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Abstract The spot instancemodel is a virtualmachine pric-
ing scheme in which some resources of cloud providers are
offered to the highest bidder. This leads to the formation
of a spot price, whose fluctuations can determine customers
to be overbid by other users and lose the virtual machine
they rented. In this paper we propose OptiSpot, a heuris-
tic to automate application deployment decisions on cloud
providers that offer the spot pricingmodel. In particular, with
our approach it is possible to determine: (i) which and how
many resources to rent in order to run a cloud application,
(ii) how to map the application components to the rented
resources, and (iii) what spot price bids to use to minimize
the total cost while maintaining an acceptable level of perfor-
mance.Todrive the decisionmaking, our algorithmcombines
amulti-class queueing networkmodel of the applicationwith
a Markov model that describes the stochastic evolution of
the spot price and its influence on virtual machine reliabil-
ity. We show, using a model developed for a real enterprise
application and historical traces of the Amazon EC2 spot
instance prices, that our heuristic finds low cost solutions
that indeed guarantee the required levels of performance.
The performance of our heuristic method is compared to that
of nonlinear programming and shown tomarkedly accelerate
the finding of low-cost optimal solutions.
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1 Introduction

Cloud computing is a popular paradigm for offering compute
capacity as a service. In particular, the cloud gives flexibility
to decide and modify the speed, the number, and the lease
time of virtual machines (VMs). There are several pricing
strategies for renting VMs, among which are often men-
tioned two categories: on-demand pricing and spot pricing.
On-demand pricing guarantees that a resource is available for
a fixed price, which is proportional to the time the resource
is rented. In spot pricing, instead, resources are offered at
a variable price, called the spot price, which is arbitrarily
decided by the cloud provider. Spot pricing requires users
to bid a maximum price they are willing to pay for. If the
bid price is greater than the current spot price, the virtual
machine will be charged at the spot price. However, if the
spot price exceeds the bid price, the VM will receive a ter-
mination notice and eventually be reclaimed by the provider.
The advantage of spot instances is that their price tends to
be lower than the on-demand price most of the time, but
from time to time, when the cloud provider has a shortage of
resources, it can temporarily make the spot price steep (much
higher than the on-demandprice) in order to havemost of spot
resources back. This makes the decision of choosing a bid
price both difficult and important. While a number of works
have considered this problem in recent years [9,17,29,31],
the problem of deciding bid prices in light of performance
requirements or constraints on the application architecture is
more complex and still poorly understood.
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This paper,which extends [11], aims at helping cloudusers
to take maximum advantage from spot instances by support-
ing the following decisions:

– What type of virtual resources should be rented for a given
application?

– How to efficiently map the components of an application
(e.g., web server VMs, a database VMs) to the rented
resources?

– What is the optimal bid price for each resource that allows
to fulfill quality of service requirements?

Specifically, we focus on applications developed accord-
ing to the model-driven engineering approach, in which
a performance model of the application can be automat-
ically generated through model-to-model transformations.
For example, queueing networks can be automatically gener-
ated from UML or Palladio Component Model diagrams [3,
22]. The problem of executing the decisions, such as con-
cretely migrating the virtual resources is out of the scope of
this paper, which focuses on the decision problem.

The main technical innovations of this paper are as fol-
lows:

– a heuristic, called OptiSpot, to jointly solve the bidding
and allocation problem, which are in general NP-hard;

– what is, to our knowledge, thefirst application in the area of
bidding of extended queueing networkmodels that include
a model of the operational environment. The latter, which
is referred to as random environment model [6], captures
the stochastic nature of the operational environment, in
which VMs can be lost and restarted as a result of spot
price fluctuations and the consequent temporary switch to
an on-demand pricing model.

– the use of advanced fluid analysis techniques to accu-
rately approximate response time percentiles, which are
commonly used to constraint performance in service-
level agreements, but which are usually hard to com-
pute in queueing networks. Compared to more complex
approximations for accurate percentile assessment, such
as Laplace transforms, this method is fast enough for run-
time application.

OptiSpot can quickly find a local optimal solution. We
validate the accuracy of this solution by considering the
queueing network model of a real enterprise resource plan-
ning (ERP) application and real recent historical data of
Amazon EC2 spot prices. We compare our results with an
approach that uses a nonlinear optimization algorithm and
show that our heuristics provides better results in less time.

The rest of this paper is organized as follows. Section 2
gives a motivating example. Section 3 discusses the prob-
lem statement and defines the reference model. Section 4
presents the OptiSpot heuristic to provision and map appli-
cation components to cloud resources. Section 5 describes

the bidding price strategy we used in our case study and how
it can be represented as a random environment. Our approach
is later evaluated in Sects. 6 and 7. Section 8 surveys related
work. Lastly, Sect. 9 concludes the paper and outlines possi-
ble extensions.

2 Motivating example

Let us consider a real multi-tier cloud application, such as the
SAP ERP [24]. This application is composed of two com-
ponents: an application server and a database server. The
application must also satisfy some quality requirements in
terms of response time in fulfilling requests. The problem
we want to solve is to find the cheapest way to run this appli-
cation on a spot cloud system while maintaining the quality
requirements. To help making this decision we assume to
have the following information: (i) a performance model of
the application, which can be represented as a queueing net-
work as shown in [24]; (ii) current andhistorical pricing of the
resources that can be rented by the cloud provider; (iii) a qual-
ity requirement in terms of constraints on the response time.

For example, assume that, after analyzing the performance
model of the application and the expected load, we need
VMs with different computational requirements (expressed
as Amazon Elastic Computing Units, ECUs) for the applica-
tion server and the database server. Then,we have a very large
decision space on how to deploy them in a cloud infrastruc-
ture if we have multiple types of resources characterized by
different prices and speeds, such as in Amazon EC2. Fig-
ure 1 shows four examples of deployment characterized by
an increasing level of deployment complexity. In the first
deployment, we make the most intuitive decision, that is to
choose the two cheapest resources that can fit the twoVMs of
the application. In the second deployment we can take advan-
tage of cheap large resources by deploying multiple VMs
inside a single large cloud resource. In the third deployment
we can take advantage of cheap small resources by replicat-
ing application VMs into multiple cloud resources with the
help of a load balancer. Finally, in the last deployment we can
choose the cheapest VM of any size by combining the two
previous deployment approaches, thus obtaining the highest
degree of flexibility and cost-saving potential.

In our approach we consider the most complex case
and also consider that the deployment decision is not only
affected by the size of the cloud resources, as in the deploy-
ment example above, but it should take into account also
additional real-world characteristics that may affect the over-
all system performance:

– number of CPUs, since having multiple CPUs does not
always correspond to a proportional increase in the sys-
tem throughput;
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Fig. 1 Different strategies for deploying the application components of
the SAP ERP application to cloud resources. Circles represent applica-
tions, their size indicates their ECU requirements. Rectangles represent

cloud resources, their size represent the ECU availability. From left to
right we show deployment strategies with an increasing level of flexi-
bility and therefore increasing cost-saving potential

– load balancing, since balancing the load among multi-
ple VMs does not always correspond to a proportional
increase in the system throughput with respect to using a
single resource of the same type;

– availability, since a spot instance has a possibility to be
lost and become unavailable for some time.

With respect to existing solutions such as [9,17,29], we
want to increase the level of accuracy by using fluid-appro-
ximated models based on differential equations to evaluate
the system response time. These systems have been shown
in [22] to be able to scale well with respect to the system
size and to provide information about the distribution of
the response times of the overall system in addition to the
average. Moreover, the fluid-approximated models can be
easily used with tools like LINE [18,23] to perform random
environment analysis. Random environments are stochastic
models used to describe events occurring in the environment
a system operates in [6]. In our particular situation we model
the random environment around spot price fluctuations, so
to take into account their effect when computing the mean
response time and the response time distribution.

3 System model and problem statement

3.1 System model

We begin by considering a model for the system under con-
sideration. The systemmodel we propose is composed of the
following two parts: application and resources. Our goal is
to determine the rental and allocation policies, which consist
in the amount of computational resources to be rented from a
cloud provider, the mapping of the various application com-
ponents to these resources, and finally the bid price for each
resource.

Application

We model the application as a closed queueing network QN
of M software servers (representing the application compo-

Fig. 2 System parameters

nents), a delay node (representing user think time), K classes
of requests, and a set of constraints on the response time that
we defined as Service Level Objective (SLO). A detailed list
of application parameters is shown in Fig. 2a.

Resources

Weconsider an environment that has R+1 available resource
types. Type 0 is a special virtual type used to represent unal-
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located resources that have zero price and zero rate. Each
resource is characterized by a certain rate (processing speed)
and a certain number of processors. Moreover, by using his-
torical traces we can also associate to each resource a bid
price for obtaining a good compromise between the level of
availability, and the actual price that we expect to pay when
bidding such bid price. A possible way to estimate a bid price
for each resource will be discussed in Sect. 5. More details
on the application parameters are described in Fig. 2b.

3.2 Decision variables and problem statement

The system monitors periodically the environment, then it
tries to self-adapt the number of cloud resources rented, and
the deployment of the software servers on them to optimize
the prices and still meet the service requirements. To avoid
performance degradation at run-time due to migration and
reallocation of software servers,we assume that old resources
are deallocated only when the new ones are fully initialized
and ready to accept jobs. Based on the considerations above
we define our decision variables as follows:

– t = [ty], 1 ≤ y ≤ Y . Resource assignment vector: this
is a vector that assigns a resource y to a resource type
ty ∈ N[0,R]. From this parameter we also define:

– λ̂y := λ(ty): rate of the resource y.
– ĉy = c(ty): price of the resource y.

– D = [dm,y], 1 ≤ m ≤ M , 1 ≤ y ≤ Y .Allocationmatrix:
where dm,y ∈ R[0,+∞) assigns part of the rate λ of each
resource y to each software server m.

The goal is to decide a resource assignment vector t and
an allocation matrix D that minimize the sum of the prices
of all rented resources. A formalization of the optimization
problem is the following:

min
∑

y=1,...,Y

ĉy

s.t.
∑

m=1,...,M

dm,y ≤ λ̂y,∀y

MRTk(D) ≤ maxMRTk,∀k
RTPu,k(D) ≤ maxRTPu,k,∀u,∀k

Thefirst constraint states that it is not possible to allocate to
a resource a rate that is larger than the rate of its resource type.
The other constraints state that the calculated mean response
time and the response time percentiles should be lower than
their respectivemaximums,whereMRTk(D) andRTPu,k(D)

are nonlinear functions to calculate the mean response time
and the response time percentiles. These functions have all

1. Decide resource rates 
(e.g., ECU requirements)

2. Decide resources 
to rent

3. Decide allocation

4a. Analyze the 
system: Apply the solution

Wait for the next 
iteration

4b. Scale-up the 
bottleneck rates

YesNo

Fig. 3 State diagram showing all the steps of the OptiSpot approach.
The approach can be seen as an autonomic feedback loop since it adapts
the system at periodic interval by using themost updated prediction data
available for the resource prices and the application load

the decision variables and the system parameters described
in Fig. 2 as input, which are omitted to simplify the notation.

4 OptiSpot heuristic

4.1 General idea

The general idea of our approach is to decompose the main
problem into simpler subproblems that are solved in an itera-
tive way. Each subproblem obtains its input from the solution
of the previous subproblem, as shown in Fig. 3: the numbered
blocks in the figure represent the subproblems we solve. Our
approach is then repeated at regular intervals as a method of
pro-active self-adaptation, or in response to unexpected sit-
uations that cause a run-time SLO violation as a method of
reactive self-adaptation. A general idea of each subproblem
we address is described as follows, while details are given in
the next subsections.
1. Choosing the minimum computational requirements for
each application component In this step we decide the mini-
mum computational requirements in terms of resource rates
(e.g., Amazon’s elastic computing units, or simply ECUs)
that are needed by each application component to satisfy the
quality requirement. At this stage we do not consider the
available resources, but we just determine the ECU require-
ments of the application.
2. Choosing the resources to rent In this step we calculate
the bidding price that minimizes the cost for each unit of rate
(e.g., 1 ECU) and, based on it, we decide which resources to
rent. The sum of the ECUs of the rented resources should be
large enough to fulfill the ECU requirements of the applica-
tion decided in the previous step.
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3. Choosing the allocation of the application components
to the resources In this step we decide how to allocate the
different application components into the rented resources to
minimize thenegative effects of allocation (e.g., the reduction
in performance due to load balancing, as it happens in the
third deployment example in Fig. 1).
4. Analyzing the overall system and possible scaling-up of
bottlenecks The performance of the overall deployed system
is analyzed again taking into account the overhead added by
the presence of multiple CPUs and load-balancing. This is
also the step in which we consider the effects of the random
environment in terms of possibility of losing spot instances
and replacing them with on-demand instances in case the
chosen bid price is overbid. If this analysis shows that the
chosen resources and allocation do not fulfill the quality
requirements anymore, the application ECU requirements of
the bottleneck software servers are increased to compensate,
and new resources/allocations are decided.

4.2 Finding the optimal rate for each software server

In this step we want to find a first approximation of the solu-
tion of the global problem by assuming that each software
server m is deployed on a dedicated hypothetical resource
that provides the minimum rate μ̂m to process requests such
that the SLO constraints are satisfied. In this step we do not
consider the characteristics of the real resources (e.g., number
of processors, prices, and the random environments informa-
tion) since a decision on which one to rent will be done in
the next steps. The goal of this optimization problem is to
decide the minimal rates μ̂m that fulfill the constraints on the
mean response time and on the response time distribution.

min
∑

m=1,...,M

μ̂m

s.t. MRTk,(μ̂) ≤ maxMRTk,∀k
RTPu,k(μ̂) ≤ maxRTPu,k,∀u,∀k

To solve this subproblem we use a greedy algorithm that
scales down the rates of all the resources as much as it can
until one or more bottleneck resources are found for the class
of jobs that is closest to the boundary of the constraints. At
this point, the rates of the bottleneck resources are fixed, and
the algorithm continues to scale down the remaining rates,
until all of them have been fixed in the same way.

The pseudocode listing of the algorithm is shown in Fig. 4.
The function receives as input an initial set of arbitrarily large
feasible rates μ̂init, and the system model S that contains all
the parameters of the application and the resources described
in Sect. 3. It returns the optimal rates for each software server
as vector μ̂. The variable r is initialized as the set of all
available resources that can be scaled. Then, all resources are

Fig. 4 Algorithm for finding the minimum rates μ̂ for each software
server

Fig. 5 Auxiliary functions that are based on the results of a queuing
network evaluation

scaled downusing a bisectionmethod until the constraints are
violated: minimum rates are increased when the constraints
are satisfied and the maximum rates are decreased when the
constraints are violated. When the minimum and maximum
rates are close enough, the current bottleneck resources are
removed from r and the process continues until r is empty.
At this point the rate calculated so far is returned as our opti-
mal μ̂. The auxiliary functions used in the algorithm (briefly
described in Fig. 5) are directly derived from the evaluation of
the queueing network and simple operational analysis laws.

4.3 Finding the real resources to rent

In the previous step we calculated the computational needs
in terms of rates of the virtual resources. In this step we want
to decide which real resources to rent to provide such com-
putational needs at minimal expense. To make this decision
we consider for each real resource y amean price equal to ĉy ,
that can be obtained from historical traces using the estima-
tionmethodwe discuss in Sect. 5. The goal is tominimize the
sum of these costs while ensuring that the rates of all rented
resources are large enough to allocate the rates found as the
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solution of the previous problem.

min
∑

y=1,...,Y

ĉy

s.t.
∑

y∈1,...,Y
λ̂y ≥

∑

m∈1,...,M
μ̂m

This subproblem is a classical integer linear-programming
problem (ILP) since the decision variables are integers, and
the constraints and the objective functions are linear. This
is a well-known NP-hard problem in which we can find an
approximate solution using any ILP solver. We implemented
a function findResourcesToRent to interface with the MAT-
LAB intlinprog solver,which accepts the rates of the software
servers μ̂ and the system parameters S as inputs, and returns
the resource assignment vector t .

4.4 Finding the allocation of the rate for each software
server to the real resources

In this step we want to find a good allocation of the rates
found so far for each software server to the rented resources.
We can combine the allocation of multiple software servers
to a single resource and the replication of a single resource
to multiple software server, as in the last example of deploy-
ment of Fig. 1. The allocation decision should minimize the
overhead due to load balancing by minimizing the number of
associations (am,y) between software servers and resources
while still ensuring: (i) that each software server obtains at
least its minimum rate μ̂m , (ii) that each rented resource y is
not providing more than its maximum rate λ̂y .

min
∑

m=1,...,M

∑

y=1,...,Y

am,y

s.t. am,y =
{
1 if dm,y �= 0

0 if dm,y = 0
,∀m,∀y

∑

y∈Y
dm,y ≥ μ̂m,∀m

∑

m∈M
dm,y ≤ λty ,∀y

To solve this problem we propose an algorithm that finds
an approximate allocation by allocating the rates of the soft-
ware servers having the largest non-allocated rate to the real
resources having the largest available capacity in an itera-
tive process until the rates of all software servers have been
allocated.

A listing of this algorithm is shown in Fig. 6 as the find-
RateAllocation function. This function takes as input the rates
μ̂ we have previously calculated using the findOptimalRates
function, and the rented resource rates λ̂y , which can be

Fig. 6 Algorithm for finding the allocation of the rates of the software
servers to the real resources

derived from the vector of types ty calculated using the find-
ResourcesToRent function with the relation λ̂ = λ(ty). In
each iteration of the algorithm we find the software server
with the highest rate mmax and the rented resource with
the highest rate ymax. Then, we allocate the maximum rate
between the rate ofmmax and the rate of ymax by increasing the
corresponding value in the allocation matrix dmmax,ymax . To
avoid reallocating previously allocated rates, we decrement
both the rate of mmax and the rate of ymax by the allocated
value. The process is repeated until all the software servers
have zero rate.

4.5 System analysis and scaling-up of the bottleneck
server

In this step we check if the SLO constraints still hold when
considering the system allocated using the resource assign-
ment vector t and the allocation matrix D found in the
previous steps. In our implementation we use the LINE
tool [18] to evaluate themean response time and the response
time percentiles, which considers also real resource parame-
ters such as the number of processors, the load balancing, and
the random environment model that describes the possibility
for a spot resource to be lost and replaced with an on-demand
one when its bid price is overbid.

If, after calculating the response times, the SLO con-
straints still hold, we can stop here and return the decision
variables t and D calculated so far. These will be used to
reconfigure the system and apply the resource rental and allo-
cation decisions.

If the SLO constraints do not hold anymore, it means that
the real resource parameters of the proposed allocation had
a negative effect on the performance. This can be corrected
by identifying one bottleneck server m∗ and increasing its
rate by a scaling factor α, which is calculated proportional to
the amount of constraint violation. The bottleneck software
server is identified as one of the servers that, when scaled-up
by α, have the best effect in reducing the constraint violation
of the SLO. To calculate the SLO constraint violation we use
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Fig. 7 Algorithm for finding the bottleneck software servers

the following method. Given a set of i constraints rewritten
in the form V < 0, where V = [vi ], we define the SLO
constraint violation as the maximum value in V . A positive
constraint violation means that at least one SLO constraint
has been violated.

Finally, to actually determine bottleneck software servers
m∗ wepropose the findBottleneckM function,which is shown
in Fig. 7. This function iterates all the software servers, try-
ing to scale each one up by α and saving the information
of the software servers m∗ that result in the best reduction
of constraints violation. The algorithm then simply recalcu-
lates the new resource allocations that would be neededwhen
scaling-up the rate of each software server. Once the bottle-
neck software servers have been found, we just scale their
rate up by α and go back to recalculate the real resources to
rent.

4.6 Convergence of the approach

In this concluding section we give some final remarks on the
convergence of each step of our approach.

The problemof finding the optimal rate (step 1) has a guar-
anteed convergence since it uses the bisection method for
fixing the rate of the M resources associated to the software
server. The maximum number of queueing network evalua-
tions needed is O

(
M × log2(max(μ̂init))

)
, where M is the

number of software servers and μ̂init is the vector containing
the initial random feasible rates that are given as input to the
findOptimalRates function.

The problem of finding the real resources to rent (step
2) is NP-hard and solved using an approximated ILP solver.
The convergence and the complexity of this step therefore
depends on the ILP solver used and its parameters. In this
step no queueing network evaluations are performed.

Theproblemoffinding the allocation (step 3) has a guaran-
teed converge since at each iteration some rate is transferred
from the software server with the maximum unallocated rate
to the rented resource with maximum rate availability. The
maximum number of rate transfers happens when all the M
software servers are transferred to all the Y rented resources,
therefore the number of iterations of this step is O(M × Y ).
Similarly to step 2, this step does not perform any queueing
network evaluation during its iterations.

Finally, in the last step it is possible that the final solution
computed is not feasible (i.e., it violates the constraints). In
this case we need to search for bottleneck servers and scale
them up by a factor α. The algorithm to find the bottlenecks
tries to scale-up all the software servers one by one, thus
resulting in O(M) queueing network evaluations for each
search. Each search guarantees that the bottleneck resources
speed is increased, thus progressively reducing the viola-
tion of the constraints until an optimal solution is found. In
some limit situations it is possible that an increase in the
rate of a bottleneck resource does not reduce the violation of
the constraints, which would prevent the convergence of our
approach. These limit cases happen when the contribution to
the response time added by the load balancing, the multiple
number of processors, and the random environment is too
large to be compensated by an increase in rate. Examples of
these limit situations are caseswith very low resource rates or
inwhich bid prices are continuously overbid and underbid. In
our experiments based on real data we did not experience any
of such limit cases, which leads us to think they are contrived
examples.

5 Bid price and random environment

In the previous section we have shown the OptiSpot heuristic
to decide howmany resources to rent from a cloud infrastruc-
ture and how tomap the application components to them. The
approach requires to have a resource model, as explained in
Sect. 3. In particular, it is important to determine the value of
the bid price b(r) for each resource r . From b it is possible to
derive the expected cost c(r) and other information regard-
ing the possibility to lose the resource, which are needed by
our heuristic to evaluate the QN. To simplify the notation, in
the remainder of this section we omit the resource type index
r since we are always referring to a single generic resource
type.

5.1 Determining the parameterized resource model

To determine the parameterized resource model in our case
study, we use Amazon EC2 historical spot price traces for
each type of resources that are available as text files in [10].
Each line of each trace contains the timestamp and the
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updated market price for such resource. By analyzing the
trace, given an arbitrary bid price b (which is our main deci-
sion parameter), we can directly estimate the following three
functions:
– overbidTime(b)mean time before the bid price b is over-
bid (i.e., an active spot instance is reclaimed by the cloud
provider).

– underbidTime(b) mean time before the bid price b is
underbid (i.e., a previously reclaimed spot instance is
available again).

– spotCost(b) average cost for an active spot instance,
when bidding b. The difference between this cost and
c(r) is that the former only considers the use of spot
instances, while the latter considers the possibility for a
spot instance to become an on-demand instance when the
bid price is overbid, which is the actual cost incurred by
the user.

– A(b) expected availability of the resource when bidding
b. This function estimates the percentage of time the
resource is able to process requests.

We assume that each resource can be rented as a spot
instance or as an on-demand instance, or as both, depending
on the situation. For example, if a resource is running as a
spot resource and the bid price is overbid, such resource will
be eventually lost (after a termination notice grace period)
and replaced with an on-demand resource until the spot
price becomes lower than the bid price. In our model the
transition between spot and on-demand happens according
to the overbidTime(b) and underbidTime(b) functions, and
some additional fixed parameters that depend on the type of
resource rented. These additional parameters are explained
in Table 1.

The states of each resource r and the transition fre-
quency among states are represented as the Continuous-Time
Markov Chain (CTMC) in Fig. 8:

– State 1 The resource is available as a spot instance. Spot
price is paid.

– Transition 1 to 2 The bid price has been overbid, the spot
instance receives a termination notice, and an on-demand
instance is scheduled to start.

– State 2 The resource is available as a spot instance
(although it has received the termination notice) and an

Table 1 Fixed Amazon EC2 parameters for each resource r

termNoticeTime Time between a spot instance is overbid and its
termination (this is the advance termination
notice service offered by Amazon EC2)

odStartupTime Time needed to start this resource in on-demand
mode

spotStartupTime Time needed to start this resource in spot mode

Available
Spot: ON
OD: OFF

1/overbidTime

Available
Spot: ON

OD: Starting

Unavailable
Spot: OFF

OD: Starting

Available
Spot: OFF
OD: ON

Available
Spot: Starting

OD: ON

1/termNoticeTime

1/max(eps,
odStartupTime-termNoticeTime)

1/overbidTime

1/underbidTime

1/spotStartupTime

1

2

3

45

Fig. 8 CTMC representing the different states of each resource. Once
the optimum bid b is determined, it also represent the random envi-
ronment of the system. “Available” states are the states in which the
resource is available. The “Unavailable” (red) state is a transition state
in which a spot resource is lost and the replacement on-demand one has
not been started yet (Color figure online)

on-demand instance is starting. Both spot and on-demand
prices are paid.

– Transition 2 to 3 The termination notice is expired and
therefore the spot instance is no longer available.

– State 3 The resource is not available, it is being started as
an on-demand instance, but it is not ready yet to process
requests. On-demand price is paid.

– Transition 3 to 4 The on-demand instance is now ready
to receive requests. This transition can happen instanta-
neously in the case the time needed to start the on-demand
VM (odStartupTime) is not higher than the termination
notice time (termNoticeTime). To avoid the possibility of
having a non-positive period in the CTMC for this tran-
sition, we force a lower bound equal to eps (the smallest
positive number that can be represented).

– State 4 The resource is available as an on-demand
instance. On-demand price is paid.

– Transition 4 to 5 The bid price has been underbid, so it
is possible to start a spot instance again.

– State 5 The resource is available as an on-demand
instance, although a spot instance is currently starting.
Both spot price and on-demand price are paid.

– Transition 5 to 1The spot instance is now ready to receive
requests and the on-demand instance is terminated.

– Transition 5 to 4 The spot instance has been overbid
before being fully started. So it is immediately termi-
nated since an on-demand instance is still active.

For a given bid price b, we calculate the stationary dis-
tribution of the CTMC described above as �x (b), for each
state x ∈ 1, . . . , 5. From the stationary distribution we can
then calculate the resource availability and the expected cost,
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expressed as functions of b:

A(b) = 1 − �3(b)

c(b) = spotCost(b) × (�1(b) + �2(b) + �5(b))+
+ o × (1 − �1(b))

The availability A(b) is calculated as the probability for
not being in State 3, which is the only state in which the
resource is not serving requests. The actual hourly cost c(b)
is calculated as the sum of the costs for having a spot instance
active plus the sum of the costs for having an on-demand
instance active (o, defined in Sect. 3, is the fixed on-demand
price for the resource).

5.2 Determining the bid price

Once we have our parameterized resource model, we can
determine the bid price that minimizes the following objec-
tive function:

minb
c(b)

A(b) × λ

The objective function measures the actual price for each
unit of resource rate (λ), which is scaled proportionally to the
time in which the resource is available (A(b)). If the value
of the objective function, once maximized, is higher then
o/λ, then the resource is always cheaper in on-demandmode.
However, from the traces we have analyzed, we have never
encountered the situation in which an on-demand instance is
always better than the spot/on-demand switching scheme we
propose. It is important to notice that, althoughwe propose to
estimate the bid price fromhistorical traces (e.g., hours, days,
or even months), this might not always be true since a past
fluctuation is not necessarily correlated to a future one. Our
bidding estimation approach is very conservative regarding
this point since in the worst case scenario the system reverts
to on-demand resources until a new more updated estima-
tion is computed. This bid estimation approach is orthogonal
with respect to the OptiSpot heuristic, and, based on the
user needs, can be replaced with some alternative bidding
approaches such us the ones we will discuss in Sect. 8.

5.3 Determining the random environment

Once we have found an optimal value for the bid price b,
we can instantiate the CTMC in Fig. 8 and use it as our ran-
dom environment representation. States 1, 2, 4, 5 represent
a resource in a normal working situation, therefore the QN
will be evaluated using standard rates for the resource. State
3 represents the situation in which the resource is not able to
process requests, and it corresponds to a QN with zero rates
for that resource, meaning that all the requests will be put in

the queue until the resource exits State 3. These enqueued
jobs are expected to worsen both the mean response time
and the response time distribution. Our QN solver is able to
support CTMC representations for the random environment
and therefore our heuristic will take into account the effects
of the possibility to lose a resource due to price fluctuations
when calculating an optimal deployment for an application.

6 Evaluation setting

The purpose of our evaluation is to give an overview of
the behavior of our approach when applied to queueing net-
work models based on real data. In particular, we use public
application data measurements from a real SAP ERP study
from [24]. For the resources model we use historical traces of
spot prices ofAmazonEC2 (provided directly fromAmazon)
that can be downloaded from [10] and cover a 3-month period
up to January 2016. Finally, we instantiate our problem using
the generic non-linear solver provided by MATLAB to com-
pare it with our approach. The remainder of this section
discusses more in detail the hardware, software, and applica-
tion models we used to perform our experiments. The results
will be presented in Sect. 7.

6.1 Hardware and software

We performed our experiments using a 2.5 GHz Intel Core
i7 quad-core processor with 16 GB of RAM running OS X
10.11.1 andMATLABR2015b.WealsousedLINE0.7.1 [18]
to predict the response times of our queueing network, and
we implemented all the functions described in Sect. 4 as
MATLAB functions. To allow the evaluation of the effect of
allocating the VM of a software server to multiple resources
(i.e., replicating it), we have implemented a function to split
the nodes of the queueing network according to their alloca-
tion to real resources (allocateQN, splitStation); moreover,
we have implemented an alternative solution to the prob-
lem using MATLAB fmincom nonlinear solver configured
with an interior point algorithm, which we refer as the exact
approach. This alternative solution considers exactly the
same model we solve with our heuristic, but without any
particular optimization that can guide the algorithm toward
the proper solution.We have chosen this generic solution due
to the limited availability of existing approaches that adopt
our model formulation.

For the sake of simplicity we omit accurate descriptions
of these functions, but they can be downloaded, with all the
other MATLAB code we have implemented, from [10]. The
provided code can be used to repeat our experiments or to
interface itwith the run-timemonitoring and adaptationmod-
ule of a cloud system to perform follow-up research on the
full autonomic adaptation loop.

123



902 Cluster Comput (2016) 19:893–909

Application
Server

Database
Server

Delay Station

Fig. 9 Queueing network representation of the SAP ERP application.
The delay station models the user think time, and it is represented as
a station with infinite servers. The application server and the database
server are represented as regular queues

6.2 Application model

We use an application model based on previous measure-
ments of an industrial ERP application, SAPERP. The data of
thismodel and its queueing network representation have been
derived from [24] (page 5, Table 2). The application model
is represented as a queueing network with exponentially dis-
tributed service times, M = 2 software servers (representing
respectively the CPU of the application server and the CPU
of the database server), a delay node representing the user
think time, and K = 3 classes of requests, which are:

– dialog step requests: process and update data on the
client-side through the graphical user interface;

– update requests: higher priority asynchronous update
requests that may be triggered by a dialog step request;

– update2 requests: lower priority asynchronous update
requests that may be triggered by a dialog step request.

The SAP ERP application included additional types of
requests, but in the study we are using as reference they were
ignored because of their negligible effects on the response
times. From the paper we used the information of the service
demands, number of users, and number of transactions at
each software server and for each class. From this informa-
tion, we were able to determine a value for the class services
rates (μm,k) and the routing probabilities (pi, j,k ). A graphical
representation of the queueing network is depicted in Fig. 9.
In [24] the authors just give an estimation of the overall ser-
vice demands of the database server, without distinguish the
classes of requests. To overcome this problem we assume
that the database CPU demand is distributed across the dif-
ferent classes proportionally to the number of users for such
classes. The data we have obtained for the class service rate

Table 2 SAP ERP parameters

Server/class Service
demand
(ms)

Service
rate μm,k
(req/ms)

AS dialog step 119.82 0.008346

AS update1 47.92 0.02087

AS update2 32.98 0.03032

DB dialog step 4.541 0.2202

DB update1 1.205 0.8299

DB update2 0.3043 3.286
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Fig. 10 Example of Amazon EC2 spot instance trace for a Windows
m4.large VM of the us-east region. The trace shows the spot price
fluctuations for 50 days starting on October 10, 2015 and compares
them with the on-demand and estimated bid price. It is possible to
notice that the overbid events happen very rarely (Color figure online)

can be seen in Table 2, which is calculated as the inverse of
the service demand. Additional application parameters are
the following:

– Ndia (number of users that issue dialog step requests)
is arbitrary, but Nupd (number of users that issue update
requests) and Nupd2 (number of users that issue update2
requests) are assumed dependent on it, as explained
in Sect. 3.4.1 of [24]. Therefore we consider Nupd =
0.2652 × Ndia and Nupd2 = 0.06657 × Ndia.

– σk is 0.0001 for all service classes, since we assume an
average think time of 10 s for each class of users in the
system.

6.3 Resource model

To determine the resource model we use Amazon EC2 his-
torical spot price traces for each type of resources that are
available as text files in [10]. An example of 100 h trace is
shown in Fig. 10.

To determine the resource parameters introduced in Sect. 3
we used the estimation approach described in Sect. 5. In
particular, we use the fixed parameters shown in Table 3,
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Table 3 Values of fixed parameters for each resource r

Parameter Linux VMs(s) Windows VMs (s)

odStartupTime 97 810

spotStartupTime 557 1270

termNoticeTime 120 120

which contain the time needed to start on-demand and spot
resources (odStartupTime and spotStartupTime), as mea-
sured and reported in previouswork [20]; and a fixed advance
termination notice time as stated by the current Amazon EC2
policy, which is generated in case of overbid (termNotice-
Time). All the other parameters of the resource model are
shown in Table 4: the first column contains the resource type,
the region, and the operating system; columns 2–4 show the
resources characteristics and on-demandprices, as advertised
by Amazon EC2; column 5 shows the estimated optimal bid
price; and finally, columns 6–9 show the other parameters
that are functions of the bid price.

From Tables 3 and 4 we can see the following particular-
ities:

– Linux instances have 100% availability This happens
because the termination notice is higher than the time
needed to start an on-demand resource, therefore the
resource will never be in the unavailable state (state 3
of the CTMC in Fig. 8).

– Some resources have an infinite overbid time This hap-
pens when the current bid price has never been overbid in
historical traces. This also results in a 100% availability
since the spot instance is assumed to never terminate.

– Some resources have a bid price that is slightly higher
than the on-demand price This is intentional since we
want to avoid the situation in which a resource switches
too often between spot mode and on-demand mode,
which would cause a decrease in the availability and con-
sequently in the amount of processed requests per price
paid.

– The availability level is quite high for all the resources
This is a result of the method we used to calculate the
optimal bid price, which tries to find the best trade-off
between the actual price paid and the availability.Another
reason for the high value is the fact that the time dur-
ing which a resource is unavailable is less than the time
needed to start the new on-demand resource since the
new on-demand resource is started proactively after the
spot instance termination notice from Amazon EC2 is
received.

Summarizing, we run our analysis on general-purpose
m3 and m4 Linux and Windows instances of the eu-west

and us-east Amazon EC2 regions. We represent the ran-
dom environment of the system as the CTMC in Fig. 8,
which expresses the possible states of each resource: avail-
able (when it is able to process requests) and unavailable
(when it is not able to process requests because a lost spot-
instance is being recovered using an on-demand instance).
Our code for generating our resource model is contained in
the classes Survival and Resources, available in [10].

Since the application model has the rates expressed as
requests/sec using a reference system that is not expressed
in ECU, we have found the conversion rate 1 ECU = 65.1
requests/sec by choosing a rate to the SAP ERP applica-
tion such that the response time with 1 ECU is equal to the
response time measured in [24].

7 Experiments and results

We evaluate the real SAP ERP application described in the
previous section under different scenarios characterized by
a variable number of users to analyze the scalability; with
different SLOs, to analyze the behavior in more challenging
situations; and finally with capped overbid time and fixed
minimum underbid time, to analyze the effects of the ran-
dom environment when the chances for a resource to be
overbid is increased. Each experiment has been repeated in
two different Amazon EC2 regions (eu-west and us-east) and
with different Operating Systems (Linux and Windows). In
each scenario we measure the expected hourly price of the
resources, the time needed to compute the solution on our
system, and the number of queueing network evaluations.
We repeat every evaluation 30 times with a different search
starting point to ensure statistical confidence of the results
and to show the standard deviation bars in each plot.

7.1 Varying users

In this experiment we vary the number of dialog users in
the system from 1000 to 10,000. We fix a SLO that con-
sists of a maximum average response time of 80 ms and a
maximum 80th percentile of the response time distribution
equal to 320 ms. By looking at Fig. 11 we can see that both
our approach and the exact one tend to have a price that
grows proportionally with the number of users across differ-
ent zones and OSes. The total number of queueing network
evaluations tends to be similar for different number of users:
in the case of our heuristic we have the convergence at around
30 evaluations, while in the exact approach we often reach
the cap of 100 evaluations that has been set to keep the com-
parison fair. Interestingly, we can see that the execution time
is not proportional to the number of evaluations. The reason
for this is that the actual time for one queueing network eval-
uation is proportional to each assignment of software server
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Fig. 11 Experiment results when varying the number of users (Color figure online)

to a cloud resource. Our heuristic intentionally reduces the
level of fragmentation of the assignments to the resources to
reduce the overhead due to load balancing, while the exact
approach explores too many alternatives that include situa-
tions with a high level of fragmentation (i.e., software servers
are assigned to a high number of rented resources).

7.2 Varying SLO

In this set of experiments we showwhat is the effect of differ-
ent SLOs constraints on the total hourly price of the system.
We consider a maximum response time maxMRT that varies
from 60 to 200 ms, a value of maxRTP80 = 4 × maxMRT
and 5000 dialog users. The results in Fig. 12 show that there
is an increase in price when the SLOs are more challeng-
ing for both algorithms; however, our approach is still better
than the exact one for every different SLO we have consid-
ered. From this experiment we can also notice that when the
situation becomes more difficult (stricter SLO), we have a
significant increase in the number of evaluations and in the
time to find the solution. The explanation is that when the
SLO is too strict our heuristic requires an increasing number
of scaling-up steps.

7.3 Varying overbid time cap

In this experiment we want to see how OptiSpot behaves
in stressful situations in which the overbid and underbid
times are much worse than the ones predicted from the real
historical traces. To do this we fix a maximum cap to the
overbid time that varies from 5 to 80 h and a fixed mini-
mum value for the underbid time equal to 5 h. This means
that the spot price has a higher chance to be overbid and
a lower chance to be underbid when compared to the non-
capped experiments. The other parameters we have chosen
are the reference ones: 5000 dialog users,maxMRT = 80ms,
and maxRTP80 = 320ms. In Fig. 13 we observe that, when
the overbid time is minimum, the cost is maximum, while
when the overbid time increases, the cost becomes lower
and converges to a value that is similar to our non-capped
experiments (labeled as “inf” cap in the Fig. 13). The expla-
nation for this is that a small overbid timemeans that the time
needed for the bid price to be overbid is small and therefore
resources may become unavailable and switch to the more
expensive on-demand instances more frequently. If we look
at the number of QN evaluations and at the time needed to
compute the solutions, the results are similar, which means
that our heuristic is able to dead efficientlywith this situation.
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Fig. 12 Experiment results when varying SLO. The SLO is a maximum limit on the mean value of the response time calculated for a rental time
period T (Color figure online)

Since the overbid and underbid times used in these exper-
iments are much worse than the ones measured from the
real Amazon EC2 traces, we can conclude that our approach
is able to support application deployment decisions and to
behave better than the exact approach even in scenarios that
are much more extreme than the ones considered in our case
study.

7.4 Discussion

In this analysis we have seen that our approach is able to out-
perform an exact algorithm that is based on the MATLAB
fmincon interior-point solver. The reason for this result is
that our heuristic is able to choose the resources with the
best price/ECU ratio and to allocate the application com-
ponents in such a way that they are not fragmented among
cloud resources unless the number of resources is smaller
than the number of components. If the number of resources
is small, such as in the case of 1000 users, there is minimal
difference between our approach and the exact one. As the
number of users increases, or the SLO becomes more restric-
tive, we need more cloud resources to fulfill the SLO. When
the number of resources becomes larger than the number of
application VMs, the exact approach is not able to choose the

correct size of the resources since it tries to resize the parti-
tions of multiple resources, leading to oscillations and slow
convergence. The high number of partitions also results in a
higher time to evaluate the fluid-approximated queueing net-
work, which ultimately results in large total execution times.
Unfortunately, due to the limitations of fminconwe could not
express a fitness function that was good enough for the exact
approach to converge in every situation. However, in situa-
tions in which we observed convergence, the computation of
the result was always significantly slower.

8 Related work

In the previous sectionswehave seen that themain idea of this
paper is to combine cost-aware cloud resources provisioning
and application mapping into a synergistic autonomic solu-
tion that takes into account performance requirements and
environmental random factors such as the prices fluctuation
of cloud resources and user load.

The problem of exploiting different cloud pricing meth-
ods such as spot instances has been studied in litera-
ture since Amazon introduced the service in 2009. Some
works (e.g., [13,14,28,30,31]) focus on understanding the
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Fig. 13 Experiment results when the overbid time is capped and the minimum underbid time is fixed (Color figure online)

price dynamics to generate price predictions that can be
used to make cost-effective provisioning decision. Other
works (e.g., [2,29,32]) focus on providing bidding strategies
that are specific for spot instances. Our work does not claim
to replace or be better these existing methods for forecasting
resource prices and decide what to bid, but to complement
them. In fact in our evaluation we simply assume that bid
prices observed so far tend to repeat in the future; however,
in situations when our assumption on the future bid prices
is not true, we can seamlessly benefit from the alternative
methods cited above without the need to change our heuris-
tic.

Some different works such as [8,15,27] give tools that
encourage the use of spot resources by increasing their reli-
ability in case of outbid using recovery techniques based on
checkpointing or replication. In our work we are aware of
the system reliability thanks to the use of random environ-
ment for representing the possibility to lose spot resources;
however, the possibility to use reliability-increasing tech-
niques is also orthogonal to our approach and a combined
one may result in additional savings in the total price for
renting resources.

Finally, research on service placement and load alloca-
tion has been specialized to take into account spot pricing
models and the possibility to lose resources unexpect-

edly [4,5,9,12,16,17,19,33,34].With respect to these works
we also solve the allocation problem in such a way to min-
imize the costs while maintaining the desired service level.
Our new contribution is that we adopt fluid-approximated
performance models [22], which can calculate response time
distributions quickly enough to be used at run-time. We also
use a random environment model [6] to represent the effects
of external events to the system, which for now is limited
to price fluctuations, but that can be easily extended to other
events expressible as stochasticmodels. Finally, in ourmodel
we also consider the effects of havingmultiple CPUs in cloud
resources (as it is the case for Amazon EC2) and the over-
head due to load balancing in case of placement decisions
that require resource replication.

9 Conclusions

In this paper we have presented OptiSpot, a cost-aware
approach to support run-time decisions for provisioning
cloud resources and allocating application components among
them. The benefit of OptiSpot is that it is able to approximate
a very complex problem using simple greedy algorithms that
are lightweight enough to be used at run-time to support pro-
active and reactive system adaptation. Moreover, we have
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shown a possible way to optimize the bid price that makes
use of a Markov chain representation of the system. We then
used the same Markov chain, instrumented with an optimal
bid price, to have a representation of random environmental
parameters such as the possibility for spot resources to be
lost and replaced with on-demand ones. The random envi-
ronment is used by OptiSpot to predict system performance
and make deployment decisions even when price fluctua-
tions modify the resources and the system ability to process
requests during state transitions.

The decisions produced by our approach are designed to
be used to trigger allocation, deallocation, migration, and
replication actions on one or more cloud infrastructures. In
our model we assumed that these actions do not affect perfor-
mance since we consider to keep the system running while
they occur; however, this might not be true in every system.

Some future work we have in mind is to introduce in our
models and heuristics the possibility to take into account
possible overhead in terms of time, performance, and cost
that can arise when actually performing adaptation actions
on a real system. We also intend to investigate how the
approach behaves in presence of different cloud platforms
(e.g., federated clouds [21]), services, and alternative ways
of expressing the SLOs. Finally, another possible follow-up
work is to extend our approach to decentralized cloud sys-
tems to improve the scalability and resistance to dynamism,
which may contribute to support new emerging cloud para-
digms such as volunteer clouds [26] and edge clouds [7,25].
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