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Abbreviations 

AA:  Amino acids 

CID:  Collision-induced dissociation 

CNS: Central nervous system 

CV: Coefficient of variation 

DS: Dorsal striatum 

FDR: False discovery rate 

FT:  Fourier Transform 

GABA: Gama-aminobutyric acid 

LC:  Liquid chromatography 

LTQ: Linear trap quadrupole 

MOC: mixing on column 

PENK A: Pro-enkephalin A 

PDYN: Pro-dynorphin 

POMC: Pro-opiomelanocortin 

PTM: Post-translational modification 
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Summary  

The chronic use of nicotine, the main psychoactive ingredient of tobacco smoking, alters diverse 

physiological processes and consequently generates physical dependence. To understand the impact of 

chronic nicotine on neuropeptides, which are potential molecules associated with dependence, we 

conducted qualitative and quantitative neuropeptidomics on the rat dorsal striatum (DS), an important 

brain region implicated in the preoccupation/craving phase of drug dependence. We used extensive LC-

FT-MS/MS analyses for neuropeptide identification and LC-FT-MS in conjunction with stable isotope 

addition for relative quantification. The treatment with chronic nicotine for three months led to 

moderate changes in the levels of endogenous DS peptides. Five enkephalin opioid peptides were up-

regulated, while no change was observed for dynorphin peptides.  Specially, nicotine altered levels of 9 

non-opioid peptides derived from precursors including somatostatin and cerebellin, which potentially 

modulate neurotransmitter release and energy metabolism. This broad but selective impact on the 

multiple peptidergic systems suggests that apart from the opioid peptides, several other peptidergic 

systems are involved in the preoccupation/craving phase of drug dependence. Our finding permits future 

evaluation of the neurochemical circuits modulated by chronic nicotine exposure and provides a number 

of novel molecules that could serve as potential therapeutic targets for treating drug dependence. 
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Introduction 

Nicotine is the main psychoactive ingredient of tobacco (1). By acting on the nicotinic acetylcholine 

receptors (nAChRs) located in diverse brain areas, nicotine generates psychoactive effects such as 

euphoria, reduced stress, increased energy and enhanced cognitive functions (2).  Chronic nicotine use 

alters various aspects of neurochemical transmission and has a strong impact on diverse physiological 

processes (2), resulting in drug-seeking and drug-taking behaviors for normal smokers, as well as for a 

considerable number of patients suffering from Schizophrenia and Alzheimer’s disease, who use nicotine 

for self-medication (3, 4). The dorsal striatum (DS) is one of the key brain regions that have been 

associated with neural regulation during chronic nicotine exposure (5).  In particular, the DS is involved in 

habit formation during the preoccupation/craving (later) phase of nicotine dependence characterized by 

compulsive drug-taking (6).  Behavioral changes associated with nicotine dependence have been linked 

to small molecule neurotransmitter systems, including the Glutamate and Dopamine system in the DS (7).  

The DS is also known to contain diverse neuropeptides, many of which are probably critical mediators of 

physiological processes that are associated with nicotine, such as the regulation of reinforcement and 

energy metabolism. However, neuropeptides have not been extensively investigated in the DS during 

long period nicotine administration.   

Immunoassay studies have shown that neuropeptides, including substance P, neuropeptide Y and opioid 

peptides including the enkephalins are expressed by inhibitory neurons (8), which make up a large 

majority of the neurons in the DS (9).  Many of these inhibitory GABAergic neurons express nicotinic 

cholinergic receptors (10), suggesting that nicotine administration may regulate their activity, leading to 

variations in the release of neuropeptides, as well as the inhibitory neurotransmitter GABA.  Previous 

investigations of peptide regulation during chronic nicotine administration in the striatum have 

exclusively focused on the class of opioid peptides, which are thought to play an important role in the 
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control of diverse physiological processes including reward processing, nociception and regulation of 

emotions(11, 12). Available studies have focused on the analysis of three opioid peptides, their 

precursors or receptors: met- -endorphin, using conventional techniques like 

immunoassays (13, 14).  There is considerable variability in reported changes of peptide levels in the 

striatum during chronic nicotine administration. For example, when animals are treated with 1 mg/kg of 

free base nicotine (daily, 14 days), met-enkephalin increased in the striatum (15). By contrast, met-

enkephalin is reduced in the striatum when rats are treated with nicotine 0.3 mg/kg (three times/day, 14 

days) (16).   A number of factors might contribute to this observed variability, including the exact dosing, 

daily frequency, time span of administration and delivery method of nicotine. Furthermore, as individual 

studies have each so far generally examined a single opioid peptide, there is currently little reliable 

information about peptide co-regulation, even for these well-studied opioid peptides. In addition to 

these opioid peptides, the DS expresses peptides from other peptide families, which are also potential 

targets under the regulation of chronic nicotine treatment. So far however, there is no information 

available about changes of these non-opioid peptides during chronic nicotine administration.   

In this study, our aim was to use a neuropeptidomics approach (17) to provide a comprehensive 

characterization of dorsal striatal neuropeptides after long-term nicotine chronic treatment in adult rats 

using oral administration. The main advantage of this approach is that it allows the simultaneous 

monitoring of many peptides from the same brain tissue derived from a single drug protocol.  We used a 

combination of a robust sample preparation method (18), high accuracy LC-MS analysis (19, 20), and the 

use of multiple synthetic internal standards (21) to compare peptide levels in the DS between chronic 

nicotine and control animals. Our peptidome analysis determined fourteen peptides exhibiting 

significant changes following chronic nicotine administration.  Among these peptides were members of 

the opioid family that had previously been associated with nicotine dependence, as well as a number of 

newly identified peptides including members of the secretogranin, cholecystokinin and somatostatin 
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families. This greatly expands the present scope of peptide involvement in drug dependence in the 

dorsal striatum. 

 

Experimental Procedures 

Materials 

LC-MS grade acetonitrile and formic acid were purchased from Fisher Scientific (New Jersey, USA) 

and Fluka (Wisconsin, USA), respectively. Acetic acid was purchased from Fluka (Buchs, Switzerland). 

Pure water was prepared by GenPure system (TKA, Niederelbert, Germany). Siliconized microcentrifuge 

tubes (2ml) were purchased from Eppendorf (Hamburg, Germany). Microcon centrifugal filter devices 

(Vivacon 500) were purchased from Sartorius AG (Goettingen, Germany Germany). The Nicotine 

hydrogen tartrate salt and the saccharin sodium salt hydrate were purchased from Sigma Aldrich. 

Thirteen internal standards of peptides were used: Nociceptin NH2-FGGFTGARKSA-[Arg(13C6; 15N4)]-

KLANQ-COOH, alpha-neoendorphin NH2-YGG-[PhE(13C9; 15N)]-LRKYPK-COOH, Dynorphin A (1-17) YGGF-

[Lys(13C9; 15N)]-CRRIRPKLKWDNQ, Rimorphin (Dynorphin B) NH2-YGG-[Phe(13C9; 15N)]-LRRQFKVVT-COOH, 

somatostatin28 NH2-SANSNPAMAP-[Arg(13C; 15N4)]-ERKAGCKNFFWKTFTSC-CONH2, Met-enkephalin NH2-

YGG[Phe(13C9; 15N)]-M-COOH, Melanotrophin alpha  Acetyl-NH-SYSMEHF-[Arg(13C6; 15N4)]-WGKPV-

CONH2, galanin GWTLNSAGYLLGPHAIDNH[Arg(13C6; 15N4)]SFSDKHGLT-CONH2, Leu-enkephalin 

YGG[Phe(13C9; 15N)]L, Vasoactive intestinal peptide NH2-HSDVAFTDNYTRL-[Arg(13C6; 15N4)]-

KQMAVKKYLNSILN -CONH2, Beta-endorphin YGGFMTSEKSQTPLVTLFKNAIIKNAHK[Lys(13C6;15N2)]GQ, 

Orexin-B RPGPPGLQGRLQ[Arg(13C6; 15N4)]LLQANGNHAAGILTM-CONH2, neuropeptide Y 

YPSKPDNPGEDAPAEDMA[Arg(13C6; 15N4)]YYSALRHYINLITRQRY-CONH2 and Melanin concentrating 

hormone NH2-DFDMLRCMLGRVY-[Arg(13C6; 15N4)]-PCWQV-COOH. The heavy peptides of 95% purity 

were obtained from Thermo Fisher scientific. These heavy peptides had different length and 
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hydrophobicities. They thus had different retention times and were distributed in the different time 

windows during the LC-MS analysis, which made them work as analogous for the quantitation of 

endogenous peptides. 

Animals and Nicotine Administration 

Fifteen Long Evans rats (male, 8 weeks old) were used in the experiments. All animals were pair 

housed under constant temperature and humidity with free access to food and water. All procedures 

with live animals were conducted with protocol approved by the veterinary office in Fribourg, 

Switzerland and complied with relevant European Union veterinary directives. Three naïve adult rats 

were used for identifying prohormone precursor peptides from multiple samples including peptide-rich 

brain areas. Twelve rats were randomly divided into nicotine group (n=6) and control group (n=6). 

Nicotine administration was conducted by adding it in the drinking water with a gradual increase in dose 

(10 ug/ml to 50 ug/ml, free base) for a total period of 13 weeks (see Fig.1). Due to the bitter taste of the 

nicotine solution, a dose of 1% of saccharine was added to the water. The control group was treated with 

a solution of 1% of saccharine for all the experimental time. Average nicotine intake during the last week 

of administration was thus 1.5 mg/kg/day. The conversion of drug doses from animal studies to human 

studies is performed using the body surface area (BSA) normalization method (22). According to this 

method, animal models such as rodents required much higher dose of drugs than humans due to their 

large body surface area to weight ratios. In the case of our study, nicotine consumption in the drinking 

water by rats for an entire day is similar to the calculated nicotine dose for medium-to-high smokers who 

smoke 17 cigarettes daily. The nicotine dose in our study was thus within a physiologically relevant range 

for in vivo nicotine study (23). 

Sample preparation 
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To reduce the interference peptides produced from fragmentation of proteins (17), restricted 

temperature control was used to minimize the degeneration of the endogenous neuropeptides. For 

peptide identification, three naïve adult rats were sacrificed by decapitation after anesthetized with 

ketamine (100mg/kg, Streuli Pharma AG, Uznach, Switzerland) ), then the brains were removed and 

stabilized by using Denator heat irradiation (Denator AB, Gothenburg, Sweden) as described elsewhere 

(18). Dorsal striatum, Hypothalamus and pre-frontal cortex were dissected from the denaturized brains. 

For quantitative analysis, the brains of twelve adult rats were collected using the above mentioned 

method, and the DS was dissected from right hemisphere.  

Before extraction, thirteen heavy neuropeptides were spiked as internal standards to each DS tissue 

sample (20 mg).  We used MOC (mixing on column) method (19) for sample treatment: Each brain tissue 

was extracted 4 times using i) 0.2% acetic acid aqueous solution, ii) 0.2% acetic acid aqueous solution, iii) 

water – methanol – acetic acid solution (79.8 : 20 : 0.2, v/v/v) and iv) water-methanol- acetic acid 

solution (49.8 : 50 : 0.2, v/v/v), respectively. Each step used 3.75 μl solution per 1 mg of tissue. In each 

extraction step, the sample was homogenized twice (each time 20 s) within 1 min by a Precellys 24 

homogenizer (Bertin Technologies, Montigny-le-Bretonneux, France). Before filtration, the first two step 

aqueous extractions and the last two step organic extractions were mixed, respectively. The last two 

steps used methanol to increase the capability in the extraction of hydrophobic peptides. The sample 

was then centrifuged at 22, 000 g for 60 min at 4°C. All supernatants filtered on a 10 kDa cut-off filter 

(Vivacon 500, Sartorius AG, Goettingen, Germany) by centrifuging for 90 min at 14,000 g at 4°C. For each 

LC-MS analysis, the organic extract was loaded first on the trap column, and after 3-min conditioning, the 

aqueous extract was loaded with the same volume (5 μl). The usage of organic solvent in samples was 

demonstrated to be necessary to increase the recovery of large peptides in injection, separation and 

storage (19). For all the brain samples, the concentration of each internal standard was 20 nM in the final 

solution. 
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LC-FT-MS data acquisition 

The peptide extracts from hypothalamus, prefrontal cortex and DS of the three naïve brains were 

analyzed using a LTQ-Orbitrap Discovery (Thermo Fisher Scientific, Bremen, Germany) coupled to a 2D 

NanoLC (Eksigent Technologies, USA). In a LC-MS analysis, the extract was injected (5μl/times) with 1D 

pump (Chanel 1) on a trap column (100 μm ID, 3cm long), which was packed with a ReproSil-Pur C18 AQ 

particles (5 μm, 100Å; Dr. Maisch GmbH, Ammerbuch-Entringen, Germany) in a peek column holder 

(Upchurch,  Oak Harbor, USA). The trap column was kept eluting for 3 min with 2% acetonitrile and 98% 

water containing 0.2% formic acid. The elution direction of the trap column was then reversed through a 

10-port valve when it was switched to couple with the analytical column. The analytical column used C18 

AQ (3 μm, 100 Å; Dr. Maisch GmbH) as medium which was packed in a Picofrit capillary with an emitter 

tip of 10 μm (NewObjective, Cambridge, USA). The mobile phase A and B in 2D pump (Chanel 2) were 0.2% 

formic acid, and 95% acetonitrile containing 0.2% formic acid, respectively. The mobile phases were 

eluted on the analytical column at 300 nl/min with a gradient profile as 0–3.5 min, 10% B; 3.5 –6 min, 

10–20% B; 6–35 min, 20–30% B; 35–55min, 30–45% B;  55–60 min, 45–55% B; 60–65 min, 55–90% B; 65–

80 min, 90%B.  

Differential analysis of endogenous DS peptides 

For quantitative analysis experiments of the nicotine group rats, the peptide extracts from the DS (right 

hemisphere, n=6 for each animal group) were subjected to LC-FT-MS analysis. The run order in a LC-MS 

analysis sequence was arranged in blocks with each nicotine sample analysis followed by a control 

sample analysis. The sequence was run two times for obtaining the LC-MS analysis replicates of each 

sample. Quality control (QC) samples were also inserted into the sequence and repeatedly analyzed for 

examining the variation of peptides. In the experiments, each type of extract (20 μl) was taken from the 

samples of each animal group (n=6) and then mixed for LC-MS analysis. The LC-FT-MS data were 

acquired with tandem MS functions turned off. Data acquisition on the LTQ-FTMS instrument consisted 
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of a full FTMS scan event at mass range of 350–2,000 m/z. The lock mass (445.120025 from 

polydimethylcyclosiloxane) was used for real time internal recalibration (24). The LC-FT-MS analysis of 

each DS sample was repeated twice. 

The differential analysis was conducted using Sieve software (2.0 Beta Thermo scientific, San Jose, CA). In 

all the differential analyses, the parameters used were such values: frames=20,000; m/z start=300, m/z 

stop=2000; retention time window=10min; ion m/z width=10ppm; retention time start=5 min, retention 

time stop=80 min; peak intensity threshold=100,000. Using one of the nicotine treatment group samples 

as a reference, the differential analysis was conducted on 12 DS samples: 6 from control group and 6 

from nicotine group. The peak intensity of each peptide was acquired using the software Sieve 2.0 and 

exported into a CSV file. In this CSV file, the retentions times of all the peptides were ranked in an 

ascending order for comparison between the retention time of endogenous and heavy peptides. The 

mean peak intensity of each peptide of the 12 LC-FT-MS runs (6 DS sample × 2 technical replicates) was 

then normalized to a heavy peptide that had the closest retention time to this peptide. A t-test between 

control and nicotine group was performed and the level of statistical significance was set at p<0.05 (n=6).  

Peptides were rejected if the coefficient of variation (CVs) was greater than 40% for QC samples (n=3). In 

addition, a time window of ±3 min was used for peptides of low hydrophobicity (retention time <35min 

in our case), and a time window of ±5 min was used for peptides of medium-high hydrophobicity 

(retention time >35min) to reject peptides that eluted too far from the internal standards. Moreover, the 

MS signal-to-noise ratio of all significantly changed peptides was at least larger than 50. 

Targeted LC-FT-MS/MS analysis for peptide identification 

After differential analysis, the m/z and retention times of the changed peptides were added to an 

inclusion list for further targeted LC-FT-MS/MS analysis (19, 25), by which these peptides in the DS 

samples were selected for fragmentation.  Data acquisition on the LTQ-FT-MS instrument consisted of a 

full FTMS scan event and three FT-MS/MS scan evens at mass range of 350–2,000 m/z. Minimum signal 
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threshold were selected to 100,000 counts, isolation width was selected to m/z=2; maximum 

accumulation time was 300 ms, normalized collision energy, 30%; activation Q, 0.25; and activation time, 

50 ms, Dynamic exclusion was set as a repeat count of 1, an exclusion duration of 30 s, and a repeat 

duration of 30 s, 25 ppm mass tolerance for precursor selection with disabled preview mode for FT 

master scan and disabled monoisotopic precursor selection mode. Finally, all the peptides identified 

using targeted LC-FT-MS/MS in this step were loaded back to software Sieve for identification of the 

significantly changed peptides.  

Charge-state directed LC-FT-MS/MS analysis for peptide identification  

Charge-state directed LC-FT-MS/MS was used for the identification of peptides from the dorsal striatum, 

hypothalamus and prefrontal cortex. The samples from three brain areas were subjected to LC-FT-

MS/MS analysis. Data acquisition on the LTQ-FT-MS instrument consisted of a full FTMS scan event and 

five FT-MS/MS scan evens at mass range of 350–2,000 m/z. Minimum signal threshold were selected to 

100,000 counts, isolation width was selected to m/z = 2; maximum accumulation time is 300 ms, 

normalized collision energy, 30%; activation Q, 0.25; and activation time, 50 ms, Dynamic exclusion was 

set as a repeat count of 1, an exclusion duration of 30 s, and a repeat duration of 30 s. Dynamic exclusion 

used 25 ppm mass tolerance. We used charge-state directed LC-FT-MS/MS analysis in the experiment 

(19). The selection of charge state 1, 2, 3, 

Xcalibur software (1.2 version, Thermo, CA, USA). To select the charge state of interest, the options for 

the rejection of other charge states are enabled. In this manner, four CSD-LC-FT-MS/MS analyses were 

conducted for each sample by the instrument automatically selecting the peptides of directed charge 

state(s) for fragmentation. All the raw data were subjected to database search for identification.  The 

identified peptides were checked using software Sieve 2.0 to see if a peptide present in the DS. LC-

MS/MS information, such as retention time, molecular mass, m/z, charge states, was used to recognize a 
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targeted peptide. The parameters for Sieve 2.0 were the same as those used in aboved mentioned 

differential analysis. 

Database search and Spectral Interpretation 

All the raw LC-FT-MS/MS data were subjected to Peaks Studio 5.3 (BSI, Canada) for spectral 

interpretation (26). Peaks Studio  offers functions such as Data Refinement, Auto De Novo, Peaks Search  

(27). The Data Refinement program allows correcting of the parent mass and charge states to provide 

accurate monoisotopic mass of a peptide. The scans of quality value > 0.5 were kept for further 

sequence analysis. Data processing, including peak centroiding, charge deconvolution and deisotoping, 

was conducted for data refinement.  

The refined data were subjected to Auto De Novo program for sequencing with the mass tolerance of 

parent ions and product ions set at 10 ppm and 0.05 Da, respectively. No enzyme was specified for 

cleavage. Variable PTMs, including, amidation (C-terminal), acetylation (N-terminal), pyroglutamalytion 

from glutamatic acid and glutamine (N-terminal) were selected in de novo sequencing. De novo 

sequencing-based protein ID search was used to sequence. The database search was conducted on a 

customized neuropeptide database (20) (http://www.unifr.ch/inph/vclab/home/neuropep_euarglire, 

480 entries for rats) and Swissprot database (7710 entries for rats) (downloaded on April 2nd, 2012). 

Estimation of false positives was conducted by searching all spectra against decoy databases. The cutoff 

of FDR (false discovery rate) for peptide identification in Peaks search was <1%. To confirm sequences 

identified from database search, all the search results were subjected to manual inspection. A sequence 

was considered correct only if it matched all the following criteria: (1) the mass of a peptide must have 

been calculated from the monoisotopic ions of a peptide, (2) all the database search results were 

inspected with de novo sequencing results. (3) the peptide mass had to be within 10 ppm of the 

theoretical mass; (4) the major fragments observed in MS/MS have to match within 0.05Da to predicted 

monoisotopic fragmentation ions. (5) The fragmentation information must be enough to recognize the 
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alignment of amino acids, in particular if they fall in the substitution positions across the adjacent species. 

The predicted fragmentation ions were calculated using the MS-Product tool in ProteinProspector 

(v.5.7.2, Mass Spectrometry Facility, University of California, San Francisco). The sequence identity 

analysis was performed by searching the peptide sequences in Uniprot.  

Statistical Analysis 

The relative change of a peptide referred to the difference between its mean relative intensity for 

nicotine group compared to control group samples. The relative intensity of each peptide was calculated 

by normalizing its peak intensity to the peak intensity of an internal standard that had closest retention 

time to this peptide. The mean relative intensity of control samples was set to 100%. An unpaired t-test 

(n=6, P<0.05) was used to examine the significance of difference for a peptide between the nicotine and 

control group animals.    

RESULTS 

Our study aimed to perform a comprehensive characterization of the dorsal striatum (DS) peptides 

affected by chronic nicotine treatment. Taking the advantage of high accuracy MS and MS/MS, we 

performed extensive identification and quantitation of endogenous peptides in the DS using a dual LC-

MS approach. We first performed a differential LC-FT-MS analysis (28) to relatively quantify peptides 

between nicotine and control animal groups. To identify the significantly changed peptides, we loaded 

an inclusion list of m/z of changed peptides to perform a targeted LC-FT-MS/MS analysis. Secondly, we 

conducted a charge-state directed LC-FT-MS/MS analysis to detect peptides across different brain 

regions and then used comparative analysis to determine if they were present in the DS.  All the 

identified peptides were then reexamined using differential analysis to confirm which peptides changed 

significantly. This targeted and directed dual approach was optimized for detecting peptides that are 
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involved in pathways regulated by nicotine, while at the same time allowing us to examine effects of 

nicotine on as many known peptides as possible.   

DS peptide identification using targeted LC-FT-MS/MS analysis following differential analysis 

To identify peptides affected by chronic nicotine administration, we first conducted a differential analysis 

of all peptides, regardless of their precursor, between the control and nicotine animal groups.  To 

increase the accuracy of quantitative analysis, we used 13 heavy peptides of different length as internal 

standards. The native forms of these synthetic peptides are classical peptides that can be found in 

databases such as Swissprot and Swepep. Under LC-FT-MS analysis, these internal standards were 

distributed within a 10-65 minute time window, during which most endogenous peptides were eluted 

from the column. The peak intensity of each peptide was normalized to the peak intensity of a target 

heavy peptide, where it functioned as an isotopic-labeled internal standard for its endogenous form in 

the brain samples, or alternatively, where it functioned as a peptide analogue internal standard for other 

endogenous peptides that had retention time close to this heavy peptide (see the retention times of 

heavy peptides in supplementary table S1).  

Neuropeptides are peptides that are of extreme diversity of lengths, hydrophobicities and solvent 

solubility. For example, somatostatin 28 (AA1-12) is a hydrophilic peptide with a hydrophobicity index of 

around 10, as calculated using peptide analyzing tool http://test.thermohybaid.de/cgi-bin/analysis.app. 

By comparison, neuropeptide Y is a highly hydrophobic peptide with a hydrophobicity index around 48. 

Previous studies have showed that hydrophobicity and solubility of peptides remarkably influences the 

stability and content of peptides in samples (Zhang, Petruzziello et al. 2012). To cope with this issue, we 

selected an internal standard of similar hydrophobicity to each targeted endogenous peptide, which also 

has close retention time on C18 column (29), to correct the variations of its content caused during the 

LC-MS data acquisition, in particular during sample treatment. Compared to label-free method, previous 

studies have shown that the use of even a single labeled peptide as a reference standard allows for the 
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increased precision for measuring all other measured endogenous peptides (30). Consistent with this 

conclusion, other study also showed that the use of synthetic heavy peptides as analogue or isotopic-

labeled internal standards allows the improvement in precision and accuracy of peptide analysis (21). 

Our method thus served as an intermediate between label-free method and label-based method to 

improve the precision of measurement. 

 After the differential analysis, we prepared an inclusion list, which contained the m/z and retention 

times of the modulated peptides. With this inclusion list, targeted LC-FT-MS/MS analysis was conducted 

on the DS samples, and the LC-FT-MS/MS data were searched against the neuropeptide database. The 

database search allowed the identification of 8 prohormone-derived peptides with significant 

modulations (see peptides marked with § in Table 1), all which were up-regulated by chronic nicotine 

treatment.  

DS Peptide Identification using charge-state directed LC-FT-MS/MS analysis on the multiple-brain-area 

samples 

To enhance the identification of prohormone-peptides modulated by nicotine, and also to examine if 

some classical neuropeptides such as neuropeptide Y are involved in nicotine application, we performed 

a comprehensive identification of known neuropeptides and potentially bioactive peptides derived from 

prohormone precursors using charge-state directed LC-FT-MS/MS (19), by which high accuracy tandem 

MS analysis was performed based on charge states in order to improve the peptide identification rate.  

Because some peptides tend to be at low abundance in the DS, it is difficult to identify them directly 

using their tandem MS information.  For this reason, we used brain samples from two peptide-rich brain 

areas, the hypothalamus and the prefrontal cortex, together with the DS samples to prepare a rat 

neuropeptidome based on an independent set of six brain hemispheres. The LC-FT-MS/MS data for all 

the three brain areas were acquired and combined for database search (see Fig. 2). Following analyte 

separation using LC, we acquired both high accuracy mass information for precursor ions and 
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fragmentation ions, permitting high confidence peptide identification (19, 31). Fig.3 represents the 

identification of the peptide RQHR.GRGREPGAYPALDSRQE.KR from precursor secretogranin-1, This 

peptide was derived from cleavage at the dibasic cleavage site, which are the hallmark of neuropeptides. 

Using narrow mass tolerance for precursor ions and product ions (10ppm and 0.05Da, respectively), 

database search allowed this peptide identified with high confidence (-log10P=56.45). With this method, 

we in total identified 345 peptides derived from 29 different precursors.  These peptides included 19 

known neuropeptides (see peptides with name in table 1) and a large number of potentially bioactive 

neuropeptide candidates (see supplementary table S2). 

Having acquired a rat neuropeptidome, we proceeded to examine which of these peptides were present 

in the DS.  Thus, all the data acquired for the three brain areas were further subjected to comparative 

analysis. The LC-MS/MS information, such as retention time, molecular mass, m/z, charge states, was 

used to recognize a targeted peptide. Overall, this method facilitated the identification of a large number 

of striatal peptides despite their low abundance (see supplementary table S2). Our results showed that 

most peptides expressed in peptide-rich brain areas such as the hypothalamus and PFC were also 

present in the DS (n=325). The prohormone-derived peptides identified using charge-state directed LC-

FT-MS/MS (n=345) were then resubmitted to the software for relative quantitative analysis. By this way, 

we found that levels of 10 prohormone-derived peptides changed significantly (p<0.05), and 6 of these 

peptides had not been detected using the targeted LC-MS/MS analysis approach. Finally, we verified the 

correctness of these changed peptide sequences, by resubmitting DS samples to the targeted LC-FT-

MS/MS analysis and database search.  

 Peptides regulated by chronic nicotine treatment 

In total, using the two approaches, we observed that 14 peptides derived from several prohormones 

were significantly up-regulated following chronic nicotine treatment (see peptides marked with # in 

Table 1). This finding remarkably expands on previous information, which has linked chronic nicotine 
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treatment to only a few opioid peptides in the dorsal striatum as well as ventral striatum (12). Despite 

the fact that most identified prohormone-derived peptides exhibited no significant changes, or could not 

be analyzed quantitatively due to the high signal variations,  we observed a small fraction of the 

identified peptides (n=14) changed significantly after nicotine administration. We also show in table 1 

the identification information for an additional 15 known neuropeptides, which are known to play an 

important role in the regulation of various physiological processes but most of which have not been 

studied previously in the context of nicotine administration  

Changes of five peptides derived from opioid precursors 

Our results showed that 4 classical opioid peptides as well as a peptide fragment F.MRGL.K changed 

significantly in response to chronic nicotine application, while 3 other opioid peptides of interest did not 

show any changes (Fig.4). The opioid neuropeptides are a class of neuropeptides that play a crucial role 

in a number of physiological functions, including pain perception and reward (32). In the brain, the 

opioid system consists of peptides from three precursors: pro-opiomelanocortin (POMC), pro-enkephalin 

A (PENK A), pro-dynorphin (PDYN).  Of the 4 opioid peptides regulated by chronic nicotine, Met-

enkephalin, met-enkephalin-Arg-Phe, met-enkephalin-Arg-Gly-Leu and the peptide F.MRGL.K are derived 

exclusively from PENK A, while leu-enkephalin can be derived from PENK A and PDYN.  Interestingly, the 

levels for these peptides were all enhanced to a similar degree, with increases for met-enkephalin, leu-

enkephalin, Met-enkephalin-Arg-Phe, met-enkephalin-Arg-Gly-Leu and F.MRGL.K of 42% (p=0.013), 30.5% 

(p=0.015), 41.9% (p=0.005), 59.9% (p=0.003) and 69.7% (p=0.003) respectively.  The other opioid 

peptides we examined, all derived from the PDYN and POMC precursor, showed no nicotine dependent 

changes. 

Changes of nine peptides derived from non-opioid precursors 
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We also observed changes in a number of non-opioid peptides in our study. We found a significant 

increase in the expression level of three peptides from granin family (Fig.5a). Granins are a group of 

acidic, soluble and secretory proteins (33). As pro-hormones, they give rise to bioactive peptides through 

enzymatic processing. We identified a large number of peptide fragments from four precursors derived 

from this family (see supplementary table S2). The differential analysis revealed that 

RQHRGR.GRGREPGAYPALDSRQE.KR (from secretogranin-1), R.APHLDL.KR (from secretogranin-1),  

KR.IPAGSLKNEDTPN.R  (from secretorgranin-2), A.FPKPEGSQDKSLHN.R ( from secretogranin-3), increased 

68% (p= 8.96E-06), 38.3% (p=0.0481)44%, (p=0.0087), 48% (p=0.0016), respectively. Chronic nicotine 

altered these peptides to a similar degree, even though they belonged to different precursors. In 

addition, a peptide KEP ( S.ARPVKEP.R), derived from granin-like ProSAAS, increased significantly after 

chronic nicotine treatment (66.7%, p=0.0118) 

We further detected the changes of several peptides derived from other prohormones, which have been 

associated with important functions such as regulating metabolism and emotion (34). Two 

cholecystokinin-derived peptides, R.AVLRPDSEPRAR.L and QLR.AVLRPDSEPRARLGALLARYIQQV.RVA, were 

found to increase 34.1% (p= 0.0454) and 32% (p= 0.0481), respectively (Fig.5b). Cholecystokinin is a pro-

hormone expressed in the central nervous system (CNS) and in the gastrointestinal tract. Peptides from 

this precursor are involved in physiological mechanisms like nausea and anxiety (35, 36). Somatostatin, 

also called somatropin-release inhibiting factor, is a multifunctional hormone involved in the inhibition of 

the release of other hormones and the exocrine secretions (37)  A peptide RLELQR.SANSNPAMAPRE.RK 

derived from this precursor was up-regulated of 73% (p=0.007) by nicotine. Similarly, we also found a 

significant increase of cerebellin (36%, p=0.016). Cerebellin is a peptide derived from its precursor, which 

is required for synapse integrity and synaptic plasticity (38, 39).  

Discussion 
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Our present peptidome study explored the effects of chronic nicotine on neuropeptides levels in the 

dorsal striatum (DS). Using high resolution MS data and differential analysis, we were able to identify 

more than 300 prohormone-derived peptides from the rat DS. Of these identified peptides, our study 

revealed a significant change of 14 peptides in the rat DS.  We confirmed the changes of met-enkephalin 

in DS reported using previous immunoassays, and also uncovered the involvement of several other 

enkephalins in chronic nicotine treatment. Moreover, our study showed for the first time that chronic 

nicotine treatment also altered DS peptides that are derived from granin-family precursors, 

cholecystokinin and cerebellin-1. 

Previous research found that chronic nicotine modulates several neuropeptides such as neuropeptide Y 

(40), galanin (41) and orexins (42) in hypothalamus or in mesolimbocortical dopamine regions. However, 

it was unclear if chronic nicotine altered these peptides in the DS. Using database search and manual 

examination, we found that galanin and orexins were undetectable in the rat DS, suggesting extremely 

low density of innervations of galanin and orexin neurons from the hypothalamus to the DS. By 

comparison, we reliably detected some known neuropeptides, including neuropeptide Y and neurotensin, 

whose expression in the DS was however unaffected by chronic nicotine administration. The difference 

in the changes of these neuropeptide between hypothalamus and DS reflected the brain region-specific 

regulatory effects of nicotine, because each brain region has specific anatomical structure, including 

expressing different types of neurons and different types of nicotinic acetylcholine receptors (43, 44). 

In the present study, we found the changes of multiple opioid peptides following chronic nicotine 

treatment.  The four PENK derived opioid peptides met-enkephalin, leu-enkephalin, met-enkephalin-Arg-

Phe and met-enkephalin-Arg-Gly-Leu all increased significantly after chronic nicotine application.  Our 

results, obtained after 13 weeks of nicotine administration, are consistent with previous reports of 

elevated met-enkephalin in the striatum following nicotine treatment for periods of two weeks, which 

was measured using immunoassay (15).  These results parallel the persistent activation of the DS during 
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long term nicotine exposure or the preoccupation/craving stage of drug dependence (5, 45), and further 

support a close functional link between dopamine and enkephalin systems, which are both under the 

regulation of nicotine(46). Enhancements of the remaining three PENK peptides have not been 

previously reported, and suggest a broader involvement of the PENK pathway than has not been 

previously uncovered using immunoassay. These three Enkephalins are all derived from the same 

precursor by the action of the same enzyme, enkephalinase. This suggests that the increase of these 

peptides may reflect elevated precursor synthesis, consistent with the elevated preproenkephalin mRNA 

levels in the striatum after chronic nicotine application(15).  Another class of opioid peptides, dynorphins 

derived from PDYN including dynorphin (1-17) and dynorphin (1-8), were not modulated by chronic 

nicotine.  This is consistent with previous literature linking PDYN peptides to aversive states associated 

with drug withdrawal (47), which were not induced in our experiment.  These peptides are thus up-

regulated during a drug withdrawal phase, but appear to be less involved during the 

preoccupation/craving phase of drug dependence. Finally, -endorphin, which is an opioid peptide 

derived from POMC, was not detectable in the DS, consistent with anatomical findings showing dense -

endorphin innervations only in the ventral but not the DS (12).  

In addition to opioid peptides, our peptidome analysis further revealed a number of non-opioid peptides 

that were up-regulated by chronic nicotine application, for example peptides derived from 

chromograninA, chromograninB, and secretogranin II, which all belong to the granin peptide family.  

Granin family peptides are present in secretory granules of many types of neurons and endocrine cells, 

and are involved in various functions such as regulating homeostatic processes, tissue assembly, cell 

growth and regulation of the delivery of neurotransmitters and neuropeptides (48). These peptides are 

thus frequently co-localized with neuropeptides such as substance P, leu-enkephalin or prolactin (49, 50), 

consistent with a possible role of granin family peptides in the up-regulation of enkephalins and granin 

family peptides that we observed following chronic nicotine treatment. These granin family peptides 
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may therefore play an active role in the maintenance of drug-related habits and associated compulsive 

behaviors during the preoccupation/craving stage of addiction.  Indeed, many of the granin family 

peptides identified exhibit the dibasic or monobasic cleavage site characteristic of bioactive peptides.  A 

number of additional non-opioid peptides from other peptide families also showed a significant 

modulation after nicotine administration, including peptides derived from the precursors cholecystokinin, 

cerebellin and somatostatin.  These peptides are thought to be involved in the regulation anxiety, nausea 

and energy metabolism (35, 51). It is highly interestingly to know how important these peptides would 

be for the formation of habitual and compulsive drug-taking. Further biological studies are thus required 

to reveal their specific roles in drug dependence. 

Overall, the changes of peptides observed in our study reflects the profound neuronal response in the DS, 

which is a brain region playing a particular role in drug dependence. Compared to the brain regions 

associated with reward- and craving-related processes (6), the DS is a core brain center associated with 

habitual mechanisms, which are important for the later stage of drug dependence (52). Indeed, an 

increasing body of evidence has showed that the DS is involved in compulsive and automatic drug-taking 

(5, 52). Our neuropeptidomics study provides a comprehensive investigation on the peptide changes of 

the DS under the long-period challenging of nicotine. Some of the peptide changes likely support the DS 

to underlie aberrant behaviors in drug dependence, which is evidenced by the association between met-

enkephalin and nicotine addiction (12). Some of the changes may also reflect neuronal attempts to adapt 

or compensate for deficits in other neurotransmitters, such as acetylcholine, dopamine, glutamate and 

GABA, because their neurons are directly or indirectly under the modulation of chronic nicotine (53). 

From a systemic view, these peptide modulations may play an important role in various physiological 

aspects of nicotine dependence, including reward processing, the reinforcement of drug-seeking habits 

and the regulation of energy metabolism. Therefore, these peptides may serve as the important basis of 
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a deeper understanding the neurochemical mechanism of drug dependence, and also as novel drug 

targets for treating drug dependence. 
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Table 1 

The identification list of neuropeptides in the DS. The peptides include known neuropeptides, changed 

peptides and putative neuropeptides identified using the dual LC-FT-MS/MS approach. 
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Legends of Figures 

Fig.1 Nicotine schedule and dorsal striatum (DS):  The Nicotine dose schedule is shown, starting with a 

low dose and increasing stepwise to a 50μg/mL dose that was maintained for a ten week period. The 

location of the DS is shown on a saggital slice of the rat brain. 

Fig.2 Identification strategy for DS neuropeptides: The CSD LC-FT-MS/MS data from dorsal striatum (DS), 

hypothalamus (HT), and prefrontal cortex (PFC) were combined and subjected to database search. The 

peptides identified from three brain areas were then loaded to differential analysis software to check if 

each peptide was present in the DS according to its retention time, molecular mass and charge states. 

This method allowed identification of low abundance DS peptides as well as the estimation of their 

expression levels.  

Fig.3 High accuracy MS and MS/MS information allows peptide identified with high confidence. (a) and 

(b) indicate the aligned MS/MS spectrum and mass error of fragmentation ions of a representative 

peptide QHR.GRGREPGAYPALDSRQE.KR, respectively. The sequence of this fragment with classical 

dibasic cleavage sites was QHR.GRGREPGAYPALDSRQE.KR, corresponding to the secretogranin-1 

precursor. 

Fig.4 Chronic nicotine effects on opioid family neuropeptides: Bars indicate the mean relative changes 

(%) of peptides following chronic nicotine treatment. Error bars indicate variability of the difference 

between sample means (standard error). “*” denotes statistical significance (p<0.05). 

Fig. 5 Chronic nicotine effects on non-opioid family neuropeptides: a, peptides derived from granin or 

granin like precursors and from protachykinin; b, peptides derived precursors cholecystokinin, 

neurotensin/neuromedin N, vasoactive intestinal peptide, somatostatin, cerebellin-1 and pro-

neuropeptide Y. Bars indicate the mean relative changes (%) of neurochemicals following chronic 
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nicotine treatment. Error bars indicate variability of the difference between sample means (standard 

error). “*” denotes statistical significance (p<0.05).  
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Table 1   Changed prohormone-derived peptides and unchanged known neuropeptides in rat dorsal striatum (DS) 

Precursor Protein Accession Name Peptide 
-

10lgP ppm m/z z 
Cerebellin-1 P63182|CBLN1_RAT Cerebellin R.SGSAKVAFSAIRSTNH.E*§# 55.8 -0.7 544.9529 3 
Cholecystokinin P01355|CCKN_RAT R.AVLRPDSEPRARLGALLARYIQQV.R*# 58.7 -0.2 673.8895 4 
Cholecystokinin P01355|CCKN_RAT R.AVLRPDSEPRAR.L*§ 34.2 -0.1 456.2565 3 
Neurotensin/neuromedin N P20068|NEUT_RAT Neurotensin R.Q(-17.03)LYENKPRRPYIL.K# 37.7 -0.1 558.3104 3 
Proenkephalin-A P04094|PENK_RAT Met-enkephalin-Arg-Gly-Leu R.YGGFMRGL.K*# 39.3 -0.5 450.7232 2 
Proenkephalin-A P04094|PENK_RAT Met-enkephalin-Arg-Phe R.YGGFMRF*# 49.2 -0.2 439.2048 2 
Proenkephalin-A P04094|PENK_RAT met-enkephalin R.YGGFM.R*# 49.9 2.9 574.2346 1 
Proenkephalin-A P04094|PENK_RAT Leu-enkaphalin R.YGGFL.K*# 27.5 -2.2 556.2753 1 
Proenkephalin-A P04094|PENK_RAT F.MRGL.K*§ 17.2 -0.1 476.2649 1 
Proenkephalin-B P06300|PDYN_RAT Dynorphin A (1-8) R.YGGFLRRI.R# 16.2 0.3 491.2852 2 
Proenkephalin-B P06300|PDYN_RAT Dynorphin B R.YGGFLRRQFKVVT.R# 29.4 0.1 524.3 3 
Proenkephalin-B P06300|PDYN_RAT Dynorphin A (1-17) R.YGGFLRRIRPKLKWDNQ.K# 48.2 -8.3 537.5554 4 
Proenkephalin-B P06300|PDYN_RAT Alpha-neoendorphin YGGFLRKYPK.R# 38.4 -0.4 614.8452 2 
Pro-MCH P14200|MCH_RAT Neuropeptide-glutamic  acid-isoleucine R.EIGDEENSAKFPI(-.98).G# 35.5 1.3 724.3577 2 
Pro-neuropeptide Y P07808|NPY_RAT Neuropeptide Y G.YPSKPDNPGEDAPAEDMARYYSALRHYINLITRQRY(-.98).G# 34.4 3.2 1068.281 4 
ProSAAS Q9QXU9|PCSK1_RAT LITTLE SAAS R.SLSAASAPLAETSTPLRL.R# 69.8 1 892.9921 2 
ProSAAS Q9QXU9|PCSK1_RAT GAV R.AVPRGEAAGAVQELARALAHLLEAERQE.R# 45.5 1.2 739.6503 4 
ProSAAS Q9QXU9|PCSK1_RAT KEP S.ARPVKEP.R*§# 29.7 1.8 398.7381 2 
Protachykinin-1 P06767-3|TKN1_RAT Neurokinin A R.HKTDSFVGLM(-.98).G# 54.3 -0.8 567.2918 2 
Protachykinin-1 P06767|TKN1_RAT Substance P R.RPKPQQFFGLM(-.98).G# 33.7 -2.4 674.3698 2 
Protachykinin-1 P06767-3|TKN1_RAT R.ALNSVAYERSAMQNYE.R# 65.0 -0.5 923.425 2 
Secretogranin-1 O35314|SCG1_RAT R.GRGREPGAYPALDSRQE.K*§# 17.6 1.8 620.311 3 
Secretogranin-1 O35314|SCG1_RAT R.APHLDL.K*§ 22.3 2 333.1851 2 
Secretogranin-2 Q6P7R4|SCG2_RAT R.IPAGSLKNEDTPN.R*# 60.8 0 678.3437 2 
Secretogranin-3 P47868|SCG3_RAT A.FPKPEGSQDKSLHN.R*§# 47.4 -1.3 528.5979 3 
Somatostatin P60042|SMS_RAT Somatostatin-28 (AA1-12) R.SANSNPAMAPRE.R*§# 37.7 1.7 622.7891 2 
Somatostatin P60042|SMS_RAT Somatostatin-14 K.AGCKNFFWKTFTSC# 34.6 1.1 820.3743 2 
Vasoactive intestinal peptide  P01283|VIP_RAT Intestinal peptide PHI-27 R.HADGVFTSDYSRLLGQISAKKYLESLI(-.98).G# 39.8 -1.2 753.4044 4 

PTMS: Delta mass -17.03, Pyro-glutamate formation from glutamatic acid  or glutamine ; Delta mass -0.98, amidation 
* indicates significantly changed peptides due to chronic nicotine treatment. The sequence of dynorphin A is confirmed using de novo dequencing. 
§ indicates the peptides identified using targeted LC-FT-MS/MS, while # means the peptides identified using directed LC-FT-MS 
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RQHR.GRGREPGAYPALDSRQE.KR  m/z=620.311 z=3 mass error=1.9ppm 

Fig.3 
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Fig.5 
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