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Abstract. The determination of nuclear level densities and radiative strength functions
is one of the most important tasks in low-energy nuclear physics. Accurate experimen-
tal values of these parameters are critical for the study of the fundamental properties of
nuclear structure. The step-like structure in the dependence of the level densities ρ on
the excitation energy of nuclei Eex is observed in the two-step gamma cascade measure-
ments for nuclei in the 28 ≤ A ≤ 200 mass region. This characteristic structure can be
explained only if a co-existence of quasi-particles and phonons, as well as their interac-
tion in a nucleus, are taken into account in the process of gamma-decay. Here we present
a new improvement to the Dubna practical model for the determination of nuclear level
densities and radiative strength functions. The new practical model guarantees a good
description of the available intensities of the two step gamma cascades, comparable to
the experimental data accuracy.

1 Introduction

The development of theoretical models of nuclear structures requires a set of experimental information
of the excited levels density, ρ, (with given quantum numbers) and of the values of the partial width
(radiative strength function), Γ, of all possible decay channels. Correct interpretation of the dynam-
ics of the nuclear transitions, in a broad variety from the simple low-lying levels (e.g., quasi-particle
or phonon structure) to the very complex compound-states is possible by the theoretical calculations
if those experimental data are available. One of the most suitable techniques for determination of
required nuclear mater parameters (ρ and Γ) is the two-step gamma cascades methods based on mea-
surement of gamma coincidences following neutron capture [1].
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Based on the experimental data collected by two-step gamma cascades experiment a model for
description the gamma-decay of neutron resonance was developed at JINR, Dubna [2, 3]. In this
model the level density ρ of quasi-particles in any nucleus is defined using the known model of n-
quasi-particle levels. Here we presented the improved version of this model taking into account shell
inhomogeneities of the single-particle level spectra and their influence on the functions: ρ=ϕ(Eex) and
Γ= ψ(E1), where Eex is the excitation energy and E1 is primary transition energy. The experimental
results of two step gamma cascades intensity for 43 nuclei in the 28 ≤ A ≤ 200 mass region were
fitting by this model. This provide us possibility to extract parameters of nuclear structure such as
breaking thresholds of the second and the third Cooper pairs, ratio of the collective level density to
the total one or level parity.

2 Dubna two-step gamma cascades method

The two-step gamma-cascades method for obtaining information about the nuclear structure param-
eters following the thermal neutron captures was developed at FLNP, JINR, DUBNA [2, 3]. From
amount of gamma-gamma coincidences the method allows to choose registration events of full energy
of two-gamma transition cascade with a sufficiently low background. And the experimental intensity
distributions of cascades to the final levels of compound-nucleus with excited energy below ∼500–
800 keV are obtained from these coincidences. Using the nuclear spectroscopy procedures allows
decomposing the initial spectrum on primary and secondary transmission components of cascades
with an acceptable uncertainty [2, 3].

The basic idea of this method comes from specific dependence of the two-step gamma- cascade
intensity on the partial radiative width Γ and the density of excited levels:
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where Γλ i and Γi f are the partial radiative widths corresponding to the primary and to the secondary
transitions; nλi = ρ∆Ei is the number of the excited intermediate levels in a certain interval of the
excitation energy ∆Ei; 〈Γλ i〉 and 〈Γi f 〉 are the average values of the corresponding intervals of the
nucleus excitation energy widths; mλ i and mi f are the number of levels in the same intervals. When
this method was developed for the first time it was based on an interactive calculation. Using iterative
process with “randomly” chosen functions ρ and Γ, it is possible to obtain the most probable values
of level density and radiative width (or radiative strength function).

3 Model of the gamma-decay of neutron resonance

Here we present improved version of the model for the gamma-decay of neutron resonance [2] which
can explain the experimental data based on combination of phenomenological and theoretical repre-
sentations.

The level density, described by an expression for density ρl of Fermi levels, was taken from the
model of density Ωn of n-quasi-particle states [4]:

ρl =
(2J + 1) exp
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Here J is the spin quantum number, g = 6a/π2 is the density of the single-particle states near Fermi-
surface, σ is the cut-off factor (a and σ values were taken from the back-shifted Fermi-gas model
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[5]), and Ul, is the energy of the l-th Cooper pair breaking threshold. The effect of the collective
enhancement was also included in this model by the coefficient Ccol of the collective enhancement of
the vibrational level density (or both vibrational and rotational ones for deformed nuclei). For a given
excitation energy, Eex, the phenomenological coefficient is determined by a theoretical description
that can be found in Ref. [3]:

Ccoll = Al exp(
√

(Eex − Ul)/Eν − (Eex − Ul)/Eµ) + β (3)

where Al are parameters of density for the vibrational levels above the breaking point for each l-th
Cooper pair, Eµ and Eν determine the change in the nuclear entropy and the change of the quasi-
particles excitation energies, respectively. Coefficients Al for different pairs are fitted independently,
as it was done in Ref. [2]. Coefficient β is used for a description of the rotation level density.

Radiative strength functions for E1- and M1-transitions are determined in this model by Ref. [6]:

k(E1, Eγ) + k(M1, Eγ) = w
1

3π2�2c2A2/3
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2
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2T 2)

(E2
γ − E2

G)2 + E2
γΓ

2
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+

+Pδ−exp(αp(Eγ − Ep)) + Pδ+exp(βp(Ep − Eγ)) (4)

with fitting normalization parameter w and coefficient κ; thermodynamic temperature T; the location
of the center of the giant dipole resonance EG, with width ΓG and cross section σG in the maximum
for each nucleus. For description of experimental data of Ref. [3] it is necessary to add one or several
narrow peaks to the strength function is based on the data of Ref. [3]. The second summand of Eq. (5)
corresponds to the left slope of the peak (energies below the maximum), and the third summand is the
right slope (energies above the maximum). Position Ep in the energy scale, amplitudes Pδ+ and Pδ−

and slope parameters αp and βp are fitted for each peak independently. At E1 ≈ Bn the fitted ratios
ΓM1/ΓE1 of E1- and M1-strength functions are normalized to known experimental values, and their
sum Γλ is normalized to the total radiation width of the resonance.

The influence of the shell correction δE on the density of the quasi-particle levels were tested in
this work. It was done by using the a(A) value, which depends on the excitation energy, included
linearly in the parameter of the single-particle density g (see Eq. (2)). For a nucleus with mass A and
excitation energy Eex, a(A) is expressed, as [3]:

a(A) = ã(1 + ((1 − exp(γEex))δE/Eex)) (5)

where asymptotic value is ã = 0.114 · A + 0.162 · A2/3 and γ = 0.054. The δE values slightly varied
relative to their evaluations [3] in order to keep an average spacing between neutron resonances (see
[2]).

In our model the set of common parameters for fitting (see Eqs. (2, 3)) were:

1) the break up thresholds energies Ul up to l=4,

2) the Eµ and Eν parameters, which are common for all Cooper pairs

3) the mutually independent parameters Al of the density of vibrational levels above the break up
threshold Ul

4) the coefficients w, κ and β

5) the ratio r of negative parity and the total level density.

Those parameters were used for the description of the intensity Iγγ (E1) for 43 nuclei, in the framework
of the proposed model.
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Figure 1. Histogram - experimental cascade intensity and its uncertainties for 156Gd as function of primary
cascade quanta E1. Points - the best fit of the presented practical model; triangles - a calculation of Iγγ using
models of Ref. [5, 6]. Recorded threshold for cascade gammas is Eγ = 520 keV.

a) b)

Figure 2. a) Level density of 156Gd. Top: points are the best fit of level density (uncertainties – scatter of fits
for different sets of initial parameters); dashed and solid lines are the level density calculated using the model of
Ref. [5], with taking into account the shell correction δE (6) and without δE, correspondingly. Bottom: fitted
ratio of density of collective levels to the total level density. b) Strength function for 156Gd. Top: solid points
are the best fit of the strength function of E1-transitions; open points are the best fit of the strength function of
M1-transitions. Bottom: solid points are a sum of E1- and M1- strength functions; dash line is the sum of strength
functions multiplied by ρmod/ρexp ratio (Ref. [7]). Calculations using the model of Ref. [6] (lower triangles) and
using the model of Ref. [8] (upper triangles) were fulfilled with k(M1)= const.

4 Results and discussion

A solution of the system of Eq. (1) is performed by the Monte-Carlo method. The nonlinearity of
the strongly correlated equations of the system (1) produces an uncertainty of extracting the ρ and Γ
parameters from Iγγ intensities.

Experimental data on Iγγ (E1) are usually obtained with a small total uncertainty and averaged over
500 keV energy intervals. The results for 156Gd are shown, in more detail, in Figs. 1–2. The best fits
to Iγγ (E1), as well as the fitted level densities and strength functions, are compared to corresponding
values calculated using the statistical model. The results and corresponding calculations of level
density and radiative strength function for the rest of the investigated nuclei will not be shown in
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a) b)

Figure 3. a) A-dependence of the ratios Ul/∆0, for the second (points) and the third (squares) Cooper pairs. Full
points – even-even, half-open points are even-odd and open points are odd-odd compound nuclei. Triangles –
the mass dependence of Bn/∆0 ratio. B) Mass dependence of the ratio of the level density with negative parity to
the total level density at the upper energy border of the Ed and their averages for even-even nuclei (solid lines),
even-odd (dashed lines) and odd-odd nuclei (dotted lines). Full points – even-even, half-open points – even-odd
and open points – odd-odd compound nuclei.

this publication. However, we are presented here obtained results for some of parameters of nuclear
structure.

One important parameter is the breaking thresholds for Cooper pairs. In the present analysis was
confirmed the previous results about the connection between the shape of the investigated nucleus
and the breaking thresholds. That was established for the first time in our prior analysis [3]. As the
breaking thresholds differ for nuclei with various nucleon parities and depend on the average pairing
energy (∆0) of the last nucleon, the mass dependencies for the ratios of the break up thresholds of the
second and the third Cooper pairs to ∆0, as well as the mass dependence of the binding energy to ∆0,
are presented in Fig. 3. As it can be seen in Fig. 3, there is a noticeable difference in U2/∆0 and U3/∆0
ratios for spherical and deformed nuclei in contrast to Bn/∆0.

In this work it was also obtained information about levels parity. For determination of the part
r = ρ(π−)/(ρ(π−) + ρ(π+)) of levels ρ(π−) with negative parity, a linear extrapolation for r value was
applied in the Ed ≤ Eex ≤ Bn energy interval. At that, in the Bn point we use generally accepted
assumption, that ρ(π−) = 0.5(ρ(π−) + ρ(π+)), and ρ(π−) value in this energy point was fixed, and at
the Ed energy the ρ(π−) value varied.

The calculated ratios of density of the levels with negative parity to the total level density are
shown in Fig. 3. The averages of these ratios are 0.61(22), 0.25(28) and 0.16(16) for even-even,
even-odd and odd-odd nuclei, respectively (and for odd-even 177Lu it is 0.65(1)). Hence, the behavior
of the gamma-decay process is different for nuclei of various nucleon parities.
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5 Conclusion

In this work we presented new variant of model for gamma decay of neutron resonance, taking into
account shell inhomogeneities of the single-particle level spectra. We used this model for fitting the
experimental intensity of two-step gamma cascades and to obtain information about parameters of
nuclear structure.

The data on Cooper pair break-up energies, obtained with a high accuracy, are sufficient to con-
clude that the dynamics of interaction between superfluid and normal phases of a nucleus depends on
its’ shape. Our model allows for a separate determination of the density of vibrational levels between
the breaking thresholds of the Cooper pairs.

Unfortunately, an existence of the sources of uncertainties of the sought ρ and Γ functions is a
fundamental problem, and it is inevitable for any nuclear model used for experimental data analysis
and for predictions of the spectra and cross sections. There are also fluctuations of the intensities of
gamma-transitions in different nuclei, which has a contribution to the systematical error. Nevertheless,
the practical model showed one possibility to describe the data of the two-step experiments with the
accuracy that exceeds the statistical one.

For future development of reliable model of cascade gamma decay new experimental data are
necessary. Because of that, 108Ag, 110Ag, 104Rh and 56Mn nuclei will be investigated by two step
gamma cascade method.

References

[1] V.G. Soloviev, Nuclear Physics A 586(2), 265 (1995)
[2] A.M. Sukhovoj, Phys. Atom. Nucl. 78, 230 (2015)
[3] A.M. Sukhovoj, L.V. Mitsyna, N. Jovancevic, Phys. Atom. Nucl. 79, 313 (2016)
[4] V.M. Strutinsky, in Proceedings of the International Congress on Nuclear Physics, Paris, France,

p. 617 (1958)
[5] W. Dilg, W. Schantl, H. Vonach, and M. Uhl, Nucl. Phys. A 217, 269 (1973)
[6] S.G. Kadmenskij, V.P. Markushev and W.I. Furman, Sov. J. Nucl. Phys. 37, 165 (1983)
[7] N. Jovancevic, A.M. Sukhovoj, W.I. Furman, and V.A. Khitrov, in Proceedings of XX ISINN,

Preprint E3-2013-22, p. 157 (Dubna, 2013); http://isinn.jinr.ru/past-isinns.html
[8] P. Axel, Phys. Rev. 126, 671 (1962)

6

EPJ Web of Conferences 169, 00007 (2018) https://doi.org/10.1051/epjconf/201816900007
Theory-4


