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Abstract This work studies the regularity and the geometric significance of solution
of the Cauchy problem for a degenerate parabolic equation ut = �um . Our main
objective is to improve the Hölder estimate obtained by pioneers and then, to show
the geometric characteristic of free boundary of degenerate parabolic equation. To be
exact, for the weak solution u(x, t), the present work will show that:

1. The function φ = (u(x, t))β ∈ C1(Rn) for given t > 0 if β is large sufficiently;
2. The surface φ = φ(x, t) is tangent to R

n at the boundary of the positivity set of
u(x, t);

3. The functionφ(x, t)is a classical solution to another degenerate parabolic equation.

Moreover, some explicit derivative estimates and expressions about the speed of prop-
agation of u(x, t) and the continuous dependence on the nonlinearity of the equation
are obtained.
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354 J. Pan

1 Introduction

Consider the Cauchy problem of nonlinear parabolic equation

{
ut = �um in Q,

u(x, 0) = u0(x) on R
n,

(1.1)

where Q = R
n × R

+,m > 1, n ≥ 1 and

0 ≤ u0(x) ≤ M, 0 <

∫
Rn

u0(x)dx < ∞. (1.2)

The Eq. in (1.1) is an example of nonlinear evolution equations and many interesting
results, such as the existence, uniqueness, regularity, continuous dependence on the
nonlinearity of the equation and large time behavior (see [11,19,34] and therein) are
obtained during the past several decades. By a weak solution of (1.1), (1.2) in Q, we
mean a nonnegative function u(x, t) such that, for any given T > 0,

∫
QT

(
u2 + |∇um |2

)
dxdt < ∞

and
∫
QT

(∇um · ∇ f − u ft
)
dxdt =

∫
Rn

u0(x) f (x, 0)dx

for any continuously differentiable function f (x, t) with compact support in QT ,
where, QT = R

n × (0, T ).
We know that (see [5,6,23,31,32]) theCauchy problem (1.1), (1.2) permits a unique

weak solution u(x, t) which has the following properties:

0 ≤ u(x, t) ≤ M, (1.3)∫
Rn

u(x, t)dx =
∫
Rn

u0(x)dx, (1.4)

∂u

∂t
≥ −u

(m − 1)t
, (1.5)

�

(
m

m − 1
um−1

)
≥ −n

n(m − 1) + 2
· 1
t
, (1.6)

‖u − v‖L2(QT ) ≤ C max
s∈[0,M]

∣∣∣s 1
j − s

m
j

∣∣∣ , (1.7)

where j = 1, 2, 3 . . . and v is the solution to the Cauchy problem of linear heat
equation with the same initial value,

{
vt = �v in Q,

v(x, 0) = u0(x) on R
n,

(1.8)
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Regularity and geometric character of solution of a … 355

C = O(T γ ) for large T , and

γ = 1 − ( j − 2)n

j (2 + n)m
.

In particular, the solution u(x, t) can be obtained (see [12,33]) as a limit of solutions
uη(η −→ 0+) of the Cauchy problem

{
ut = �um in Q,

u(x, 0) = u0(x) + η on Rn,
(1.9)

and the solutions uη(x, t) are taken in the classical sense, but uη(x, t) are not in L1(Rn)

due to uη(x, t) ≥ η in Q. We know that Aronson and Benilan (see Theorem 2, p. 104
in [6]) claimed that: if u is the weak solution to the Cauchy problem (1.1) with the
initial value (1.2), then u ∈ C(Q) and u ≥ 0; Vazquez (see Proposition 6 in Ch. 2 of
[34]) proved u ∈ C∞(Q+), where

Q+ = {(x, t) ∈ Q : u(x, t) > 0}.

Before this, the same conclusion was established by Friedman (see Theorem 11 and
Corollary 2 in Chapter 3 [27]). Moreover, employing so called bootstrap argument ,
Aronson et al. (see [3,4,29] also claimed u ∈ C∞(Q+).

Therefore, we can divide the space-time Q = R
n × R

+ into two parts: Q =
Q+ ∪ Q0, where

Q0 = {(x, t) ∈ Q : u(x, t) = 0}.

Furthermore, if Q0 contains an open set, say, Q1,we can also obtainu(x, t) ∈ C∞(Q1)

owing to u(x, t) ≡ 0 in Q1. Thereby, we may suspect that the solution of degenerate
parabolic equation is actually smooth in Q except a set of measure 0. In order to
improve the regularity of u(x, t), many authors have made hard effort in this direction.
The earliest contribution to the subject was made, maybe, by Aronson and Gilding
and Peleiter (see [3,29]). They proved that the solution to the Cauchy problem

{
∂u
∂t = ∂2um

∂x2
in R1 × R

+, m > 1,
u(x, 0) = u0(x) on R

1

is continuous inR1×(0,+∞) if the nonnegative initial value satisfies a good condition.
Moreover, if the initial value 0 ≤ u0 ≤ M and um0 is Lip-continuous, then u(x, t) can
be continuous on R

1 × [0,+∞) (see [29]). As to the case of n ≥ 1, Caffarelli and
Friedman (see [12]) proved that the solution u(x, t) to the Cauchy problem (1.1), (1.2)
is Hölder continuous on R

n × [δ0,∞):

|u(x, t) − u(x0, t0)| ≤ C
(
|x − x0|α + |t − t0| α

2

)
for some α ∈ (0, 1), where C depends on δ0. (1.10)
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356 J. Pan

Moreover, Gilding et al. also discussed the Dirichlet problem (see [21,30]) and
obtained a similar conclusion to (1.10) and a gradient expression (see [24])

|∇u(x, t) − ∇u(x0, t0)| ≤ C
(
|x − x0|α + |t − t0| α

2

)

As to the general equation ut = ∇ · (u∇ p), p = κ(u), Caffarelli and Vazquez
([14]) established the property of finite propagation and the persistence of positivity,
where κ may be a general operator. To study this problem more precisely, Aronson
et al. (see [2,7]) constructed a interesting radially symmetric solution u(r, t) to the
focusing problem for the equation of (1.1). Denoting the porous medium pressure
V = m

m−1u
m−1, they claimed V = Cr δ at the fusing time, where 0 < δ < 1,C is a

positive constant. Furthermore,

lim
r↓0

V (r, ηrα)

r2−α
= ϕ(c∗η)

−η
.

Because u ∈ C∞(Q+) and also, u ∈ C∞(Q1), where Q+ and Q1 is mentioned as
before, many authors (see [8,15,16,18,20,22,26]) discussed the Harnark inequalities
in Q+ and the smoothness of free boundary

� = ∂Hu(t) t > 0.

where Hu(t) is the positivity set of u(x, t):

Hu(t) = {x ∈ R
n : u(x, t) > 0} t > 0.

For example, Aronson et al. (see [8]) proved the existence of corner point on interface
at some time t∗ for the case of n = 1,Daskalopoulos andHamilton (see [13,17,18,20])
discussed theC∞ smoothness of the interface of the equation (1.1), DiBenedetto et al.
(see [22,25]) discussed the regularity and intrinsic Harnack type inequalities in Q+.

To study the regularity of the weak solution of (1.1), (1.2) more precisely, the
present work intends to show the dependency between α and m in (1.10). To be exact,
for every given m > 1, we will prove

{
α = 1 if 1 < m < 2,
α ∈ ( 1

m , 1
m−1 ) if m ≥ 2.

(1.11)

In (1.11), we see that the range of α is (0, 1] rather than (0, 1) as in (1.10). Unfor-
tunately, our priori estimate (see below) is only right for the case of n = 1 owing to
technical difficulties, so (1.11) is true only for n = 1 in this paper. As to the case of
n > 1, we all know that u ∈ C∞(Q+) and some authors discuss the regularity (see
[10] and therein) more deeply, but whether (1.11) is right or not in the whole area Q+,
we feel it might be an interesting topic.

Employing (1.11) (for the case of n = 1) and (1.10) (for the case of n > 1), the
present work will show that∇uβ are continuous if β is large sufficiently. In particular,
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Regularity and geometric character of solution of a … 357

we will prove that the function φ(x, t) = (u(x, t))β satisfies the degenerate parabolic
equation

∂φ

∂t
= m

[
φ

m−1
β �φ + m − β

β
φ

m−β−1
β |∇φ|2

]

in the classical sense. Therefore we can speak roughly, theweak solution to the Cauchy
problem (1.1) is in fact a classical one.

For every fixed t > 0, we define a n-dimensional surface S(t), which floats in the
space Rn+1 with the time t :

S(t) :
{
xi = xi , i = 1, 2, 3, . . . , n,

xn+1 = φ(x, t),

where the function φ(x, t) = (u(x, t))β . Let⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g1 = (1, 0, . . . , ∂φ
∂x1

),

g2 = (0, 1, . . . , ∂φ
∂x2

),

· · ·
gn = (0, 0, . . . 1, ∂φ

∂xn
).

(1.12)

Define the Riemannian metric on S(t):

(ds)2 =
n∑

i, j=1

gi j dxi dx j ,

where gi j = gi · g j . Clearly,

(ds)2 =
n∑

i=1

(1 + φ2
xi )(dxi )

2 +
n∑

i 
= j,i, j=1

φxiφx j dxi dx j

=
n∑

i=1

(dxi )
2 +

(
n∑

i=1

φxi dxi

)2

.

Recalling
n∑

i=1
φxi dxi = dφ = dxn+1 for fixed t > 0, we get

(ds)2 =
n+1∑
i=1

(dxi )
2 =

n∑
i=1

(dxi )
2 + (dφ)2.

If the derivatives ∂φ
∂xi

are bounded for i = 1, 2, . . . , n and for x ∈ R
n uniformly,

then we can get a positive constant C , such that (
∑n

i=1 φxi dxi )
2 ≤ C(

∑n
i=1 dxi )

2.
Denoting (dρ)2 = ∑n

i=1(dxi )
2, which is the Euclidean metric on R

n , we get

123



358 J. Pan

(dρ)2 ≤ (ds)2 ≤ (1 + C)(dρ)2. (1.13)

As a consequenceof (1.13),we see that the completeness ofRn yields the completeness
of S(t) and therefore, S(t) is a complete Riemannian manifold. On the other hand, if
we can obtain

∇ (φ(x, t)) |∂Hu(t) = 0 (1.14)

for every fixed t > 0, where Hu(t) is mentioned as before, then (1.14) encourage us
to prove that: the manifold S(t) is tangent to Rn . However, we need to point out that:
we can only give an explicit dependency relationship between β and m for the case of
n = 1.

It is well-known that the function

v(x, t) =
(

1

2
√

π t

)n ∫
Rn

u0(ξ)e− (x−ξ)2

4t dξ

is the solution of the Cauchy problem of the linear heat Eq. (1.8) and v(x, t) > 0 in
Q everywhere if only the initial value u0 satisfies (1.2). This fact shows that the speed
of propagation of v(x, t) is infinite, that is to say,

sup
x∈Hv(t)

|x | = ∞. (1.15)

However, the degeneracy of the equation in (1.1) causes an important phenomenon to
occur, i.e. finite speed of propagation of disturbance. We have observed this phenom-
enon on the source − t ype solution B(x, t;C) (see [9]), where

B(x, t,C) = t−λ

(
C − κ

|x |2
t2μ

) 1
m−1

+
(1.16)

is the equation in (1.1) with a initial mass Mδ(x), and

λ = n

n(m − 1) + 2
, μ = λ

n
, κ = λ(m − 1)

2mn
.

We see that the function B(x, t;C) has compact support in space for every fixed time.
More precisely, if u(x, t) is the solution of (1.1), (1.2), then

sup
x∈Hu(t)

|x | = O
(
t

1
n(m−1)+2

)
(1.17)

when t is large enough (see Proposition 17 in [34]). Comparing (1.15) and (1.17) and
recalling the mass conservation

∫
Rn u(x, t)dx = ∫

Rn u0(x)dx = ∫
Rn v(x, t)dx , the
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present work will prove that the solution continuously depends on the nonlinearity of
the Eq. (1.1):

‖u(·, t) − v(·, t)‖2L2(|x |≤k) ≤ C

[
(m − 1) + 1

k

]
.

We read the main conclusions of the present work as follows:

Theorem 1 Assume u(x, t) be the weak solution to (1.1), (1.2). Then u(x, t) ∈ C(Q)

and moreover,

(1) If n = 1, for every given τ > 0, N > 0, there exists a positive ν such that

|u(x1, t1) − u(x2, t2)| ≤ ν
(
|x1 − x2| 1h + |t1 − t2| 1

2h

)

where |xi | ≤ N , ti ≥ τ, i = 1, 2,

h =
{
1 if 1 < m < 2,
h ∈ (m − 1,m) if m ≥ 2; (1.18)

(2) The function φ = (u(x, t))β ∈ C1(Rn) and the surface φ = φ(x, t) is tangent to
R
n on ∂Hu(t) for every fixed t > 0, where β > h and h is defined by (1.18) for

the case of n = 1; β > 1
α
and α is stated in (1.10) for the case of n > 1;

(3) If β > 2h (for n = 1) or β > 2
α
(for n > 1), the function φ(x, t) satisfies the

degenerate parabolic equation

∂φ

∂t
= m

(
φ

m−1
β �φ + m − β

β
φ

m−β−1
β |∇φ|2

)

in the classical sense in Q.

Theorem 2 Assume n ≥ 1 and u(x, t) be the weak solution to (1.1), (1.2), Bδ = {x ∈
R
n : |x | < δ} for some δ > 0. If supp u0 ⊂ Bδ , then for every given t > 0,

sup
x∈Hu(t)

|x | ≥ χ(t), (1.19)

where,

χ(t) =
[
(m − 1)π

(1−m)n
2 �(1 + n

2
)m−1 ·

(∫
R1

u0dx

)m−1

t

] 1
2+(m−1)n

.

Moreover, for every given T > 0, there is a positive C∗ = C∗(T ) such that

∫
|x |≤k

[v(x, t) − u(x, t)]2 dx ≤ C∗
[
(m − 1) + 1

k

]
(1.20)

with respect to t ∈ (0, T ) uniformly, where v(x, t) is the solution of (1.8).
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We see that S(t) and Rn are two manifolds in Rn+1 and the Cauchy problem (1.1),
(1.2) can be regarded as a mapping �(t) : R

n −→ S(t). Thus, besides the theorems
mentioned above, we will give an example to show the intrinsic properties about the
manifold S(t).

Remark 1 Although we may obtain the regularity for the weak solution u(x, t) for all
m > 1 in (2) and (3) of Theorem 1 for all n ≥ 1, and particularly, (3) tells us that
the weak solution u(x, t) is in fact a classical one, we see that we can only show the
explicit relationship between β and m for the case of n = 1. As to the case of n > 1,
we can not get such relationship owing to we can not know how α depend on m in
(1.10).

2 The proof of Theorem 1

Lemma 1 If n = 1 and u(x, t) is the weak solution to (1.1), (1.2) in Q. Then for every
given m > 1, there is a h ∈ (m − 1,m) and C0 = C0(m, M, T ) such that

∣∣∣∣∂u
h

∂x

∣∣∣∣
2

≤ C0

t
(2.1)

in the sense of distributions in Q.

Proof We first prove (2.1) for the classical solutions uη(x, t). Set

Vq = umη for q ∈ (1,
m

m − 1
).

Then

Vt = mVq− q
m

∂2V

∂x2
+ m(q − 1)Vq−1− q

m

∣∣∣∣∂V∂x
∣∣∣∣
2

. (2.2)

We differentiate the Eq. (2.2) with respect to x and multiply though by ∂V
∂x , and let

H = ∂V
∂x , we get

(H2)t = 2mVq− q
m H

∂2H

∂x2
+ 2m

(
q − q

m

)
V q−1− q

m H2Hx

+ 2m(q − 1)
(
q − 1 − q

m

)
V q−2− q

m H4 + 4m(q − 1)Vq−1− q
m H2Hx

= mVq− q
m

∂2H2

∂x2
+ 2m

(
3q − 2 − q

m

)
V q−1− q

m H2Hx

+ 2m(q − 1)
(
q − 1 − q

m

)
V q−2− q

m H4 − 2mVq− q
m (Hx )

2.
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Regularity and geometric character of solution of a … 361

Moreover, it follows from q ∈ (1, m
m−1 ) that (q − 1 − q

m ) < 0, hence

2m(q − 1)(q − 1 − q

m
)V q−2− q

m ≤ −C1, (2.3)

where, C1 = 2m|(q − 1)
(
q − 1 − q

m

) |(M + η)
m− 2m

q −1. Setting

L(H2) = mVq− q
m

∂2H2

∂x2
+ 2m

(
3q − 2 − q

m

)
V q−1− q

m H2Hx

−C1H
4 − mVq−2 q

m (Hx )
2,

we get

H2
t ≤ L(H2) in Q. (2.4)

Clearly, the function Z2 = 1
C1t

satisfies the equation ∂
∂t Z

2 = L(Z2) and Z2(0) =
+∞. By comparison theorem, we get

H2 ≤ 1

C1t
in Q,

or we rewrite this inequality as

|∇uhη|2 ≤ 1

C1t
(2.5)

with h = m
q for all 1 < q < m

m−1 . Of course, we can take q = m if 1 < m < 2;
1 < q < m

m−1 if m ≥ 2. Therefor, (2.5) is right for

{
h = 1 if 1 < m < 2,
h ∈ (m − 1,m) if m ≥ 2.

Letting η −→ 0 in (2.5), we obtain the conclusion of our lemma with a constant
C0 = 1

C1
and (2.1) follows. ��

To prove Theorem 1, we need to show an ordinary inequality firstly:

|a − b|β ≤ |aβ − bβ | for a, b ≥ 0, β > 1. (2.6)

In fact, (2.6) is right for a = b. If a > b, we can easily get the following inequalities:

(
1 − b

a

)β

≤ 1 − b

a
and 1 −

(
b

a

)β

≥ 1 − b

a
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thanks to 0 ≤ b
a < 1. Thereby,

(
1 − b

a

)β ≤ 1 − ( b
a

)β
. This inequality gives

|a − b|β = aβ

∣∣∣∣1 − b

a

∣∣∣∣
β

≤ aβ − bβ.

So (2.6) holds for a > b ≥ 0. Certainly, (2.6) is also right if 0 ≤ a < b.
We are now in the position to establish Theorem 1.
To prove (1) of Theorem 1 It follows from (2.1) that

∣∣∣uh(x1, t) − uh(x2, t)
∣∣∣ ≤

(
C0

t

)− 1
2 |x1 − x2| (2.7)

for every (x1, t), (x2, t) ∈ Q, h ∈ (m − 1,m). If 1 < m < 2, we take h = 1, and
therefore, (2.7) yields

|u(x1, t) − u(x2, t)| ≤
(
C0

t

)− 1
2 |x1 − x2|.

If m ≥ 2, we take h ∈ (m − 1,m). In this case, we use (2.6) in (2.7) and obtain

|u(x1, t) − u(x2, t)| ≤
(
C0

t

)− 1
2h |x1 − x2| 1h .

Therefore, for every givenm > 1, there always exists a suitable positive numberh ≥ 1
such that

|u(x1, t) − u(x2, t)| ≤
(
C0

τ

)− 1
2h |x1 − x2| 1h (2.8)

for every (x1, t), (x2, t) ∈ R
1 × [τ,∞) with given τ > 0, where

{
h = 1 for 1 < m < 2,
h ∈ (m − 1,m) for m ≥ 2.

Employing the well-known theorem on the Hölder continuity with respect to the time
variable (see [28]), we obtain

|u(x, t1) − u(x, t2)| ≤ K |t1 − t2| 1
2h (2.9)

for |x | ≤ N , t1, t2 > τ and |t1−t2| small sufficiently,where K depends on (C0
τ

)− 1
2h , N

is any fixed positive constant. Combining (2.8) and (2.9) we get another positive
constant ν such that

|u(x1, t1) − u(x2, t2)| ≤ ν
[
|x1 − x2| 1h + |t1 − t2| 1

2h

]
(2.10)
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for all |xi | ≤ N , ti ≥ τ, i = 1, 2, where

h =
{
1 if 1 < m < 2,
h ∈ (m − 1,m) if m ≥ 2.

Certainly, (2.10) gives u ∈ C(Q). ��
To prove (2) of Theorem 1 We show the proof for the case of n = 1 first. Denote

β = h + ε and set

φ(x, t) = uβ

for every ε > 0. It follows from (2.1) that

∣∣∣∣ ∂

∂x
φ(x, t)

∣∣∣∣ ≤ C2(u(x, t)ε)t−
1
2 in Q (2.11)

for some C2 > 0. To prove the function φ(x, t) ∈ C1(R1) for fixed t > 0, we first
see u ∈ C∞(Q+); second, (2.11) implies ∂

∂x φ(x∗, t∗) = 0 for every (x∗, t∗) ∈ Q0.
Therefore, (2.11) gives

∣∣∣∣ ∂

∂x
φ(x, t) − ∂

∂x
φ(x∗, t∗)

∣∣∣∣ ≤ C2t
− 1

2 (u(x, t))ε.

This inequality tells us ∂
∂x φ(x, t) ∈ C(R1), that is to say, φ(x, t) ∈ C1(R1).

Furthermore, for every fixed t > 0, the continuity of u(x, t) implies Hu(t) is an open
set. Thus φ(x∗, t) = ∂

∂x φ(x∗, t) = 0 for (x∗, t) ∈ ∂Hu(t). This fact claims that the
manifold S(t) touches R1 at ∂Hu(t). In other words, R1 is just the tangent of S(t) at
∂Hu(t).

As to the case of n > 1, on the one hand, for every given t > 0, φ(x0, t) ≡ 0 if
(x0, t) ∈ Q0. Thereby, ∇φ(x, t) −→ 0 when (x, t) converges to (x0, t) along any
direction inside Q0. On the other hand, employing (1.10) we get

|u(x, t) − u(x0, t)| ≤ C |x − x0|α

for every (x, t), (x0, t) ∈ Q. In particular, if (x0, t) ∈ Q0, the above inequality can be
rewritten as

u(x, t) ≤ C |x − x0|α.

Therefore, if we denote φ(x, t) = uβ with β = 1
α

+ ε for any ε > 0, we get∣∣∣∣φ(x, t) − φ(x0, t)

x − x0

∣∣∣∣ ≤ C |x − x0|αε (2.12)

(2.12) yields ∇φ(x, t) −→ 0 when (x, t) converges to (x0, t) from outside Q0.
Thus we know that ∇φ(x, t) is continuous at (x0, t). Because we have know ∇φ ∈
C∞(Q+), so φ(x, t) ∈ C1(Rn) for every given t > 0, in particular,
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φ(x, t) = ∇φ(x, t) = 0 when (x, t) ∈ ∂Hu(t).

Therefore, the surface φ = φ(x, t) is tangent to Rn on ∂Hu(t) for every fixed t > 0.
��

To prove (3) of Theorem 1 We also prove the result for the case of n = 1 first.
Recalling u(x, t) = lim

η−→0+ uη and uη ≥ η, uη are the classical solutions to the Cauchy

problem (1.9), we can make

φη = uβ
η

for β = h + ε and ε > h. Then the function φη satisfies the degenerate parabolic
equation

∂φη

∂t
= m

[
φ

m−1
β

η

∂φ2
η

∂x2
+ m − β

β
φ

m−β−1
β

η

∣∣∣∣∂φη

∂x

∣∣∣∣
2
]

in Q.

Recalling limη−→0+ φη = φ and u ∈ C∞(Q+), we see that φ(x, t) ∈ C∞(Q+)

and φ satisfies the equation

∂φ

∂t
= m

[
φ

m−1
β

∂2φ

∂x2
+ m − β

β
φ

m−β−1
β

∣∣∣∣∂φ

∂x

∣∣∣∣
2
]

(2.13)

in Q+. We next prove that (2.13) is also right in Q. In fact, if (x, t∗) ∈ Q0, then
φ(x, t) ≡ 0 for all 0 ≤ t < t∗ [see (3.2) of this paper]. This yields ∂

∂t φ(x, t∗ −0) = 0.
Moreover, (2.10) yields

u(x, t) − u(x, t∗) = u(x, t) ≤ ν (t − t∗)
1
2h for t ≥ t∗.

Thus, φ(x, t) − φ(x, t∗) = φ(x, t) ≤ νβ(t − t∗)
β
2h , thereby,

φ(x, t) − φ(x, t∗)
t − t∗

≤ νβ (t − t∗)
β−2h
2h . (2.14)

By (2.14), we get ∂
∂t φ(x, t∗ + 0) = 0 owing to β > 2h. Now we see that ∂

∂t φ(x, t∗ +
0) = ∂

∂t φ(x, t∗ − 0) = 0, so we obtain the continuity of the function ∂φ
∂t , specially,

∂φ
∂t |(x,t∗) = 0. On the other hand, by (2.10) and (2.11), we have

∣∣∣∣∂φ(x, t)

∂x
− ∂φ(x∗, t)

∂x

∣∣∣∣ =
∣∣∣∣∂φ(x, t)

∂x

∣∣∣∣ ≤ C2t
− 1

2 (u(x, t))ε

≤ C2t
− 1

2 (u(x, t))ε−hνh |x − x∗|

for (x∗, t) ∈ Q0. This yields

1

|x − x∗|
∣∣∣∣∂φ(x, t)

∂x
− ∂φ(x∗, t)

∂x

∣∣∣∣ ≤ C2t
− 1

2 (u(x, t))ε−hνh .
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This gives the continuity of the function ∂2φ

∂x2
, specially,

∂2φ

∂x2
= 0 on Q0

thanks to ε > h. It follows from m > 1 that φ
m−1

β ∂2φ

∂x2
= 0 on Q0. Similarly,

the function ∂φ
∂x is continuous and φ

m−β−1
β | ∂φ

∂x |2 = 0 on Q0. Combining the argu-
ment mentioned above, we deduce that the function φ(x, t) satisfies (2.13) in Q.
Similarly, we can also get the same conclusion if n > 1. ��

As an application of our Theorem 1, here we give an example to show the large
time behavior on the intrinsic properties of the manifold S(t).

Example (the intrinsic properties of S(t)) Here we will discuss the relationship
between S(t) and R

n in this example for n = 1.
In fact, by (1.13) and (2.11), we get

(ds)2 =
(
1 + φ2

x

)
(dρ)2

≤
[
1 + (C2u

ε)2t−1
]
(dρ)2.

Furthermore, recalling u(x, t) ≤ Ct
−1
m+1 for some positiveC (see Theorem 9 in Ch. III

of [34]), we get

(ds)2

(dρ)2
= 1 + O

(
t−

2ε
m+1−1

)
(2.15)

when t is large sufficiently.

3 The proof of Theorem 2

It is well-known that if λ1 is the minimum positive eigenvalue and ψ1 is the corre-
sponding eigenfunction of the Dirichlet problem

{
�u = −λu in �,

u = 0 on ∂�,

then λ1‖ψ1‖2L2(�)
= ‖∇ψ1‖2L2(�)

, where � is a boundary domain in R
n . Moreover,

if ψ ∈ H1
0 (�), then Poincaré inequality claims that there exists a positive constant k

such that k‖ψ‖2
L2(�)

≤ ‖∇ψ‖2
L2(�)

. In particular, if � is a sphere of Rn

� = {x ∈ R
n : |x − x0| < ρ}

for x0 ∈ R
n and ρ > 0, then the constant k can be written as k ≤ ρ−2 (see [1,35]).

To be exact, we have
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Lemma 2 If � is a sphere mentioned above, u ∈ H1
0 (�). Then

‖u‖L2(�) ≤ ρ‖∇u‖L2(�). (3.1)

Now we are in the position to prove our Theorem 2.

To prove (1.19) Assume u(x, t) be the weak solution of (1.1), (1.2). Integrating
(1.5) from t1 to t2 yields ln u(x, t2) − ln u(x, t1) ≥ − 1

m−1 (ln t2 − ln t1) for t2 > t1.

This meansu(x, t2) · t
1

m−1
2 ≥ u(x, t1) · t

1
m−1
1 for t2 > t1 ≥ 0. Therefore,

{
i f u(x0, t0) = 0, then u(x0, t) = 0 f or every 0 ≤ t < t0;
i f u(x0, t0) > 0, then u(x0, t) > 0 f or every t > t0.

(3.2)

By (3.2), we see that

Hu(t) ⊃ Bδ t > 0.

Clearly, the proof is finished if supx∈Hu(t) |x | = ∞, otherwise, we set

K ′ = γ + sup
x∈Hu(t)

|x |

for γ > 0. Thus,

u(x, t) = 0 for x ∈ R
n − BK ′ . (3.3)

It follows from (1.5) that

∫
BK ′

um�umdx ≥ − 1

(m − 1)t

∫
BK ′

u1+mdx,

so that

∫
BK ′

|∇um |2dx ≤ 1

(m − 1)t

∫
BK ′

u1+mdx .

Using (3.1) in this inequality, we obtain

∫
BK ′

u2mdx ≤ K ′2

(m − 1)t

∫
BK ′

u1+mdx . (3.4)

Employing the Hölder inverse inequality (see Sect. 2.6 of Ch. 2 in [1]), we have

∫
BK ′

u2mdx ≥
(∫

BK ′
u1+mdx

) 2m
1+m

|BK ′ | 1−m
1+m ,
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where |BK ′ | is the volume of BK ′ and |BK ′ | = π
n
2 �(1 + n

2 )−1K ′n . Using this
inequality in (3.4) yields

(∫
BK ′

u1+mdx

)m−1
1+m

|BK ′ | 1−m
1+m ≤ K ′2

(m − 1)t
. (3.5)

Using the Hölder inverse inequality again, we have

∫
BK ′

u1+mdx ≥
(∫

BK ′
udx

)1+m

|BK ′ |−m . (3.6)

It follows from (1.4) and 3.3 that
∫
Rn u(x, t)dx = ∫

BK ′ u(x, t)dx = ∫
Rn u0(x)dx .

Combining 3.5 and 3.6 yields

(∫
Rn

u0dx

)m−1

|BK ′ |1−m ≤ K ′2

(m − 1)t
. (3.7)

Now we get

(m − 1)

(∫
Rn

u0dx

)m−1

t ≤ K ′2+(m−1)n · π
(m−1)n

2 ·
(
�(1 + n

2
)
)1−m

.

Letting γ −→ 0 gives

sup
x∈Hu(t)

|x | ≥ χ(t) t > 0.

��
To prove (1.20) Assume u(x, t) and v(x, t) be the solutions to (1.1) and (1.8)

respectively. Employing the well-known result (see [34]), we have

1

1 + m

∫
Rn

u1+m(x, T )dx +
∫
QT

|∇um |2dxdt ≤ 1

1 + m

∫
Rn

u1+m
0 dx (3.8)

and

1

2

∫
Rn

v2(x, T )dx +
∫
QT

|∇v|2dxdt ≤ 1

2

∫
Rn

u20dx (3.9)

for every given T > 0 and QT = R
n × (0, T ). Let

G = v − umη ,

ψ =
∫ t

T
Gdτ 0 < t < T,
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where uη are the solutions of (1.9). Let {ζk}k>1 be a smooth cutoff sequence with the
following properties: ζk(x) ∈ C∞

0 (R1) and

ζk(x) =
⎧⎨
⎩
1 |x | ≤ k,
0 < ζk(x) < 1 k < |x | < 2k,
0 |x | ≥ 2k.

Clearly, there is a positive constant γ such that

|∇ζk | ≤ γ

k
and |�ζk | ≤ γ

k2
. (3.10)

Recalling (v − uη)t = �G in QT , we multiply the equation by ψζk and integrate by
parts in QT , we obtain

∫
QT

(ζk∇G · ∇ψ + ψ∇G · ∇ζk)dxdt =
∫
QT

(v − uη)Gζkdxdt. (3.11)

Because ζk ∈ C∞
0 (R1) and the functions v, uη are bounded and are classical solu-

tions to (1.8) and (1.9) respectively, so we can differentiate (3.11) with respect to T ,
we get

∫
Rn

(v − uη)Gζkdx = −
∫
QT

(
ζk |∇G|2 + G∇G · ∇ζk

)
dxdt

≤ −1

2

∫
QT

∇G2 · ∇ζkdxdt. (3.12)

Letting η −→ 0 in (3.12) yields

∫
Rn

(v − u)(v − um)ζkdx ≤ ϕ

k
(3.13)

for some positive ϕ = ϕ(T ) thanks to (3.8), (3.9) and (3.10). On the other hand,

∫
Rn

(v − u)(v − um)ζkdx =
∫
Rn

(v − u)2ζkdx +
∫
Rn

(v − u)(u − um)ζkdxdt.

Now we conclude that

∫
Rn

(v − u)2ζkdx ≤
∫
Rn

|v − u| · |u − um |ζkdx + ϕ

k

≤ 1

2

∫
Rn

[
(v − u)2 + (u − um)2

]
ζkdx + ϕ

k
.
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This implies

∫
Rn

(v − u)2ζkdx ≤
∫
Rn

(u − um)2ζkdx + 2ϕ

k

≤ (m − 1)
∫
Rn

ξm−1|u − um |ζkdx + 2ϕ

k

≤ (m − 1)Mm−1
∫
Rn

|u − um |ζkdx + 2ϕ

k
.

Recalling the definition of ζk , we see
∫
Rn (v−u)2ζkdx ≥ ∫

|x |≤k(v−u)2dx . Moreover,∫
Rn |u − um |ζkdx is bounded thanks to (1.3) and (1.4). Hence, we can get a positive
constant C∗ = C∗(T ) such that

∫
|x |≤k

[v(x, t) − u(x, t)]2 dx ≤ C∗
[
(m − 1) + 1

k

]

with respect to t ∈ (0, T ) uniformly. ��
The author is pleased to express his gratitude to reviewers for the valuable sugges-
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