Supporting Information

for

Synthesis and Rotation Barriers in 2,6-Di-(o-anisyl)anisole

Takuhei Yamamoto, Pi-Yu Chen, Guangxin Lin, Anna Błoch-Mechkour, Neil E. Jacobsen, Thomas Bally^{*}, and Richard S. Glass^{*}

Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721, U.S. and Department of Chemistry, University of Fribourg, CH-1700, Fribourg, Switzerland

TABLE OF CONTENTS

¹ H NMR spectroscopic assignments for 1d	S2
Figure S1. ¹ H- ¹ H COSY spectrum for 1d.	S 3
Figure S2. Partial ¹ H- ¹³ C HMBC spectrum for 1d . (f_2 dimension: ¹ H, f_1 dimension: ¹³ C)	S4
Figure S3. Partial ¹ H- ¹³ C HMBC spectrum for 1d . (f_2 dimension: ¹ H, f_1 dimension: ¹³ C)	S5
Figure S4. Partial ${}^{1}\text{H}{-}^{13}\text{C}$ HMBC spectrum for 1d . (f ₂ dimension: ${}^{1}\text{H}$, f ₁ dimension: ${}^{13}\text{C}$)	S 6
Figure S5. Partial 1 H- 13 C HSQC spectrum for 1d . (f ₂ dimension: 1 H, f ₁ dimension: 13 C)	S7
Figure S6. Partial 1 H- 13 C HSQC spectrum for 1d . (f ₂ dimension: 1 H, f ₁ dimension: 13 C)	S 8
Figure S7. Partial 2-D ¹ H- ¹ H ROESY spectrum of 1d	S 9
Figure S8. Two transition states for the interconverions of <i>anti</i> -1d	S 10
Table S1 . Geometrical parameters for the species in Figure S8	S 10
Table S2. Geometrical parameters for the species in Figure 3 of the paper	S 11

1d, ¹H NMR (500 MHz, CD₂Cl₂) δ 3.143 (s, 3H, OMe), 3.816 (s, 6H, OMe), 7.016 (dd, J = 8.3, 1.2 Hz, 2H, *ortho* to OMe), 7.018 (dt, J = 1.1, 7.6 Hz, 2H, *para* to OMe), 7.147 (A, 1H, *para* to OMe in central ring) and 7.231 (B, 2H, *meta* to OMe in central ring), AB₂ system ($J_{AB} = 7.6$ Hz), 7.293 (dd, J = 7.7, 1.8 Hz, 2H, *meta* to OMe and *ortho* to central ring), 7.357 (ddd, J = 8.2, 7.5, 1.8 Hz, 2H, *meta* to OMe and *para* to central ring). ¹³C NMR (125 MHz, CD₂Cl₂) δ 56.00 (OMe), 60.75 (OMe of central ring), 111.34 (CH, *ortho* to OMe in outer ring), 120.79 (CH, *para* to OMe in outer ring), 123.17 (C_q, *ortho* to OMe in outer ring), 128.61 (C_q, *ortho* to OMe in central ring), 129.23 (CH, *meta* to OMe in outer ring), 131.66 / 131.85 (two CH, *meta* to OMe in central ring), 156.72 (C_q-O in central ring), 157.45 (C_q-O in outer ring).

Figure S1. ¹H-¹H COSY spectrum for 1d.

Figure S2. Partial 1 H- 13 C HMBC spectrum for **1d**. (f₂ dimension: 1 H, f₁ dimension: 13 C)

Figure S3. Partial 1 H- 13 C HMBC spectrum for 1d. (f₂ dimension: 1 H, f₁ dimension: 13 C)

Figure S4. Partial 1 H- 13 C HMBC spectrum for **1d**. (f₂ dimension: 1 H, f₁ dimension: 13 C)

Figure S5. Partial 1 H- 13 C HSQC spectrum for **1d**. (f₂ dimension: 1 H, f₁ dimension: 13 C)

Figure S6. Partial 1 H- 13 C HSQC spectrum for **1d**. (f₂ dimension: 1 H, f₁ dimension: 13 C)

Figure S7. Partial 2-D ¹H-¹H ROESY spectrum of 1

Table S1. Geometrical parameters	s of the species in Figure 3.
----------------------------------	-------------------------------

	Di	Dihedral angles ^a		
Conformers	d_{I}	d_2	d_3	
syn-a	118.81	-89.84	-118.81	
	123.23	-89.08	-123.23	
syn-s	-54.36	-90.56	54.36	
	-51.54	-89.97	51.54	
anti	53.21	84.56	118.26	
	50.82	81.64	122.10	
$TS(syn-s \rightarrow anti)$	6.26	-100.31	57.57	
	5.64	-100.47	56.07	
$TS(syn-a \rightarrow syn-s)$	-100.80	-1.34	116.23	
	-103.75	-5.20	120.06	
$TS(anti \rightarrow syn_a)$	-7.78	95.94	118.49	
IS(unu / syn-u)	-7.38	95.82	121.39	
$TS(anti \rightarrow anti)^b$	95.32	-179.12	114.92	
	° 96.75	-177.22	118.05	

^{*a}italics*B3LYP/6-31G*; **bold** B2PLYPD/cc-pVDZ; ^{*b*} lower of the two T</sup>

Figure S8. Interconversion of *anti* atropisomer of **1d** (structures from B2PLYPD/cc-pVDZ calculations; note that the two anti structures are identical); the TS₁ lies 2.82 kJ/mol higher than TS₂; (for geometrical parameters see Table S1).

Conformers	Dihedral angles		
	d ₁	d ₂	d ₃
anti	50.82	81.64	122.10
$TS(anti \rightarrow anti)^a$	96.75	-177.22	118.05
anti*	122.10	81.64	50.82
$TS(anti \rightarrow anti)^b$	99.36	175.76	55.20

Table S1. Geometrical parameters of the species in Figure S8.