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Abstract

Hedonic methods are currently considered state-of-the-art for handling quality changes
when compiling consumer price indices. The present article proposes first a mathematical
description of characteristics and of elementary aggregates. In a following step, a hedonic
econometric model is formulated and hedonic elementary population indices are defined.
These indices extend from simple indices based on some average quality to universal formu-
lae that incorporate the full quality spectrum of the respective elementary aggregate. We
emphasise that population indices are unobservable economic parameters that need to be
estimated by suitable sample indices. It is shown that most of the hedonic elementary index
formulae used in practice are sample versions of particular hedonic elementary population
indices.
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1 Introduction
A consumer price index (CPI) measures the average price change of consumer goods in a mar-
ket between two fixed time periods, assuming that their quality remains constant. In practice,
however, the quality of the universe of products that households consume is continually chang-
ing. It is therefore necessary to estimate the contribution of the quality change to the observed
price change in order to measure the quality-corrected ‘pure’ price change.
The state-of-the-art manner of handling differences and changes in quality is the so-called

hedonic approach. Its main idea is to identify the quality of a product – or, in other words, its
‘potential contribution . . . to the welfare and happiness of its purchasers and the community’
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(Court, 1939, p. 107) – with a vector of product characteristics. In the hedonic approach, a
regression equation is estimated relating the characteristics of the product to its price. Once
such a relationship is established, the price of any similar item can be predicted by plugging
its characteristics into the estimated hedonic (regression) function.
CPI concepts usually structure the basket of consumer goods in a hierarchical way. Individual

price observations are transformed into a final index value through a sequence of aggregation
steps. In the first stage, the price evolution is individually observed for restricted groups of
homogeneous products, the so-called elementary (expenditure) aggregates. These aggregates
usually serve as strata for data collection and form the building blocks of a CPI. For each of
them, a so-called elementary price index is calculated. In further stages, these elementary price
indices are ‘averaged to obtain higher-level indices using the relative values of the elementary
expenditure aggregates as weights’ (ILO et al., 2009, para. 9.3). The need for adjusting price
measurements for quality change appears at the level of elementary aggregates when individual
prices are directly compared. Therefore, quality adjustment is purely an issue of elementary
price indices. Elementary price indices where the quality adjustments are based on the hedonic
approach are called hedonic elementary price indices.
The literature on hedonic methods in price statistics is steadily growing, with Triplett (2004)

and ILO et al. (2004, Chap. 21) being two of the most recent comprehensive and fundamental
overviews. The present paper contributes to this literature in proposing a formal framework
for hedonic elementary price indices that incorporates and generalises these approaches. Our
framework corroborates the existing theory by providing a novel conceptual approach from
which most of the elementary hedonic price indices used in practice can be derived. Moreover,
it defines the necessary concepts that allow, e.g., to examine state-of-the-art hedonic index
estimators from an axiomatic viewpoint or to come up with new alternatives. We emphasise
particularly the clear separation of elementary (population) indices as unobservable economic
parameters from their estimators, the sample indices. In this aspect, the present piece of
work abuts on the mindset of papers like, e.g., Dorfman et al. (1999), Brachinger (2002), Balk
(2005), and Silver and Heravi (2007).
Section 2 provides a precise definition of characteristics and elementary aggregates. This

definition permits a clear-cut and concise formulation of an econometric model underlying
every hedonic price index. Section 3 discusses elementary price index concepts in general.
These concepts are extended to universal formulae for hedonic elementary population indices
in Section 4. Each of these indices is a well-defined economic parameter that eventually needs
to be estimated from a random sample of observations. In Section 5, finally, sample versions of
the universal formulae are presented and it is shown that from these sample indices most of the
elementary indices used in practice can be derived. The paper closes with a short summary.

2 Elementary Aggregates and the Hedonic Econometric Model
2.1 Goods and characteristics
We begin by describing the basic entities of an elementary price index, namely some consumer
goods offered in a market, the set of characteristics they exhibit, and the corresponding ele-
mentary aggregate. The formal language used for this purpose will allow us later to build an
econometric model on top. From the outset, the characteristics of the goods play an important
role as surrogates for the notion of quality. Their omnipresence in our framework will make the
step from general (quality-unadjusted) to hedonic (quality-adjusted) elementary price indices
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straightforward.
Let O denote the set of all consumer goods supplied in a market at a certain point in time.1

Here, the notion of a good means physically tangible items like, e.g., used cars or personal
computers as well as services and other immaterial entities to which a price can be assigned.
Each of these goods exhibits a set of characteristics. Examples of such characteristics might be
the volume or the physical mass of the good, the horsepower, mileage or colour of a used car,
or the processor speed of a computer. Other non-physical characteristics comprise the location
of sale or any after-sales service. Statistically speaking, a characteristic simply is a variable or
an attribute. It may be scaled on different measurement levels from nominal to cardinal.
It is obvious that not every characteristic can be observed for a given good o ∈ O, i.e.

each characteristic m is generally only defined on a specific subset Om of O. Processor speed,
for example, is a characteristic of computers but not (yet) of clothes or bicycles. So the
domain Om of the characteristic m : ‘processor speed’ contains the set of all computers, but
also all other devices carrying a CPU including many modern household appliances, cars, and
communication devices. m might not always be relevant to the purchaser of such goods, but
technically, it is defined and measurable; we will come back to the economic relevance of certain
characteristics later. Food, hospital services, and package holidays are examples of goods for
which the characteristic ‘processor speed’ is not defined, hence they lie outside Om.
Although characteristics can be of any measurement scale, it is always possible to quantify

their values such that they form a subset of the Euclidean real number space. This leads to
the following definition:

Definition 2.1. A characteristic m is a real-valued function m : Om −→ R defined on a
non-empty subset Om of O. The set Om is called the domain of m and, for each o ∈ Om,
m(o) will be called the m-value of o.

For the sake of simplicity, the m-value of o may also be called its m-characteristic. The set
of all characteristics will be denoted byM := {m : Om −→ R | Om ⊂ O,Om 6= ∅}.
The reason why we put such emphasis on the domains of the characteristics is that they

will now serve as building blocks for our definition of an elementary aggregate. Guidelines
to practitioners on how elementary aggregates should be specified are traditionally rather
vague and leave most decisions to the users’ discretion. The authors of ILO et al. (2009,
para. 9.7), e.g., confine themselves to requiring that elementary aggregates consist of goods
that are ‘as similar as possible’, ‘preferably fairly homogeneous’, ‘expected to have similar
price movements’, and ‘appropriate to serve as strata for sampling purposes’. While such
formulations may suffice in practice, they are much too cursory to serve as a building block
of a hedonic econometric model. The following much more formal definition of an elementary
aggregate contains all elements needed for the elaboration of our econometric framework.

Definition 2.2. An elementary aggregate G is a set of goods in O having the following
properties:

1. The setMG of the characteristics defined for all elements of G is not empty, i.e.

MG := {m ∈M|Om ⊃ G} 6= ∅ . (1)

1We are going to raise the restriction to a single point in time in Section 4.
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2. The intersection of the domains of all characteristics contained inMG is a subset of G,
i.e. ⋂

m∈MG

Om ⊂ G . (2)

Each element o ∈ G will be called an item of the elementary aggregate G. The elements of
MG are called distinguishing characteristics of G.

Property (1) means that all goods belonging to an elementary aggregate G have at least
one characteristic in common. Conversely, if two goods do not belong to the same elementary
aggregate, there must be a characteristic that is defined for one of these goods but not for
the other. Property (2) ensures that each good carrying all characteristics ofMG is contained
in the elementary aggregate. Note that every elementary aggregate in the sense of Def. 2.2 is
defined relative to the set O of all goods supplied on the market.
The following proposition shows that each elementary aggregate has some kind of maximality

property in the sense that its distinguishing characteristics fully determine the items of the
aggregate. In other words, there is no item of an elementary aggregate that is not contained
in the intersection of the domains of all distinguishing characteristics.

Proposition 2.1. Each elementary aggregate G equals the intersection of the domains of its
distinguishing characteristics, i.e. ⋂

m∈MG

Om = G . (3)

Proof. We have G ⊂ Om for all m ∈ MG . Therefore, G ⊂
⋂
m∈MG Om. The inclusion in the

other direction is given by property 2 of Def. 2.2, hence equality holds. �

It should be noted that an elementary aggregate in the sense of Def. 2.2 may still comprise
many different items. In particular, there is no explicit requirement regarding the similarity
or homogeneity of the items contained. So if, e.g., the physical mass of an object was taken
as the only distinguishing characteristic, the respective elementary aggregate would embrace
the whole universe of physically tangible goods, excluding just services and other intangible
products like computer software. Thus we define the term ‘elementary aggregate’ in a much
broader sense than it is usually applied in practice. However, it follows from Prop. 2.1 that
supplementing the set MG of distinguishing characteristics of an elementary aggregate with
additional characteristics leads to a diminution of G. By selecting the appropriate list of
distinguishing characteristics, we may thus in practice reduce a very general aggregate to one
which satisfies the homogeneity or similarity requirements cited above.
As a consequence of Prop. 2.1, it is furthermore possible to induce elementary aggregates

from samples of individual goods. Let O∗ ⊂ O be any set of goods. These might be, e.g.,
different models of personal computers. Let MO∗ := {m ∈ M|Om ⊃ O∗} be the set of all
characteristics whose domains contain these goods, i.e. all characteristics that are defined for
all elements of O∗. In the case of personal computers, these would contain typical attributes
such as CPU speed, RAM size, hard drive size, brand, length of warranty period, etc., but
also others such as the serial number, which may not be relevant to the consumers’ purchase
decision. Assume that MO∗ is not empty. Then, it is possible to specify the elementary
aggregate G(O∗) induced byO∗. The induced elementary aggregate is defined as the intersection
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of the domains of all characteristics inMO∗ , i.e.

G(O∗) :=
⋂

m∈MO∗
Om . (4)

The set O∗ is thus extended by all goods on the market that exhibit at least the same charac-
teristics as the goods fixed in O∗. Obviously, by means of (4), any given set of characteristics
M induces an elementary aggregate G(M) :=

⋂
m∈MOm.

Def. 2.2 of an elementary aggregate is admittedly guided by theoretical elegance rather than
practical pertinence. Nobody will be able to provide a comprehensive list of the distinguishing
characteristics of even the simplest elementary aggregate being used in practice. Nonetheless
is such an abstract definition inevitable to make the vague notion of an elementary aggregate
manageable from an econometric viewpoint. Moreover, we presume that the idea of distin-
guishing characteristics can serve as an implicit guideline for practitioners needing to decide on
which items should belong to a certain elementary aggregate. The authors of ILO et al. (2004,
para. 3.147 ff.) identify three main approaches to the classification of consumer goods, namely
the classification by product type, by purpose, and by economic environment. Recommended
practice is ‘to use a purpose classification at the highest level, with product breakdowns below’.
Inevitably, the characteristics of goods play a certain role when elementary aggregates are de-
fined by product type at the lowest level. The main merit of the concept introduced in Def. 2.2
is thus the duality between the elementary aggregate and its distinguishing characteristics.
This duality will be exploited below.
As a final note to this first section, it is worth highlighting that the distinguishing charac-

teristics of an elementary aggregate provide some very useful means of identifying items that
are ‘equivalent’ in a certain sense. We will use this property later to partition an elementary
aggregate into classes of equivalent quality. Let {m1, . . . ,mK} ⊂ MG denote any finite subset
of the distinguishing characteristics of an elementary aggregate G. By assembling them to a
vector function

m : G −→ RK , o 7−→m(o) := (m1(o), . . . ,mK(o))′ (5)

all the items of G are mapped to a K-dimensional vector of characteristics. This identification
of goods with a characteristics vector leads to an equivalence relation on G defined by

o1 ∼m o2 :⇐⇒ m(o1) = m(o2) . (6)

Two items of an elementary aggregate are thus identified if and only if their m-values, i.e.
their m1- to mK-values coincide. The equivalence classes respective to the relation ∼m will
be called m-equivalence classes. They partition G into subsets containing items with equal
m-values. The quotient set induced by this equivalence relation will be denoted by G/∼m.

2.2 Characteristics and prices
In the last section, we identified a good with a list of characteristics and we showed how goods
can be grouped into elementary aggregates. The economic foundation of this approach is the
consumer theory developed by Lancaster (1966, 1971). This theory assumes that ‘one demands
not just physical objects, but the qualities with which they are endowed’ (Milgate, 1987, p. 546).
Consumers’ preferences are therefore originally directed towards the characteristics of a good,
and the latter determine eventually the consumers’ preference ordering between individual
items of an elementary aggregate.
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Lancaster (1971, p. 140 ff.) himself emphasised that some characteristics of a good are usually
irrelevant for a consumer’s purchase decision (such as the serial number of a personal computer).
Irrelevant characteristics are especially those that are invariant for all items of an elementary
aggregate. Inversely, Lancaster defines a characteristic as relevant when ignoring it would
change the preference ordering between two items.
Driven by the consumers’ individual preferences, Lancaster’s approach suggests that a good’s

price observed on the market is essentially determined by the relevant characteristics of that
good. This assumption is called hedonic hypothesis in the literature (see e.g. Dickie et al., 1997;
Triplett, 1987; United Nations, 1993). The hedonic hypothesis serves as the general basis for all
hedonic price indices. In order to build up a solid theory of hedonic price indices, we propose
formulating it as an econometric model in the following form:

Hedonic econometric model. Let G be an elementary aggregate with distinguishing char-
acteristicsMG. There exists a finite set of characteristics

Mpr
G = {m1, . . . ,mKG} ⊂ MG (7)

and a function hG : RKG −→ R≥0, such that the price p(o) of any item o ∈ G can be written as

p(o) = hG
(
mpr
G (o)

)
+ ε(o) (8)

with mpr
G (o) = (m1(o), . . . ,mKG (o))′. The residual term ε(o) is assumed to be stochastic with

conditional expectation
E
(
ε(o) |mpr

G (o)
)

= 0 . (9)

The set Mpr
G will be called the set of price-relevant characteristics, and hG is the

hedonic function of G.

This model exploits the idea that for an elementary aggregate for which the hedonic hypothe-
sis holds, the set of distinguishing characteristics contains a finite subset of price-relevant char-
acteristics. They determine the price up to a residual term that covers any quality-independent
price component. Assumption (9) implies that the hedonic price of an item with a certain qual-
ity is given by the average price over all items of the same quality.
One of the central points here is that the vector of price-relevant characteristics is seen as a

surrogate for a good’s quality. Much in the spirit of the outline provided in the System of Na-
tional Accounts 1993 (see United Nations, 1993, para. 16.105 ff.), the term ‘quality’ subsumes
all characteristics of an item which make it distinguishable from other items from an economic
point of view. The hedonic function hG , being defined on the quotient set G/∼mpr

G
, maps each

class of items of equivalent quality to a constant price.
Assumption (9) appears reasonable if all the equivalence classes [o] are sufficiently homo-

geneous, which is the case when the number of price-relevant characteristics is large enough.
Similarly to what was already mentioned above, the size and thus the homogeneity of the
individual classes is a non-increasing function of the number of price-relevant characteristics,
since adding additional characteristics generally leads to more and thus smaller equivalence
classes.
We deliberately do not impose any restrictions on the functional form of the hedonic function

since, at this stage, we see no reason to do so. Finding an appropriate candidate of a hedonic
function that links the vector of price-relevant characteristics to the average price a consumer
needs to pay for an item of equivalent quality is a purely statistical issue. Triplett (2004)
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convincingly argues that ‘imposing some rule for what the hedonic function “should” look
like destroys part of the information that market prices convey’. Referring to Rosen (1974),
he emphasises that ‘the form of the hedonic function is entirely an empirical matter that is
determined by the distributions of buyers around the hedonic surface, and not by the form
of their utility functions.’ Therefore, the hedonic function can neither provide an economic
explanation for the behaviour of economic agents nor identify demand or supply. It just
describes the statistical relationship between the market price and the quality of a good, no
matter how the price and thus the purchasers’ valuation of characteristics emerge.
In the framework developed so far, we described the universe of consumer goods available in a

market at a certain point in time. By means of distinguishing and price-relevant characteristics,
we provided a formal definition of the notion of an elementary aggregate and established a link
between the price of a good and its quality. The following section now introduces the time
dimension and defines the basic forms of elementary price indices.

3 Elementary price indices
3.1 Elementary aggregates over time
Elementary price indices measure the average price evolution of an elementary aggregate be-
tween two time periods. There is a base period 0, serving as reference period, and a current
period 1 for which the prices are compared. As time passes, we may observe a certain variation
of the items contained in a given elementary aggregate: new items appear on the market and are
purchased by consumers, others disappear. This effect is particulary pronounced for products
where there is a rapid turnover of differentiated models, such as computers, communication,
and multimedia devices.
The duality between elementary aggregates and distinguishing characteristics introduced in

the previous section allows for a constant understanding of the nature of an elementary aggre-
gate over time. Instead of fixing the exact content of an aggregate, we fix the distinguishing
characteristics and allow new objects to become part of the aggregate if and only if they carry
at least all these fixed characteristics. More formally, this leads to the following definition of
a current (elementary) aggregate.

Definition 3.1. Let T be the set of all time periods considered and let, for any time t ∈ T ,
denote Ot the set of all goods supplied on the market at time t. Let G = G0 be any elementary
aggregate defined relative to O0 and letMG be its set of distinguishing characteristics.
Then, for any time t ∈ T , the current aggregate Gt = Gt(MG) is defined as the elementary

aggregate induced byMG on Ot, i.e.

Gt(MG) :=
⋂
m∈MG

Otm , (10)

where Otm ⊂ Ot denotes the domain of characteristic m in period t.
The composite elementary aggregate GT induced by G0 is defined by

GT :=
⋃
t∈T
Gt(MG) . (11)

7



Obviously, by means of (11), any elementary aggregate G defined relative to a base period
induces a composite elementary aggregate GT for any set T of time periods. Technically,
Gt(MG) can be empty for certain t ∈ T .
If we focus on the bilateral comparison of a reference period 1 with a base period 0, one

feature of our approach is that it yields with G0∩G1 ⊂ G{0,1} a straightforward identification of
the set of matched items for the two periods. Moreover, the disappearing items are assembled
in the difference set G0 \ G1 while any new unmatched items are represented by G1 \ G0.
The impossibility of matching price observations over time being the main motivation for
applying quality adjustment techniques in price statistics, these difference sets are going to be
of particular importance in our framework.

3.2 Concepts of elementary price indices
Relating to what was said in the last paragraph, an elementary price index is typically cal-
culated from two sets of matched price observations: individual goods are sampled from an
elementary aggregate and their prices are collected over a succession of time periods. For the
bilateral comparison of two time periods 0 and 1 this implies that only those items of the
elementary aggregate G = G0 are considered which remain available in period 1. Moreover,
items newly appearing in period 1 are ignored as their price cannot be matched with a price in
the base period. In other words, bilateral comparisons are a priori restricted to G0 ∩ G1 (and
raising this restriction will be the central purpose of quality-adjusted price indices).
There are basically two competing approaches for the specification of an elementary price

index. One approach relates the average price of the elementary aggregate G in the current
period 1 to its average price in the base period 0, whereas the other takes the average price
ratio of the individual items as a measure for the change in price level observed from 0 to 1.
If we denote by µ a measure of location defined for any univariate distribution of positive

real numbers (i.e. what we called ‘average’ above), the two approaches just described can be
written as

EPI 0:1(G) =
µ
(
p̃1(G)

)
µ
(
p̃0(G)

) (12)

and
EPI 0:1(G) = µ

(
p̃1/p0(G)

)
, (13)

respectively.2 Note that these indices are population indices since they are defined on the
whole population of items of a given elementary aggregate. As such, they are latent economic
parameters that cannot be observed in practice.
Several elementary price index formulae co-exist in statistical practice which must be con-

sidered as functions ‘that transform sample survey data into an index number’ (Balk, 2005,
p. 676) or, in other words, as an estimator or the sample version of a population index.3 They
base upon a sample of objects o1, . . . , oN ∈ G0 ∩ G1 available in both periods for which prices
ptn := pt(on) were collected. The most widely used formulae are summarised in Table 1. They

2In these formulae, p̃t(G) stands for the distribution of the prices {pt(o)} and p̃1
/p0(G) for the distribution of

the price ratios
{
p1(o)/p0(o)

}
of all items o ∈ G0 ∩ G1 with pt(o) being the observed price of an item o at time t

(t ∈ {0, 1}).
3We further refer to the papers by Dorfman et al. (1999) as well as Silver and Heravi (2007) for some discussion

on the fundamental distinction between sample and population indices.
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Population index Sample index Index type

(12) ÊPI
0:1
D =

∑N
n=1 p

1
n∑N

n=1 p
0
n

Dutot

ÊPI
0:1
J =

N

√∏N
n=1 p

1
n

N

√∏N
n=1 p

0
n

Jevons

ÊPI
0:1
HD =

(∑N
n=1
(
p1
n

)−1
)−1

(∑N
n=1
(
p0
n

)−1
)−1 ‘Harmonic Dutot’

(13) ÊPI
0:1
C = 1

N

N∑
n=1

p1
n

p0
n

Carli

ÊPI
0:1
J = N

√√√√ N∏
n=1

p1
n

p0
n

Jevons

ÊPI
0:1
HC =

(
1
N

N∑
n=1

(
p1
n

p0
n

)−1)−1

‘Harmonic Carli’

Table 1: Elementary sample indices

differ in the population index they target and in the way they implement the measure of loca-
tion µ, namely, e.g., as arithmetic, geometric, or harmonic mean. The Jevons elementary price
index formula targets both population indices simultaneously, since (12) and (13) coincide if µ
is implemented by the geometric mean.
There has been much debate in the literature on which of these and other alternative ele-

mentary sample indices was the most favourable. We do not intend to take this discussion any
further but refer to Chapter 20 of ILO et al. (2004) for a detailed and comprehensive overview.
It is just worth highlighting that the discussion on what index type to prefer should start at
the level of population indices where no sampling issues arise. If there is no apparent economic
reason to favour either (12) or (13) and any specific choice of µ, there may be axiomatic and
empirical arguments that lead to a preferred definition. We are going to take up this point
later when we look at hedonic elementary population indices.
The most important issue of the elementary price indices introduced so far is their inability

to cope with a changing universe of items contained in the elementary aggregate. Limiting
the set of items to those which are available in all time periods considered is, in general, a
far too restrictive strategy. For many specific aggregates, especially for those subject to rapid
technological progress, the set of items available in the base period and in all current periods
will be too small to represent well enough the range of items of the aggregate.
Therefore, the set of items for which prices are available in all time periods considered must

be artificially enlarged. This is usually done by assigning (‘imputing’) estimated prices to
those items of the aggregate which are unobservable in certain time periods. Conventional
methods for imputing unobserved prices are typically ad hoc solutions that attempt to deduce

9



the price of an item by ‘quality-adjusting’ the observed price of another item of similar quality
(see e.g. ILO et al., 2004, Chap. 7 or Triplett, 2004, Chap. II for a comprehensive overview).
However, they lack a sound methodological foundation and may not work consistently for all
individual items of an elementary aggregate. A more satisfying solution to the problem of
imputing unobservable prices is offered by the hedonic approach.
Based on the hedonic econometric model introduced in Section 2, we are now going to extend

the two population indices outlined above such that they incorporate the entire population of
a composite elementary aggregate.

4 Hedonic elementary price indices
4.1 The hedonic econometric model revisited
The hedonic econometric model establishes a relationship between characteristics and prices
of the items of an elementary aggregate. This relationship is valid for a fixed point in time.
In order to explicit its time dependency and to facilitate the comparison of two or more time
periods, we propose to reformulate the model as follows:

Hedonic econometric model (in time). Let G = G0 be any elementary aggregate defined
relative to the set O0 of all goods supplied on the market at a base period 0 and letMG be its
set of distinguishing characteristics. Let GT be the composite elementary aggregate induced by
G0 for a given set of time periods T . There exists a finite set of characteristics

Mpr
G = {m1, . . . ,mKG} ⊂ MG (14)

and, for each period t ∈ T , a function htG : RKG −→ R≥0, such that the price pt(o) of any item
o ∈ Gt available at time t can be written as

pt(o) = htG
(
mpr
G (o)

)
+ εt(o) (15)

with mpr
G (o) = (m1(o), . . . ,mKG (o))′. For all t ∈ T , the residual term εt(o) is assumed to be

stochastic with conditional expectation

E
(
εt(o) |mpr

G (o)
)

= 0 . (16)

Note that we assume the setMpr
G of price-relevant characteristics to be time-invariant. This

condition is less restrictive than it first appears since we only request that Mpr
G be finite. It

may thus well assemble the whole set of characteristics which prove to be price-relevant in
at least one of the time periods considered. If a characteristic is price-irrelevant in a certain
period of time, the corresponding hedonic function will just neglect it.
The central aspect of this reformulation of the hedonic econometric model is the postulated

time-dependency of the hedonic function htG . Fixed items are sold on the market for different
prices at different points in time (this is what price statistics is all about), and the hedonic
function mirrors these movements in how the market evaluates the inherent quality of an item.
For an elementary aggregate where the hedonic econometric model holds, the quality-adjusted
price evolution is thus fully represented by the evolution of the hedonic function over time. An
appropriate comparison of the hedonic functions in a base and a current period may thus be
seen as an implementation of an elementary price index measuring pure price change.
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Before we proceed to the formulation of hedonic elementary population indices based on the
idea just described, we propose simplifying the notation by ‘randomising’ the hedonic econo-
metric model introduced above. Imagine a random draw from all the items of an elementary
aggregate Gt at time t and denote by M t the random vector of price-relevant characteris-
tics and P t the random variable representing the price of the drawn item.4 By the hedonic
econometric model, the relationship between M t and P t is given by

P t = htG(M t) + εt (17)

where the random error εt has Eεt = 0 for all t ∈ T and is assumed to be independent of M t.
Within this additive error model, the hedonic function htG therefore is exactly the conditional
mean

htG(m) = E(P t |M t = m) , (18)

and the conditional distribution P(P t |M t) depends on M t only through htG .

4.2 Simple hedonic elementary population indices
In Section 3 we identified two approaches for defining elementary population indices either as
the ratio of some average prices (12) or as some average of the price ratios (13). Both of these
population indices were defined on the restricted set G0 ∩ G1 of items available in both the
base and the current period. With this restriction, it was ensured that the compared prices
belonged to identical goods and thus that the qualities of the items compared were equal.
Consequently, the measured price evolution was not subject to any bias due to quality change.
Hedonic elementary price indices adhere to the paradigm of fixed reference qualities, but

they do not rely on a fixed set of items for which prices need to be available in both time
periods. Once the hedonic function for a certain time period is determined, it is able to deliver
imputed prices for virtually any vector of price-relevant characteristics and as such for any
item quality. The idea of hedonic elementary price indices is now to fix the reference quality
of an elementary aggregate through vectors of price-relevant characteristics. With the help
of the hedonic functions, the reference qualities are mapped to corresponding prices that can
ultimately be compared using one of the two elementary price index approaches introduced
above.
The simplest form of a hedonic elementary price index takes just one vector µ∗ of price-

relevant characteristics as reference quality. Irrelevant of the type of elementary population
index used, this yields the index formula

HEPI 0:1(G) =
h1
G(µ∗)
h0
G(µ∗)

= E(P 1 |M1 = µ∗)
E(P 0 |M0 = µ∗)

(19)

which we call simple hedonic elementary population index. It relates the imputed price of the
reference quality µ∗ at time 1 to its imputed price at time 0.5

4The distribution of the random variable P t corresponds to the distribution of prices denoted by p̃t(G) in
Section 3, and the expectation E(P t) is one possible implementation of µ

(
p̃t(G)

)
.

5Technically, the index (19) is only well-defined if µ∗ lies in mpr
G (G0) ∩mpr

G (G1), i.e. in the domains of both
h0
G and h1

G . If this is not the case, a minimal requirement is that both hedonic functions can be extended to a
domain including µ∗. This is normally not a problem in practice if a regression approach is chosen that allows
for reasonable out-of-sample prediction.
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The open question here is how µ∗ should be defined. The most obvious approach is to
take some mean vector of price-relevant characteristics of the items available at the base or
the current period. Formally, this gives us either µ∗ = EM0 or µ∗ = EM1 and with (19)
corresponding implementations of the simple hedonic elementary population index.
The disadvantage of both of these implementations is that they asymmetrically favour the

quality spectrum of the elementary aggregate at either the base or the current period. We
therefore propose to work with a generalised reference quality distribution, represented by a
random vector M . The most natural choice for this reference distribution would probably be
a mixture of M0 and M1, i.e.

PM = g PM0 + (1− g) PM1 , (20)

with PM , PM0 and PM1 being the probability measures ofM ,M0 andM1, respectively, and
g ∈ [0, 1]. If we set µ∗ = EM , we get with g = 0 or g = 1 the two implementations of simple
hedonic elementary population indices already introduced above and with g = 1/2 a sensible
candidate of an index that symmetrically incorporates the quality spectrum in both the base
and the current period.
For the special case of parametric hedonic functions, Brachinger (2002) introduced simple

hedonic elementary population indices of the type (19) under the name of ‘true hedonic price
indices’. He distinguished explicitly the implementations obtained when µ∗ = EM with g = 0,
1, or 1/2. Referring to their orientation towards either the base, the current, or both periods
simultaneously, these implementations were called ‘true hedonic Laspeyres price index’, ‘true
hedonic Paasche price index’, and ‘true hedonic adjacent periods price index’, respectively.

4.3 Full hedonic elementary population indices
Simple hedonic elementary population indices evaluate the ‘distance’ of the two hedonic func-
tions in the base and in the current period at just one single quality point µ∗. Although this is
certainly a valid practice, there are ways of better exploiting the full spectrum of the reference
quality distribution and to obtain a more representative index value.
One such way is to transform the whole reference quality distribution with the help of the

two hedonic functions and to compare the resulting price distributions using the approaches
described in Section 3.2. If we take the expectation as measure of location µ, the population
indices (12) and (13) translate into full hedonic elementary population indices defined by

HEPI 0:1(G) =
Eh1
G(M)

Eh0
G(M)

(21)

and
HEPI 0:1(G) = E

[
h1
G(M)
h0
G(M)

]
. (22)

In both cases, the expectations are built over the whole range ofM and cover thus the reference
quality distribution as a whole.6
We see that the distribution of M in principle does not need to be related to either M0 or

M1, although a mixture like (20) is probably still the most reasonable choice. The minimum
6Diewert et al. (2008) showed that for the widely used special case of log-linear hedonic functions and under

certain assumptions for the reference quality distribution used (which are satisfied when g = 0 or g = 1), both
the simple and the full hedonic elementary indices are equivalent.
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assumption to be made is that the range of M is contained in the domain of both h0
G and h1

G .
Note that, following (18), we have

EhtG(M) = EM (EP t |M t(P t |M)) (23)

=
∫

RKG

[∫
R
pdPP t|M t(p |m)

]
dPM (m) .

for t ∈ {0, 1}. Here, PP t|M t stands for the probability measure of the conditional distribution
of P t given M t, and EP t |M t is the expectation with respect to this probability measure.
Moreover, PM is the probability measure respective to the distribution of M , and EM is its
expectation. If one considers continuous random variables and vectors, equation (23) can be
rewritten as

EhtG(M) =
∫

RKG

[∫
R
p
f(P t,M t)(p,m)

fM t(m) dp
]
fM (m) dm (24)

with f(P t,M t) being the common probability density of P t andM t, fM t the marginal density of
M t and, finally, fM the density ofM . It can be seen that for this equation to be well-defined,
the support of fM needs to be contained in the support of fM t for t ∈ {0, 1}. In other words,
for each vector m ∈ RKG with fM t(m) = 0, it is necessary that fM (m) = 0. This has to
be taken into consideration when the reference quality M is chosen. In particular, PM must
not attribute a positive probability to any set of characteristics vectors that does not have a
positive probability with respect to PM0 and PM1 as well, i.e. within the populations available
in both the base and current period.
In practice, therefore, it is even useful to assume that PM0 and PM1 attribute a positive

probability to any non-discrete set of vectors in the characteristics space, i.e. the cartesian
product of the ranges of all price-relevant characteristics. This ensures that out-of-sample-
prediction is possible and that there are no formal restrictions on the distribution of reference
characteristics.

4.4 Universal formulae for hedonic elementary price indices
In the last two sections, we introduced alternative definitions of a hedonic elementary pop-
ulation index. There the expectation operator was used as a special choice of a measure of
location. There is, however, no a priori reason for this restriction. A natural generalisation of
this approach results if we admit transformations of the price distributions. The expectation of
the transformed price distribution characterises the location of this distribution. A measure of
location of the original price distribution then results from backtransforming the expectation
of the transformed price distribution.
Based on these reflections, the full hedonic elementary population indices (21) and (22) can

be generalised to

HEPI 0:1(G) =
ϕ−1(Eϕ(h1

G(M)))
ϕ−1(Eϕ(h0

G(M)))
(25)

and
HEPI 0:1(G) = ϕ−1

(
E
[
ϕ

(
h1
G(M)
h0
G(M)

)])
(26)

where ϕ is a continuous and injective function that maps a connected subset of R to R and
ϕ−1 is its inverse.
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With respect to the usual elementary price index formulae, three particular ϕ-functions play
an important role. These are the identity, the hyperbolic transformation ϕ(x) = x−1 as well
as the natural logarithm ϕ(x) = ln x. We will see below that depending on the choice of ϕ
among these alternatives, the well-known hedonic elementary sample indices can be derived.
Note that both definitions, (25) and (26), coincide if ϕ(x) = ln x. This is due to the linearity
of the expectation and the properties of the natural logarithm.7
We propose with (25) and (26) two universal prototypes of hedonic elementary population

indices that leave, however, some degrees of freedom for the choice of ϕ and of the reference
distribution of M . We argued already that the latter is reasonably defined as a (symmetric)
mixture of the base and the current period characteristics. However, there is no evident
argumentation that favours either choice of ϕ except for the coincidence of both formulae if
ϕ(x) = ln x. Beer (2007b) discussed this question in the light of the well-known axiomatic
approach to statistical price indices (Eichhorn, 1978; Eichhorn and Voeller, 1976) and proved
that (25) is slightly preferable to (26) since it satisfies all proposed index axioms if ϕ(λx) =
ϕ(λ) + ϕ(x) or ϕ(λx) = ϕ(λ)ϕ(x) for all λ, x ∈ R. However, this latter condition holds for all
three ϕ-functions proposed above, so the axiomatic approach does not seem to be sufficient
for choosing one ‘best’ universal hedonic elementary population index. There are obviously
further arguments that need to be considered.

5 Estimators of hedonic elementary price indices
5.1 Hedonic imputation indices
So far, we have consistently navigated on the abstract level of index definitions and population
indices which are, as we repeatedly stressed, economic parameters that cannot directly be
observed and eventually need to be estimated. Assume that ĥtG (t ∈ {0, 1}) are estimators of
the hedonic functions htG based on regressions of item characteristics to prices in both periods.
Starting from an i.i.d. sample of reference characteristics vectorsM1, . . . ,MN whereMn

L∼M
for all n ∈ {1, . . . , N}, sample versions of the universal population indices defined by (25) and
(26) are given by

ĤEPI
0:1

(G) =
ϕ−1

(
1
N

∑N
n=1 ϕ(ĥ1

G(Mn))
)

ϕ−1
(

1
N

∑N
n=1 ϕ(ĥ0

G(Mn))
) (27)

7Silver and Heravi (2007) use exactly (25) with ϕ(x) = ln x as the definition of a ‘Jevons’ population index,
although just for the case of conventional (i.e. non-hedonic) elementary price indices. In fact, we could well
rewrite (12) and (13) in an analogous way as

EPI 0:1(G) = ϕ−1(Eϕ(P 1))
ϕ−1(Eϕ(P 0))

and
EPI 0:1(G) = ϕ−1 (E [ϕ (P1

/P0
)])

with P 0 and P 1 being the base and current period prices of the same item randomly drawn from the reference
set G0 ∩ G1.
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Formula Transformation Sample index Index type

(27) ϕ(x) = x ĤEPI
0:1
D =

∑N
n=1 ĥ

1(Mn)∑N
n=1 ĥ

0(Mn)
Dutot

ϕ(x) = ln x ĤEPI
0:1
J =

N

√∏N
n=1 ĥ

1(Mn)
N

√∏N
n=1 ĥ

0(Mn)
Jevons

ϕ(x) = x−1 ĤEPI
0:1
HD =

(∑N
n=1
(
ĥ1(Mn)

)−1
)−1

(∑N
n=1
(
ĥ0(Mn)

)−1
)−1 ‘Harmonic Dutot’

(28) ϕ(x) = x ĤEPI
0:1
C = 1

N

N∑
n=1

ĥ1(Mn)
ĥ0(Mn)

Carli

ϕ(x) = ln x ĤEPI
0:1
J = N

√√√√ N∏
n=1

ĥ1(Mn)
ĥ0(Mn)

Jevons

ϕ(x) = x−1 ĤEPI
0:1
HC =

 1
N

N∑
n=1

(
ĥ1(Mn)
ĥ0(Mn)

)−1
−1

‘Harmonic Carli’

Table 2: Hedonic elementary sample indices

and

ĤEPI
0:1

(G) = ϕ−1
(

1
N

N∑
n=1

ϕ

(
ĥ1
G(Mn)
ĥ0
G(Mn)

))
, (28)

respectively.
From these two formulae, by choosing ϕ among the alternatives mentioned above, we get the

five hedonic elementary sample indices displayed in Table 2 which are hedonic counterparts to
the elementary sample indices summarised in Table 1. We recognise that the elementary index
formulae most widely used in practice (see e.g. ILO et al., 2004, paras. 20.38–45) prove to be
estimators of the population indices (25) and (26). Among these are the indices attributed to
Dutot, Jevons, and Carli, and the one that is called ‘Harmonic Carli’ here. Moreover, we find
a ‘Harmonic Dutot’ sample index which to our knowledge does not appear in the literature.
Note that when using ϕ(x) = ln x both general sample indices (27) and (28) lead to the Jevons
elementary price index formula.
Once the ϕ-function is fixed and the distribution ofM is defined, the single remaining influ-

ence factor that determines the nature and the performance of the hedonic elementary sample
indices (27) and (28) and thus eventually the statistical quality of the actual index estimates
is the regression approach used to estimate the hedonic functions. As we already discussed in
Section 2, estimating the relationship between characteristics and price is a purely statistical
issue with no a priori restriction on the functional form or regression approach to choose. As
Triplett (2004, p. 186) stated, ‘Any empirical form that fits the data is consistent with the
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theory.’ So the entire repertoire of regression analysis can be applied to find an approach that
best fits the data and delivers price predictions with the highest possible precision. The only
point to remember is that estimated hedonic functions are normally used to perform some
out-of-sample predictions where they should still provide plausible estimates.
In practice, the prevalent regression approaches for estimating hedonic functions are linear,

semi-log and double-log models which perform well for many data sets. Curry et al. (2001)
were among the few authors who argued for a more flexible functional form, although the
neural network approach they tested at the example of TVs did not show to be favourable
to the linear or semi-log models.8 Beer (2007b) investigated the use of conventional models
compared to a partial least squares approach in an empirical study on used cars data. There,
the winning model in terms of lowest bootstrap aggregate prediction error was an adaptive
semi-log approach where individual regressions with automated variable selection and outlier
detection were carried out and used for prediction for each of the car models in the sample.
Interestingly, the study also showed that the Jevons hedonic elementary sample index was
least sensitive to the (mis-)specification of the hedonic function. Further research is needed to
consolidate this finding.
It seems ambitious to analyse the statistical qualities of HEPI estimators given the potential

complexity of the hedonic functions and the generally unknown form of the reference char-
acteristics distribution. However, appropriate bootstrap approaches have been proposed for
estimating confidence intervals for hedonic elementary price indices (see Beer, 2007a,b for de-
tails). Conditioned on the functional form of the hedonic regression, they deliver an insight
on how accurately hedonic elementary sample indices estimate the corresponding population
indices. It was shown empirically in the cited reference that confidence intervals were consis-
tently shorter for the Jevons than for the Dutot formula, suggesting that the index (25) could
be estimated more accurately if ϕ(x) = ln x than if ϕ(x) = x and thus providing even stronger
evidence in favour of the Jevons formula. Again, the theoretical grounds of this finding remain
a topic for further research.

5.2 Time dummy hedonic indices
We shall close this section by a comment on the time dummy variable method, which is a
widely used alternative to the hedonic imputation indices discussed above (see e.g. Griliches,
1971, p. 59, Silver and Heravi, 2003, pp. 280–1, Triplett, 2004, p. 48–55, or Diewert et al.,
2008). There, the price and characteristics data of both the base and the current period are
pooled and the price-relevant characteristics m = (m1, . . . ,mK)′ are supplemented by a time
dummy variable t. Then a joint parametric hedonic function h{0,1}G is estimated on the basis
of the pooled sample. From the estimated hedonic function ĥ{0,1}G two period-specific hedonic
functions ĥtG (t = 0, 1) are easily recovered through

ĥtG(m) := ĥ
{0,1}
G (m, t) . (29)

These can be plugged into all hedonic elementary sample index formulae presented above.
An interesting situation emerges if we adopt the semi-log functional form for estimating the

8The failure of their neural network approach was particularly due to its instability on out-of-sample predic-
tions.
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hedonic function. Then the relevant regression equation is given by

lnP = β0 + δ t+
K∑
k=1

βkMk + ε (30)

and the estimated hedonic functions ĥtG can be written as

ĥtG(m) = exp
(
β̂0 + δ̂ t+

K∑
k=1

β̂kmk

)
. (31)

with β̂0, . . . , β̂k and δ̂ being the OLS estimates of the corresponding coefficients in (30). Obvi-
ously,

ĥ1
G(m) = exp δ̂ × ĥ0

G(m) (32)

for all m, and all of the sample index formulae listed in Table 2 reduce to ĤEPI
0:1

= exp δ̂.
They are thus completely independent of the reference quality distribution used.
Although the property of independence just described sounds appealing, we agree with, e.g.,

Diewert et al. (2008) who argue in favour of hedonic imputation indices. In contrast to the time
dummy approach, they have the advantage of not imposing any constraint on the functional
form and eventually on the parameters of the hedonic functions. We are convinced that the
flexibility of the functional form is important and therefore that any technical restrictions
should be avoided.

6 Summary
We started the present piece of work with a formal definition of elementary aggregates. From
the outset, much emphasis was put on the duality between elementary aggregates and their
distinguishing characteristics. The latter played a central role when we translated the hedonic
hypothesis known from the literature into a hedonic econometric model.
After discussing the two fundamental concepts of elementary price indices, we defined a list

of hedonic elementary population indices reaching from simple indices where the entire quality
range of an object was represented by a single vector of price-relevant characteristics to two
universal index formulae showing much flexibility in how the price distributions in the base and
current period are compared. As population indices are unobservable economic parameters,
there is a need for sample indices acting as appropriate estimators of these parameters. We
were able to show that most of the index formulae used in practice could be derived naturally
within the proposed framework.
Neither of the universal formulae of hedonic elementary population indices proposed in this

paper is completely determined. So the user needs make some further decisions in order to
obtain a concrete target population index and eventually a corresponding sample index formula
for practical applications. Based on axiomatic and empirical reflections, however, we argued
that the most attractive candidate of a hedonic elementary price index for an elementary
aggregate G and for any given reference quality distribution PM was

HEPI 0:1(G) = exp
(

E
[
ln
(
h1
G(M)
h0
G(M)

)])
. (33)
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An estimator of this index is given by the Jevons formula

ĤEPI
0:1
J = N

√√√√ N∏
n=1

ĥ1(Mn)
ĥ0(Mn)

(34)

based on estimates ĥ0 and ĥt of the hedonic functions and with M1, . . . ,MN sampled sym-
metrically from the price-relevant characteristics in both the base and the current period.
Moreover, candidate estimates of the hedonic functions should be evaluated based on their
predicting abilities rather than on their conformity with any given functional form.
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