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Synopsis

Recent experiments performed on a variety of soft glassy materials have demonstrated that any

imposed shear flow serves to simultaneously fluidize these systems in all spatial directions [Ovarlez

et al., Nature Mater. 9, 115–119 (2010)]. When probed with a second shear flow, the viscous

response of the experimental system is determined by the rate of the primary, fluidizing flow.

Motivated by these findings, we employ a recently developed schematic mode-coupling theory

[Brader et al., Proc. Natl. Acad. Sci. U.S.A. 106, 15186–15191 (2009)] to investigate the three-

dimensional flow of a colloidal glass, subject to a combination of simple shear and uniaxial com-

pression. Despite differences in the specific choice of superposed flow, the flow curves obtained

show a good qualitative agreement with the experimental findings and recover the observed power-

law describing the decay of the scaled viscosity as a function of the dominant rate. We, then,

proceed to perform a more formal analysis of our constitutive equation for different kind of

“mixed” flows consisting of a dominant primary flow subject to a weaker perturbing flow. Our

study provides further evidence that the theory of Brader et al., Proc. Natl. Acad. Sci. U.S.A. 106,
15186–15191 (2009) reliably describes the dynamic arrest and mechanical fluidization of dense

particulate suspensions.

I. INTRODUCTION

Colloidal dispersions display a broad range of nontrivial rheological response to exter-

nally applied flow. Even the simplest systems of purely repulsive spherical colloids

exhibit a rate dependent viscosity in steady-state flows, yielding and complex time-

dependent phenomena, such as thixotropy and ageing [Brader (2010); Mewis and Wagner

(2009)]. Understanding the emergence of these collective dynamical phenomena from

the underlying interparticle interactions poses a challenge to nonequilibrium statistical

mechanics, and the fundamental mechanisms involved are only beginning to be under-

stood. Theoretical advances have largely been made hand-in-hand with improved simula-

tion techniques [Banchio and Brady (2003)] and modern experimental developments,

combining confocal microscopy or magnetic resonance imaging with classical rheologi-

cal measurements [Besseling et al. (2010); Frank et al. (2003)].
Despite considerable progress, a comprehensive constitutive theory, capable of captur-

ing the full range of response, remains to be found. Existing approaches are tailored to

capture the physics of interest within particular ranges of the system parameters (e.g.,
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density and temperature) but fail to provide the desired global framework. Moreover, the

vast majority of studies have concentrated on the specific, albeit important, case of simple

shear flow. Such scalar constitutive theories, relating the shear stress to the shear strain

and/or strain-rate, provide important information regarding the competition of timescales

underlying the rheological response, but do not acknowledge the true three-dimensional

character of experimental flows. Tensorial constitutive equations have long been a staple

of continuum rheology fsuch as the Giesekus or Oldroyd models [Bird et al. (1987);
Larson (1988)]g and enable, e.g., normal forces and secondary flows to be addressed in

realistic curvilinear experimental geometries.

The first steps toward a unified, three-dimensional description of colloid rheology

have been provided by recent extensions of the quiescent mode-coupling theory (MCT)

to treat dense dispersions under flow [Brader et al. (2008)]. These developments are built

upon earlier studies focused on simple shear [Brader et al. (2007); Fuchs (2009); Fuchs
and Cates (2002); Fuchs and Cates (2009)] and capture the competition between slow

structural relaxation and external driving, thus enabling one of the most challenging

aspects of colloid rheology to be addressed: the flow response of dynamically arrested

glass and gel states. Given the equilibrium static structure factor as input favailable from
either simulation or liquid state theory [Brader (2006)]g, the deviatoric stress tensor rðtÞ
may be determined for any given velocity gradient tensor jðtÞ. However, implementation

of the theory has been hindered by the numerical resources required to accurately inte-

grate fully anisotropic dynamics over timescales of physical interest falthough progress

has been made for two dimensional systems [Henrich et al. (2009); Krüger et al.
(2011)]g. In Brader et al. (2009), a simplified “schematic” constitutive model was pro-

posed, which aims to capture the essential physics of the wavevector dependent theory,

while remaining numerically tractable. Applications so far have been to steady-state

flows, step strain, and dynamic yielding [Brader et al. (2009)] as well as oscillatory shear

[Brader et al. (2010)].
Both the full [Brader et al. (2008)] and schematic [Brader et al. (2009)] MCTs predict

an idealized glass transition at sufficiently high coupling strength, characterized by an

infinitely slow structural relaxation time sa. Ageing dynamics are neglected. An impor-

tant prediction of the approach is that application of any steady strain-rate leads to fluid-

ization of the arrested microstructure, with a structural relaxation time determined by the

characteristic rate of flow sa � _c�1.

In recent experiments on various soft glassy materials, Ovarlez et al. have indicated

that when a dominant, fluidizing shear flow is imposed, then the sample responds as a liq-

uid to an additional perturbing shear flow, regardless of the spatial direction in which this

perturbation is applied. These findings imply that once the yield stress has been overcome

by the dominant shear flow, arrested states of soft matter become simultaneously fluid-

ized in all spatial directions. In particular, the low shear viscosity in a direction orthogo-

nal to the primary flow is determined by the primary flow rate. The rheometer employed

in Ovarlez et al. (2010) consisted of two parallel discs which enabled the simultaneous

application of rotational and squeeze shear flow, with independent control over the two

different shear rates. Although this setup indeed provides a useful way to study super-

posed shear flows of differing rate, it does not provide a mean to test the three-

dimensional yield surface, as claimed in Ovarlez et al. (2010). A true exploration of the

yield surface poses a considerable challenge to experiment and requires a parameteriza-

tion of the velocity gradient tensor which can incorporate the entire family of homogene-

ous flows, including both extension and shear as special cases. The superposition of two

shear flows is yet another shear flow and does not enable the entire space of homogene-

ous velocity gradients to be explored.
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In the present work, we will employ the constitutive theory of Brader et al. (2009) to
investigate the response of a generic colloidal glass to a “mixed” flow described mathe-

matically by the linear superposition of two independently controllable velocity gradient

tensors. Numerical results will be presented for the special case in which simple shear is

combined with uniaxial compression. Despite the fact that we employ a combination of

compression and shear, as opposed to the superposition of two shear flows, our theoreti-

cal results are broadly consistent with the experimental findings of Ovarlez et al. (2010)
regarding the response of shear fluidized glasses. In particular, our calculations reveal

clearly the relevant timescales dictating the three-dimensional response of the system.

Following this specific application, we proceed to extend our description to treat more

general mixed flows.

The paper will be organized as follows: In Sec. II, we will introduce the deformation

measures required to describe flow in three dimensions and summarize the schematic

model of Brader et al. (2009). In Sec. III, we will consider the application of our constitu-

tive model to a specific mixed flow, namely, a combination of uniaxial compression and

simple shear. In Sec. IV, we will present numerical results for the flow curves and low

shear viscosity for the aforementioned flow combination. In Sec. V, we will perform a

perturbation analysis of our constitutive equation, which enables us to address the general

problem of superposing a mechanical perturbation onto a dominant flow. Finally, in

Sec. VI, we will discuss the significance of our results and give concluding remarks.

II. THE SCHEMATIC MODEL

A. Continuum tensors

Spatially homogeneous deformations are encoded in the spatially translationally invar-

iant deformation tensor Eðt; t0Þ. Any given vector rðt0Þ at time t0 may be transformed into

a new vector r(t) at later time t using the linear relation

rðtÞ ¼ Eðt; t0Þ � rðt0Þ; (1)

where Eab ¼ @raðtÞ=@rbðt0Þ [Brader et al. (2010)]. Calculating the time derivative of the

deformation tensor E and using the chain rule for derivatives yields an equation of

motion for the deformation tensor

@Eðt; t0Þ
@t

¼ jðtÞ � Eðt; t0Þ; (2)

where j ¼ rv is the velocity gradient tensor with components ðrvÞab ¼ @ _ra=@rb. In
the present work, we will assume incompressibility, which may be expressed by the

condition Trj ¼ 0 or, equivalently, TrE ¼ 1 (volume is conserved). If the deformation

rate is constant in time, then the velocity gradient matrix j loses its time dependence

(jðtÞ ! j) and the deformation tensor E becomes a function of the time difference

alone (Eðt; t0Þ ! Eðt� t0Þ). The formal solution of Eq. (2) for such steady flows is thus

given by

EðtÞ ¼ ejt : (3)

The deformation tensor contains information about both the stretching and rotation of

material lines (vectors embedded in the material). A more useful measure of strain is the

Finger tensor Bðt; t0Þ, which is defined for steady flows by
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BðtÞ ¼ EðtÞ � ETðtÞ: (4)

The Finger tensor is invariant with respect to physically irrelevant solid body rotations of

the material sample and occurs naturally in many constitutive models fe.g., the Doi–

Edwards model of polymer melts [Doi and Edwards (1989)]g.

B. Schematic mode-coupling equations

The schematic model developed in Brader et al. (2009) expresses the deviatoric stress
tensor in integral form

rðtÞ ¼
ðt
�1

dt0½� @

@t0
Bðt; t0Þ�Gðt; t0Þ: (5)

An equation of the form (5) has been derived from first principles [Brader et al. (2008)],
starting from the N-particle Smoluchowski equation and applying mode-coupling approx-

imations to a formally exact generalized Green–Kubo relation for the stress tensor. In

Brader et al. (2009), the theory was simplified to Eq. (5) by assuming spatial isotropy of

the modulus Gðt; t0Þ. The physical content of Eq. (5) is that, in order to calculate the stress

at the present time, increments of an appropriate, material objective strain measure (the

Finger tensor) are integrated over the flow history, each weighted with a “fading memo-

ry.” Approximating Gðt; t0Þ by an exponential recovers the well-known Lodge equation

[Larson (1988)], which is just the integral form of the upper-convected Maxwell model.

However, Eq. (5) differs from the simple Lodge equation in that, (i) the modulus G is

generally not time translationally invariant, due time-dependent variation of the flow in

the time interval between t and t0, (ii) the memory does not decay exponentially to zero

but displays the two-step relaxation characteristic of dense colloidal dispersions.

Within the wavevector dependent approach of Brader et al. (2008), the autocorrelation
function of stress fluctuations is assumed to relax in the same way as the density fluctua-

tions. This leads to an approximation for the nonlinear modulus G, given by a weighted

k-integral over a bilinear function of density correlators at two different (but coupled)

wavevectors. The schematic model replaces this with the simpler form

Gðt; t0Þ ¼ �rU
2ðt; t0Þ; (6)

where Uðt; t0Þ is a single mode transient density correlator (normalized to Uðt; tÞ ¼ 1) and

�r is a parameter measuring the strength of stress fluctuations.

The dynamics of the single mode density correlator are determined by a nonlinear

integro-differential equation

_Uðt; t0Þ þ CfUðt; t0Þ þ
ðt
t0

dt0mðt; t0; t0Þ _Uðt0; t0Þg ¼ 0; (7)

where C is an initial decay rate, the inverse of which sets our basic unit of time. The func-

tion mðt; t0; t0Þ is a three-time memory-kernel, which depends upon the strain accumulated

between its time arguments and describes how this competes with the slow structural

relaxation arising from the colloidal interactions. The memory kernel is given by

mðt; t0; t0Þ ¼ h1ðt; t0Þh2ðt; t0Þ½�1Uðt; t0Þ þ �2U
2ðt; t0Þ�: (8)
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The dependence of the memory upon Uðt; t0Þ is taken from the F12 model developed by

Götze (2008). The coupling constants are given by �1 ¼ 2ð ffiffiffi
2

p � 1Þ þ e=ð ffiffiffi
2

p � 1Þ and

�2 ¼ 2, where e is a parameter expressing the distance to the glass transition. The system

is fluid for e < 0 and in a glassy state for e > 0.

The hi entering Eq. (8) are decaying functions of the accumulated strain. For simplic-

ity, we assume h1 ¼ h2 ¼ h. To allow consideration of any kind of flow (not only shear),

the function h is taken to depend upon the two invariants I1 and I2 of the Finger tensor

hðt; t0Þ ¼ c2cr
c2cr þ ½�I1ðt; t0Þ þ ð1� �ÞI2ðt; t0Þ � 3� ; (9)

where a mixing parameter ð0 � � � 1Þ and a cross-over strain parameter ðccrÞ have been
introduced [Brader et al. (2009)]. The scalars I1 ¼ TrðBÞ and I2 ¼ TrðB�1Þ are the trace

of the Finger tensor and its inverse, respectively. In principle, the time evolution of the

density correlator Uðt; t0Þ and thus, via Eqs. (5) and (6), the stress tensor, can be calcu-

lated by solving Eq. (7) numerically for any given velocity gradient tensor j.

The model outlined above contains a set of five independent parameters

ðvr;C; e; �; ccrÞ. The least important of these is �, which determines the relative influence

of the invariant I1 with respect to I2 in determining the strain induced decay of the mem-

ory function. However, numerical results prove to be extremely insensitive to the value

of �, at least for all flows to which the schematic model has so far been applied.

Trivial scaling of stress and time scales is provided by the parameters vr and C. A
statistical mechanical calculation of the dynamics of N colloids (in the absence of hydro-

dynamic interactions) identifies the modulus G as the autocorrelation function of stress

fluctuations. vr, therefore, determines the initial value of the modulus and, via Eq. (5),

sets the overall stress scale. The reciprocal of the initial decay rate C�1 simply acts as the

fundamental timescale. For the purpose of our theoretical investigations both vr and C
can, without loss of generality, be set equal to unity. The theoretical results thus gener-

ated can then be fit to experimental data by scaling stress and time (or frequency) with

alternative values for these two parameters [Brader et al. (2010)]
The two most important parameters in the model are ccr and e. The cross-over strain

ccr sets the strain value at which elastic response gives way to viscous flow. For example,

in experiments considering the shear stress response of dense colloidal systems to the

onset of steady shear flow, ccr can be identified from the peak of the overshoot on

the stress–strain curve. The parameter e characterizes the thermodynamic state point of

the system relative to the glass transition and serves as proxy for the true thermodynamic

parameters of the physical system (volume fraction, temperature, etc.). For example, in a

simple system of hard-sphere colloids of volume fraction / one can identify

e � ð/� /gÞ=/g, where /g is the volume fraction at the glass transition. For more com-

plicated systems, e can be regarded as a general coupling parameter which, in the absence

of flow, yields fluidlike behavior for e < 0 and amorphous solidlike response for e > 0.

III. MIXED SHEAR AND COMPRESSIONAL FLOWS

With the constitutive relation (5), we are in a position to determine the rheological

behavior of a colloidal glass undergoing any type of homogeneous deformation. In

Ovarlez et al. (2010), Ovarlez et al. considered various soft glassy materials loaded

between two parallel discs. Each sample was simultaneously sheared by rotating the

upper disc about its axis at a given angular velocity and squeezed by lowering the height
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of the upper disc at a given rate. By independently varying the rotation and compression

rates the stress could be determined as a function of one of the rates, for a fixed value of

the other. In these experiments, the rotation of the upper plate induces a shear flow in the

/̂ direction (in cylindrical coordinates), the rate of which increases linearly with radial

distance from the axis of rotation. As a consequence of the stick boundary conditions, the

compression of the sample leads to an inhomogeneous shear flow in the r̂ direction

(somewhat akin to a Poiseuille flow) with a maximum shear rate at the boundaries and

zero shear rate in the plane equidistant between the two plates.

The experiments of Ovarlez et al. (2010) were performed in a curvilinear geometry

using a flow protocol, which induces an inhomogeneous velocity gradient tensor. In prin-

ciple, spatial variations of the velocity gradient could be treated within the present theo-

retical framework by assuming that the constitutive relations remain valid locally and

enforcing the local stress balance appropriate to the geometry of the rheometer under

consideration. In addition to the increased numerical resources required for such an

investigation, the local application of our constitutive equation would represent a further

approximation, over and above those already underlying the schematic model. The main

conceptual point emerging from the experimental studies of Ovarlez et al. (2010) is that
if a primary flow restores ergodicity and fluidizes the glass, then the response to the

secondary flow is also fluid like. Spatial inhomogeneity of one or both flows is merely a

complicating factor. We thus choose to focus on a more idealized homogeneous flow

which is convenient for numerical implementation but nevertheless captures the salient

features of the experiment in a minimal way.

The homogeneous flow, we choose to implement, is a superposition of simple shear

and uniaxial compressional flow. We anticipate that the key physical mechanism at work

in fluidized systems under superposed flow is the competition between the two imposed

relaxation timescales. As the superposition of two shear flows is itself another shear flow,

the experiments of Ovarlez et al. (2010) leave open the possibility that the observed phe-

nomena could be a special feature of shear. For this reason, we chose to implement the

mathematically more general case of superposed extension and shear, for which the geo-

metrical coupling of the flows is more involved.

Working in a cartesian coordinate system our flow is specified by

j ¼ js þ jc: (10)

The shear and compressional flows are represented by the following matrices:

js ¼
0 _cs 0

0 0 0

0 0 0

0
@

1
A jc ¼

_cc=2 0 0

0 � _cc 0

0 0 _cc=2

0
@

1
A; (11)

where _cs and _cc are the shear and compression rates, respectively. Our choice of flow

thus differs from those of Ovarlez in two respects, (i) both _cs and _cc are translationally

invariant and (ii) we superpose shear with genuine elongation, as opposed to superposing

two shear flows. We consider the flow (10) as a thought experiment intended to highlight

the fundamental physical mechanism of fluidization in a simple and transparent fashion.

A direct experimental realization of Eq. (10) is not feasible, as this would require a rhe-

ometer with stick boundary conditions for generating the shear flow, but slip boundaries

for the compressional flow. As we will see below, our assumptions do not seem to lead to

qualitative differences between our theoretical findings and the experimental results and

simplify considerably the theoretical calculations.
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Equation (3) enables the calculation of the deformation tensor E(t) for our mixed flow.

The nonzero elements are given by

Exx ¼ Ezz ¼ e _cct=2;

Eyy ¼ e� _cct;

Exy ¼ 2 _cs
3 _cc

e� _cct e
3 _cct
2 � 1

� �
: (12)

Employing Eq. (4) yields the Finger tensor

BðtÞ ¼
E2
xx þ E2

xy ExyEyy 0

ExyEyy E2
yy 0

0 0 E2
zz

0
@

1
A; (13)

with inverse given by

B�1ðtÞ ¼

1

E2
xx

�Exy

E2
xxEyy

0

�Exy

E2
xxEyy

E2
xxE

2
zz þ E2

xyE
2
zz

E2
xxE

2
yyE

2
zz

0

0 0
1

E2
zz

0
BBBBBBBB@

1
CCCCCCCCA
: (14)

The invariants required for the memory function prefactors (9) are thus

I1ðtÞ ¼ 2e _cct þ e�2 _cct þ E2
xy; (15)

I2ðtÞ ¼ 2e� _cct þ e2 _cct þ E2
xye

_cct: (16)

Finally, we need to calculate the time derivative of the Finger tensor B(t). In Sec. IV, we

will present results for the shear stress rxy as a function of _cs, treating _cc as a parameter.

Inspection of Eq. (5) shows that we require only the xy component of the Finger tensor

time derivative

@BxyðtÞ
@t

¼ _cs
3
e�2 _cct 4� e

3 _cct
2

� �
: (17)

Substituting Eq. (17) into Eq. (5) and assuming time translational invariance (as appropri-

ate for the steady flows under consideration), we obtain our final expression

rxy ¼
ð1
0

dt
_cs
3
e�2 _cct 4� e

3 _cct
2

� �� �
�rU

2ðtÞ: (18)

The xy component of the shear stress tensor is now completely characterized. When

numerically evaluating the integral in Eq. (18), we find that truncation at s � ð _cs þ _ccÞ�1

provides accurate results. We note that, in an analogous way, all other components of

the shear stress rðtÞ can be calculated, which is useful if one is interested, for example, in
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the first and second normal stress differences, N1 � rxx � ryy and N2 � ryy � rzz,
respectively.

IV. NUMERICAL RESULTS

In Fig. 1, we show flow curves generated from numerical solution of Eqs. (7)–(9) and

(18). For each curve, we set the compressional rate equal to a fixed value, in effect treat-

ing _cc as a parameter, and plot the shear stress rxy as a function of _cs. The model parame-

ters used to generate these data are as follows: ðC ¼ 1; �r ¼ 1; ccr ¼ 1; � ¼ 0:5;
e ¼ 10�2Þ. For _cc ¼ 0, we recover the simple shear flow curve which, for the glassy state

under consideration, tends to a dynamic yield stress rxy ! ryield ¼ 0:03633 in the limit

of vanishing shear rate. Within the theory, the existence of a dynamic yield stress is a

direct consequence of the scaling of the structural relaxation time with shear rate,

sa � _c�1
s . The flow curves calculated at finite _cc differ qualitatively from that at _cc ¼ 0.

In particular, ryield is a discontinuous function of the parameter _cc, such that

rxyð _cs ! 0; _cc ¼ 0Þ 6¼ rxyð _cs ! 0; _cc ! 0þÞ. For finite _cc values, the flow curves present

a Newtonian regime for rates _cs < _cc, followed by a shear thinning regime for _cs > _cc.
The existence of two regimes is quite intuitive: For _cs < _cc compression is the dominant,

i.e., fastest, flow, and sets the timescale of structural relaxation, whereas for _cs > _cc the
shear flow dominates and the flow curve converges to the _cc ¼ 0 result.

The above findings are in a good qualitative agreement with the experimental results

obtained in Ovarlez et al. (2010) (cf. Fig. 3 therein). In order to characterize more pre-

cisely the flow curves at finite _cc, we show in Fig. 2 the low shear viscosity g ¼ rxy= _cs,
scaled by the yield stress ryield, as a function of _cc for three different positive values of e.
For _cc < 10�5, we find very a good data collapse onto a master curve. For _cc > 10�4,

clear deviations from universality set in, signifying that the compression induced struc-

tural relaxation processes are occurring on a timescale within the microscopic regime, for

which g becomes an e independent quantity (around _cs ¼ 10�4 for the parameter set used

in Fig. 1). Provided that _cc < s�1
b , we find that the numerical data are well represented by

the power-law scaling

FIG. 1. The flow curves of a glassy state (e > 0) for various values of the compressional rate _cc. The dashed

line is a Newtonian viscous law. For _cc ¼ 0 the _cs ! 0 limit of the flow curve identifies the dynamic yield stress

(Brader et al., 2009).
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g=ryield ¼ A _cac ; (19)

with a ¼ �1, in agreement with the experimental findings of Ovarlez et al. (2010). The
constant of proportionality A is independent of e (both g and ryield vary in the same way

with this parameter). Given the lack of detailed material specificity in the schematic

model, we are led to believe that a ¼ �1 is a universal exponent, independent of both

the details of the material under consideration and of the precise nature of the primary

and perturbing flows. Our findings suggest that any constitutive theory capable of

describing a three-dimensional dynamic yield stress f“yield stress surface” [Brader

et al. (2009)]g will inevitably recover the scaling Eq. (19) with a ¼ �1, when applied to

tackle mixed flows. In particular, we anticipate that the full wavevector dependent

mode-coupling constitutive equation [Brader et al. (2008)] would predict the same scal-

ing behavior, although this claim remains to be confirmed by explicit calculations.

FIG. 3. Mapping a compression melted glassy state onto an effective fluid state obtained by matching the low

shear viscosity. The effective distance to the glass transition eeff is shown as a function of the compressional

rate _cc, for different values of e. The points are numerical data, and the lines provide a guide for the eye. The

inset shows the same data on a logarithmic scale.

FIG. 2. The low shear viscosity g scaled by the yield stress ryield as a function of compression rate _cc (glassy
states with e ¼ 10�1; 10�2, and 10�3). The continuous line is a power-law fit to the numerical data points for

e ¼ 10�1 over the range _cc ¼ 10�12 � 10�4 and yields an exponent of �1. The e-dependent deviations apparent
for _cc > 10�4 indicate that short-time relaxation processes are becoming relevant.
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Within mode-coupling-based approaches, the value of the scaling exponent a is a natural
consequence of the way in which strain enters the memory function Eq. (8).

The flow curves presented in Fig. 1 for various values of _cc are very reminiscent of the

(more familiar) flow curves either measured or calculated under simple shear with _cc ¼ 0

and e < 0, i.e., states which would remain fluid in the absence of flow [see, e.g., Fuchs and

Cates (2003)]. This similarity suggests that it may be possible to map, at least approxi-

mately, the shear response of a steadily compressed, glassy system with _cc 6¼ 0 and e > 0

onto an uncompressed, fluid system, _cc ¼ 0, at some effective, negative value of the separa-

tion parameter eeff . One possible way to realize such a mapping is to adjust eeff for a given
_cc to obtain equal values for the low shear viscosity of the compressed glass and effective

fluid systems. The results of performing this procedure for three values of e are shown in

Fig. 3. It should be noted that the mapping between eeff and _cc becomes discontinuous at

_cc ¼ 0 at which point eeff ¼ e > 0. The inset of Fig. 3 shows the same data on a logarith-

mic scale. In this representation, it becomes apparent that the data follow a power law

eeff � � _cbc : (20)

Fits to our numerical data yield values for the exponent 0:41 < b < 0:43.
Within the quiescent F12 schematic model [Götze (2008); Götze (1984)], to which the

present theory reduces in the absence of flow, it is known that the zero shear viscosity

exhibits a power-law divergence as e approaches the glass transition from below

g � ð�eÞ�d ; (21)

where d is the same exponent as that describing the divergence of sa at the glass transi-

tion. Note that the symbol d is employed here for this exponent, rather than the standard

choice c, in order to avoid confusion with the strain. When employing the Percus–Yevick

approximation to the static structure factor as input, the wavevector dependent MCT pre-

dicts that for hard-spheres the viscosity exponent takes the value d ¼ 2:46 (identifying e
as the volume fraction, relative to the transition point) [Götze and Sjögren (1992)].

Within the present schematic model, we obtain d ¼ 2:3.1 Given this information about

the divergence of g in the quiescent system, the power-law relation for the mapping

Eq. (20) is already implicit in the data shown in Fig. 2. Using the relations (19) and (21),

the relation (20) can be deduced, where the exponent b is given by b ¼ a=ð�dÞ ¼ 0:43,
which is consistent with the results of our numerical fits.

V. ANALYTIC PERTURBATIVE RESULTS

We have so far focused on the special case of mixed shear and compressional flows.

For any given value of _cc < C, we have shown that there exists a Newtonian regime in

the stress response to the shear flow, provided _cs < _cc (see Fig. 1).2 In this section, we

1The specific numerical value for the exponent d from the schematic model depends upon the path chosen in the

two-dimensional space of memory function coupling constants ð�1; �2Þ. By taking a standard linear path para-

meterized by e [see text below Eq. (8)], we reproduce rather closely the viscosity divergence of the wavevector

dependent theory for hard-spheres.
2A completely analogous picture would have emerged, had we chosen a dominant shear flow with a perturb-

ing compressional component. In this inverted thought experiment the dominant timescale would simply be

set by _cs.
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now consider more general situations for which a second slow flow j2 is added to a dom-

inant flow j1 (while keeping the requirements of incompressibility and homogeneity). In

the present context, a sufficient condition for the second flow to be considered “slow” is

that _c2 � _c1, where the characteristic shear rates are now identified as _ci ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ji : jTi

p
for

i ¼ 1; 2 (where A : B � P
ij AijBji). In Secs. V A–V C, we provide perturbative constitu-

tive equations for three different cases. In the first of these cases, we consider j1 and j2
as steady flows (without any other restriction), derivate the corresponding perturbative

constitutive equation and finally apply this latter to our coupled compressional and shear

flows, in order to theoretically account for the Newtonian viscous response to j2 dis-

cussed in Sec. IV, and to finally make the connection with the phenomenological consti-

tutive equation obtained by Ovarlez et al.. In the second case, we still consider steady

flows, but this time with the additional requirement of “commutating” flows, i.e.,

½j1; j2� � j1 � j2 � j2 � j1 ¼ 0, whereas in the third case j2 is time-dependent and the

requirement of commutating flows is maintained. We also illustrate these last two cases

with instructive examples.

A. Newtonian viscous response

1. Perturbation expansion

The first point to note is that the isotropic modulus GðtÞ decays on the timescale _c�1
1 ; the

slower secondary flow has no influence on the structural relaxation. We henceforth make

this fact explicit in the notation for the modulus by writing Gðt; _c1; _c2Þ � Gðt; _c1Þ � G1ðtÞ.
For steady flows, the constitutive equation (5) may thus be simplified to

r ¼
ð1
0

dt
@

@t
BðtÞ

� �
G1ðtÞ: (22)

Although the modulus is essentially independent of _c2, the Finger tensor depends nonli-

nearly upon both j1 and j2. In order to address the case _c2 � _c1, we expand the Finger

tensor (4) to first order in j2. For the mixed flow under consideration B(t) is given by

BðtÞ ¼ eðj1þj2Þteðj
T
1
þjT

2
Þt: (23)

The desired partial linearization of Eq. (23) with respect to j2 is complicated by the fact

that the two velocity gradient tensors do not necessarily commute.

In order to proceed we consider the following Taylor expansion:

ex̂þaŷ ¼ ex̂ þ a
d

da
ex̂þaŷ

� �
a¼0

þ Oða2Þ; (24)

where x̂ and ŷ are arbitrary operators independent of the scalar coupling parameter a. The
derivative may be obtained using the Feynman identity [Feynman (1951)]

d

da
ex̂þaŷ

� �
a¼0

¼
ð1
0

dkex̂ð1�kÞŷex̂k: (25)

Applying Eqs. (24) and (25) to Eq. (23), we obtain the leading order result

BðtÞ ¼ B1ðtÞ þ
ðt
0

ds Uðt; sÞ þ UTðt; sÞ	 

; (26)
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where we define the following tensors:

B1ðtÞ � E1ðtÞ � ET
1 ðtÞ; (27)

Uðt; sÞ � E1ðtÞ � E1ð�sÞ � j2 � E1ðsÞ � ET
1 ðtÞ; (28)

where E1ðtÞ ¼ expðj1tÞ. Equation (26) is linear in j2 but retains all orders of the domi-

nant flow j1. Substitution of Eq. (26) into Eq. (22) thus yields a stress tensor consisting

of two terms,

r¼
ð1
0

dt
@

@t
B1ðtÞ

� �
G1ðtÞþ

ð1
0

dt
@

@t

ðt
0

ds Uðt;sÞþUTðt;sÞ	 
� �
G1ðtÞ

�r1þdr; (29)

where r1 is the stress arising purely from the dominant flow and dr is the additional con-

tribution from the slow perturbation.

The perturbative term dr in Eq. (29) is a tensor, whose elements depend upon time as

½��ij � tnij , where nij 	 1 is an integer. Within the schematic model the relaxation time

determining the decay of G1ðtÞ is given by sa ¼ ccr= _c1, where ccr is the cross-over strain
parameter entering Eq. (9). This decay serves to cut off the integral in Eq. (29) at the

upper limit t � sa, with the consequence that the numerically largest elements of ½��ij aris-
ing from terms with nij ¼ 1 are Oðg1ccrÞ. In a (repulsive) colloidal glass any given colloid
is trapped within a cage of nearest neighbors. The cross-over strain parameter ccr is

related to the strain at which the cages begin to be broken by the external flow. Typical

values for this dimensionless parameter from simulation or experiment are ccr 
 0:1
[Zausch et al. (2008)].

We now apply the perturbative formula (29) to the coupled compressional and shear

flows expressed by the matrices (11), with j1 ¼ jc and j2 ¼ js. Since no complete ana-

lytic expression is known for the density correlator U, we approximate the modulus G1ðtÞ
by an exponentially decaying function G1ðtÞ 
 G1 expð� _c1t=ccrÞ, where G1 is a con-

stant. Under this approximation, Eq. (29) becomes

r ¼ g1 _cc

1

1� ccr
0 0

0
�2

1þ 2ccr
0

0 0
1

1� ccr

0
BBBBBBB@

1
CCCCCCCA

þ 2
2g1

ð2þ 5ccr þ 2c2crÞ
D2; (30)

where g1 �
Ð1
0

dtG1ðtÞ is the rate dependent shear viscosity of the primary flow alone

and D2 � ðj2 þ jT2 Þ=2 is the symmetric part of the velocity gradient matrix j2. The sec-

ond term in Eq. (30) is nothing but the expression of a Newtonian-type viscous response

to the secondary flow j2 (shear flow) with a viscosity mainly determined by the strain-

rate of the dominant flow _c1 (compressional rate) through g1. This is in agreement with

what we numerically showed in Sec. IV.

2. Empirical constitutive equation

In Ovarlez et al. (2010), Ovarlez et al. proposed an empirical constitutive equation to

account for the viscous stress measured in a number of fluidized glassy systems. In the

notation of the present work, the proposed constitutive relation is
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r ¼ 2
ryield þ kdn

d

� �
D; (31)

where k and n are scalar parameters and d � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D : D

p
is an invariant of the symmetric

part of the total velocity gradient D ¼ ðjþ jTÞ=2. The isotropic viscosity appearing in

square parentheses in Eq. (31) is obtained from a straightforward generalization of the

familiar scalar Hershel–Bulkley law for the shear stress, rsh ¼ ðryield þ k _cnÞ.
If we neglect the cross-over strain parameter ccr (whose value is already small,

ccr 
 0:1), then the second term in our perturbative constitutive Equation (30) becomes

dr ¼ 2g1D2, which is entirely consistent with the implicit second term in the empirical

relation (31). Indeed, for _c1 � _c2, the generalized Hershel–Bulkley effective viscosity

ðryield þ kdnÞ=d is dominated by the fastest flow and is effectively independent of _c2. We

can thus make the following correspondence between viscosities appearing in the sche-

matic Eq. (30) and empirical Eq. (31) constitutive equations

g1 �
ð1
0

dtG1ðtÞ , ryield þ kdn

d
: (32)

The linear dependence of D on the velocity gradient tensor thus enables Eq. (31) to be

rewritten as

r ¼ r1 þ 2g1D2; (33)

thus making explicit the connection between Eqs. (30) and (31).

B. Anisotropic viscosity

We still consider steady flows j1 (dominant flow) and j2 (secondary flow), but now

with the restriction of commutating flows, i.e., j1; j2½ � ¼ 0. Such flows have the property

that the total deformation tensor can be formed from the product of the individual

deformations, EðtÞ ¼ E1ðtÞE2ðtÞ. As we will see, this restriction allows for more tractable

perturbative constitutive equations.

With j1; j2½ � ¼ 0, the expression (26) then reduces to

BðtÞ ¼ B1ðtÞ þ 2tE1ðtÞ � D2 � ET
1 ðtÞ: (34)

Substitution of Eq. (34) into Eq. (22) yields the following form for the stress tensor:

r ¼ r1 þ 2g1D2 þ 2

ð1
0

dtG1ðtÞ @

@t
tE1ðtÞ � D2 � ET

1 ðtÞ
	 
� D2

� �
: (35)

The anisotropic third term in Eq. (35) is the result of a nonlinear operator acting on the

perturbing velocity gradient D2 and incorporates information about the symmetry

imposed on the system by the dominant fluidizing flow.

For incompressible isotropic fluids in the Newtonian regime the viscosity in any given

flow can be determined from the shear viscosity via Trouton’s rules (e.g., gel ¼ 3gsh,
where gel is the elongational viscosity in uniaxial extension). Trouton’s rules no longer

hold in the present case, due to the presence of the third term in Eq. (35).

In order to explicitly demonstrate the relative magnitude of the anisotropy, we con-

sider the special case of perpendicular shear flow ðj1Þij ¼ _c1dixdjy, ðj2Þij ¼ _c2dizdjy and
again approximate the modulus by an exponentially decaying function G1ðtÞ

 G1 expð� _c1t=ccrÞ. Under this simplifying assumption Eq. (35) becomes
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r ¼ r1 þ 2g1 _c2

0 0 0

0 0 1=2
0 1=2 0

0
@

1
Aþ 2g1 _c2

0 0 ccr
0 0 0

ccr 0 0

0
@

1
A: (36)

The small off-diagonal elements which appear in the third term of Eq. (36) are generated

by the coupling between primary and perturbing flows and may be viewed as a correc-

tion, at around the 10% level, to the dominant isotropic viscosity g1. The appearance of

these additional contributions to the viscous stress can be attributed to the normal stress

differences generated by the primary flow. Constitutive theories with vanishing normal

stress differences will always predict an isotropic viscous response to perturbing flows.

It is interesting to note that the stress tensor (35) may be formally expressed in terms

of an anisotropic viscosity

ðrÞij ¼ ðr1Þij þ 2ðgÞijklðD2Þkl; (37)

where the fourth rank tensor g with components ðgÞijkl is given in terms of the shear mod-

ulus and the deformation gradient of the dominant flow

ðgÞijkl ¼ 2

ð1
0

dtG1ðtÞ @

@t
tðE1ðtÞÞikðE1ðtÞÞjl

� �
: (38)

If the dominant flow is switched off, then E1ðtÞ ¼ 1 and Eq. (38) reduces to the familiar

isotropic viscosity gijkl ¼ 2g0dikdjl, where g0 is the zero shear viscosity (infinite for glassy

states with e > 0). Given that the dominant flow fixes the anisotropy of the system, it is not

surprising that the viscosity experienced by the perturbing flow is a tensorial quantity.

Finally, we note that the presence of anisotropy prevents a general three-dimensional

mapping of a flow fluidized glass onto an effective fluid state with e < 0, as performed

for the special case of mixed compressional and shear flow in Sec. IV.

C. Superposition spectroscopy

A special case of mixed flow which has received some attention in the rheological

literature is small amplitude oscillation superposed onto steady shear. Largely due to con-

straints imposed by the available apparatus, the majority of the experimental works have

involved parallel shearing flows using either cone-plate [Booij (1966); Osaka et al.
(1965)] or Couette [Vermant et al. (1998)] rheometers. The measured viscoelastic paral-

lel superposition moduli depend upon both the microstructure under steady shear and its

evolution with changes in shear rate.

A more informative, albeit harder to realize, mixed flow consists of oscillatory shear

superposed perpendicular to the main flow direction. The orthogonality of the flows

makes possible a mechanical spectroscopy of flowing systems which can probe flow

induced changes in the microstructure and which may be used as a useful test of constitu-

tive equations [De Cleyn and Mewis (1987); Kwon and Leonov (1993); Leonov et al.
(1976); Tanner and Simmons (1967)]. For details on the experimental realization of such

orthogonal flows we refer the reader to Vermant et al. (1997).
As a specific example of orthogonal oscillation we consider the mixed flow

ðj1Þij ¼ _c1dixdjy; (39)

ðj2Þij ¼ c0x cosðxtÞdizdjy; (40)
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where x is the angular frequency and c0 is the amplitude of the oscillatory strain

(assumed to be small). The time-dependence of the perturbing flow j2 requires us to use

a time-ordered exponential to express the corresponding deformation tensor, namely,

E2ðt; t0Þ ¼ e

Ð t

t0 dsj2ðsÞþ ; (41)

where the exponential is defined according to

e

Ð t

t0 dsAðsÞþ ¼ 1þ
ðt
t0
dsAðsÞ þ

ðt
t0
ds1

ðs1
t0
ds2Aðs1ÞAðs2Þ þ � � � : (42)

We also require the time-dependent expression for the stress tensor given by Eq. (5).

After linearization with respect to j2 and making use of j1; j2½ � ¼ 0, we obtain a formula

for the stress tensor analogous to Eq. (35),

rðtÞ ¼ r1 þ
ðt
�1

dt0G1ðt; t0; _c1Þ � @

@t0
E1ðt� t0Þ �

ðt
t0
ds2D2ðsÞ

� �
� ET

1 ðt� t0Þ
� �� �

:

(43)

Substituting Eqs. (39) and (40) into Eq. (43) and making use of standard trigonometric

addition formulas yields

rzyðtÞ ¼ c0G
0
1ðx; _c1Þ sinðxtÞ þ c0G

00
1ðx; _c1Þ cosðxtÞ; (44)

where the orthogonal superposition moduli are given by

G0
1ðx; _c1Þ ¼ x

ð1
0

dt0 sinðxt0ÞG1ðt0; _c1Þ; (45)

G00
1ðx; _c1Þ ¼ x

ð1
0

dt0 cosðxt0ÞG1ðt0; _c1Þ: (46)

In Eqs. (44)–(46), we have made explicit the dependence of the moduli upon the steady

shear rate _c1. The application of oscillations perpendicular to the flow thus enables the

modulus under steady shear to be investigated and provide information about the

shear induced relaxation of stress fluctuations. We note that identical moduli (45) and

(46) would be obtained had we chosen the alternative perturbing flow ðj2Þij
¼ c0x cosðxtÞdixdjz and determined the stress component rxz.

In Fig. 4, we show the orthogonal superposition moduli as a function of frequency for

three different values of the steady shear rate _c1. For _c1 ¼ 0, we recover the standard linear

response moduli, for which the viscous loss dominates the elastic storage for frequencies

less than 2p=sa. For the fluid state considered sa is finite (e < 0). As the steady shear rate is

increased, relaxation processes with rates less than _c1 are suppressed and the point at which
the storage and loss moduli cross moves to higher frequency. These findings are consistent

with the experimental results of both Booij (1966) and Vermant et al. (1998). The underly-
ing physics here is essentially the same as that leading to the shift of the Newtonian regime

as shown in Fig. 1. At low frequencies the orthogonal superposition moduli retain the same

frequency scaling as in the familiar unsheared situation, namely, G0
1 � x2 and G00

1 � x.
We note also that the Kramers–Kronig relations remain valid for finite values of _c1.
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In addition to the speeding up of structural relaxation induced by the steady shear, the

loss modulus also displays a more pronounced a-peak compared to the unsheared func-

tion. This feature is related to the functional form of the a-decay of the transient density

correlator. In the absence of shear UðtÞ decays as a stretched exponential, whereas under

shear the final decay is closer to pure exponential. However, it is likely that more accu-

rate (i.e., beyond schematic) orthogonal moduli, obtained either from experiment or more

detailed microscopic calculations/simulations, would differ qualitatively in the region of

the a-peak. There is accumulating evidence [Zausch et al. (2008)] that G1ðt; _c1Þ becomes

negative at long times and, as this feature is not captured by the simple schematic model

employed here, differences in the Fourier transformed quantity around x ¼ 2p _c1 may be

anticipated. The negative tail of G1ðt; _c1Þ is related to the existence of a maximum in the

shear stress as a function of time following the onset of steady shear [Zausch et al.
(2008)]. The “stress overshoot” is present in the full wavevector dependent mode-

coupling equations [Brader et al. (2008)] but gets lost in simplifying the theory to the

schematic level.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we have demonstrated that the MCT-based schematic model of Brader

et al. (2009) can qualitatively account for the experimental results on three-dimensional

flow of soft glassy materials reported in Ovarlez et al. (2010)]. In particular, the competi-

tion of timescales which arises from applying flows of differing rate appears to be cor-

rectly incorporated into the model. The main outcome of our analysis is that the viscous

response to a perturbing secondary flow is dominated by the primary flow rate. Although

subtle anisotropic corrections to this picture do emerge from our equations, it remains to

be seen whether these have significant consequences for experiments in any particular

rheometer geometry.

A key feature of the mode-coupling constitutive theory is that it captures the transition

from an ergodic fluid to an arrested glass as a function of the coupling strength. The

FIG. 4. The orthogonal superposition storage (G0
1, filled symbols) and loss (G00

1, open symbols) moduli as a func-

tion of frequency for a fluid state. The circles show the standard linear response moduli calculated at a vanishing

steady shear rate _c1 ¼ 0. The squares and triangles show the moduli calculated at finite steady shear rates,
_c1 ¼ 10�5 and 10�4, respectively. The arrows indicate the characteristic frequency 2p _c1 below which the struc-

tural relaxation is dominated by the steady shear (which coincides approximately with the crossing point of the

moduli). Parameter set ðC ¼ 1; �r ¼ 100; ccr ¼ 1; � ¼ 1; e ¼ �5� 10�3Þ.
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present study demonstrates that the theory qualitatively accounts for experimental data

on mechanically fluidized glassy systems in three-dimensional situations. What remains

to be established is whether the experimental yield surface of a colloidal glass agrees

with the (almost) von Mises form [Hill (1971)] predicted by the schematic model [Brader

et al. (2009)]. A true measurement of the yield surface would require a rheometer which

enables parameterization of the entire family of velocity gradients, incorporating both

uniaxial and planar extensional flows. This has not yet been achieved. Given the very dif-

ferent mechanisms underlying plastic flow in colloidal glasses and metals (for which the

von Mises yield surface was originally proposed) direct measurements of the yield sur-

face could prove very informative.

The good qualitative agreement of our theory with the experimental results of Ovarlez

et al. (2010) on fluidized glasses is perhaps all the more surprising when recalling that

the theory is constructed specifically for dispersions of spherical colloidal particles (with-

out hydrodynamic interactions), whereas the experiments were performed on large aspect

ratio Bentonite clay, a Carbopol gel and an emulsion. The consistent phenomenology pre-

sented by these disparate systems would seem to indicate that the sufficient elements

required for a successful theory are (i) a well-founded geometrical structure (in the sense

that its tensorial structure is appropriate), (ii) correct incorporation of flow induced relax-

ation rates. The specific nature of the interparticle interactions does not seem to be of par-

ticular importance, although we note that certain interaction potentials may be more

susceptible to inhomogeneous flow (e.g., shear banding instabilities) than others. The

presence of a spatially varying velocity gradient tensor j would conflict with the assump-

tion of translational invariance underlying our constitutive equation.

For the case of superposed compression and shear flow, we have found that the viscos-

ity felt by the perturbing shear flow is given by 2g1=ðð2þ 5ccr þ 2c2crÞÞ, which for the

typical value ccr ¼ 0:1 is around 20% less than the primary viscosity g1. In Ovarlez et al.
(2010), the sedimentation velocity of a sphere falling in the vorticity direction of a shear

fluidized glass was observed to be a factor of 1.4 larger than one would expect from a

sphere falling through a fluid of viscosity g1. Ovarlez et al. attributed this to hydrody-

namic interactions between sedimenting particles. Although the flow around a falling

sphere in shear flow is more complicated than the flows considered in the present work, it

is nevertheless tempting to speculate that enhanced sedimentation velocity could be con-

nected to a reduced effective viscosity, as occurs in Eq. (30), arising from a nontrivial

coupling of the superposed flows. We leave a detailed application of our constitutive

equation to the problem of sedimentation under shear to future work.

An aspect of the present work which may warrant further investigation is the possible

analogy between systems with isotropic interparticle interactions, upon which anisotropy

is imposed by external mechanical force fields, and intrinsically anisotropic materials

such as liquid crystals [de Gennes and Prost (1993); Larson (1988)]. The theory of aniso-

tropic fluids has a long history, beginning essentially with the work of Oseen in the 1930s

[Oseen (1933)] and developed through the work of Ericksen (1959) and Leslie (1968). In

all of these theoretical developments, the anisotropy of the viscous response originates

from the underlying anisotropy of the constituents; usually oriented polymers or rodlike

particles with liquid crystalline order. Take the nematic phase as an example. Within a

continuum mechanics description, the orientational order is characterized by the director

n. In certain systems, the director may be held fixed by the application of a suitably

strong external field, in others it interacts with the imposed flow in a more complicated

way. Either way, the presence of a preferred direction in the sample gives rise to an ani-

sotropic viscous response (characterized, e.g., by the five scalar Leslie viscosity coeffi-

cients). In the present case, the anisotropy of the perturbation response is determined by
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the geometry of the primary flow. It may thus be anticipated that the eigenvectors of the

primary deformation may play a role in the present theory analogous to that of n in the

dynamics of nematics.

Throughout the present work, we have focused on the response of a glass which has

already been fluidized by a primary flow of constant rate. However, within the same for-

malism we can also consider the predictions of our constitutive equation for the elastic

response of a colloidal glass which has been prestrained by a primary deformation at

some point in the past (see the Appendix for more details on this point). For example, a

colloidal glass subject to a shear strain below the yield strain may reasonably be expected

to possess an anisotropic elastic response to an additional small perturbing strain [see

Eq. (A4) for verification of this assertion]. Taking this idea a step further, it would be of

interest to investigate the nature of the yield stress surface in such prestrained glasses.

Although both the topology of the surface and its invariance with respect to hydrostatic

pressure will remain unchanged by prestraining, significant deviations from circularity

(over and above those already arising from normal stresses) can be envisaged. In reality,

these deviations may well be nonstationary, decaying away as the sample ages, but such

subtle dynamic effects are beyond current formulations of the MCT.
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APPENDIX: ANISOTROPIC ELASTICITY

Integrating Eq. (5) by parts yields the following form for the schematic constitutive

equation:

rðtÞ ¼ Bðt;�1ÞGðt;�1Þ � �r1þ
ðt
�1

dt0Bðt; t0Þ @

@t0
Gðt; t0Þ: (A1)

For glassy states, the modulus relaxes to a plateau value for long times and the contribu-

tion of the integral term to the overall numerical value of the stress is limited to a negligi-

ble integration over the b relaxation (beyond this time, the time derivative vanishes). The

integral term may, therefore, be neglected to a good level of approximation.

We first consider the situation when the system is subjected to a mixed strain field

� ¼ �1 þ e2, where �i ¼ ðriri þ ririÞ is the infinitessimal strain due to flow i. Both of

these strains are sufficiently small that the system remains in the purely elastic regime.

The stress for long times after the application of the two strains is given by a simple lin-

ear superposition of the two elastic responses

r ¼ 2G1�1 þ 2G1�2; (A2)

as is expected from the linear theory of isotropic elasticity [Landau and Lifshitz (1986)].

Note that in Eq. (A2), we have suppressed an irrelevant isotropic contribution ��r1 (the

system is incompressible).

We next consider the situation whereby �2 remains small but the strain due to the

primary flow is allowed to be sufficiently large that some plastic rearrangements are

induced. We nevertheless require that the total strain must still remain sufficiently small
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that the yield stress is not exceeded and the system remains solid. The analysis of this

case neccessitates use of the partial expansion (34). We assume that the primary strain

has been applied at some time in the distant past and that all plastic rearrangements have

ceased by the time we apply the perturbing strain �2. The Finger tensor B1ðtÞ � B1 is

thus independent of time at the present time t. For times t following application of �2 :

r ¼ r1 þ 2G1E1 � �2 � ET
1 : (A3)

By analogy with the situation considered in Sec. V B, Eq. (A3) can be expressed in terms

of a fourth rank stiffness tensor

ðrÞij ¼ ðr1Þij þ ðCÞijklð�2Þkl; (A4)

where ðCÞijkl ¼ 2G1ðE1ÞikðE1Þjl. We note that the plateau value of the modulus G1 may

differ from its quiescent value as a result of plastic deformation occurring during or after

application of the primary strain.
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