, we use voting models (Macdonald & Ounis, 2006b; Han-

nah et al., 2007; Macdonald & Ounis, 2008) to aggregate relevance score of

posts for each blog. In these models, authors use expert search methods in

blog distillation and treat blogs as experts. The idea is that the blog dis-

tillation task can be seen as a voting process: A blogger with an interest

in a topic will blog regularly about the topic, and these blog posts will be

retrieved in response to a query topic. Each time a blog post is retrieved in

response to a query topic, that can be seen as a vote for that blog to have

an interest in the topic area. Authors use fusion methods to find related

blogs. These methods rank blogs by aggregating the relevance scores of the

posts associated with each blog. We use their best two aggregation methods,

called expCombSum and expCombMNZ, as the baselines. ExpCombSum

ranks blogs by considering the sum of the exponential of the posts relevance

score as follows:
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scoreexpCombSum(B,Q) =
∑

p∈R(Q)∩Posts(B)

exp(score(p,Q)) (1)

where B is a blog, posts(B) indicates posts in blog B, R(Q) is the set of posts

retrieved for query Q and score(p,Q) is the similarity between the post and

the query that is computed using a search engine. ExpCombMNZ includes

a component which takes into account the number of posts in each blog that

are in the ranked list of the query, R(Q):

scoreexpCombMNZ(B,Q) = ||R(Q) ∩ posts(B)|| .
∑

p∈R(Q)∩Posts(B)

exp(score(p,Q))

where ||.|| shows the size of the set. For more details about voting models

in blog retrieval refer to (Macdonald & Ounis, 2006b; Hannah et al., 2007;

Macdonald & Ounis, 2008).

3 Ordered Weighted Averaging Operators

The Ordered Weighted Averaging operators, commonly called OWA oper-

ators, were introduced by Yager (Yager, 1988). OWA operators provide a

parametrized class of mean type aggregation operators, that can generate

OR operator (Max), AND operator (Min) and any other aggregation op-
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erator between them.

An OWA operator of dimension n is a mapping F : Rn → R that has an

associated weighting vector W ,

W = [w1, w2, ..., wn]T

such that
n∑

i=1

wi = 1, 0 ≤ wi ≤ 1,

and where

OWA(a1, ..., an) =
n∑

i=1

wiaind(i) (2)

where aind(i) is the ith largest element in the operand collection a1, ..., an.

As can be seen, when w1 = 1, the operator returns the largest element

(like an OR operator) and when wn = 1, it generates the smallest element

(like an AND operator). By changing the weighting vector, we can have any

operator between these two extremes. For example, when ∀i;wi = 1/n, it

will be a mean operator.

OWA operators have different behaviours based on the weighting vector

associated with them. Yager introduced two measures for characterizing

OWA operator (Yager, 1988). The first one is called orness and is defined

as:

orness(W ) =
1

n− 1

n∑
i=1

(n− i)wi

orness(W ) ∈ [0, 1]
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which characterizes the degree to which the operator behaves like an or

operator. The second measure is dispersion and is defined as

dispersion(W ) = −
n∑

i=1

wi ln(wi)

and it measures the degree to which OWA operator takes into account all

the available information in the aggregation.

As mentioned before, one of the issues in blog retrieval is aggregating

posts relevance score and calculate a score for the blog as a whole. Since

relevance of a post to a query is a fuzzy property, each post can be seen as

a source of information for the blog being relevant to the query and fuzzy

aggregation methods like OWA operators seem applicable in blog retrieval.

3.1 Linguistic-functional Specification for Weighting Vec-

tor

One important issue in applying OWA operators to a problem is determin-

ing the weighting vector. Yager introduced a method based on linguistic

quantifiers for obtaining these weights:

wi = Q

(
i

n

)
−Q

(
i− 1

n

)
, i = 1, 2, ..., n (3)

where n is the number of operands to be combined, and Q is the fuzzy

linguistic quantifier. We use the following definition for the Q function as
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suggested by Zadeh (Zadeh, 1983):

Q(r) =


0, if r < a

r − a
b− a

, if a ≤ r ≤ b

1, if r > b

(4)

with a, b, r ∈ [0, 1]. With different values for a and b, we can define dif-

ferent linguistic quantifiers like “Most”, “At least half” and “As many as

possible”. We use these quantifiers for computing the weighting vector in our

experiments.

3.2 Importance weighted OWA aggregation

As described in (Yager, 2009), it is possible to include importance associ-

ated with each operand in the aggregation result. In this way we can take

into account other available information in the final aggregated score. In our

problem, the importance could be calculated based on the hyper-link infor-

mation, user comments, temporal information or content relations between

posts.

In this case, beside the relevance score for each post, we are given the

importance values for them also. So the final aggregated score for a blog,

Score(B), will be:

Score(B) = OWA((a1, v1), (a2, v2), . . . , (an, vn)) (5)
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where (ai, vi) tuple is the given information for each blog post with ai as

the relevance score of the post and vi as its importance. Again we assume

aind(j) as the jth largest element of ai and vind(j) as its associated importance

weight. By defining R =
∑n

j=1 vind(j) as the sum of the importance weights,

the OWA weights are calculated by:

uj = Q

(
Rj

R

)
−Q

(
Rj−1

R

)
(6)

where Rj =
∑j

k=1 vind(k) and R0 = 0. We use the same linguistic-based func-

tions, as described in section 3.1, as our scope function Q. After calculating

the weighting vector, the aggregated score for each blog is obtained by:

Score(B) = OWA((a1, v1), (a2, v2), . . . , (an, vn)) =
n∑

j=1

ujaind(j) (7)

As we can see in equation 6, when the importance is zero, the weight for

that operand will be zero and it will be ignored:

vi = 0⇒ Ri = Ri−1 ⇒ ui = 0 (8)

Similarly when the importance is very small, the difference between Ri and

Ri−1 will be very small and the ui will be small consequently. However when

Ri > Rj, there is no guarantee that ui > uj, because we rank the operands

by relevance scores ai. If we use importance values vi for both ranking and

weight calculation, the operator will be same as the Importance Induced
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Ordered Weighted Averaging (I-IOWA) as introduced in (Chiclana, Herrera-

Viedma, Herrera, & Alonso, 2007). I-IOWA guarantees higher weights by

increasing importance, however because special setting in our application we

want to give more priority to the relevance scores than importance values

and we do not want this property. We simply want to smooth the relevance

score based on the importance of the document.

4 Posts importance in a query-based cluster

In order to integrate importance in the OWA operators based on the Formula

7, we need to define a measure of importance for each blog post. We use the

content-based relation between the documents to calculate their importance.

We consider a set of retrieved documents for each query as a cluster of rele-

vant documents for that query. The more a document is similar to the other

retrieved documents, more important it is in the cluster.

So we can use the similarity between retrieved documents as an impor-

tance measure. To capture these similarities in a general way, we define a

graph based representation of the cluster which includes the retrieved doc-

uments for a topic and the terms occurring in those documents. Figure 1

shows part of such a graph where an edge between a post and a term indi-

cates that the term occurred in that specific post. The more common terms

there are between two documents, the more similar those documents should

be. By performing a long enough random walk in this matrix and reaching
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pi−1

pi

pi+1

tj−1

tj

tj+1

Figure 1: Example of a post-term graph

the stationary distribution, we will have the importance of each individual

document in the graph.

We represent the graph by its adjacency matrix A where each row is

equivalent to a node in the graph and elements of the matrix show the edges

of the graph. In this matrix Aij (element of row i and column j in the matrix

A) denotes the transition probability from node i to node j in one step of a

random walk, i.e. P (tj|pi) = Aij shows the probability of a term for a given

post (transition probability from a post to a term) and P (pi|tj) = Aji shows

the probability of a post for a given term (transition probability from a term

to a post). The outgoing probabilities from a node and hence the values in

any row of A add up to one, i.e.
∑

j Aij = 1. It is worth noting that the

matrix A will be a square matrix that number of rows (columns) is equal to

the total number of posts and terms.

We compute the transition probabilities between nodes in more than one
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step by multiplying the matrix A by itself. Element Cij, where C = An, is

thus the probability of reaching j from i after n steps in a random walk.

To make the computation less expensive and calculate the importance

around the query, we just compute the stationary probability for reaching

to the query terms from each document, instead of calculating the proba-

bilities for all the terms. We will use the notation Pn(tj|pi) = (An)ij to

denote the probability of moving from post pi to query term tj in n steps.

Performing this random walk can be seen as a type of smoothing where we

compute probability estimates even for terms not present in the document.

This graph-based smoothing takes into account the frequency of each term in

similar documents, where similar documents are determined by their common

terms. For example, even if a particular blog post discussing some aspect of

machine learning did not contain the word “regularization”, the term would

be assigned a non-zero value within a smoothed term probability distribu-

tion for the post, since other posts discussing machine learning would likely

contain this term with high frequency.

Since we only want to compute Pn(tj|pi) for terms in the query, we can

efficiently calculate this value, as indicated in (Craswell & Szummer, 2007),

by iterating forward from each query term node tj to all post nodes pi con-

currently, as follows:

Pn(tj|pi) = (An)ij = (A(...(A(Aj)))i (9)
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Where j is a unit (column) vector with value 1 in the j-th row. Note that this

calculation only needs to be performed once per query term. The transition

probabilities between terms and documents are calculated using Maximum

Likelihood estimate:

P (tj|pi) =
tf(tj, pi)

|pi|
=

tf(tj, pi)∑
k tf(tk, pi)

(10)

Where tf(tj, pi) is the frequency of the term tj in the post pi and |pi| shows

size of the post which is the total number of terms in it. Similarly, the

probability of transitioning from a term node tj to a post node pi is defined

using Bayesian theorem by:

P (pi|tj) =
tf(tj, pi)∑
k tf(tj, pk)

(11)

This formula can be concluded directly from equation 10 by assigning proper

prior probabilities for posts and terms. We set the prior probability of a post

to be proportional to its size:

p(pi) =
|pi|∑
k |pk|

(12)

and probability of a term is set to be proportional to its frequency in the

collection:

p(tj) =

∑
k tf(tj, pk)∑

k |pk|
(13)
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Using these prior probabilities in Bayesian theorem equations 10 and 11 can

be derived from each other.

A random walk of length one is equivalent to a Maximum Likelihood esti-

mate for Pn(tj|pi), while an infinite random walk would generate a stationary

probability distribution independent of the starting points.

By adding a self-loop transition to all term nodes, we turn a length n

random walk into the weighted (exponentially decaying) average of walks of

length 1 to n. We do this by α = P (tj|tj) as the “self-loop” probability on

the term nodes. It is a smoothing parameter which regulates the importance

of shorter versus longer walks in the post-term graph. Thus the parameter

α regulates how much smoothing we do on the initial Maximum Likelihood

estimate. The smaller the self-loop probability α, the more the estimate will

be smoothed with longer walks and vice versa.

To see the effect of α in the final probabilities in the random walk, assume

we calculate a walk of length 20 in a graph. At the end of this calculation, we

have P20(tj|pi) for all terms and posts. However the calculated probabilities

do not have any information about probabilities in short walks and we miss

those information. E.g it is possible that all the paths between a post and

a term have odd length, then the P20 for that post and term will be zero,

while a shorter path with length 19 might have a value. By adding the self

loop on the terms, we keep a history of all walks to that term.

At the end, to make the matrix stochastic (sum up to one in each row)

by having term self loops, we decrease the probabilities from terms to posts.
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Linguistic quantifier n orness dispersion

At least half (a=0.0, b=0.5)

5 0.79 1.054
10 0.77 1.609
20 0.77 2.302
30 0.76 2.708

Most (a=0.3, b=0.8)

5 0.44 1.054
10 0.44 1.609
20 0.44 2.302
30 0.44 2.708

As many as possible (a=0.5, b=1.0)

5 0.21 1.054
10 0.22 1.609
20 0.23 2.302
30 0.24 2.708

Table 1: Orness and dispersion for experimented quantifiers with OWA op-
erator

The generated matrix looks like:

A =

 0 MPT

(1− α)MTP αI

 (14)

where P indicates the posts, T shows the terms and MXY shows a stochastic

sub-matrix with transition probabilities from the object type X to the object

type Y. Once we have computed Pn(tj|pi) for each term in the query we can

use these values (after further smoothing with a collection model P (tj|C))

to calculate an estimate for the query likelihood given the post and use it as

the post importance in the cluster around the query:

importance(pi, Q) = PRW (Q|pi) =
∏
tj∈Q

λPn(tj|pi) + (1− λ)P (tj|C) (15)
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We use this importance value, as an another information available for

the posts, in the Formula 7 and aggregate blog post relevance scores and

calculate blog relevance score as a whole.

5 Experimental results

For evaluating our methods we use three years worth of TREC blog track

data that is the set of available data sets for the blog distillation task in-

cluding TREC’07, TREC’08 and TREC’09 data sets. The TREC’07 and

TREC’08 data sets include 45 and 50 assessed queries respectively and use

Blog06 collection. The TREC’09 data set includes Blog08, a new collection

of blogs, and has 50 new queries. We use only the title of the queries in our

experiments.

The Blogs06 collection is a crawl of about one hundred thousand blogs

over an 11-weeks period (Macdonald & Ounis, 2006a), and includes blog posts

(permalinks), feeds and homepages for each blog. Blog08 is a collection of

about 1 million blogs crawled over a year with the same structure as Blog06

collection. In our experiments we use only the permalinks component of

the collections, which consist of approximately 3.2 million blog posts in the

Blog06 and about 28.4 million blog posts in the Blog08 collection.

The Terrier Information Retrieval system1 is used to index the collections

and retrieve documents. For each query we select the top 15000 posts by

1http://ir.dcs.gla.ac.uk/terrier/

18



using the Terrier version of BM25 applying default stemming and stop words

removal. Then we use the aggregation methods presented previously, to

combine the relevance scores of posts for each blog. Since we have three

years worth of data, we considered each year as a separate test collection.

For setting the parameters, we learnt the parameter values for each year using

the other two years as training data and tuned the parameters to optimize

MAP.

Before generating the transition matrix for the random walk-based smooth-

ing, we discarded terms with very high document frequency (more than 80%

of the documents) or very low document frequency (less than 5 documents)

in order to reduce the size of the graph. The length of the random walk is set

to be long enough to approach the stationary distribution, our experiment

showed that length of 20 is long enough for all the generated graphs.

We use the linguistic quantifier, as described in section 3.1, for calculating

the weighting vector of OWA operators. Table 4 shows the properties of

implemented OWA operators for different values of n. The a and b values for

each quantifier are used in the formula 4 to calculate the weighting vector

with the desired properties.

Tables 2, 3 and 4 show the evaluation results for TREC07, TREC08 and

TREC09 respectively. Tables 1(a), 2(a) and 3(a) show the MAP (Mean

Average Precision) and Precision at 10 (precision of the system in the top

10 retrieved documents) for the baseline, ExpCombSum and ExpCombMNZ,

respectively for each year.
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MAP values of the three different OWA operators with four different val-

ues of n on TREC07, TREC08 and TREC09 are shown in the Tables 1(b),

2(b) and 3(b) respectively. In order to test for statistical significance, we use

the Wilcoxon signed-rank test on scores for each query at the 0.05 level. Sta-

tistically significant improvements over ExpCombSum and ExpCombMNZ,

as the two baseline methods, are shown by † and ‡ respectively. It is shown

that in most of the cases, OWA operators have statistically significant im-

provements over the baselines. As can be seen, aggregating the top 10 rel-

evant posts in each blog has the best MAP across the three different data

sets. In the best run for each year, the OWA aggregation operators improve

the ExpCombSum in MAP by 35%, 33% and 31% for TREC07, TREC08

and TREC09 respectively.

It is worth to note that by increasing the number of aggregated posts,

the operators with higher orness value perform better. We can see for most

of the cases of aggregating top 5 posts, the ”As many as possible” operator

with the lowest orness value works the best. But for the higher number of

aggregated posts like 20 or 30, ”At least half” operator has always the best

MAP value. It is mainly because of the low number of retrieved posts for each

blog. In our experiments, average number of retrieved posts for each blog to

be aggregated is 12.7, 13.73 and 7.66 for TREC07, TREC08 and TREC09

respectively. So when we aggregate higher number of posts with low orness

operators, we give more importance to the smaller elements which are zero.

Because of that, we miss some information that decreases the performance
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of the system.

Precision at 10 for the discussed operators are shown in the Tables 1(d),

2(d), 3(d). We can see almost the same pattern for this evaluation met-

ric as MAP. Same as noticed before, aggregating higher number of posts

performs better when is done by lower orness operators and vice-versa. Sta-

tistically significant improvements over the baselines are detectable in most

of the cases. In the best result for each year, OWA operators improve the

ExpCombSum by 24%, 14% and 38% for TREC07, TREC08 and TREC09

respectively.

Importance weighted OWA operators are implemented as described in

section 3.2 by importance calculated in a graph representation that is ex-

plained in section 4. We exploit the same linguistic quantifier as before for

defining scope function Q. Tables 1(c), 2(c) and 3(c) show MAP values of

the OWA operators with cluster-based importance integrated in the weight-

ing vector. It is shown that importance weighting improves previous OWA

operators in most of the cases, specially for higher values of n. For the small

values of n, since we have limited amount of information, small change in one

of them can have a huge effect on the aggregated results and we can see that

with n = 5, we do not get any improvement. On the other hand, with the

higher values of n, we have more information and if the number of retrieved

posts for a blog is less than n, the importance values for extra elements will

be zero and they do not affect the result of the aggregation. Tables 1(e), 2(e)

and 3(e) show the precision at 10 after involving importance in the OWA
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operators.

6 Conclusion

The blog distillation task aims in retrieving blogs, as collections of posts, in

response to a user information need. In this paper we used Ordered Weighted

Averaging (OWA) operators with linguistic quantifiers for this task. We see

each post as evidence about the relevance of the blog to the topic and rank

the blogs based on the aggregation of their evidence. We show that, by using

OWA with fixed number of highly relevant posts in each blog we can get

statistically significant improvement over the baselines.

We carried out our experiments on TREC’07, TREC’08 and TREC’09

data sets. In the best runs by OWA operators, we got 35%, 33% and 31%

improvements in MAP over ExpCombSum method for three consequent data

sets respectively. These improvements over ExpCombSum in precision at 10

were 24%, 14% and 38% in the best results for each year.

We also investigate the extended version of OWA operators to integrate

the importance of the elements in the aggregation. We calculate the im-

portance of each post by its similarity with other highly relevant posts in a

query-based cluster of documents. It was shown that this extension improves

the performance of the retrieval, when the number of aggregated posts from

each blog is high.

We have not modelled temporal properties of the posts and link structure
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(a) MAP and Precision at 10 for baseline methods

Model MAP Precision at 10
ExpCombSum 0.2303 0.3778
ExpCombMNZ 0.1846 0.3333

(b) MAP of OWA operators with different quantifiers

n=5 n=10 n=20 n=30
a=0.0 , b=0.5 0.2889 † ‡ 0.3121 † ‡ 0.2979 † ‡ 0.2675 † ‡
a=0.3 , b=0.8 0.3050 † ‡ 0.2969 † ‡ 0.2441 ‡ 0.2083 ‡
a=0.5 , b=1.0 0.3096 † ‡ 0.2800 † ‡ 0.2218 ‡ 0.1778

(c) MAP of importance weighted OWA operators

n=5 n=10 n=20 n=30
a=0.0 , b=0.5 0.2486 ‡ 0.2894 † ‡ 0.3090 † ‡ 0.3011 † ‡
a=0.3 , b=0.8 0.2845 † ‡ 0.3036 † ‡ 0.2754 † ‡ 0.2422 ‡
a=0.5 , b=1.0 0.3054 † ‡ 0.2882 † ‡ 0.2396 ‡ 0.2011

(d) Precision at 10 of OWA operators with different quantifiers

n=5 n=10 n=20 n=30
a=0.0 , b=0.5 0.4333 † ‡ 0.4644 † ‡ 0.4711 † ‡ 0.4511 † ‡
a=0.3 , b=0.8 0.4556 † ‡ 0.4600 † ‡ 0.4378 † ‡ 0.4156 ‡
a=0.5 , b=1.0 0.4578 † ‡ 0.4600 † ‡ 0.4244 ‡ 0.3867

(e) Precision at 10 of importance weighted OWA operators

n=5 n=10 n=20 n=30
a=0.0 , b=0.5 0.3978 ‡ 0.4578 † ‡ 0.4644 † ‡ 0.4644 † ‡
a=0.3 , b=0.8 0.4444 † ‡ 0.4556 † ‡ 0.4511 † ‡ 0.4444 † ‡
a=0.5 , b=1.0 0.4489 † ‡ 0.4578 † ‡ 0.4378 † ‡ 0.4089 ‡

Table 2: Evaluation results for implemented methods over TREC07 data
set. Statistically significant improvements over ExpCombSUM and Exp-
CombMNZ are indicated by † and ‡ respectively.
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(a) MAP and Precision at 10 for baseline methods

Model MAP Precision at 10
ExpCombSum 0.1808 0.3300
ExpCombMNZ 0.1402 0.2580

(b) MAP of OWA operators with different quantifiers

n=5 n=10 n=20 n=30
a=0.0 , b=0.5 0.2371 † ‡ 0.2422 † ‡ 0.2052 † ‡ 0.1775 ‡
a=0.3 , b=0.8 0.2371 † ‡ 0.2073 † ‡ 0.1475 0.1268
a=0.5 , b=1.0 0.2269 † ‡ 0.1802 ‡ 0.1306 0.1135

(c) MAP of importance weighted OWA operators

n=5 n=10 n=20 n=30
a=0.0 , b=0.5 0.2155 ‡ 0.2347 † ‡ 0.2317 † ‡ 0.2167 † ‡
a=0.3 , b=0.8 0.2295 † ‡ 0.2226 † ‡ 0.1796 ‡ 0.1510
a=0.5 , b=1.0 0.2307 † ‡ 0.1953 ‡ 0.1461 0.1285

(d) Precision at 10 of OWA operators with different quantifiers

n=5 n=10 n=20 n=30
a=0.0 , b=0.5 0.3620 ‡ 0.3780 ‡ 0.3420 ‡ 0.3180 ‡
a=0.3 , b=0.8 0.3680 ‡ 0.3340 ‡ 0.3000 ‡ 0.2740
a=0.5 , b=1.0 0.3620 ‡ 0.3200 ‡ 0.2860 ‡ 0.2520

(e) Precision at 10 of importance weighted OWA operators

n=5 n=10 n=20 n=30
a=0.0 , b=0.5 0.3380 ‡ 0.3700 ‡ 0.3760 ‡ 0.3580 ‡
a=0.3 , b=0.8 0.3600 ‡ 0.3700 ‡ 0.3120 ‡ 0.3100 ‡
a=0.5 , b=1.0 0.3680 ‡ 0.3360 ‡ 0.3040 ‡ 0.2760

Table 3: Evaluation results for implemented methods over TREC08 data
set. Statistically significant improvements over ExpCombSUM and Exp-
CombMNZ are indicated by † and ‡ respectively.
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(a) MAP and Precision at 10 for baseline methods

Model MAP Precision at 10
ExpCombSum 0.1601 0.2487
ExpCombMNZ 0.1306 0.2026

(b) MAP of OWA operators with different quantifiers

n=5 n=10 n=20 n=30
a=0.0 , b=0.5 0.1887 † ‡ 0.2047 † ‡ 0.2090 † ‡ 0.1995 † ‡
a=0.3 , b=0.8 0.2022 † ‡ 0.2099 † ‡ 0.1873 † ‡ 0.1683 ‡
a=0.5 , b=1.0 0.2061 † ‡ 0.2036 † ‡ 0.1712 ‡ 0.1612 ‡

(c) MAP of importance weighted OWA operators

n=5 n=10 n=20 n=30
a=0.0 , b=0.5 0.1680 ‡ 0.1915 † ‡ 0.2076 † ‡ 0.2116 † ‡
a=0.3 , b=0.8 0.1924 † ‡ 0.2065 † ‡ 0.2009 † ‡ 0.1884 † ‡
a=0.5 , b=1.0 0.2039 † ‡ 0.2080 † ‡ 0.1841 † ‡ 0.1694 ‡

(d) Precision at 10 of OWA operators with different quantifiers

n=5 n=10 n=20 n=30
a=0.0 , b=0.5 0.2974 † ‡ 0.3256 † ‡ 0.3436 † ‡ 0.3410 † ‡
a=0.3 , b=0.8 0.3231 † ‡ 0.3308 † ‡ 0.3231 † ‡ 0.3051 ‡
a=0.5 , b=1.0 0.3256 † ‡ 0.3359 † ‡ 0.3077 † ‡ 0.2897 ‡

(e) Precision at 10 of importance weighted OWA operators

n=5 n=10 n=20 n=30
a=0.0 , b=0.5 0.2974 ‡ 0.3128 † ‡ 0.3256 † ‡ 0.3436 † ‡
a=0.3 , b=0.8 0.3154 † ‡ 0.3205 † ‡ 0.3359 † ‡ 0.3256 † ‡
a=0.5 , b=1.0 0.3205 † ‡ 0.3256 † ‡ 0.3128 † ‡ 0.2923 ‡

Table 4: Evaluation results for implemented methods over TREC09 data
set. Statistically significant improvements over ExpCombSUM and Exp-
CombMNZ are indicated by † and ‡ respectively.
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of blogosphere here. In the future we intend to use this information to obtain

a better relevance score or importance value for each post, before combining

them.
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