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Rubidium superoxide, RbO2, is a rare example of a solid with partially filled electronic p states, which allows
us to study the interplay of spin and orbital order and other effects of strong electronic correlations in a material
that is quite different from the conventional d or f electron systems. Here we show, using a combination of
density functional theory (DFT) and dynamical mean-field theory, that at room temperature RbO2 is indeed a
paramagnetic Mott insulator. We construct the metal-insulator phase diagram as a function of temperature and
Hubbard interaction parameters U and J . Due to the strong particle-hole asymmetry of the RbO2 band structure,
we find strong differences compared to a simple semielliptical density of states, which is often used to study the
multiband Hubbard model. In agreement with our previous DFT study, we also find indications for complex spin
and orbital order at low temperatures.

I. INTRODUCTION

Rubidium superoxide, RbO2, is an interesting example of
a material where spin and orbital order appears not as a result
of partially filled d or f states, but due to partially filled
p electron states. RbO2 is a member of the family of alkali
superoxides AO2 (A = K, Rb, or Cs), which are insulating
crystalline materials composed of A+ and (O2)− ions.1,2 At
room temperature, RbO2 has a tetragonal crystal structure [see
Fig. 1(a)], while with decreasing temperature this structure
undergoes several weak distortions, first to orthorhombic, then
to monoclinic symmetry.2,3 The electronic structure around the
Fermi level is dominated by oxygen p states which can be well
approximated by molecular orbitals (MOs) corresponding to
the O2 units, and are filled with 9 electrons [see Fig. 1(b)].
Assuming no further symmetry breaking, the two highest
occupied antibonding π∗ orbitals are 3/4 filled.

The degeneracy of these orbitals can be lifted through
either magnetic or orbital long-range order, or both. The alkali
superoxides thus allow us to study “correlation effects” in a
completely different class of materials compared to the more
conventional transition-metal oxides or f -electron systems.
Antiferromagnetic order is indeed found experimentally at
low temperatures [TN(RbO2) ≈ 15 K],1,2 and it was suggested
by recent density functional theory (DFT) and model studies
that the insulating character of alkali superoxides at low
temperatures can be explained by the interplay of correlation
effects (spin and orbital order) and crystal distortions.4–9

However, the nature of the insulating state of these superoxides
at room temperature has so far remained unexplored.

Due to the high-symmetry crystal structure with no long-
range order of spins or orbitals, it is impossible to explain the
insulating character of the alkali superoxides at room temper-
ature within an effective single particle band picture. Here we
show, using a combination of DFT and dynamical mean-field
theory (DFT + DMFT), that RbO2 at room temperature is in
fact a Mott insulator, where the strong Coulomb repulsion
prevents the electron hopping between adjacent sites.

II. ELECTRONIC STRUCTURE OF RbO2

We obtain the electronic structure of RbO2 in the
high-symmetry tetragonal structure from a non-spin-
polarized DFT calculation using the Quantum-ESPRESSO
package,10 employing the generalized gradient approximation
(GGA) of Perdew, Burke, and Ernzerhof11 and ultrasoft
pseudopotentials.12 We use lattice parameters a = 4.20 Å, c =
7.07 Å, and an O-O bond length dO−O = 1.36 Å, determined
in Ref. 4.

Figures 2(a) and 2(b) show the resulting density of states
(DOS) and band structure. It can be seen that the electronic
structure of RbO2 indeed closely resembles the simple MO
picture sketched in Fig. 1(b), with a splitting of about 5 eV
between the bonding and antibonding π and π∗ bands, and a
single band corresponding to bonding σ MOs at −6 eV. The
antibonding σ ∗ states at ∼5 eV are strongly intermixed with
other empty states corresponding to the Rb+ cations.

In the following we will focus only on the partially filled
antibonding π∗ bands [highlighted in Fig. 2(b)], which we
represent in a basis of O2 bond-centered maximally localized
Wannier functions (MLWFs).13 The hopping parameters asso-
ciated with a tight-binding representation of the Hamiltonian
in the basis of π∗ MLWFs allow for a quantitative comparison
of the band structure obtained in our study with similar reports
in the literature (see Table I).

Our calculated parameters agree very well with the results
of Ref. 7. The small quantitative difference is apparently due
to a marginally larger bandwidth obtained in Ref. 7 using the
local density approximation compared to our GGA results.
The leading hopping parameters calculated in Ref. 5 for KO2

are larger than the results for RbO2, due to the smaller lattice
parameters of KO2, but exhibit the same overall trends. We also
list previously unpublished hopping parameters, calculated for
antiferromagnetic and ferromagnetic order of the O2 magnetic
moments in Ref. 4 (for RbO2). It can be seen that the
corresponding hopping amplitudes do not differ significantly
from the nonmagnetic case considered here.
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FIG. 1. (Color online) (a) Tetragonal crystal structure of RbO2

at room temperature. (b) Electronic structure represented by a set of
oxygen p molecular orbitals. (Adapted from Fig. 1 of Ref. 4.)

III. RbO2 WITHIN DYNAMICAL MEAN-FIELD THEORY

A. Computational method

To calculate the electronic properties at finite temperature
and account for local correlation effects, we use dynamical
mean-field theory14 (DMFT) which allows us to map the
lattice problem to an effective problem of a single-site impurity
surrounded by a bath. The interaction part of the impurity
Hamiltonian is taken to be of the Slater-Kanamori form

Hint =
∑
a

Una,↑na,↓ +
∑
a �=b,σ

U ′na,σ nb,−σ

+
∑
a �=b,σ

(U ′ − J )na,σ nb,σ

−
∑
a �=b

J (d†a,↓d
†
b,↑db,↓da,↑ + d

†
b,↑d

†
b,↓da,↑da,↓ + H.c.),

(1)

with d†a,σ the creation operator for an electron of spin σ in
orbital a, na,σ = d

†
a,σ da,σ , and U ′ = U − 2J . To solve the
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FIG. 2. (Color online) Density of states (DOS) (a) and band
structure (b) of nonmagnetic RbO2. In (a) the total DOS is shown
as thick (black) line, while the projection on O2 σ and π states is
shown as (blue) striped and (red) filled areas, respectively. Panel
(c) shows the DOS (per spin orbital) of the π∗ bands used in the
DMFT calculations, compared to a semicircular DOS with the same
bandwidth (a small broadening is applied in both cases).

TABLE I. Hopping amplitudes hRij (in meV) corresponding to π∗

MLWFs i and j , along the crystal direction R. The first 3 columns
correspond to nonmagnetic (NM) results obtained in the present
study, in Ref. 7, and in Ref. 5, respectively. In the last 4 columns,
we show unpublished data from our previous study (Ref. 4) for
antiferromagnetic (AFM) and ferromagnetic (FM) order. The (local)
majority/minority spin channels are denoted as ↑/↓.

NM AFM(↑/↓) FM(↑/↓)

RbO2 KO2 RbO2

h(111)/2
xx −32 −34 −51 −33 −33 −30 −36

h(111)/2
xy −56 −60 −98 −58 −58 −52 −64

h(100)
xx 50 54 106 45 58 45 58

h(100)
yy 12 16 −1 11 14 12 14

h
(110)
xx/xy −12 −11 −11 −14 −11 −14

h(001)
xx −8 −13 −7 −10 −7 −8

effective impurity problem, we use the strong-coupling con-
tinuous time quantum Monte Carlo approach (CT-HYB).15,16

From the self-consistently determined hybridization function
�(τ ), the impurity Green’s function Gimp(τ ) is computed
and measured on a homogeneous grid of Nτ = 1000 ×
[
√
β/40 eV−1] points, where [. . . ] represents the nearest

integer number. After Fourier transformation we obtain the
self-energy in Matsubara space,

�(iωn) = iωn + μ−G−1
imp(iωn) −�(iωn), (2)

where ωn = (2n+ 1)π/β for integer n, μ is the chemical
potential, and β = 1/(kBT ) the inverse temperature. Using
this self-energy and the single-particle Hamiltonian H (k) we
obtain the local lattice Green’s function by averaging over the
Brillouin zone:

Gloc(iωn) = 1

Nk

∑
k

[iωn + μ−H (k) −�(iωn)]
−1 . (3)

The DMFT self-consistency condition demands that this local
lattice Green’s function is the same as the impurity Green’s
function. This condition, in combination with Eq. (2), yields
the hybridization function for the next DMFT iteration,

�(iωn) = iωn + μ−G−1
loc(iωn) −�(iωn). (4)

We only include the partially filled antibonding π∗
x/y

bands in our DMFT calculations for RbO2, and express the
corresponding Hamiltonian H (k) in the basis of O2 bond-
centered MLWFs discussed in Sec. II. We note that we use the
full ab initio Hamiltonian as input for the DMFT calculation,
not just a simplified tight-binding model based on the most
dominant hopping amplitudes (like, e.g., the ones listed in
Table I). The corresponding DOS is shown in Fig. 2(c). One can
recognize a pronounced asymmetry with respect to half filling.
In DMFT studies, a model semicircle (SC) density of states
(DOS) is often employed to represent the electronic bands,
since it leads to a simple expression connecting � and Gimp.
Furthermore, due to the resulting particle-hole symmetry, only
occupations between zero and half filling need to be studied.
Here, we investigate the differences between results obtained
using the model SC DOS and the realistic DFT band structure
of RbO2 in the tetragonal crystal structure. The bandwidth of
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FIG. 3. (Color online) Various quantities evaluated from the
impurity Green’s function indicating the metal-insulator transition at
integer filling, calculated for β = 40 eV−1 (T ≈ 290 K),U = 1.2 eV,
and J = 0.0 eV. The average over all spin orbitals is shown in panels
(b), (c), and (d).

the SC DOS is set equal to the bandwidth of the RbO2 DOS
[0.93 eV; see Fig. 2(c)].

B. Room temperature results

Generally, the value of the spectral function at zero
energy indicates whether a material is insulating or metallic.
However, obtaining the spectral function from the imaginary
time Green’s function requires an analytic continuation to
the real axis, which can introduce additional uncertainties.17

We therefore consider several possible indicators for the
metal-insulator transition (MIT) which are directly accessible
fromGimp(τ ). All of these quantities (described in more detail
below) are compared in Fig. 3, calculated at room temperature
(β = 40 eV−1) for interaction parameters close to the MIT
(U = 1.2 eV and J = 0).

One possibility is to monitor the occupation n =
−∑

α G
α
imp(β) (α is the spin-orbital index) as a function of

the chemical potential μ [see Fig. 3(a)] and to identify the
insulating phase by a plateau in n(μ). This, however, requires
a large number of calculations for slightly different values
of μ. Another indicator is given by the mass enhancement
in the low-temperature metallic phase, which grows rapidly as
the Mott insulating state is approached, and which we estimate
from the self-energy at the lowest Matsubara frequency (see
Ref. 18):

{
m∗

m

}
est.

= 1 − 	[�(iω0)]

ω0
. (5)
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FIG. 4. (Color online) SlopeK for RbO2 input and selected values
of U and J at β = 40 eV−1 (average over all spin-orbitals is shown).

We also consider the following estimate of the spectral function
(see, e.g., Ref. 18):

A(0) ≈ −β
π
Gimp

(
β

2

)
. (6)

While for both of these quantities [shown in Figs. 3(b)
and 3(c), respectively] only one calculation at the correct
μ value is required, the identification of the MIT phase
boundary requires the definition of a suitable threshold value.
In addition,G(β/2) suffers from significant statistical noise in
the insulating state, as this τ region is difficult to sample with
standard CT-HYB. A quantity which is quite insensitive to
noise is the slope ofGimp(iω → 0), which is positive/negative
for the metallic/insulating state.18 In practice, we estimate
the slope K from Gimp(iω) at the two lowest Matsubara
frequencies:

K =
{

d	[Gimp(0)]

dω

}
est.

= 	[Gimp(iω1) −Gimp(iω0)]

ω1 − ω0
. (7)

In Fig. 3, a clear difference can be seen between the SC and
the RbO2 input. For the SC, the insulating state already appears
at 1 and 3 el filling, while 2 el filling is clearly metallic. In
contrast, the RbO2 electronic structure yields a clear insulating
state at 3 el filling and a (just barely) insulating state at 2 el
filling, while 1 el filling is still metallic. The different range
of μ which leads to the insulating state for SC and RbO2,
respectively, indicates a sizable shift of the corresponding MIT
boundary. The particle-hole asymmetry in the real electronic
structure of RbO2 thus leads to large quantitative changes
compared to the simple SC DOS.

Figure 4 shows the slope K for different values of U and
J at T ≈ 290 K using the RbO2 band structure. For fixed
J = 0 eV, there is an obvious tendency towards the insulating
state with increasing U for all integer fillings, as expected.
However, at fixed U = 2 eV, increasing J favors the Mott
insulator at half filling (2 el) but favors the metallic solution for
1 and 3 el fillings. This is consistent with previous discussions
of multiorbital models:19,20 In the large-U limit, the width of
the “Mott plateau” in μ is given by �Mott

n = En+1 + En−1 −
2En, with En denoting the lowest eigenvalue of the n-particle
eigenstates of Hint [Eq. (1)].19 In our two-orbital case this
estimate yields U − 3J for n = 1, 3 and U + J for n = 2,
in agreement with the observed dependence of the plateau
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FIG. 5. (Color online) Metal-insulator phase diagrams. (a) Criti-
cal U as function of J at room temperature (T ≈ 290 K). The green
star indicates the realistic values for U and J calculated in Ref. 5. (b)
Critical temperature as function of U − 3J .

width on J . In reality, the Mott plateau will be reduced by
approximately the bandwidth W , so that we obtain the rough
estimate

�Mott
3 ≈ U − 3J −W. (8)

Based on the identification of the MIT boundary using the
slope K , we computed the phase diagram for 3 el filling at
room temperature (T ≈ 290 K) as a function of the interaction
parametersU and J [see Fig. 5(a)]. Since�Mott must be larger
than zero for a Mott insulating solution to exist, Eq. (8) also
provides a crude estimate for the critical interaction strength:
Uc − 3J ≈ W . It can be seen that the MIT boundary in
Fig. 5(a) agrees nicely with this simple estimate. Furthermore,
the critical U − 3J at room temperature differs by ≈30% of
the bandwidth between RbO2 and the simple SC DOS, and
increases slightly as a function of T for T � 300–400 K, while
the opposite trend is observed at lower T [Fig. 5(b)].

For realistic values of the interaction parameters U =
3.55 eV and J = 0.62 eV, which were obtained for π∗ orbitals
in the very similar material KO2 using the constrained LDA and
random-phase approximation,5 the insulating state is obtained
for both SC and RbO2. Our results therefore predict a Mott
insulating state (without long-range order) for RbO2 at room
temperature, consistent with experimental observations.

We point out that it is in principle possible that dynamically
fluctuating local structural distortions, without any long-range
order, may eventually persist at elevated temperatures, similar
to the dynamic Jahn-Teller distortion observed in LaMnO3

above the orbital order transition temperature.21,22 However,
since such structural fluctuations are not included in our DMFT
treatment, our results clearly demonstrate that they are not
essential to explain the insulating nature of RbO2 at room
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FIG. 6. (Color online) Spectral functions (a) and the various
indicators for the MIT (b) for RbO2 atβ = 40 eV−1 (T ≈ 290 K), J =
0.6 eV, and different values of U around the MIT. Z = {m∗/m}−1

est.

and K is given in eV−2. The noninteracting DOS is shown as grey
shaded area in (a).

temperature. The Coulomb repulsion between electrons is
sufficient to open up a gap in the spectral function (see also
next paragraph) even in the ideal high-symmetry structure.
Furthermore, the weak spin-orbit interaction, which was
suggested to have an influence on the low-temperature ordered
phase in the related material KO2,5,6 is not expected to have a
significant effect on the insulating properties of RbO2 at room
temperature.

While we did not find evidence for a coexistence region,
indicative of a first-order MIT, for T � 145 K, we have verified
that we obtain an insulating state with a clear gap in the spectral
function, even at room temperature. To demonstrate this, we
have used the maximum entropy method17 to construct spectral
functions for RbO2 (3 el filling) at β = 40 eV−1, J = 0.6 eV,
and different values of U around the MIT. The result is shown
in Fig. 6(a). A gap is present for U � 2.7 eV, in perfect
agreement with the various indicators of the MIT discussed
previously [and which are shown in Fig. 6(b)]. In agreement
with Ref. 23 we find a “bad metal” region with a strongly
renormalizedZ = {m∗/m}−1

est. � 0.4 in the vicinity of the Mott
transition. From Fig. 6(a) it can be seen that this corresponds
to spectral functions with substantial narrowing of the central
quasiparticle feature and an emerging three-peak structure
visible for U = 2.4 eV. In addition, there is a significant
spectral weight transfer to energies around −2 eV compared
to the noninteracting DOS.

C. Low-temperature behavior

Finally, we focus on the low-temperature behavior. While
for temperatures T � 200 K (for which we did not find
indications of ordered states), the hybridization function is
averaged over all spin orbitals in each iteration of the DMFT
self-consistency cycle, Fig. 7 shows the evolution of the
occupation of each individual spin-orbital at T ≈ 29 K when
no such averaging is performed. While for some values
of J the occupations eventually converge to spin and/or
orbitally polarized states, the occupations exhibit characteristic
oscillations for other values of J . As discussed in Ref. 24, such
oscillations indicate that the system wants to adopt an ordered
state with a sublattice structure that is incompatible with the
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applied self-consistency condition (in our case all sites are
forced to be equivalent).

Even though we do not attempt to fully resolve the resulting
spin and orbital patterns, we can make a number of interesting
observations. First of all, there are drastic differences between
RbO2 [Fig. 7(a)] and the simple SC DOS [Fig. 7(b)]. The latter
oscillates between three states with different spin and orbital
polarization (SP and OP) and is insulating for J � 0.8 eV,
while for higher J it is metallic with no SP and OP (in these
calculations both U and J have been varied while keeping
U − J constant). For RbO2 we can distinguish three different
regimes [see Fig. 8(b)]: (i) For J � 0.5 eV, the occupation
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FIG. 8. (Color online) (a) Temperature dependence of spin and
orbital polarization for fixedU and J . (b) spin and orbital polarization
as a function of J for U − J = 2.93 eV and T ≈ 29 K. All data
correspond to RbO2 input. The vertical dashed lines in (b) indicate
boundaries between regions of qualitatively different behavior.

oscillates between three different states with different SP and
almost no OP [see also upper panel of Fig. 7(a)], (ii) for
J = 0.62 and 0.8 eV, a stable solution with large OP and
zero SP appears [middle panel of Fig. 7(a)], while (iii) a
further increase of J induces a stable SP and reduced OP
[lower panel of Fig. 7(a)]. The system is insulating for all
J � 1.0 eV, while for J = 1.2 eV it is a ferromagnetic half
metal with full SP and no OP. In Fig. 8(a) we show the
SP and OP of RbO2 as a function of temperature for the
realistic values U = 3.55 eV and J = 0.62 eV. The system
is insulating and while essentially no SP develops down to
T ≈ 30 K, OP appears below T ≈ 60 K and reaches almost
its maximum at T ≈ 30 K. While it is not possible from our
calculations to make a prediction about the character of the
expected spin- and orbitally-ordered ground state, the above
temperatures are consistent with our previous estimate of
the ordering temperature based on total energy differences
of different orbitally ordered configurations obtained from
GGA+U calculations at T = 0 K.4 Furthermore, we note that
the specific character of the low-temperature ordered state is
expected to be strongly influenced by structural distortions,
such as, e.g., a tilting of the oxygen molecules away from the
tetragonal axis.6,8

IV. SUMMARY AND CONCLUSIONS

In summary our calculations clearly show that for realistic
values of the interaction parameters U and J , RbO2 at room
temperature is a paramagnetic Mott insulator without exhibit-
ing any symmetry-breaking long-range order. Furthermore we
show that the insulating state is obtained without the need
to include dynamic distortions of the high-symmetry tetrag-
onal structure. We find pronounced quantitative differences
between the widely used SC DOS and the realistic electronic
structure of RbO2, which leads to a strong asymmetry between
the 1/4-filled and 3/4-filled cases. We also find indications of
complex spin and orbital order below T ≈ 30 K, the character
of which seems to depend strongly on J . Furthermore, at
low temperature RbO2 exhibits clear qualitative differences
compared to the simplified SC DOS. It will be interesting to
clarify in future work whether single-site DMFT is capable of
resolving the complicated spin and orbital patterns predicted
within model calculations based on a perturbative treatment
of electron-electron interaction and a simplified electronic
structure of RbO2.7,9 Finally, our study demonstrates that the
same physics that is usually associated with transition-metal
oxides and f -electron materials also governs the properties
of the otherwise rather different alkali superoxides. These
materials thus provide an interesting opportunity to study the
“Mott physics” of a degenerate two-band system.
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