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Abstract. In this paper we study J-tangent affine hyperspheres. Under
some additional conditions we give a local characterization of 3-dimensional
J-tangent affine hyperspheres.
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1. Introduction

Centro-affine real hypersurfaces with a J-tangent transversal vector field were
first studied by Cruceanu in [1]. He proved that such hypersurfaces
f: M2t — C™*! can be locally expressed in the form

flay, ... xon,2) = Jg(x1,. .., x9n) cosz + g(x1, ..., Tap)sin 2,

where ¢ is some smooth function defined on an open subset of R?". He also
showed that if the induced almost contact structure is Sasakian then a hy-
persurface must be a hyperquadric. The latter result was generalized in [3] to
arbitrary hypersurfaces with J-tangent transversal vector field.

Since the class of centro-affine hypersurfaces with a J-tangent transversal
vector field is quite large, the question arises whether there are affine hyper-
spheres with a J-tangent Blaschke normal field. A nontrivial 3-dimensional
example was provided in [4]. The main purpose of this paper is to give a local
characterization of 3-dimensional J-tangent affine hyperspheres with involu-
tive contact distribution D.

In Sect. 2 we briefly recall basic formulas of affine diferential geometry
and recall the notion of an affine hypersphere.
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In Sect. 3 we recall the notion of a J-tangent transversal vector field,
a definition of the induced almost contact structure as well as some results
obtained in [3].

Section 4 contains the main results of this paper. We prove that there are
no improper J-tangent affine hyperspheres and we give a local representation
of 3-dimensional J-tangent affine hyperspheres under additional condition that
the contact distribution is involutive.

2. Preliminaries

We briefly recall the basic formulas of affine differential geometry. For more
details, we refer to [2]. Let f: M — R"*! be an orientable connected differen-
tiable n-dimensional hypersurface immersed in the affine space R"*! equipped
with its usual flat connection D. Then for any transversal vector field C' we
have

Dx f.Y = fu(VxY) + h(X,Y)C (2.1)
and
Dx C =—f.(5SX)+71(X)C, (2.2)

where X, Y are vector fields tangent to M. It is known that V is a torsion-free
connection, h is a symmetric bilinear form on M, called the second fundamental
form, S is a tensor of type (1,1), called the shape operator, and 7 is a 1-form,
called the transversal connection form.

We assume that h is nondegenerate so that h defines a semi-Riemannian
metric on M. If h is nondegenerate, then we say that the hypersurface or the
hypersurface immersion is nondegenerate. In this paper we assume that f is
always nondegenerate. We have the following

Theorem 2.1 ([2], Fundamental equations). For an arbitrary transversal vector
field C the induced connection V, the second fundamental form h, the shape
operator S, and the 1-form T satisfy the following equations:

R(X,Y)Z =n(Y,Z)SX — h(X, Z)SY,
(Vxh)(Y, Z) + 7(X)h(Y, Z) = (Vyh)(X, Z) + 7(Y)h(X, Z),
(VxS)(Y) = 7(X)SY = (VyS)(X) — 7(Y)SX,
h(X,SY)—h(SX,Y) =2d7(X,Y). (
The Egs. (2.3), (2.4), (2.5), and (2.6) are called the equations of Gauss,
Codazzi for h, Codazzi for S and Ricci, respectively.
For a hypersurface immersion f: M — R™*! a transversal vector field C
is said to be equiaffine (resp. locally equiaffine) if 7 = 0 (resp. dr = 0).
When f is nondegenerate, there exists a canonical transversal vector field

C, called the affine normal (or the Blaschke normal field). The affine normal is
uniquely determined up to sign by the following conditions: the metric volume
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form wy, of h is V-parallel and coincides with the induced volume form ©, where
wy, is defined by |wy(X1,...,X,)| = |det[h(X;, X;)]|'/? and © is defined by
O(Xy,...,X,) = det[fuX1,..., [+ X,,C] for tangent vectors X; (i=1,...,n).
The affine immersion f with the Blaschke normal field C is called a Blaschke
hypersurface. In this case fundamental equations can be rewritten as follows

Theorem 2.2 ([2], Fundamental equations). For a Blaschke hypersurface f, we
have the following fundamental equations:

R(X,Y)Z = h(Y, Z)SX — h(X, Z)SY,
(Vxh)(Y,Z) = (Vyh)(X, Z),
(VxS)(Y) = (VyS)(X),
h(X,SY) = h(SX,Y). (2.

© 00 N
S~— N N N
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A Blaschke hypersurface is called an affine hypersphere if S = \I, where
A = const.

If A =0 f is called an improper affine hypersphere, if A 20 f is called
a proper affine hypersphere.

For simplicity we shall omit f, in front of vector fields in most cases.

3. Induced Almost Contact Structures

Let dim M = 2n+1 and f: M — R2"*2 be a nondegenerate affine hypersur-
face. We always assume that R?”™ ~ C™ is endowed with the standard complex
structure J. In particular, if m = n 4+ 1 we have

J(xla"'7xn+17y13"'7yn+1) - (_yla~"1_yn+17x17~~~»xn+1)~

Let C be a transversal vector field on M. We say that C is J-tangent if
JCy € fo(TpyM) for every x € M. We also define a distribution D on M as
the biggest J invariant distribution on M, that is,

D, = f;l(f*(TrM) N J(f*(TmM)))

for every © € M. It is clear that dimD = 2n. A vector field X is called a
D-field if X, € D, for every x € M. We use the notation X € D for vectors
as well as for D-fields. We say that the distribution D is nondegenerate if h is
nondegenerate on D.

Recall that a (2n + 1)-dimensional manifold M is said to have an almost
contact structure if there exist on M a tensor field ¢ of type (1,1), a vector
field ¢ and a 1-form 7 which satisfy

¢*(X) = =X +n(X)E, (3.1)
n() =1
for every X € T M.
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Let f: M — R?"*2 be a nondegenerate hypersurface with a J-tangent
transversal vector field C. Then we can define a vector field &, a 1-form 7 and
a tensor field ¢ of type (1,1) as follows:

&:=JC, (3.3)
nlp =0 and n(§) =1, (3.4)
¢lp = J|p and ¢(£) = 0. (3.5)

It is easy to see that (¢, &, n) is an almost contact structure on M. This struc-
ture is called the almost contact structure on M induced by C' (or simply
induced almost contact structure).

For an induced almost contact structure we have the following theorem

Theorem 3.1 ([3]). If (p,&,n) is the induced almost contact structure on M
then the following equations hold:

n(VxY) = =h(X, oY) + X(n(Y)) +n(Y)r(X), (3.6)

+

e(VxY) = VxeY +n( )SX h(X,Y)E, (3.7)

n([X,Y]) = —h(X,0Y) + h(Y,pX) + X(n(Y)) - Y(n(X))  (3.8)
+1(Y)r(X) —n(X ) (Y),

P([X,Y]) = VxoY = VypX —n(X)SY +n(Y)SX, (3.9)

n(Vx§) = 7(X), (3.10)

n(SX) = h(X, &) (3.11)
for every X, Y € X(M).

4. J-Tangent Affine Hyperspheres

An affine hypersphere with a transversal J-tangent Blaschke normal field we
call a J-tangent affine hypersphere.
It is obvious that the standard hypersphere S2"+1(r) in R?7+2

2 2 2 2
T1°+ 22" + ...+ Topg2” =T

is a J-tangent affine hypersphere, since it is an affine hypersphere and the
affine normal field is orthogonal to it. The next example shows that there are
also other J-tangent affine hyperspheres:

Ezample 4.1 ([4]). Let us consider the affine immersion f defined as follows:

sinz sinhy cosz coshy
—cos z sinh sinxz cosh .
[R>S (2,y,2) — Y1 cosz + - Y sin 2 € R
cosx coshy —sinz sinhy
sinxz coshy cosx sinhy

with the transversal vector field
C:R3 3 (z,y,2) — —f(x,y,2) € R%
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f is a J-tangent affine hypersphere, since C' is the affine normal field (what can
be shown by straightforward computations) and JC = f, € f,TM. Moreover,
in the canonical coordinates on R? we have
100
h=10-10
001

Thus, A is not positive definite.
As an immediate consequence of Theorem 3.1 we have the following:
Theorem 4.1. There are no improper J-tangent affine hyperspheres.

Proof. From Theorem 3.1 (formula (3.11)) we have n(SX) = h(X,§) for all
X € X(M). Thus, if S = 0 then, h(X,£) = 0 for every X € X(M), which
contradicts nondegeneracy of h (since £ # 0.) O

Now we can state the main result of this paper:

Theorem 4.2. Let f: M — R* be a J-tangent affine hypersphere with involutive
distribution D. Then f can be locally expressed in the form:

sin vz sinh vy
. _s | —cosVx sinhv)y

flay,z) = A7 cosv x  cosh vy cos Az
sin vV Az cosh vy

cos vV Az cosh vy

a3 sinv Az cosh vy
—sin v/ Az sinh \f)\y

cos vV z sinh vy

sin \z € R* (4.1)

for some A > 0.
We split the proof of Theorem 4.2 into several lemmas.
Lemma 4.1. For every X,Y € D we have
heX, YY) = —h(X,Y).
Proof. Since D is involutive and kern = D we have n([X,Y]) = 0 for all
X,Y € D. Now using the formula (3.8) we obtain
hX, oY) =h(Y,pX) (4.2)

for every D-fields X and Y. Setting Y := ¢Y in (4.2) and using the fact that
p? = —I on D we immediately get

—hW(X,Y) = h(¢X,pY).
0

Lemma 4.2. For every x € M there exists a neighbourhood U of x and a D-field
X eX({U), X #0 such that h(X, X) =1, h(pX,pX) =—-1, h(X,pX) =0.
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Proof. First observe that h is nondegenerate on D, it means that for every
x € M h, is nondegenerate on D,. We will prove it by contradiction, namely,
suppose there exists x € M such that h, is degenerate on D,. Now, we can find
w € D,, w # 0 such that h,(v,w) = 0 for every v € D,. From formula (3.11)
we also have h,(&;,w) = 0. Since every vector t € T, M can be expressed in
the form

t=oav+ ﬂfza
where «, 5 € R, v € D,, we obtain
ha(w, t) = ahg(w,v) + Bha(w, &) =0

for all t € T,, M. We have that h, is nondegenerate on T, M so it follows that
w = 0, which contradicts the assumption.
Now we show that for every x € M we can find a D-field Z such that

ho(Zs, 0Zy) # 0.

Assume that there exists x € M such that for all Z, € D, we have
ho(Zayp24) = 0.

Then, for any v, w € D, we have:

0 = he(v +w, pv + pw) = ha(v, pv) + he(w, Pv) + ha(v, pw)
+he(w, pw) = hae(w, ov) + hae (v, pw).
Applying Lemma 4.1 we obtain
haz(v,w) =0

for all v,w € D,, which contradicts nondegeneracy of h on D. Let x be an
arbitrary point of M and let Z € D be such that h,(Z,, ¢Z,) # 0. Then there
exists a neighbourhood U of x such that h(Z, pZ) # 0 on U. Without loss of
generality we can assume that h(Z,pZ) > 0 on U (if h(Z,pZ) < 0 we can
replace Z by ¢Z). Now, we can define another vector field Y by the formula

Y =aZ + [BpZ,

where

o= \/\/h(Z, 22+ h(Z,0Z)2 +WZ, Z)

and

8= \VAZ 27 + WZ. 02 ~ h(Z.Z).
It is obvious that « and § are smooth and positive functions on U. Moreover
WY,9Y) = (o = B*)h(Z,9Z) — 2a3h(Z, Z)
=20(Z, Z)WZ,0Z) — 20(Z, 0 Z)W(Z,Z) = 0
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and
WY,Y) = a*h(Z,2Z) + B*h(pZ, o Z) + 2aBh(Z, pZ)
=2(h(Z,2))* + 200 Z,pZ) > 0

since «, 8 and h(Z,pZ) are positive functions on U. It is easy to verify that
= 4 has the required properties. O

Vh(Y,Y)
Lemma 4.3. For X from Lemma 4.2 the following equalities hold:
VgX = —A(pX, Vgg&X = /\X, ng = 0, fo = —x\(pX,
Vex§=2X, VxX =0, VxpX=¢ VexpX =0, Vy,xX=¢,

where \ is some positive constant.
Proof. From Theorem 3.1 we easily get
VeX, Vg, Vx&, Vuox§ Vx X, VoxpX € D.

Since dim D = 2, there are two smooth functions «, 8 defined on U such that

VeX =aX + feX. (4.3)
Now (3.7) implies
VepX = apX — BX. (4.4)
Moreover (3.7) and (3.11) imply
Vel =0.

Since f is an affine hypersphere, we have S = A, where X is a constant. We
can assume that A > 0 (otherwise we can change the sign of the Blaschke
normal field). Let wp, be the volume form for h. Then (since f is a Blaschke
hypersurface) we have in particular

0= (vfwh)(Xa @Xa 6) = g((.Uh(X, an 5)) - wh(vav SDX, 5) - wh(X7 v{saXa 5)
—Wh(X, SOX7 vﬁf) = —th(V€X, QDXa g) - Ct)h(X, VgQDXa g)

because V¢€ = 0 and wp (X, X, §) = VX = const . Now, using (4.3) and (4.4),
we obtain

(Vﬁ&)h)(X, SDX; 5) = _wh<aX7 (ané) - wh(ﬁ¢X7 (PX,f)
—wp (X, 00X, &) + wp(X, X, &) = —20V/A.

Thus o« = 0.
We also have

Vxé=—pSX = -ApX
and

Voxt = AX.
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From the Coddazi equation for h (2.8) we have

(Veh)(X, 0X) = —h(VeX, 9X) — M(X, VepX)
= —h(VeX,0X) — h(§, VxpX) = (Vxh)(§, ¢X),

so h(&,VxpX)=—X\—203. Again from (3.7) we get
VxpX =p(VxX)+E€.

Thus —\ — 28 = h(,VxpX) = h(&,p(VxX) + &) = A, that is, § = —\.
Summarizing the above consideration, we obtain

VeX = —dpX, VepX =2X, V=0, Vx{=-lpX, V x{=MX.
Since VxX € D and V,xpX € D, we have

VxX =pX +qpX, VyoxpX =aX +bpX,
where p, q, a,b are smooth functions on U. Hence

VxeX = p(VxX) +§=ppX — ¢X +¢,
VexX =& —p(VexpX) =€ —apX + bX.

Now, using the fact that
(Vxwn)(X, 0X,€) =0,
we get p = 0. Similary from
(Voxwn) (X, 9X,£) =0
we get b = 0. Again using the Coddazi equation for h (2.8) we have
(Vxh)(X,9X) = (Voxh)(X, X).
Thus ¢ = 0. In a similar way, using the equality
(Voxh) (X, X) = (Vxh)(pX, pX),
we can show that a = 0. Thus we have
VxX =0, VexpX =0, VxpX=¢ V,xX=¢

The proof of lemma is completed. O
Now we can return to the proof of the main theorem

Proof of Theorem 4.2. From Lemma 4.3, since V is a torsion free connection,
we immediately get

€, X] = [& ¢X] = [X,pX] = 0.
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Now, Frobenius’ theorem implies that there ex1sts a local coordinates system
(z,y,2) on U such that 3 =X, = =X, 6— = £. In these coordinates f
satisfies the following dlfferentlal equatlons

Jrz =C=-Af=-J{=—Jf,, (4.5)
foy = fo (4.6)
foz = =Afy, (4.7)
Jyw=-C=Af=Jf, (4.8)
fyz = Az, (4 9)
for = =M f. = —N2F. (4.10)

The Eq. (4.9) can be easily obtained from (4.7) and (4.10). Moreover the
equation (4.6) can be determined from the remaining, as well.
From (4.10) we get
flz,y,2) = c1(z,y) cos Az + ca(x, y) sin Az,

where c;,co are smooth functions with values in R*. Now, from (4.5), (4.7)
and (4.8) we obtain

Clegz = *)\Cl
Clyy = AC1
Jclw = Cly
JCQ =C1

Solving this system of equations we get
c1(z,y) = (aeﬁy + befﬁy) cos VA + (fJaeﬁy + Jbefﬁy) sin vV Az

and CQ(xay) = _Jcl(x?y)’ where a = (0/1,0/2,0/3,0/4)T, b= (b17b2ab37b4)T S

R*. Since f must be an affine hypersphere with S = AI, the affine normal field

C must have a form C' = —\f. It is obvious that 7 = 0. By straightforward
computations we obtain:

(2 9 9

ox’ Oy’ Oz

so f is an affine hypersphere if and only if

0 0 0
= 3 — — — =
) =4\ det[abJa Jb] and “’h(ax’ By’ 82) VA,

5

1
det[ab Ja Jb] = Z)\_?

Now, it is sufficient to find an affine J-invariant transformation A such that
det A =1. Let

a3 +bs —ay+byar +by as—bs
ag +by —as + by as+bs as — by
—ay — by —az + b3 az + b3 —a; + by
—ag — by —ag +bg ag + by —as + by

A= )\3?
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A'is J-invariant and det A = 4\2 det[ab.Ja Jb] = 1. It is not difficult to verify
that A=!o f has the form (4.1), what completes the proof of the theorem. [J
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