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We study the relaxation properties of the Kondo lattice model using the nonequilibrium dynamical mean-field
formalism in combination with the noncrossing approximation. The system is driven out of equilibrium either
by a magnetic field pulse, which perturbs the local singlets, or by a sudden quench of the Kondo coupling.
For relaxation processes close to thermal equilibrium (after a weak perturbation), the relaxation time increases
substantially as one crosses from the local moment regime into the heavy Fermi liquid. A strong perturbation,
which injects a large amount of energy, can rapidly transform the heavy Fermi liquid into a local moment state.
Upon cooling, the heavy Fermi liquid reappears in a two-stage relaxation, where the first step opens the Kondo
gap and the second step corresponds to a slow approach of the equilibrium state via a nonthermal pathway.

I. INTRODUCTION

Heavy fermion compounds contain strongly interacting
f electrons which hybridize with extended s, p, and d

electrons. The f electrons are in a well-defined charge state,
and at high temperature they act as local magnetic moments
which scatter the conduction electrons. At low temperature,
the hybridization between f and conduction electrons can
lead to the emergence of nontrivial electronic phases, such
as the Kondo insulating state at half-filling, or a strongly
renormalized Fermi liquid in the doped case.1,2

A simple model which captures essential aspects of the
physics of these materials is the Kondo lattice model.3 In this
model, charge fluctuations of the f electrons are completely
suppressed. The localized degrees of freedom are described by
spins S = 1/2, which are coupled to the spin of the conduction
electrons at the same site via an exchange interaction J (the
Kondo coupling). For antiferromagnetic coupling (J > 0), a
large value of J favors the formation of singlets on each site.
At half-filling, this leads to the opening of a (pseudo)gap
in the spectral function of the conduction electrons. In the
ferromagnetic Kondo lattice model (J < 0), a metallic phase
is realized at small coupling, with a phase transition (at
half-filling) to an insulating state at a critical value of J .4

The most interesting behavior is found away from half-
filling, where an antiferromagnetic interaction with the local-
ized moments leads to a renormalized band structure at low
temperature, which resembles a flat band hybridized with the
wide band of the conduction electrons. This Fermi liquid is
characterized by strong mass renormalizations and a “large”
Fermi surface, i.e., both conduction electrons and localized
moments participate in the formation of the Fermi liquid
state, and the Luttinger volume thus contains the total number
of c and f electrons.5 As the temperature is raised or the
coupling J is reduced, a crossover occurs to a metallic state
with a blurred, “small” Fermi surface, the Luttinger volume of
which contains the conduction electrons only. This physics has
been beautifully demonstrated in a recent series of papers by
Otsuki and collaborators based on the dynamical mean-field
approximation (DMFT).6,7

In this paper, we use the nonequilibrium extension of DMFT
to investigate the real-time dynamics of the Kondo lattice

model under strong nonequilibrium conditions. In particular,
we are interested in the timescales on which the system can
undergo a transition between states with a large and small
Fermi surface. In practice, it is easy to perturb the system
so strongly that the heavy Fermi liquid is destroyed after
rethermalization at higher temperature. We will implement
such a perturbation by a sudden change of the interaction J , or
a short magnetic field pulse, and investigate the crossover into
the state with small Fermi surface in real time. The transition
back to the heavy Fermi liquid is then achieved upon cooling
by coupling the system to a dissipative environment, which
absorbs the energy injected into the system by the perturbation.
Although the maximal cooling rate is limited by the coupling
strength, the way in which the Fermi liquid state is approached
and the time scale for this process can still reveal intrinsic
properties of the Kondo lattice model. To understand those
relaxation times, we also consider the relaxation of the system
close to equilibrium by perturbing the local singlets with a
weak magnetic field pulse. Due to the small amount of energy
injected by such a weak pulse, the time evolution takes place
only within one given phase and allows us to extract the
equilibrium relaxation rate in the various temperature and
doping regimes, and to connect this quantity to the presence
or absence of strongly renormalized quasiparticles.

II. MODEL AND METHOD

The spin- 1
2 Kondo lattice model describes conduction

electrons c interacting with localized electrons f . If the f

orbitals are half-filled and fluctuations into empty or doubly
occupied states are energetically very expensive, only the spin
degree of freedom S = 1

2ψ
†
f σψf remains in a low-energy

model, while the charge fluctuations are suppressed [ψ†
f =

(f †
↑ ,f

†
↓ )]. The Hamiltonian of the Kondo lattice model then

becomes

H = −
∑
i �=j,σ

vij c
†
i,σ cj,σ + μ

∑
i,σ

ni,σ + J
∑

i

Si · si . (1)

Here, the first term corresponds to the kinetic energy of the
conduction electrons, the second term gives the chemical
potential contribution of the conduction electrons (ni,σ =

Published in "
"

which should be cited to refer to this work.

ht
tp

://
do

c.
re

ro
.c

h
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/20658532?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


t,t’)

c

f

S

v

Δ(

J

J

FIG. 1. Top panel: illustration of the Kondo lattice model,
describing conduction-band electrons c hopping with matrix element
v between orbitals (circles) and interacting via an exchange coupling
J with the spin of the localized f electrons (arrows). Bottom panel:
dynamical mean-field approximation of the Kondo lattice model,
consisting of one c-electron orbital and the associated f -electron
spin. The c electrons couple to a self-consistently determined bath of
noninteracting sites, with hybridization function �(t,t ′).

c
†
i,σ ci,σ ), and the last term describes the interaction of the

spins si = 1
2ψ

†
c,iσψc,i of the conduction electrons with the

localized electrons via the Kondo coupling J [ψ†
c = (c†↑,c

†
↓)].

In this study, we will restrict our attention to antiferromagnetic
J and to paramagnetic solutions.

To investigate the properties of this model, we use dy-
namical mean-field theory.8 This approximate method, which
becomes exact in the limit of infinite coordination number,9

maps the lattice model onto a self-consistent solution of a
quantum impurity model. The mapping can be applied to
nonequilibrium situations10,11 by reformulating the theory on
the Keldysh time contour C. As illustrated in Fig. 1, the
impurity consists of a c-electron orbital coupled to a spin S and
a bath of noninteracting sites. The relevant properties of the
bath are encoded in the hybridization function �(t,t ′), which
describes the probability for transitions of c electrons from
the impurity site into the bath and back. Hence, the impurity
action reads

S = −i

∫
C
dt Hloc(t) − i

∫
C
dt dt ′

∑
σ

c†σ (t)�(t,t ′)cσ (t ′), (2)

where

Hloc = μ(n↑ + n↓) + J S · 1

2
ψ†

cσψc (3)

is the local part of the Hamiltonian (1), consisting of the
conduction electron orbital and the spin S.

We will consider a lattice, whose noninteracting density of
states is semielliptical with bandwidth 4v. In this case, the
DMFT self-consistency becomes

�(t,t ′) = v2Gc(t,t ′), (4)

where Gc(t,t ′) denotes the c-electron Green’s function (see
Appendix). We set v = 1 as the unit of energy, and mea-
sure time in units of v−1. The Green’s function Gc(t,t ′) =

−i〈TCc(t)c†(t ′)〉 must be computed numerically from the
contour-ordered average 〈. . .〉 = Tr[TCeS . . .]/Tr[TCeS ], using
the action defined in Eq. (2) (TC is the time-ordering operator
on the Keldysh contour C).

For equilibrium calculations, several techniques are avail-
able to solve the impurity problem, among them the nu-
merical renormalization group12 and continuous-time (CT)
Monte Carlo methods.13 The latter come in two variants: the
weak-coupling CT-J solver14 and the hybridization expansion
approach (CT-HYB).4 In a CT-J simulation, the partition
function of the impurity model is expanded in powers of J ,
so that the Monte Carlo configurations consist of arbitrary
sequences of spin-flip processes, with weight proportional
to a determinant of a matrix of bath Green’s functions. In a
CT-HYB calculation, the local problem Hloc is solved exactly,
while the expansion of the partition function is done in
powers of the hybridization function �. Here, the weight is
proportional to the determinant of a matrix of hybridization
functions.

Neither CT-J nor CT-HYB suffers from a sign problem
in equilibrium calculations. Monte Carlo simulations on the
real-time Keldysh contour, however, lead to a dynamical sign
problem,15,16 which restricts the simulations to rather short
times. Since we are interested in both the transient dynamics of
the Kondo lattice model and the long-time relaxation towards
an equilibrium state, we use the noncrossing approximation
(NCA) as an impurity solver. Similar to CT-HYB, NCA is
based on an expansion of the impurity partition function
in powers of the hybridization functions. But, rather than
combining various (crossing and noncrossing) diagrams into
a determinant, only the noncrossing diagrams are retained and
summed up analytically via a Dyson equation. The implemen-
tation of the NCA impurity solver on the Keldysh contour has
been explained in Ref. 17, and we use the same procedure
with the local Hamiltonian Hloc represented as an 8 × 8 block
matrix in the basis |S; n↑; n↓〉, with S =↑ ,↓ and nσ = 0,1.
Other formulations of (extended) NCA for the Kondo lattice
model have been previously used.18 An advantage of the
present formulation with an eight-dimensional local problem
is that it captures the formation of local singlets at the zeroth
order of the approximation.19 The NCA solver does not
suffer from a sign problem, so that the computational effort
grows polynomially (like the third power) with the maximum
simulation time. We converge the DMFT equations on the
real-time contour time step by time step, using the procedure
detailed in Ref. 20.

In order to characterize the various equilibrium and
nonequilibrium phases, we compute both static observables,
such as the momentum distribution, and the frequency-
dependent spectral function. For a general time-evolving state,
the latter can be defined as

A(ω,t) = − 1

π
Im

∫ ∞

t

dt ′eiω(t ′−t)Gret(t ′,t), (5)

where Gret(t,t ′) = −i�(t − t ′)〈{c(t),c(t ′)}〉 is the retarded
Green’s function. In practice, the time integral is limited to
some maximal time t ′ = tmax, which could lead to artificial
oscillations in the results. Below, this effect is well controlled
with a suitably large cutoff tmax ≈ 50.
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There is some arbitrariness in the definition of a nonequi-
librium spectral function. For example, instead of Eq. (5), one
could choose to introduce average and relative times and define
a time-dependent spectral function by Fourier transformation
with respect to the relative time. Also, the definition adopted
here need not always produce a positive result. However,
in particular when the width δω of the spectral features is
large compared to the inverse of the time scale τ on which
A(ω,t) changes, the function (5) is closely related to a time-
resolved photoemission and inverse photoemission spectrum
that is measured with a probe-pulse duration τ > τp > 1/δω.21

Moreover, A(ω,t) constitutes a complete representation of
the local Green’s function, and for an equilibrium state
A(ω) ≡ A(ω,t) becomes time independent and reduces to the
conventional definition.

III. RESULTS

A. Equilibrium properties

In order to set the stage for the study of the relaxation
dynamics and to test the quality of the NCA approximation,
we first compute various results for the Kondo lattice model in
equilibrium. Figure 2 shows the conduction electron spectral
function (5) at half-filling (μ = 0, nc = 1) for several values
of J and inverse temperature β = 50. For sufficiently low
temperature, the singlet formation between the conduction
electron and localized spins leads to the opening of a gap
(Kondo insulator). The separation between the peaks is given
by E(n = 2) + E(n = 0) − 2E(n = 1) = 1.5J , where E(n =
0) = 0, E(n = 1) = − 3

4J − μ, and E(n = 2) = −2μ are the
lowest energy states for the local problem (Hloc) with n c

electrons.4 The side peaks which are split off by J correspond
to the insertion or removal of an electron with additional
singlet-triplet excitations. Due to the exponential decay of
the hybridization function in the Kondo insulating phase, we
expect the NCA approximation to be rather accurate in this
regime.17,22 As shown in Fig. 3, already for J = 1.5 the NCA
solution indeed provides a good approximation of the exact
Green’s function, although NCA slightly underestimates the
size of the Kondo gap, in contrast to the Mott gap in the
Hubbard model.17
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FIG. 2. (Color online) Spectral functions of the nc = 1 Kondo
insulator at β = 50 and indicated values of J .
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FIG. 3. (Color online) Comparison between Green’s functions
from CT-HYB and NCA for J = 1.5, nc = 1, and indicated temper-
atures.

As one dopes the system, a narrow quasiparticle peak
appears near the Fermi level at low temperatures. Figure 4
shows spectral functions for J = 1.5, nc = 1.1, and nc = 1.4,
and different inverse temperatures β. As the temperature
is increased, the narrow feature disappears (β = 10), but
the Fermi level remains at the upper edge of the partially
filled-in Kondo insulator gap. Eventually, the upper gap edge
moves away from the Fermi level (β = 5) and, at even higher
temperatures (β = 2), the gap starts to fill in. At larger doping,
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FIG. 4. (Color online) J = 1.5. Temperature dependence of the
spectral function for nc = 1.1 (top panel) and nc = 1.4 (bottom
panel).
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FIG. 5. (Color online) J = 1.5. Temperature dependence of the
extrapolated value Re�(0) (left axis), showing the crossover from
the Kondo insulator regime to the Fermi liquid regime below T ∗.
Also plotted is the temperature dependence of the occupation of the
singlet state (right axis), which illustrates the crossover from the local
moment regime at high T to the Kondo insulator regime below TK .
The top panel shows data for nc = 1.1 and the bottom panel for
nc = 1.4.

the pseudogap is less pronounced and the low-temperature
quasiparticle peak is merged with the upper band.

To get a better understanding of the crossover between the
various phases, we plot in Fig. 5 the temperature dependence
of the real part of the conduction electron self-energy at
frequency ω = 0, Re�(0), and the occupation psinglet of
the impurity singlet state [psinglet = 〈P1( 1

4 − s · S)〉, where
P1 = n↑ + n↓ − 2n↑n↓ is the projector on the one-particle
sector of the local Hilbert space]. The behavior of Re�(0)
was used in Ref. 6 to define the crossover scale T ∗ below
which a coherent Fermi liquid state is formed. The evolution
of Re�(0) in our case looks similar to what was found in
Ref. 6 for a hypercubic lattice, and the temperature dependence
is also qualitatively consistent with the numerically exact
CT-HYB results for the semicircular DOS. We have used a
linear extrapolation procedure to estimate Re�(0) from the
values �(iωn) at nonzero Matsubara frequencies, rather than
the quadratic fit employed in Ref. 6, because this seems more
appropriate at the relatively high temperatures considered in
this study. At the filling nc = 1.1, the heavy Fermi liquid
appears below T ∗ ≈ 0.1, so that we can associate the shift
of the Fermi level in Fig. 4 from a position within the
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FIG. 6. (Color online) Distribution function n(ε) for the antiferro-
magnetic Kondo lattice model at β = 50. The top panel corresponds
to a filling nc = 1.1 and the bottom panel to nc = 1.4. For large J ,
one observes the formation of a small kink in n(ε), corresponding to
the large Fermi surface, where the heavy quasiparticle band crosses
the Fermi energy.

(pseudo)gap into the upper band and the formation of a narrow
resonance with the appearance of heavy quasiparticles and the
formation of the large Fermi surface. Comparison with the
temperature dependence of psinglet shows that the enhanced
singlet formation sets in already at a higher temperature, below
a crossover scale TK ≈ 0.5. Hence, there is a temperature range
T ∗ < T < TK between the Fermi liquid and local moment
regime, where the singlet formation leads to a pronounced
pseudogap in the spectral function and the Fermi level lies
inside this gap. Above TK , psinglet decreases and the pseudogap
in the spectral function starts to fill in. The existence of the two
temperature scales T ∗ and TK in the single-site DMFT solution
of the Kondo lattice model has been previously discussed in
Ref. 23. The crossover temperatures are correctly reproduced
by the NCA approximation and, at least in the range considered
here, they show little dependence on doping.

The most direct evidence for a large Fermi surface is
obtained from the momentum distribution n(ε), which is given
by the expectation value 〈c†kck〉 for the band energy ε = εk

(see Appendix). It is shown in Fig. 6 for different couplings
J at β = 50 and nc = 1.1 and 1.4. At small values of J , a
smeared-out step is visible around the location of the Fermi
surface of a free conduction electron gas. The formation of
the heavy quasiparticle band leads to a step in the distribution
function n(ε) at a different location and with a smaller size,
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corresponding to a shift of the Fermi surface and a reduction
of the quasiparticle weight.

We conclude from these results that our NCA approxima-
tion, which exactly treats an eight-dimensional local problem,
provides a qualitatively correct description of the Kondo
insulator, the heavy Fermi liquid, and local moment regimes in
the doped model, and of the various crossover phenomena. In
the following, we will use this approach to study the relaxation
properties of the Kondo lattice model in the different parameter
regimes.

B. Relaxation close to thermal equilibrium

We next compute the relaxation times of the system after it
is weakly perturbed in one of the various parameter regimes
discussed above. This will later on be important to understand
the behavior of the system after a strong perturbation, for times
long enough that a new equilibrium state is approached. The
relaxation times are still entirely determined by equilibrium
properties of the corresponding electronic phase, which is
not left by the weak perturbation. Technically, the following
investigation could thus be done by computing a suitable linear
response quantity within the Matsubara formalism, but it is
more convenient to do an explicit real-time calculation, which
avoids analytical continuations and also does not require the
evaluation of vertex functions of the impurity model.

Specifically, we consider the relaxation of the system after
a short and weak magnetic field pulse, which acts only on the
localized spin by means of an additional perturbation hx(t)Sx

in the Hamiltonian (3). The pulse is of the form

hx(t) = h sin2(πt/tpulse) (6)

for t < tpulse and hx(t) = 0 for t > tpulse. We use pulses of
duration tpulse = 1.5 and small field strength h, such that the
heating effect is comparatively small and we can study the
relaxation time within the three temperature regimes T <

T ∗ [“Fermi liquid” (FL)], T ∗ < T < TK [“Kondo insulator”
(KI)], and T > TK [“local moment” (LM)]. We will focus on
the time evolution of psinglet. Other observables, such as the
double occupancy on the c site, or the distribution function
n(ε,t), seem to give consistent results for the relaxation time.

Because the pulse is acting only on one of the two spins
which form the singlet (the localized spin S), it perturbs the
singlet and leads to an initial decrease in psinglet. This decrease
is followed by a complicated transient evolution up to about
t ≈ 10, after which the system eventually settles into an expo-
nential relaxation towards a new thermal equilibrium state at
somewhat higher temperature. To measure the relaxation time
τ , we fit this long-time behavior with an exponential function
psinglet(t) = psinglet(t = ∞) + A exp(−t/τ ). For several sets of
parameters, we have cross-checked that within the accuracy of
our calculation, the extrapolated final value psinglet(t = ∞)
obtained from the fit corresponds to the value computed
independently by assuming thermalization at constant energy.

Figure 7 shows the time evolution of psinglet(t) − psinglet(t =
∞) after a pulse of strength h = 0.1 and duration tpulse = 1.5,
for J = 1.5 and nc = 1.1. The initial state is the equilibrium
state at different temperatures. In the FL regime (T � 0.1), the
transient is relatively smooth, and the exponential relaxation
towards the equilibrium state becomes remarkably slow. In
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FIG. 7. (Color online) Relaxation of psinglet after a h-field pulse
of strength h = 0.1, as a function of temperature. The initial state is
the equilibrium state for indicated temperatures nc = 1.1, J = 1.5.
After the pulse, the system with β = 50 relaxes to a thermal state with
inverse temperature ≈ 15, and the system with β = 5 to a thermal
state with inverse temperature ≈ 4.8.

the KI regime 1/7 � T � 1/3, three things happen: (i) the
transient exhibits a plateau with oscillations, the period of
which is roughly proportional to 1/J , (ii) the exponential
relaxation becomes substantially faster with increasing tem-
perature, and (iii) the exponential relaxation sets in from a
value of psinglet which is much closer to the thermal value than
in the FL regime. Finally, in the LM regime, the relaxation is
so fast that after the initial transient (which seems to take about
t ≈ 10, independent of temperature), the system has already
thermalized. Within the accuracy of our simulation, it then
no longer makes sense to fit an exponential to the long-time
evolution.

The behavior in Fig. 7 is reminiscent of the relaxation
dynamics found after an electric field pulse in the Hubbard
model, as one approaches the insulator-metal crossover regime
from the Mott insulating side.24 In the doped Kondo lattice
model, however, the slow relaxation occurs in the heavy Fermi
liquid regime, while the KI regime with a deep pseudogap is
associated with faster relaxation.

In fact, it is the disappearance of coherent quasiparticles,
and not the filling in of the pseudogap, which leads to the faster
relaxation. To illustrate this, we plot in Fig. 8 the relaxation
time as a function of temperature, and compare this curve
to Re�(0) and psinglet. The relaxation time tracks Re�(0)
(associated with the formation of the heavy Fermi liquid with
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FIG. 8. (Color online) Relaxation time τ after a h-field pulse of
strength 0.1 as a function of temperature. The initial state is the
equilibrium state for the indicated temperatures and nc = 1.1, J =
1.5. For comparison, we also plot Re�(0) and psinglet (with arbitrary
rescaling).

a large Fermi surface) and not psinglet (associated with the
opening of the gap). Furthermore, the relaxation time decreases
if the Fermi liquid is weakened, for example, by increasing the
doping (left panel of Fig. 9). That increasing doping leads
to a weakening of the heavy Fermi liquid state is indicated
by the evolution of Re�(0) in Fig. 5, which shows that the
FL state is formed at lower temperature for nc = 1.4 than
for nc = 1.1, and by the spectral functions in Fig. 4, which
show that the Kondo gap gets filled in with increasing doping.
In the exhaustion limit nc → 2, the Fermi liquid coherence
temperature T ∗ should drop to zero.23

At least in the case J = 1.5 considered here, the Kondo
insulator relaxes much faster than the weakly doped FL (about
the same relaxation time as in the weakly doped model in the
KI regime above T ∗). For smaller couplings, the relaxation
time of the insulator increases rapidly (right panel of Fig. 9)
since in the small-J limit the slowest processes are ∼ 1/J .
In the limit of large J , the relaxation time grows because it
becomes difficult to transform an excitation energy of order J

into kinetic energy.
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FIG. 9. (Color online) Relaxation time τ for J = 1.5 as a function
of doping (left panel) and at half-filling as a function of J (right panel).
The initial state is the equilibrium state at β = 50. The large error
bars at small J are due to the appearance of oscillations on top of the
exponential relaxation.

C. Fast melting of the large Fermi surface

In this section, we study the dynamical evolution of the
heavy Fermi liquid with a large Fermi surface into a state with
small Fermi surface. This process can easily be triggered in
many ways, provided a sufficient amount of energy is injected
into the system. We will suddenly reduce the Kondo coupling
J , which both leads to a considerable heating of the system
and weakens the local singlets. The two effects combined are
expected to result in a crossover from the FL phase into the
KI and LM regimes. Figure 10 shows contour plots of the
momentum occupation n(ε,t) after a quench from J = 1.5,
β = 50, nc = 1.4 to Jfinal = 1.25, 0.75, and 0.5. The small
quench (Jfinal =1.25) leads to a minor shift and a thermal
broadening of the large Fermi surface (indicated by the red
contour lines). The slow drift of the contour lines indicates that
the relaxation time is slow, as expected for relaxation processes
within the FL regime. The quench to Jfinal = 0.75 drives the
system into the KI regime, where Fermi liquid coherence is
lost [with a corresponding shift in Re�(0)], but the Kondo
gap is still present. The relaxation is faster, in accordance
with the faster dynamics measured after a weak magnetic
field pulse in this regime. Finally, the quench to Jfinal = 0.5
brings the system into the LM regime, characterized by a
small Fermi surface. Melting of the large Fermi surface and
steepening of the momentum distribution around the location
of the small Fermi surface happen on the time scale of a few
inverse hoppings, comparable to the relaxation time after weak
perturbations within the LM phase. We observe no additional
bottleneck connected to the destruction of the large Fermi
surface when hopping and J are comparable in magnitude.

The evolution of the system into the KI and LM phases is
also evident from the behavior of psinglet and the shift of Re�.
Despite the heating effect, psinglet remains large after quenches
to J = 1.25 and 1, and the crossover into the LM regime is
evident in the form of a substantial drop of psinglet for J = 0.5
(lower left panel of Fig. 10). The shift of Re�, on the other
hand, is evident in the bottom right two panels (corresponding
to the quenches to J = 0.75 and 0.5): a time-dependent shift
of Re�(0) is equivalent to a shift of the chemical potential
μ. In nonequilibrium DMFT calculations, a sudden shift of
μ by �μ results in a rigid shift of the spectral function (5)
by −�μ on the frequency axis. In the present case, the rapid
decrease of Re�(0) leads to a shift of the quasiparticle peak
by +�[Re�(0)] < 0. Thermalization of the spectral function
is seen to occur approximately on the same time scale as the
momentum distribution function.

D. Formation of the heavy fermion state upon cooling

Finally, let us consider the dynamical formation of the FL
state out of the LM phase. In general, it is not possible to
reach the FL phase from the LM phase by a sudden increase
of J since the strong heating caused by such a quench would
destroy the Fermi liquid coherence. We will thus approach the
problem in a different way, which is at the same time closer
to possible experiments on heavy fermion materials. In such
an experiment, one might rapidly destroy the FL phase by a
strong excitation (see Sec. III C), and monitor its reappearance
out of the excited LM phase while energy is dissipated from
the electronic system to the environment. As long as the
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FIG. 10. (Color online) Top panels: Time evolution of the distribution function n(ε,t) after a quench from J = 1.5, nc = 1.4, β = 50 to
J = 1.25, 0.75, and 0.5 (from left to right). The plots show contours of constant n, with red contours corresponding to values of ε, which
in the initial state are associated with the large Fermi surface discontinuity. Bottom left panel: Time evolution of psinglet. Middle panel: Time
evolution of the spectral function after a quench to J = 0.75. After thermalization, the system is in the KI phase (β ≈ 12.5). Right panel: Time
evolution of the spectral function after a quench to J = 0.5 (effective temperature β ≈ 8.3, in the LM phase).

intrinsic thermalization times of the system are fast compared
to this dissipation time, the system will evolve through a
sequence of equilibrium states of decreasing temperature, at a
rate that is set by the coupling to the environment. However,
when the thermalization time becomes long, the system will
fall out of equilibrium, or experience a slowdown of the
cooling dynamics. Since our investigation in Sec. III B has
demonstrated a large increase of the thermalization times in
the low-tempeature FL phase, one might expect the cooling
dynamics in the doped Kondo lattice to reveal such a nontrivial
time evolution. In the following, we will excite the system with
a strong magnetic field pulse (6), and look at the subsequent
dynamics in the presence of an additional particle reservoir at
fixed temperature.

To model dissipation of energy to other degrees of freedom,
we couple a thermal particle reservoir with inverse temperature
β locally to each site of the lattice. Technically, this corre-
sponds to a change of the DMFT self-consistency condition
from Eq. (4) to

�(t,t ′) = v2Gc(t,t ′) + �β(t,t ′), (7)

where the hybridization function of the reservoir is given by

�β(t,t ′) = −i

∫
dε γ (ε)[�C(t,t ′) − fβ(ε)]e−iε(t−t ′), (8)

with fβ(ε) the Fermi function (see Appendix). A similar setup
has been previously considered in studies of the nonequi-
librium properties of the Falikov-Kimball25 and Hubbard
models.26 For γ (ε), we use a semielliptic function with
bandwidth 16 and amplitude γ (0) = γ .

In the following, we will focus on values of γ which are
large enough to allow for a fast energy dissipation, but still
so small that the equilibrium properties of the system remain

qualitatively unchanged with respect to the isolated system.
We will therefore first study the effect of the bath (with inverse
temperature β = 50) on the spectral function and momentum
distribution function in equilibrium. As shown in the left panels
of Fig. 11, a stronger coupling γ reduces the peak near ω = 0
in the spectral function, which is associated with the heavy
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FIG. 12. (Color online) Time evolution of the probability of the
singlet state (left panels) and the density (right panels) for indicated
couplings γ to the bath with β = 50. The perturbation is a magnetic
field pulse of amplitude hx = 0.5 and duration tmax = 1.5. A larger
coupling γ leads to a faster relaxation back to the thermal value. The
top panels show data for J = 1.5 and the bottom panels for J = 2.5.

quasiparticle band. Spectral weight is added to the gap region.
As a result, the steplike feature in the distribution function n(ε)
(near ε = −1) gets smeared out and for J = 1.5, nc ≈ 1.20
it is hardly evident anymore for γ � 0.4 (right panels). To
obtain a more prominent large Fermi surface in the presence
of a strong coupling γ to the environment, we also consider

data for J = 2.5 and nc ≈ 1.26 (bottom panels). While the
average density is affected by the coupling to the bath, this
effect is comparatively small: nc increases only by about one
percent for a coupling strength γ = 0.8.

The time evolution of the system after an intense magnetic
field pulse with strength hx = 0.5 and duration tmax = 1.5 is
plotted in Fig. 12. The left panels show the weight of the
average occupation of the singlet state, and the right panels
show the density. The larger the coupling γ , the faster these
observables relax back to approximately the thermal value: If
one defines a relaxation time scale τ0.002 for this initial fast
relaxation as the time by which psinglet reaches its thermalized
value up to within ±0.002, one finds that these relaxation
times τ0.002 scale approximately linearly with 1/γ (J = 1.5:
τ0.002 = 62, 36, 26.5, 22 for γ = 0.2,0.4,0.6,0.8, respectively;
J = 2.5: τ0.002 = 48, 26, 19, 15.5 for γ = 0.2,0.4,0.6,0.8).

The fast initial relaxation leads to an overshooting of
the singlet occupation and the density, and it is followed
by a slower convergence to the true steady state. The fast
dynamics can be identified with the formation of the Kondo
gap (more precisely, a pseudogap), while the slow relaxation
is related to the appearance of the heavy quasiparticle band.
To illustrate this fact, we plot in Fig. 13 the time-dependent
spectral function [Eq. (5)] for several times after the pulse.27

For J = 1.5, γ = 0.6 (top panels), first indications of a
feature near ω = 0 appear around t = 20 (which is the time
needed for psinglet to relax back to roughly the thermal value),
with a well-formed peak and a fully established gap around
t = 30. However, the comparison with the equilibrium spectral
function (black curve) shows that the amplitude of this peak is
enhanced compared to the equilibrium peak (Fig. 13, middle
panels), and the recovery of the latter takes much longer (the
thermal curve is not reached for t = 40, which is the largest
time for which we can compute well-resolved spectra). The
observed long times needed to restore the heavy quasiparticle
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band are consistent with the relaxation times τ ≈ 50 measured
for weak perturbations of the FL (Fig. 8).28 Together with the
corresponding feature at the lower gap edge, the formation of
this coherent quasiparticle peak constitutes the bottleneck in
the relaxation process.

The shape of the peak in A(ω,t) near ω = 0 indicates
that the system does not approach the heavy Fermi liquid
through a sequence of equilibrium states with decreasing
temperature. Instead, it first establishes some kind of fairly
stable nonthermal “precursor” state, which slowly evolves
into the heavy Fermi liquid. In fact, comparison of the
time-dependent spectra to equilibrium spectra at higher tem-
peratures (Fig. 13, right panels) shows that, for increased
temperature, the quasiparticle peak would be broadened (and
thus its maximum is shifted towards higher frequency), while
in the time-dependent spectra, the location of the peak stays
almost constant for large times. The larger amplitude of the
peak in the precursor state can also not be explained with the
small, transient change in doping: this would rather suggest
a less prominent quasiparticle peak since, for large times, the
doping is slightly smaller than in the final state (Fig. 12). To
further illustrate the difference between the nonthermal state
with enhanced quasiparticle peak and the true FL equilibrium
state, we plot in Fig. 14 the time evolution of the momentum
distribution function n(εk,t). The application of the pulse
destroys the steplike feature marking the large Fermi surface.
The fast relaxation of the singlet occupation and density back
to the thermal values is associated with a partial recovery
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FIG. 14. (Color online) J = 2.5. Time evolution of the momen-
tum distribution function for couplings γ = 0.2 (top) and γ = 0.6
(bottom) to the bath with β = 50.

of the step in n(εk,t), but it is clear from Fig. 14 that after
t = 20 (γ = 0.6) or t = 50 (γ = 0.2) the distribution function
has not yet thermalized. The thermal distribution function with
its well-defined step feature is only recovered once the heavy
quasiparticle band has been fully reconstructed.

IV. SUMMARY AND CONCLUSION

We studied the relaxation dynamics of the Kondo lattice
model (restricted to paramagnetic phases) using the nonequi-
librium dynamical mean-field formalism and an NCA impurity
solver which exactly treats an eight-dimensional local problem
consisting of a spin and its associated conduction electron
orbital. This approach is well suited to describe the formation
of local singlets, which are favored by antiferromagnetic
J . Comparison to data obtained with the numerically exact
CT-HYB solver showed that the NCA approximation yields
qualitatively correct results in equilibrium over a wide doping
and temperature regime. In particular, it captures the crossover
from a local moment regime into the heavy Fermi liquid
regime as temperature is lowered in the doped system, with two
crossover scales TK (opening of a pseudogap in the conduction
electron spectral function) and T ∗ (shift in the real part of the
conduction electron self-energy and formation of a large Fermi
surface).

We determined the relaxation times in these various phases
and crossover regimes by applying a weak magnetic field
pulse, which perturbs the local singlets. While these numbers
are related to equilibrium properties of the system, they may
still be nontrivial to extract from a conventional imaginary-
time equilibrium calculation. In the doped system, the relax-
ation time grows with decreasing temperature, approximately
proportional to the real part of the conduction electron self-
energy. The slow relaxation in the heavy Fermi liquid phase
is thus clearly associated with the existence of coherent heavy
quasiparticles and not, for example, with the presence of a
pseudogap in the conduction electron spectral function. The
relaxation time was also found to depend strongly on doping,
with long relaxation times in the weakly doped heavy Fermi
liquid regime. In contrast to the Hubbard model, the relaxation
times in the (Kondo) insulating state are substantially shorter
than in the weakly doped regime, at least for J comparable to
the hopping.

To study the relaxation dynamics of strongly excited
systems, we considered quenches of the Kondo coupling
and strong magnetic field pulses. Such perturbations lead
to a considerable heating and it is thus easy to simulate the
destruction of the low-temperature heavy Fermi liquid state.
By computing the time-dependent momentum distribution
function for quenches from intermediate to small J , we could
demonstrate the destruction of the step feature associated with
the large Fermi surface within a time of a few inverse hopping
and the shift from a large to a small Fermi surface on a slower
time scale (the relaxation time of the thermal state).

In order to demonstrate the formation of the large Fermi
surface upon cooling, we simulated the time evolution after
a strong magnetic field pulse in the presence of a thermal
particle reservoir, which removed the excess energy injected
by the pulse. While a strong coupling to the heat bath leads to
a faster relaxation, it also smears out the heavy quasiparticle
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band. Nevertheless, for large enough Kondo coupling and
large enough doping, one can have a well-defined large Fermi
surface at low temperatures and fast relaxation. By computing
the time-dependent momentum distribution functions and
spectral functions, we showed that the relaxation back to
the thermal state happens in two stages: after a fast initial
relaxation (the time scale of which depends on the strength of
the coupling to the bath), a precursor state to the heavy Fermi
liquid is formed, as evidenced by the appearance of a peak near
the Fermi energy in the conduction electron spectral function,
and a partially reconstructed step feature in the momentum
distribution function. This fast relaxation is followed by a
slower dynamics (presumably on time scales controlled by the
long relaxation time in the heavy Fermi liquid), which leads
to the thermalization of the narrow quasiparticle band also in
the close vicinity of the Fermi energy.

The existence and the nature of the precursor state should
be corroborated and further studied in future investigations.
For example, it would be desirable to systematically look at
this state for slightly weaker coupling to the environment
in order to reduce the influence of the bath on the FL
properties, in particular, the quasiparticle weight and FL
relaxation rate. However, smaller dissipation requires longer
simulation times, which are not accessible within our current
(single-processor) implementation of the NCA equations.
Furthermore, it would be desirable, although computationally
quite expensive, to check the influence of the NCA approxi-
mation through a comparison to real-time results from higher-
order implementations of the self-consistent strong-coupling
formalism.

Although the Kondo lattice model is a rather simplified
model for heavy fermion materials, we believe that our results
on the relaxation properties in the different correlation and
doping regimes might be useful for the interpretation of future
pump-probe experiments on those materials. In particular, our
calculation with heat bath describes a scenario that could be
explored in future experiments, namely, the strong heating
of a heavy fermion compound (e.g., using a laser pulse),
followed by the rapid melting of the large Fermi surface, and
the slow reformation of the heavy Fermi liquid features via
a nonthermal pathway as the excess energy is dissipated to
the lattice or other electronic degrees of freedom. While the
J quenches and h-field pulses considered in this study may
not be easily implemented in an experiment on heavy fermion
materials, the precise type of excitation is probably irrelevant
for the above conclusions. This is because the melting of the
large Fermi surface within a few hopping times corresponds
to a rapid thermalization of the system in the LM phase, and
by definition thermalization implies that memory is kept only
on the total amount of injected energy but not on the precise
excitation process. The J quench and the strong h pulse in
the calculation with bath allowed us, in a computationally
convenient way, to inject a large amount of energy into the
system, whereas in an experiment, such a strong excitation is
most easily achieved by heating the conduction electrons with
an intense laser pulse.

The calculations in this paper were limited to the paramag-
netic phases of the antiferromagnetic Kondo lattice model.
Many heavy electron materials, however, are close to a
magnetic instability. It would be interesting to extend our study

to symmetry-broken phases in order to enable an interplay
between electronic and magnetic excitations.
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APPENDIX: DMFT SELF-CONSISTENCY WITH BATH

In this appendix, we briefly explain how a thermal fermionic
bath can be incorporated into the DMFT equations for a semiel-
liptic density of states. The local c-electron Green’s function of
the impurity model Gc(t,t ′) = −iTr[TCeSc(t)c†(t ′)]/Tr[TCeS ]
implicitly defines the self-energy � via the impurity Dyson
equation

Gc(t,t ′) = [i∂t + μ − �(t,t ′) − �(t,t ′)]−1. (A1)

Here and in the following, time arguments are on the Keldysh
contour C, and TC is the time-ordering operator on C. We
use the notation for Keldysh equations detailed in Ref. 20.
Momentum-dependent lattice Green’s functions Gk(t,t ′) =
−i〈TCck(t)c†k(t ′)〉 are then obtained from the lattice Dyson
equation

Gk(t,t ′) = [i∂t + μ − εk − �(t,t ′)]−1, (A2)

where εk is the noninteracting dispersion. From these func-
tions, the time-dependent momentum distribution can be
obtained as

n(εk,t) = −iG<
k (t,t). (A3)

For a lattice with a noninteracting density of states that
is semielliptical with bandwidth 4v, the local (momentum-
averaged) lattice Green’s function can be shown to satisfy the
self-consistent equation

G(t,t ′) ≡ 1

L

∑
k

Gk(t,t ′) (A4)

= [i∂t + μ − v2G(t,t ′) − �(t,t ′)]−1. (A5)

Note that the second equality does not depend on the form of
the self-energy, but only on the distribution of the band energies
εk.29 Comparison with the impurity Dyson equation (A1) then
yields the standard DMFT self-consistency condition, Eq. (4).

If an additional fermionic reservoir is coupled to the lattice
at every site, one has to modify the lattice Dyson equation
(A2) by adding the hybridization function �β(t,t ′) to the free
dispersion

Gk(t,t ′) = [i∂t + μ − εk − �β(t,t ′) − �(t,t ′)]−1. (A6)

Hence, the closed form equation for the momentum averaged
Green’s function becomes

G(t,t ′)= [i∂t+μ−v2G(t,t ′)−�β(t,t ′) − �(t,t ′)]−1, (A7)

and, by comparison with Eq. (A1), we obtain the DMFT self-
consistency with fermionic bath,

�(t,t ′) = v2G(t,t ′) + �β(t,t ′). (A8)
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266408 (2006).
12R. Bulla, T. A. Costi, and T. Pruschke, Rev. Mod. Phys. 80, 395

(2008).
13E. Gull, A. J. Millis, A. N. Rubtsov, A. I. Lichtenstein, M. Troyer,

and P. Werner, Rev. Mod. Phys. 83, 349 (2011).
14J. Otsuki, H. Kusunose, P. Werner, and Y. Kuramoto, J. Phys. Soc.

Jpn. 76, 114707 (2007).
15P. Werner, T. Oka, and A. J. Millis, Phys. Rev. B 79, 035320

(2009).
16P. Werner, T. Oka, M. Eckstein, and A. J. Millis, Phys. Rev. B 81,

035108 (2010).

17M. Eckstein and P. Werner, Phys. Rev. B 82, 115115 (2010).
18Th. Pruschke, B. Steininger, and J. Keller, Phys. B (Amsterdam)

206-207, 154 (1995).
19If a smaller local Hilbert space is used, this physics requires the

summation of higher-order diagrams beyond the NCA.
20M. Eckstein, M. Kollar, and P. Werner, Phys. Rev. B (unpublished).
21J. K. Freericks, H. R. Krishnamurthy, and Th. Pruschke, Phys. Rev.

Lett. 102, 136401 (2009); M. Eckstein and M. Kollar, Phys. Rev. B
78, 245113 (2008).

22E. Gull, D. R. Reichman, and A. J. Millis, Phys. Rev. B 84, 085134
(2011).

23S. Burdin, A. Georges, and D. R. Grempel, Phys. Rev. Lett. 85,
1048 (2000).

24M. Eckstein and P. Werner, Phys. Rev. B 84, 035122 (2011).
25N. Tsuji, T. Oka, and H. Aoki, Phys. Rev. Lett. 103, 047403

(2009).
26A. Amaricci, C. Weber, M. Capone, and G. Kotliar,

arXiv:1106.3483.
27To avoid oscillations due to a cutoff in the Fourier integral in

Eq. (5), we have extrapolated Gret(t ′,t) to large times using an
exponential function. This is possible because in the model with
bath, the oscillations in Gret(t ′,t) are damped rather quickly.

28In the presence of the bath, the FL relaxation time is somewhat
reduced.

29M. Eckstein, A. Hackl, S. Kehrein, M. Kollar, M. Moeckel,
P. Werner, and F. A. Wolf, Eur. Phys. J. Special Topics 180, 217
(2010).

ht
tp

://
do

c.
re

ro
.c

h


