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Abstract – Recently, Li et al. (Phys. Rev. Lett., 104 (2010) 018701) studied a spatial network
which is constructed from a regular lattice by adding long-range edges (shortcuts) with probability
Pij ∼ r−αij , where rij is the Manhattan length of the long-range edges. The total length of the
additional edges is subject to a cost constraint (

∑
r=C). This spatial network model displays an

optimal exponent α for transportation (measured by the average shortest-path length). However,
we observe that the degree in such spatial networks is homogeneously distributed, which is different
from some real networks. In this letter, we propose a method to introduce degree heterogeneity
in spatial networks with total cost constraint. Results show that with degree heterogeneity the
optimal exponent shifts to a smaller value and the average shortest-path length can further
decrease. Moreover, we find the optimal degree heterogeneity for transportation. We further
consider the synchronization on the spatial networks and related results are discussed. Our new
model may better explain the features of real transportation systems.

Introduction. – Spatial features play a significant role
in the transportation networks [1], Internet [2], mobile
phone networks [3], power grids [4], social networks [5]
and neural networks [6]. In the past decade, many systems
have been modeled by complex networks where nodes and
links are embedded in space. In these models, nodes are
located in the plane and the geometric distance between
nodes is well defined. Then links are constructed according
to rules based on spatial indices [7–12]. Growing spatial
networks were also studied [13,14]. Generally, these models
of spatial networks are able to reproduce some properties
of the real systems such as community structure, scale-
free connection length distribution and so on. Moreover,
some methods have been proposed to design robust spatial
networks for transportation [15–18]. For a detailed review
of the field, see [19].
The most important feature of spatial network models

is that there is a cost associated with the length of links,
which has dramatic effects on the topology and function of
these networks. A total cost constraint has been recently
introduced to design the spatial networks [20–25]. The
total cost C is defined as the total length of the links,
C =
∑
r, where r is the length of links. In [20], pairs of
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sites ij in 2-dimensional lattices are randomly chosen to be
linked with long-range connections with probability Pij ∼
r−αij , where rij is the Manhattan distance between sites i
and j. New links are added until the total length of the
links reaches the total cost C. The exponent α controls
the trade-off between the link length and link number. A
large value of α allows for the formation of many short-
length links while the small α favors the creation of a few
long-length links. The authors in [20] show that the opti-
mal exponents for both the average shortest-path length
and navigation steps are α= 3 in 2-dimension and α= 2 in
1-dimension (the 1-dimensional scenario has been proved
analytically very recently in [23]). The authors claim
that such model reveals the optimized aspect of airline
networks under the conditions of geographical availability
(for customer satisfaction) and cost limitations (for airline
company profit). Similar works have been carried out to
study dynamics such as traffic congestion and synchroniza-
tion on spatial networks under total cost constraint, and
the optimal link length exponents are found [22,24,25].
However, we observe that the degree distribution in

these spatial network models with total cost constraint is
homogenous, which is far different from real cases, includ-
ing airline systems. Many previous works have revealed
that many geographic-based networks have heterogenous

Published in "EPL - Europhysics Letters  98(2): 28003 , 2012"
which should be cited to refer to this work.

ht
tp

://
do

c.
re

ro
.c

h
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/20658433?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


degree distribution [1]. In this letter, we propose a method
to introduce degree heterogeneity in spatial networks with
total cost constraint. We find that degree heterogeneity
affects the optimal exponent for the link length distribu-
tion. Specifically, the exponent shifts to a smaller value.
Also, the average shortest-path length can further decrease
due to degree heterogeneity and the optimal degree hetero-
geneity for transportation is found. Moreover, we study
the effect of degree heterogeneity on the dynamics taking
place on the spatial networks, and we observe the same
shifting phenomenon of the optimal exponent.

Introducing degree heterogeneity to spatial
networks with total cost constraint. – To begin
our analysis, we first briefly describe the original spatial
network model introduced in [20]. Nodes are located
in a d-dimensional regular square lattice, where each
site i is connected with its 2d nearest neighbors. Pairs
of sites ij are randomly chosen to receive long-range
connections with probability proportional to r−αij , where
rij is the Manhattan distance between sites i and j (i.e.,
the number of connections separating the nodes in the
underlying regular lattice). Long-range connections are
added to the system until their total length (cost)

∑
rij

reaches a given value C. The exponent α controls the
average length of the long-range connections, a smaller α
is corresponding to fewer but longer connections, and vice
versa. In this model, the most interesting phenomenon is
that the average shortest-path length and the navigation
steps of the spatial networks can be minimized under a
certain value of the parameter α. Specifically, optimal
values are found to be α∗ = 3 in 2-dimensional spatial
networks and α∗ = 2 in 1-dimensional ones. Accordingly,
it is concluded that the best transportation condition
is obtained with an exponent α∗ = d+1, where d is the
dimension of the underlying lattice.
The probability Pij for two nodes (i and j) to receive a

long-range connection can be described by the probability
density function (PDF) p(r) of long-range connections
with Manhattan length r. Actually, p(r) is the summation
of Pij with rij = r. In d-dimensional space, the number of
nodes which have Manhattan distance r from a given node
is proportional to rd−1. Therefore, p(r) can be expressed as

p(r)∼ rd−1r−α = rd−α−1, (1)

which means p(r)∼ r−δ and δ= α+1− d. Since the opti-
mal exponent is α∗ = d+1, δ∗ = (d+1)+1− d= 2 inde-
pendently of the spaces’ dimension.
Based on this observation, the spatial network in [20]

can be equivalently generated by the following procedure:

1) N nodes are arranged in a d-dimensional lattice with
periodic boundary condition. Every node is connected
with its nearest neighbors, which can keep every node
reachable. In addition, between any pair of nodes
there is a well-defined Manhattan distance.
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Fig. 1: (Color online) The average shortest-path length 〈l〉
as a function of δ in spatial networks [20] embedded in
1-dimensional lattices (a) and 2-dimensional lattices (b).
Panels (c) and (d) are, respectively, the degree distribution
of these network models (N = 1000 for 1-dimension and N =
10000 for 2-dimension, δ= 2) and the degree distribution of
the airline network of USA. Results for the 1-dimensional and
2-dimensional models are averaged over 100 and 10 indepen-
dent realizations, respectively.

2) A certain distance r (2� r� rmax, where rmax is
the largest distance between any nodes in the initial
network) is generated with probability P (r) = ar−δ,
where a is determined from the normalization condi-
tion

∑rmax
r=2 P (r) = 1.

3) A node i is chosen randomly, and one of the Nr nodes
who are at distance r from node i is picked randomly,
and an edge between them is created if there is no
edge between them yet.

4) Update the total cost
∑
r. Repeat step 2) and 3) until

the total cost reaches C = cN (in the following, we fix
c= 10 for convenience).

We first study the average shortest-path length 〈l〉 in
spatial networks generated by the above procedure (see
fig. 1(a) and (b)). As expected, the optimal 〈l〉 appears
under the exponent δ= 2 in both 1-dimensional and
2-dimensional networks, and this feature is independent of
the network size. In addition, we observe that the degree
in such spatial networks is homogenously distributed, as
shown in fig. 1(c). However, the degree distribution in real
systems is far more heterogeneous [19]. For example, the
Chinese airline [26], the Italian airline [27] and the world-
wide airline [28] networks are found to have truncated
power-law degree distribution. We show in fig. 1(d) that
for the airline network of USA (USAir) [29] the degree
distribution approximately obeys a power law. To capture
this feature of real networks, it is necessary to introduce
degree heterogeneity in spatial network models and inves-
tigate how the topology and function of the networks are
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Fig. 2: (Color online) The degree distribution of the (a)
1-dimensional and (b) 2-dimensional modified spatial network
model under different θ. Panel (c) shows the index H as a
function of the parameter θ and panel (d) shows the link
length distributions for different θ in 1-dimensional spatial
networks. The parameters are set as δ= 2, N = 1000 for
1-dimension and N = 10000 for 2-dimension. Results for the
1-dimensional and 2-dimensional models are averaged over 100
and 10 independent realizations, respectively.

affected. Accordingly, we propose a revised spatial network
generating procedure. Instead of randomly adding long-
range connections to the underlying lattice in step 3), we
first calculate a score Sij for each pair of node ij with
distance r (generated in step 2)) and add a link between
the pair ij with probability proportional to its score. Sij
is obtained by

Sij = (kikj)
θ, (2)

where θ is a tuneable parameter. Actually, similar weight-
ing method is widely used in many researches [30,31].
In the new step 3), we no longer randomly choose a

node i first. Instead, we take all the pairs with distance r
into consideration and calculate the S score for each pair.
Since there are many long-range links to be added, the
calculation of S is a dynamic process. For each new long-
range link, S score should be recalculated according to the
change of node degree caused by the adding of previous
long-range link. Note that only S of the pairs without link
will be calculated. If there is already a link between a
pair, its S score will be directly set as 0. Finally, Sij is
normalized by dividing the sum of all the score S of the
pairs with distance r to obtain the probability for adding
long-range link.
When θ= 0, the generated network reduces to the

original model in [20]. When θ < 0, new links will connect
the nodes with lower degree, which leads to an even
more homogeneous degree distribution. When θ > 0, new
links will preferentially attach to the nodes with higher
degree, and a heterogenous degree distribution emerges.
Two examples are shown in fig. 2(a) and (b). Obviously,

by adjusting the parameter θ, the degree distribution is
no longer Poissonian as in the original model. When θ is
small (e.g., θ= 2), the spatial networks exhibit a power-
law–like degree distribution. In this case, the network has
several sub-hubs which are connected to each other by
some long-distance links. When θ is relatively large (e.g.,
θ= 5), a few super-hubs will emerge and most of the links
are connected to such nodes. Therefore, the tail of the
degree distribution will become longer and longer as θ
increases. The degree heterogeneity can be measured by
the index H = 〈k2〉/〈k〉2. The higher H, the larger the
degree heterogeneity. As shown in fig. 2(c), the index
H increases with θ, which confirms that the parameter
θ can indeed control the degree heterogeneity. In the
USAir network, H = 3.46. It suggests that the degree
heterogeneity of real system is far from that of the original
network model where θ= 0 and H ≈ 1. Furthermore, the
modified spatial model can perfectly preserve the link
length distribution as the original model since it does
not affect the link length generating process but only
rearranges the location of the links. We can see from
fig. 2(d) that the link length distributions for different θ
are identical as for the case θ= 0.

The influence on the network topology and func-
tion. – Since the average shortest-path length 〈l〉 reflects
the general transportational ability for a network, we
conduct simulations for different values of θ and see how
the degree heterogeneity affects the optimizing process
of 〈l〉 based on different δ. The simulations are carried
out in both 1-dimensional and 2-dimensional spatial
models and the results are reported in fig. 3. When θ� 0,
the minimal 〈l〉 is always achieved at δ∗ = 2. However,
when the degree distribution becomes heterogenous (i.e.,
θ > 0), the optimal exponent δ∗ will shift to a smaller
value. The results are similar in both 1-dimensional and
2-dimensional spatial networks (see fig. 3(a) and (b),
respectively), and imply that a few more longer connec-
tions are needed to minimize 〈l〉 when the network degree
distribution is heterogenous.
As shown in fig. 3(c) and (d), for each θ there is

an optimal δ∗ and a minimal 〈l∗〉, another interesting
aspect is hence studying the relation between θ and 〈l∗〉.
Figures 3(e) and (f) show that introducing the degree
heterogeneity can indeed further decrease 〈l∗〉. However,
if one keeps enlarging θ, 〈l∗〉 will start to increase. We can
see from fig. 3(e) and (f) that optimal θ∗ for 〈l∗〉 exist in
both 1-dimensional and 2-dimensional spatial networks.
Interestingly, these optimal θ∗ are independent of the
network size but dependent on the network dimension.
Specifically, θ∗ = 2 in 1-dimensional spatial networks and
θ∗ = 3 in 2-dimensional spatial networks, which leads us to
the conjecture that the optimal value is obtained at θ∗ =
1+ d. We also consider the greedy navigation algorithm
used in ref. [20] to model the case when only local
information of the network is known during the transport
process. A similar optimal exponent shifting phenomenon
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Fig. 3: (Color online) The dependence of 〈l〉 on δ under differ-
ent θ in spatial networks generated from 1-dimensional lattices
with N = 1000 (a) and 2-dimensional lattices with N = 104

(b). The white lines mark the optimal δ∗ under different θ.
The detail curves of 〈l〉 against δ for different values of θ in
1-dimensional and 2-dimensional spatial networks are shown in
(c) and (d), respectively. Panels (e) and (f) show the relation
between θ and the minimal 〈l∗〉 in 1-dimensional and
2-dimensional spatial networks. The results for the
1-dimensional and 2-dimensional models are averaged
over 100 and 10 independent realizations, respectively.

is observed and the minimum navigation steps can further
decrease due to the degree heterogeneity.
Another important aspect to consider in spatial

networks is how the network function (dynamics) can
be enhanced. Specifically, refs. [24,25] have revealed
that there is an optimal link length distribution for the
network synchronizability. Under the framework of master
stability analysis, the synchronizability of an undirected
network can be quantified by the eigenvalue ratio of the
corresponding Laplacian matrix of this network, namely
R= λN/λ2, where λN and λ2 are, respectively, the largest
and the smallest non-zero eigenvalues of the Laplacian
matrix [32]. Generally, the smaller the value of R, the
stronger the network synchronizability. In [24,25], starting
from 1-dimensional lattice, the authors find the optimal
length distribution of links (power-law distribution with
exponent δ= 1.5) to add to the network for minimizing
R. However, these previous network models also yields
homogeneous degree distribution. Here we are interested
in how the degree heterogeneity affects the synchroniz-
ability of spatial networks. The results are reported in
fig. 4. Obviously, the optimal δ∗ for R shifts from δ∗ = 1.5
to a smaller value as θ increases. However, the optimal
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Fig. 4: (Color online) (a) The dependence of the optimal δ∗ for
synchronizability R on θ. (b) The optimal synchronizability
R∗ as a function of θ. The spatial networks are built on
1-dimensional lattices. The results are averaged over 100
independent realizations.

synchronizability R∗ cannot be further enhanced by intro-
ducing the degree heterogeneity as shown in fig. 4(b).
It is well known that degree heterogeneity will weaken
the synchronizability while a small average shortest-path
length is generally favorable for synchornizability [32]. As
we discussed above, introducing the degree heterogeneity
can further decrease the average shortest path. However,
the decreased average shortest-path length in the current
case is not sufficient to overcome the effect of degree
heterogeneity, and hence R∗ keeps increasing with θ.

Conclusion. – To summarize, we have proposed a
method to introduce degree heterogeneity in spatial
networks without destroying the power-law link length
distribution of the original model [20]. We have inves-
tigated its effect on network topology and function.
When optimizing the average shortest-path length and
the network synchronizability, we find that the best
power-law exponent for the link length distribution
shifts to a smaller value than that of the original model.
Additionally, the average shortest-path length can further
decrease due to the degree heterogeneity while the
network synchronizability is weakened if the degree
distribution is heterogenous.
From the practical point of view, the original spatial

network model [20] can explain the power-law connection
length distribution with a given exponent in some real
systems. By building the relation between the optimal
exponent and the degree heterogeneity, our model can
extend such explanation of real transportation networks
to a wider range of connection length distribution which
is found to be existing by many empirical studies [19].
Our model can not only better understand and model real
transportation systems, but also help to design efficient
ones.
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