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The ability of tumor cells to leave a primary tumor, to disseminate through the body, and to ultimately
seed new secondary tumors is universally agreed to be the basis for metastasis formation. An accu-
rate description of the cellular and molecular mechanisms that underlie this multistep process would
greatly facilitate the rational development of therapies that effectively allow metastatic disease to be
controlled and treated. A number of disparate and sometimes conflicting hypotheses and models have
been suggested to explain various aspects of the process, and no single concept explains the mechanism
of metastasis in its entirety or encompasses all observations and experimental findings. The exciting
progress made in metastasis research in recent years has refined existing ideas, as well as giving rise
to new ones. In this review we survey some of the main theories that currently exist in the field, and
show that significant convergence is emerging, allowing a synthesis of several models to give a more
comprehensive overview of the process of metastasis. As a result we postulate a stromal progression
model of metastasis. In this model, progressive modification of the tumor microenvironment is equally
as important as genetic and epigenetic changes in tumor cells during primary tumor progression. Mutual
regulatory interactions between stroma and tumor cells modify the stemness of the cells that drive tumor
growth, in a manner that involves epithelial-mesenchymal and mesenchymal-epithelial-like transitions.
Similar interactions need to be recapitulated at secondary sites for metastases to grow. Early disseminat-
ing tumor cells can progress at the secondary site in parallel to the primary tumor, both in terms of genetic
changes, as well as progressive development of a metastatic stroma. Although this model brings together
many ideas in the field, there remain nevertheless a number of major open questions, underscoring the
need for further research to fully understand metastasis, and thereby identify new and effective ways of
treating metastatic disease.

1. Introduction

Abbreviations: BMDC, bone marrow-derived cell; CAF, carcinoma-associated
fibroblast; CGH, comparative genomic hybridization; CSC, cancer stem cell; CTC, cir-
culating tumor cell; DTC, disseminated tumor cells; ECM, extracellular matrix; EMT,
epithelial-mesenchymal transition; FAK, focal adhesion kinase; mCSC, migrating
cancer stem cell; MET, mesenchymal-epithelial transition; TAM, tumor-associated
macrophage.
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Ever since metastasis has been investigated, models and con-
cepts about how the metastatic disease process works have been
suggested [1]. These have provided a framework within which
to understand clinical observations and experimental findings,
have served as an important tool for directing further research,
and have suggested how new therapies that address metastatic
disease might be developed. Most early concepts were based
on clinical observations and autopsy findings. These include the
“seed and soil” hypothesis that envisages tumor cells as seeds that
require a particular organ microenvironment or “soil” if they are to
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survive outside of the primary tumor and grow as metastases [2],
the anatomical/mechanical model that proposes that patterns of
metastasis can be explained by the location of the primary tumor
with respect to the blood and the lymphatic vasculature, which in
turn determines to which organs disseminating tumor cells will
be transported and subsequently become mechanically entrapped
[3,4], and theories about metastatic cascades and generalizing sites
that hold that metastases in one organ could disseminate tumor
cells and give rise to metastases in further organs in a sequential
manner [5,6].

The complexity of metastasis as a process determines that
none of these or indeed other concepts completely and accurately
describes how the process works, nor do they integrate and encom-
pass all clinical observations and experimental findings. This can
have major consequences for therapy. For example, Halstead’s rad-
ical mastectomy for the treatment of breast cancer in which the
axilla and its lymph nodes are removed in addition to the breast
containing the primary tumor was developed on the basis of the
metastatic cascade concept. The rational was that if lymph nodes
containing metastatic tumor cells were left in situ, then these lymph
node metastases could themselves give rise to metastases in other
organs. Removing all lymph nodes in the axilla should therefore
improve survival rates. However, large-scale long-term random-
ized trials have provided evidence in recent years that for a number
of types of cancer removing the lymph nodes that drain primary
tumors has very little effect on patient survival [7]. Furthermore,
recent analysis of the growth rate of tumors suggests that within
the lifetime of a cancer patient there is not enough time for the serial
seeding of metastases from a metastasis elsewhere [8]. Together,
these observations underline the importance of an integrated and
accurate concept of how metastasis works, if efficient and effective
therapies are to be developed.

In the last few years, rapid progress has been made in many
areas of metastasis research. These new insights into the process
of metastasis have challenged existing accepted paradigms, stim-
ulated the development of new concepts and models, expanded
our understanding of hitherto poorly understood aspects of the
process, and have highlighted the need to re-evaluate and inter-
pret existing data in the light of these new findings. In this review,
we discuss long-standing concepts about how metastasis devel-
ops in the context of some of the contemporary theories that have
arisen recently as a consequence of these new observations. We
use the concept of the metastatic “seed” and the “soil” of the organ
microenvironment - the most long-lasting and influential hypoth-
esis in the field - as a framework within which to discuss these
ideas.

2. How does the metastatic seed develop?
2.1. Clones, heterogeneity and selection

Based on a series of seminal observations in experimental ani-
mals [9,10], Fidler and others formulated the clonal selection model
to explain how tumor cells acquire the ability to metastasize.
This model postulates that during tumor progression, increasing
genomic instability in the primary tumor results in the stochas-
tic accumulation of genetic and epigenetic defects, resulting in a
heterogeneous population of tumor cells that differ in their gene
expression patterns. The gene expression profile of some of these
cells will be sufficient to endow this subpopulation with the prop-
erties required for local invasion, survival in the circulatory system,
extravasation into secondary organs, and growth as overt metas-
tases at these sites. Other subpopulations of cells in the primary
tumor will have some of the properties required, but will not suc-
cessfully complete all the necessary steps. Thus tumor cells that

successfully form metastases should be considered as “decathlon
winners” [10].

In addition to experimental evidence from animal models, sup-
port for the clonal selection theory comes from histological and
genetic analysis of human tumors which provides evidence for het-
erogeneous patterns of gene expression [11]. A corollary of the
clonal selection theory is that organ-specific patterns of metas-
tasis may be dependent on tumor-intrinsic properties that are
selected for as tumor cells disseminate. Initial evidence for the
existence of genes driving organ-specific metastasis came from the
identification of poor prognosis gene signature through supervised
clustering of cohorts of primary breast cancers [12-15]. Subse-
quently, gene expression signatures associated with breast cancer
metastasis to bone, lung and brain were defined in experimen-
tal models and validated with human samples [16-18]. These
experimental studies were based on the generation and analy-
sis of organotropic metastatic lines derived from a parental line
(mostly MDA-MB-231) by multiple rounds of in vivo selection. The
brain and lung metastasis signature were partly overlapping and
contained genes controlling vascular remodeling and permeabil-
ity, such as COX2, ANGPTL4, LTBP1 and EGFR ligands. The bone
metastasis signature was rather divergent, and contained genes
associated with bone osteolysis and cell survival in the bone such as
IL-11, PTHrP and OPN. Besides allowing the identification of indi-
vidual genes, these studies proved useful for the classification of
metastasis-promoting genes based on their functional contribution
to metastasis. Three categories were defined: (i) metastasis-
initiating genes, comprising genes that provide an advantage in
tumor cell growth, escape and invasiveness at the primary tumor
site; (ii) metastasis virulence genes, giving survival advantages to
disseminated tumor cells within the newly colonized microen-
vironment; (iii) genes promoting progression, giving advantages
during the entire metastatic process by affecting general steps, such
as tumor angiogenesis, inflammation, epithelial-mesenchymal
transition (EMT), or immune evasion. While these studies have
provided unprecedented molecular details on the mechanisms of
organ-specific metastasis, many questions that are relevant for
the development of therapeutic strategies remain open. For exam-
ple, the experimental models are based on the use of human cell
lines in immunosuppressed mice, thereby bypassing a possible
role of the adaptive immune system in controlling metasta-
sis. Also, cancer cells were injected directly into the vascular
system in these models, thus mimicking only the final steps
of metastasis.

The clonal selection theory would not seem consistent with the
observation that primary tumors are often phenotypically simi-
lar to the metastases they give rise to [19], as according to this
model, metastases should represent selection of only a subpop-
ulation in the primary tumor. Other observations, for example
from gene expression profiling of primary tumors, also suggest
that the clonal selection model may need to be re-evaluated [20].
These studies have defined molecular signatures in primary tumors
that successfully predict patient prognosis. The majority of tumor
cells in the primary tumor must express the signature for it to
be detected, which does not seem to conform with the notion
that a small subpopulation of tumor cells develop metastastic
properties, as suggested by the clonal selection hypothesis. These
data rather indicate that metastatic development is pre-defined
by genetic changes acquired during the initial stages of tumor
development. Consistently, transcriptome analysis suggests that
primary tumors are rather similar to their matched metastases,
and are more similar with each other than with tumors from
other individuals [21]. Nevertheless, a number of observations
make it difficult to use transcriptome analysis to draw conclu-
sions about the provenance of the tumor cells that seed metastases
with confidence, as although transcriptomically similar, primary
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tumors and their matched metastases also display profound differ-
ences in their gene expression profiles [8,22]. The different genetic
backgrounds of individuals may account for the more extensive dif-
ferences between individuals than between their metastases and
their primary tumors. Moreover, recent studies suggest that pri-
mary tumors are composed of clonal areas, which would not be
detected by studies that simply take total tumor material for anal-
ysis [23]. Furthermore, the existence of a predictive ‘metastatic
signature’ in primary tumors might not be inconsistent with the
clonal selection theory, since metastatic tumor cells may self-seed
back to the primary tumor and therefore ‘contaminate’ a primary
tumor signature with a metastatic signature [24,25]. Self-seeding
of the primary tumor with metastasis-derived cancer cells might
also complicate the interpretation of the established relationship
between primary tumor size and metastatic potential [26,27].

Variations on the clonal selection model have been proposed
that help to resolve some of these issues. The clonal dominance
model suggests that metastatically competent cells have a com-
petitive advantage and therefore outgrow other subpopulations in
the primary tumor [28]. The dynamic heterogeneity model sug-
gests that the acquisition of metastatic competence may only be
transient, and that the frequency with which metastatically com-
petent cells arise determines the metastatic potential of a given
tumor [29].

2.2. Is the dissemination of the metastatic seed an early or late
event in the life of a tumor?

Implicit in the clonal selection theory and its variants is the
idea that cancer cells need to accumulate a sufficient number of
genetic and epigenetic alterations to acquire full metastatic capac-
ity, requiring that metastasis is a rather late event during tumor
progression to allow the accumulation of such alterations [30].
This notion is consistent with the generally accepted correlation
between primary tumor size and risk of lymph node and distant
metastasis [27], and the observation that metastatic genes are
already expressed in primary tumors [31].

In the last few years a significant body of evidence has emerged
which indicates that tumor cells that ultimately form metastases
may disseminate very early after tumorigenesis. This notion is
based on the genomic analysis of single disseminated tumor cells
(DTCs), as well as matched primary tumors and their metastases
from human patients [8,22]. Similarly, experimental manipulation
of animal models of metastasis suggests that dissemination may
occur even at pre-malignant stages of tumorigenesis [32]. Con-
sistently, circulating tumor cells (CTCs) in the blood and DTCs in
the bone marrow can both be detected at early stages of tumor
development in cancer patients [30,33-37]. To accommodate these
observations, an alternative model has been proposed in which
tumor cells disseminate early during tumor progression, and sub-
sequently acquire additional genetic changes that ultimately allow
them to grow out as metastases at the distant site. In this model,
primary tumors and metastases progress in parallel as indepen-
dent lesions [8]. Clonal selection in primary tumors and metastases
would be compatible with this model, but would not be a piv-
otal determinant of when dissemination of the metastatic seed
occurs.

The comparative genomic analysis of DTCs from lymph node
and bone and their corresponding primary tumors has been
performed using comparative genomic hybridization (CGH) for
a number of types of cancer, and provides significant evidence
in support of a parallel progression model. For example, DTCs
generally show fewer genetic abnormalities than their primary
tumors and there is also extensive disparity between chromosomal
gains and losses when DTCs and their primary tumors are com-
pared (reviewed in [8,22]). These studies also provide evidence

that genetic abnormalities in DTCs were acquired independently
of those in the primary tumor, and that substantial numbers of
chromosomal losses were found in primary tumors that were not
present in DTCs. As loss of DNA is irreversible and transmitted
to progeny, these observations provide evidence for both early
dissemination of metastatic founder cells and parallel progression.
However, studies on DTCs are potentially complicated by the
use of epithelial markers to detect them. Tumor cells undergoing
EMT, for example (see below), may not express these markers
and therefore would not be included in the analysis, potentially
skewing the results. Nonetheless, when matched primary breast
tumors and their metastases were also compared genomically,
for example using CGH, almost half of the paired samples showed
more discordances than shared chromosomal abnormalities, and
a substantial number of chromosomal losses were found in the
primary tumors that were not present in the metastases [38].
Similar findings have been made in other studies [39,40].

In addition to this genomic analysis, other evidence also sup-
ports the notion of early dissemination and parallel progression.
DTCs may remain dormant over prolonged periods of time, and
a recent study demonstrated in vivo evolution in dormant tumor
cells of the heritable ability to escape dormancy and grow out
as metastases [41]. Experimentally, when untransformed mam-
mary epithelial cells containing inducible oncogenes are injected
intravenously, they can remain viable in lung tissue for prolonged
periods of time before assuming malignant growth upon induc-
tion of oncogene expression [42], providing a proof of principle
that even non-transformed disseminated cells have the potential
to remain dormant and ultimately grow as tumors. Nevertheless,
given that the definition of malignancy is the breaching of the base-
ment membrane, it is currently difficult to envisage how tumor
cells could physically disseminate at a pre-malignant stage, as has
been suggested [32]. However, recent studies show that invasive-
ness may appear early during transformation in cells that escape
oncogene-induced senescence [43], providing a mechanism for dis-
semination very early during tumorigenesis.

Genomic exon sequencing of colorectal [44] and pancreatic pri-
mary tumors and their matched metastases [23] revealed that
the majority of point mutations were common to both primary
tumors and their metastases, and that metastases had acquired a
few additional mutations. This may argue against early dissemina-
tion. Indeed, these data were used to calculate when the metastastic
founder cells developed, and concluded that few if any additional
mutations are required for metastastic founder cells to develop
from carcinomas [44], and that metastatic dissemination is a late
event [23]. However, there are some important caveats associated
with the interpretation of these findings. Exon analysis of protein-
encoding genes was used, which by definition only addresses
around 1% of the genome [45]; analysis of the genomes of pri-
mary tumors and their matched metastases on a more global level
comes to different conclusions (see above). Furthermore, the anal-
ysis of point mutations in protein-encoding genes may skew the
investigation toward genetic changes that underlie the tumorigenic
properties of the cancer cells. Thus patterns of point mutations
would be expected to be similar between primary tumors and their
metastases, and these data sets may not be appropriate for making
robust conclusions about the etiology of metastatic founder cells.
In addition, disparity in point mutations between primary tumors
and their metastases that were found in other studies support the
notion of parallel progression [22].

2.3. Metastatic seeds and the pecking order: hierarchy and CSCs
Another concept for how metastasis works arises as a corol-

lary of the cancer stem cell (CSC) hypothesis that predicts that
malignancies, like many high turnover tissues, are characterized
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by a hierarchical organization, with stem-like cells endowed with
self-renewal and the capacity to differentiate, but also with more
committed progenitor cells and fully differentiated lineages [46].
As by definition CSCs are predicted to be the cells that initiate and
drive secondary tumor growth, they would be expected to underlie
malignant behavior by responding to environmental cues to detach
from the primary tumor and disseminate throughout the body as
so-called migrating cancer stem cells (mCSCs) [19]. Thus mCSCs are
predicted to be the metastatic seeds that found secondary tumors.

Experimental evidence to support the notion that CSCs play a
critical role in metastasis remains thin on the ground. However,
recent studies point to the existence of specific stem-like subpopu-
lations of cancer cells endowed with high migratory and metastatic
capacity, and suggest that CSCs are heterogeneous populations that
include actively cycling CSCs that drive tumor growth, as well as
more quiescent stem-like cancer cells. This cellular heterogene-
ity within the CSC compartment with the dichotomy of cycling
and quiescent CSCs was first studied in pancreas cancer where
the CSC population is defined by CD133 expression. The combined
expression of CD133 and CXCR4, a chemokine receptor implicated
in cellular migration and high malignant and metastatic potential,
earmarks CTCs detectable in the portal vein which eventually form
liver metastasis [47]. Accordingly, depletion of the migrating cancer
stem cells using a pharmacological inhibitor of the CXCR4 receptor
abrogated their metastatic potential [47]. CXCR4 expression in CSCs
is likely to make them responsive to a chemotactic gradient estab-
lished by its specific ligand, stromal factor 1 or SDF-1, expressed by
several organs in which metastases develop.

Additional evidence for the existence of different CSCs subtypes
responsible for metastasis comes from studies on colon cancer,
where CSCs can be detected and prospectively enriched with a vari-
ety of cell surface antigen markers [48-52]. Three distinct types of
CSCs (also referred to as tumor-initiating cells, TICs) are likely to
exist in colon cancer: extensive self-renewing long-term (LT-TICs),
tumor transient amplifying cells (T-TAC), and delayed contributing
(DC-TICs) [53]. Only self-renewing LT-TICs were shown to be able
to contribute to metastasis formation [53]. Finally, a more specific
marker of migratory and distant metastasis-causing CSCs in colon
cancer was recently identified: a subpopulation of CD26* cells was
found in both primary and metastatic tumors from advanced stage
CRC patients capable of giving rise to CTCs in the portal vein and to
distant metastasis [54].

The above examples of heterogeneity in CSC populations, as well
asseveral others[55] are likely to reflect plasticity in the CSC pheno-
type. Additional plasticity is also reflected in studies that show that
non-CSCs can acquire CSC properties [56,57]. For example, similar
to normal stem cells, a microenvironmental niche has been shown
to be required to maintain glioma and skin cancer CSCs [58,59],
and this is probably also the case for other tumor types [60]. A
perivascular location can actually be the driving force that leads to
the acquisition of CSC properties by non-CSC subpopulations [61].
Thus extrinsic microenvironmental cues are emerging as important
determinants of the CSC population.

2.4. Sleeping it off: dormancy

Metastases can occur many years after surgical removal of the
primary tumor, which has given rise to the concept of dormancy.
These late-developing metastases are thought to develop from
DTCs that have become re-activated after remaining in a stable dor-
mant state over a prolonged period [62]. For example, after radical
prostatectomy for prostate cancer, almost half of all patients have
detectable DTCs in their bone marrow more than 5 years after their
surgery [63]. Dormant tumor cells can exist in a quiescent state, or
as micrometastases in which proliferation is balanced by cell death
through apoptosis [7]. Reactivation of these dormant cells can be

due to changes in the tumor cells themselves, for example due to
loss of metastasis suppressor genes that regulate dormancy [64],
as well as to modification of their microenvironment, for example
extracellular matrix (ECM) remodeling and recruitment of inflam-
matory cells [65,66]. The activation of the growth of indolent tumor
cells by bone marrow-derived cells (BMDC) recruited in response to
osteopontin produced by a second remote “instigator” tumor may
also reflect the re-animation of dormant cells [67]. Due to their
quiescence or slow turnover, dormant tumor cells are resistant to
conventional cytotoxic therapies because their intrinsic quiescence
makes them insensitive to DNA-damaging agents that specifically
target cycling cells [68].

An elegant recent study that looked at the mechanism behind
the re-activation of dormant breast cancer cells in the bone mar-
row provides evidence that intrinsic changes in gene expression
in tumor cells can relieve dormancy [41]. Metastases growing out
in the bone marrow after long latency periods were found to
express VCAM-1, in contrast to the parental clone that was orig-
inally injected into the experimental animals. In further rounds of
injection into animals, these VCAM-1-expressing cells were able
to form bone metastases without entering dormancy. Mechanisti-
cally, VCAM-1 allows breast tumor cells to recruit a4f31-positive
osteoclast progenitors, thereby elevating osteoclast activity that
leads to bone destruction. These data nicely demonstrate that
in vivo evolution of tumor cells can lead to the loss of dormancy.

There are a number of parallels between dormant tumor cells
and CSCs. As mentioned above, CSCs can be quiescent, and are
also resistant to chemotherapy. Mechanisms that CSCs share with
normal stem cells underlie their innate resistance to therapy, for
example multi-drug resistance due to up-regulation of cellular
efflux pumps [69,70], activation of the DNA damage response
[71], and lower concentrations of reactive oxygen species [72]. A
perivascular location regulates CSC identity (see above), and is also
required for the survival of dormant tumor cells that have dissem-
inated to the brain [73].

2.5. Re-evaluating EMT: multiple functions in metastasis?

A concept that continues to attract attention is the notion that
the morphogenetic program of EMT becomes activated in can-
cer cells as they progress, and that this contributes to metastasis
formation. During the transition from benign adenoma to malig-
nant carcinoma and metastasis formation, differentiated epithelial
tumor cells are thought to acquire a de-differentiated, migra-
tory, and invasive phenotype through the process of EMT [74].
This process of EMT is accompanied by dramatic changes in
cellular morphology, the loss and remodeling of cell-cell and
cell-matrix adhesion, and the gain of migratory and invasive capa-
bilities [75,76]. The functional contribution of EMT to metastasis
in patients is still debated, yet recent progress in the discovery of
novel EMT markers provides increasing evidence for the occurrence
of EMT in human cancers [19,77,78].

It is now becoming evident that EMT itself is a multistage pro-
cess, involving distinct genetic and epigenetic alterations and a high
degree of cellular plasticity. In the past years, a large number of
genes have been identified that seem to be critical for this pro-
cess [75]. A major molecular event during EMT is the loss of the
epithelial cell-cell adhesion molecule E-cadherin, which by itself
can suffice to induce EMT and tumor progression [79-81]. Con-
versely, cells undergoing EMT acquire expression of mesenchymal
markers such as vimentin.

A broad-spectrum of transcriptional and post-transcriptional
regulators that have been implicated in malignant progression also
regulates EMT [82]. Many growth factors such as transforming
growth factor 3 (TGFB), and their associated signal transduction
pathways induce EMT by activating one or several transcriptional
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repressors, such as Snaill (Snail), Snail2 (Slug), Zeb1 (3EF1), Zeb2
(Sip1), E47, and Twist, which in turn repress a number of genes,
including E-cadherin [75,83,84]. Many other transcription factors
also play critical roles in EMT [75,85]. Moreover, a number of
microRNAs that are differentially expressed during EMT are piv-
otal regulators of the complex circuits that underlie the multiple
stages of EMT [86-88]. Furthermore, several enzymatic activities
and factors critical for epigenetic regulation, such as DNA methy-
lation and histone modifications, are themselves modulated in
their expression or activities during EMT [89,90]. Together, these
changes orchestrate the dramatic reprogramming of cells that char-
acterizes EMT.

Cell polarity is regulated by the Scribble, the Partitioning defec-
tive (Par) and the Crumbs complexes [91]. Loss of apical-basal
polarity as a result of aberrant expression of polarity proteins is
considered a prerequisite for metastatic tumor progression and
leads to EMT. This is well illustrated by the Par complex that con-
sists of the proteins Par3, Par6 and the atypical protein kinase C
[91]. TGF3 downregulates Par3 expression, revealing a mechanism
by which TGFf3 can disrupt tight junction formation, mediate loss
of apical-basal cell polarity and induce EMT [92]. Par6 of the Par
complex promotes tumor initiation and progression and interacts
with the TGFf3 receptor. Blocking the TGF[3-dependent phosphory-
lation of Par6 in breast cancer models reduces metastasis to the
lungs and highlights the importance of the loss of polarity sig-
naling for EMT and metastasis [93]. Similarly, repression of the
Crumbs polarity complex in epithelial tumors occurs concomitantly
with increased expression of vimentin and reduced expression of
E-cadherin, and its expression negatively correlates with the migra-
tory and metastatic capacity of cells. Importantly, the proteins ZEB1
and Snail mediate repression of Crumbs, linking known regulators
of EMT to polarity protein signaling through the Crumbs protein
[94].

EMT appears not to be a unitary “black and white” process
that leads invariably and irreversibly from a purely epithelial to a
purely mesenchymal phenotype; there appear to be shades of gray
in between [82,95]. It has suggested, for example, that EMT should
be classified into three subtypes [95]. Furthermore, basal-like
breast carcinomas often exhibit features associated with EMT,
yet retain some epithelial characteristics [96]. Such intermediate
states have been referred to as the metastable EMT phenotype [97].
Moreover, there is also considerable plasticity in the response to
EMT induction, and is often a reversible process both physiologi-
cally and pathologically. For example, hypoxia induces a reversible
EMT in breast cancer cells [98]. The reversibility of EMT in the
cancer context has been used to suggest that EMT allows cells
to invade and disseminate, and is then reversed at distant sites
through a mesenchymal-epithelial transition (MET) that results in
a metastasis that phenotypically resembles the originating primary
tumor [19]. Evidence for dynamic reversible phenotypic changes
in vivo during dissemination has been obtained for melanoma [99].
Autocrine motility factor [100] and expression of GATA3 [101]
have been shown to reverse EMT. Partial EMT has been shown to
decrease cell adhesion but still allow collective cell migration [102],
consistent with observations that the mesenchymal (single cell)
and collective modes of migration are reversibly interchangeable
[103,104]. These and other such dynamic reversible changes have
been suggested to be vital for dissemination [105]. The multiple
levels at which EMT is regulated [82,106] provides a platform for
the fine-tuning of metastable transitional states between purely
epithelial and purely mesenchymal phenotypes. The spatial and
temporal expression and combination of transcriptional repressors
that are induced, for example, can influence the outcome of the
EMT process [107]. Thus a picture emerges in which EMT describes
a spectrum of phenotypes that are reversibly interchangeable and
subject to dynamic regulation by the microenvironment. Dynamic

interchange in the “gray scale” between purely epithelial and
purely mesenchymal phenotypes as evidenced by the interplay
between ZEB and miR-200 points to the importance of such
transitions in tumor progression [86].

Classically, the induction of EMT has been interpreted as being
important in the process of metastasis by endowing tumor cells
with invasive properties. However, recent findings suggest that
EMT provides many more properties of relevance to metastasis
than just invasiveness. For example, EMT serves as an escape route
for tumor cells from a variety of obstacles connected with cell
transformation and rapid tumor growth, including oncogene addic-
tion, oncogene-induced cellular senescence, tumor hypoxia, and
increased apoptosis [43,108,109]. Apparently, EMT ensures that
cancer cells not only gain migratory and invasive capabilities but
also survive once they have left their accustomed primary tumor
environment. Signaling pathways elicited by the EMT process pro-
vide a variety of survival signals that overcome cell cycle arrest and
cell death by apoptosis or anoikis that otherwise would be trig-
gered by the cytokine storm occurring within the primary tumor
environment, by the inflammatory responses within the neighbor-
ing tissue and by the immune defense within the blood circulation.
Accordingly, the genetic program of EMT includes a variety of
immunosuppressive functions.

The complex changes in the cytoskeleton associated with motil-
ity and invasiveness may be incompatible with cell proliferation
[110]. Accordingly, it has been shown that growth arrest can be a
feature of EMT, for example through increased levels of p16ink4a
[111] and repression of cyclin D expression [112,113]. Consistently,
persistent expression of Twist has been associated with main-
tenance of dormancy and quiescence [107]. Conversely, MET is
associated with increased proliferation [86].

EMT also appears to play a critical role in the generation and
maintenance of cancer stem cells, consistent with the observa-
tion that many stem cell genes are expressed in metastatic cancer
cells [114,115]. Indeed, EMT increases the stemness of cells, as
after completion of EMT cancer cells express many stemness mark-
ers, they are able to form spheroids in culture, they are more
tumorigenic in xenograft transplantation experiments and they are
more metastatic [114-116]. A broad spectrum of signals from the
tumor microenvironment may trigger EMT at the invasive front
of epithelial malignancies, where tumor cells are in direct con-
tact with stromal components such as fibroblasts, myofibroblasts,
granulocytes, macrophages, mesenchymal stem cells, and lympho-
cytes that are able to secrete diffusible EMT-inducing signals [117],
thereby inducing EMT, stemness properties, and facilitating detach-
ment and dissemination from the primary site [118,119]. Moreover,
quiescent stem-like cancer cells are earmarked by expression of
EMT markers [75]. The ability of EMT to induce both cell cycle arrest
and endow stemness properties on cells may therefore by of rele-
vance to the quiescent CSC subpopulations mentioned above. The
induction of EMT may contribute to the plasticity in the CSC pheno-
type, for example, endowing non-CSCs with stemness properties.
However, the degree to which genetic programs that regulate stem-
ness and EMT overlap remains to be properly investigated. EMT
has also been suggested to generate mCSCs that leave the primary
tumor and disseminate to distant sites, subsequently undergoing
MET to resume growth and form metastases that are phenotyp-
ically similar to the primary tumor from which they are derived
[19,86].

Finally, cells that have undergone EMT are found to exhibit
increased resistance against many, but not all chemotherapeutic
agents [116]. Interestingly, the converse is also true: chemical enti-
ties have been found that eradicate with higher efficacy cells that
have undergone EMT as compared to their epithelial counterparts,
raising the possibility of directly targeting cells that have under-
gone EMT [120].
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3. Concepts of the soil

The last few years have seen a dramatic increase in our knowl-
edge about key constituents of the microenvironmental “soil” that
supports the survival and outgrowth of the metastatic “seed” in
distant organs. It has become clear that the microenvironment
around DTCs has a profound influence on whether they die, remain
dormant or grow as metastases [7]. Different tumor types may
have different microenvironmental requirements for metastatic
outgrowth. Such differences may contribute to differences in intrin-
sic metastatic potential, namely the tendency for some tumor types
(e.g. melanomas) to form metastases even when the primary tumor
is very small, while other tumor types (e.g. basal cell carcinomas)
rarely metastasize even after sizable growth of the primary tumor
|6]. Similarly, particular microenvironmental requirements for the
survival and growth of DTCs from different types of cancer may
underlie organ-specific patterns of metastasis.

3.1. Inflaming the situation: a niche occupation

A microenvironment that is conducive to the growth of DTCs
has been termed a metastatic niche [121]. Recent years have
seen a number of seminal studies that have identified key con-
stituents of such niches. Remodeling of the ECM and recruitment of
inflammatory cells and other BMDC play a central role [122-125].
Growth factor, cytokines, chemokines and other proteins produced
by cellular components of the metastatic niche are pivotal in the
formation of metastatic niches, for the attraction of CTCs, and
for the survival and outgrowth of DTCs [122-124,126]. A num-
ber of observations also suggest that a perivascular location is
a pre-requisite for DTC survival and outgrowth [73], and there
is increasing evidence that hypoxia plays an important role in
the metastasis-promoting function of metastatic niches [126-128].
Progressive changes in the stroma of primary tumors takes place
during tumor formation and progression [129,130], and there are
also many similarities between these changes and the constituents
of metastatic niches.

Metastatic niches may be found endogenously in organs where
metastases form. A higher prevalence of such niches may under-
lie the predilection of DTCs to grow as metastases in organs such
as lymph nodes, lungs, liver, brain and bone. A number of obser-
vations suggest that by occupying the normal stem cell niche, for
example in the bone marrow, DTCs find a primed niche that sup-
ports their growth [131,132]. Nevertheless, endogenous metastatic
niches are probably sparsely distributed, which may account in part
for the inefficiency of the metastatic process. For example, injection
of tens of thousands of tumor cells intravenously only generates
several hundred metastases, even after several rounds of selection
for the ability to grow as experimental metastases in the lungs after
intravenous injection which would be predicted to highly enrich for
cells with metastasis-forming ability [133].

Remodeling of the organ microenvironment has been demon-
strated in recent years to create metastatic niches that foster
the outgrowth of DTCs. These niches can be induced by primary
tumors prior to the settling of DTCs in organs - so-called pre-
metastatic niches - that can also attract CTCs through growth
factors, cytokines and other chemoattractants that are produced
by niche components [122-124]. In experimental models, pre-
metastatic niche formation has been shown to be critical for
the formation of fulminant metastases [122-124]. Formation of
metastatic niches after removal of the primary tumor, for exam-
ple due to inflammatory processes, may be responsible for the
re-activation of dormant DTCs, although experimental evidence to
support this notion still remains to be garnered.

It is notable that many of the components of metastatic
niches and their formation are related to inflammatory processes.

Pro-inflammatory members of the S100 family and members of
the Serum Amyloid A acute phase proteins have been identi-
fied as having a pivotal role in the formation and function of
metastatic niches, playing a key role, for example, in the recruit-
ment of CD11b+ myeloid cells to these sites [134]. Monocyte
and macrophage-specific chemokines are also expressed [123].
The remodeling of the ECM (see below), such as the produc-
tion and deposition of fibronectin and the activities of lysyl
oxidases and proteases, is a hallmark of both sites of inflamma-
tion and of pre-metastatic niches [135]. Hypoxia, an emerging
niche feature that also induces expression of lysyl oxidases, can
also promote inflammatory responses [136]. In addition to releas-
ing cells from dormancy in the bone [41], VCAM-1 expression
on tumor cells has also been recently shown to mediate their
interaction with metastasis-associated macrophages, providing a
survival advantage [137]. Taken together, these observations sug-
gest that the formation of metastatic niches recapitulates the
inflammatory processes and tumor-stroma interactions that drive
primary tumor growth, and thereby fosters metastasis formation
by DTCs.

3.2. Digging over the soil

Remodeling of the ECM has emerged as an important event dur-
ing the establishment of metastatic niches. MMP-9, produced for
example by VEGFR1+ BMDC, is required for the formation of pre-
metastatic niches and the outgrowth of secondary tumors in the
lung [122,138]. Additional ECM components such as fibronectin
[122], periostin [139] and tenascin-C [140] are produced in these
niches, and existing ECM components are modified, for example
through the activity of lysyl oxidases, enzymes that cross-link colla-
gen and elastin [126]. Together, these and other mechanisms serve
to modify the ECM, thereby creating a microenvironment that is
permissive for the growth of DTCs.

ECM remodeling may act in a number of ways to promote
the outgrowth of metastases. Changes in the constituents of the
ECM can of course serve to modify epitopes with which integrins
and other receptors on the surface of tumor cells can interact.
Integrin-mediated activation of focal adhesion kinase (FAK) signal-
ing promotes cell survival and proliferation [141] and can regulate
CSC properties [142]. Remodeling of the ECM can also be suffi-
cient to re-activate dormant tumor cells, for example mediated
by integrin-FAK signaling [65,143]. Induction of periostin expres-
sion by fibroblasts in metastatic niches is required for recruitment
of Wnt ligands and the maintenance of CSC properties in DTCs
[139]. Evidence is also emerging that an important outcome of
matrix remodeling is an increase in the stiffness or rigidity of
the microenvironment in a manner that can have a profound
effect on cell behavior. For example, matrix cross-linking medi-
ated by the activity of lysyl oxidases increases focal adhesion
formation and FAK activation, and promotes invasiveness and
malignancy [144]. Caveolinl expression on carcinoma-associated
fibroblasts (CAFs) remodels and stiffens the ECM microenviron-
ment, and consequently promotes metastasis formation [145].
Matrix stiffness also regulates the activity of the TAZ transcription
co-activator that forms part of the Hippo pathway [146], and TAZ
activity confers stemness properties on breast cancer cells [147].
In hepatocellular carcinoma cells, stiffer matrices were found to
promote proliferation and chemoresistance, while cells surviving
after chemotherapy on softer matrices exhibited a reversible dor-
mant phenotype associated with expression of CSC markers [148].
Finally, increased matrix stiffness favors TGFf3-induced EMT over
apoptosis [149]. Thus a picture emerges in which enhanced matrix
stiffness maintains or endows CSCs properties on tumor cells, can
regulate dormancy, and determines the response to EMT-inducing
factors.
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3.3. Long range fertilizers of the soil

A remarkable finding that has emerged from the study of the
formation of pre-metastatic niches is the long-range signaling that
allows primary tumors to establish metastatic niche structures.
Factors such as VEGF-A and PIGF produced by primary tumors act
distantly on the bone marrow to mobilize VEGFR1+ BMDC that
contribute to pre-metastatic niche formation [122]. Similarly, pri-
mary tumor-derived VEGF-A, TNFa and TGFf3 induce expression of
S100A8 and S100A9 in developing pre-metastatic niches, which in
turn recruits CD11b+ myeloid cells [123].

Recent studies have implicated primary tumor-derived
microvesicles and exosomes in the long-range signaling involved
in pre-metastatic niche formation [150]. Microvesicles and exo-
somes contain membrane and cytoplasmic proteins, as well as
nucleic acids derived from the cell of origin. They can be trans-
ported via the blood, and the cargo they carry can interact with
target cells and modify their behavior [151]. Exosomes released
from rat pancreatic adenocarcinoma cells together with CD44v6
in the soluble fraction complement each other in generating a
niche for efficient tumor outgrowth [152]. Microvesicles released
from CD105-positive renal carcinoma CSCs stimulate angiogenesis,
upregulate VEGF-A, MMP2 and MMP9 expression in pre-metastatic
sites in the lung, and promote lung metastasis [153]. Microvesicles
have also been shown to be involved in the bilateral communi-
cation between tumor cells and fibroblasts, with tumor-derived
microvesicles acting to upregulate MMP9 expression in fibroblasts
[154].

The requirement for long-range signals derived from primary
tumors that orchestrate the formation of pre-metastatic niches
may account for the association between elevated risk of metas-
tasis development and increasing primary tumor size. It would
seem reasonable to assume that the tumor-derived growth factors
and other signaling molecules involved would need to rise above
a given systemic concentration threshold before having an effect
in the bone marrow or potential sites of pre-metastatic niches.
Larger tumors would be expected to produce more of the requi-
site signaling molecules, and therefore the concentration of these
molecules in the circulatory system should also rise concomitantly.
Thus a niche environment that supports the outgrowth of DTCs as
metastases may only develop once the primary tumor reaches a
sufficient size to produce enough signaling molecules to activate
niche formation.

4. Putting it all together: conflicting or compatible
concepts?

As outlined above, a number of novel concepts have arisen
recently as a result of new groundbreaking experiments, and exist-
ing concepts have also been modified as a result. These concepts
often only consider one particular aspect of metastasis, and none
of them completely explain the process, nor account for all exper-
imental findings. Is it possible to synthesize a concept on the basis
of the data that has been generated to date that unifies these dif-
ferent concepts and provides a more comprehensive overview of
the process of metastasis? Some of the concepts above are appar-
ently conflicting, for example regarding the question of whether
the metastatic dissemination that ultimately gives rise to metas-
tasis is an early event after tumorigenesis or rather occurs late in
tumor development. It is possible that no single concept explains
the process of metastasis, and that the mechanisms differ between
cancer types or even between individual patients. Nevertheless,
the process of metastasis is comparable for many different types
of cancer (local progression and invasion, transport in the circula-
tory system, extravasation, survival and growth at (often similar)

secondary sites), suggesting that common mechanisms are prob-
ably operative. Furthermore, there are considerable similarities
between several of the concepts outlined above, which provide a
foundation for putting together the pieces of the metastasis concept
jigsaw puzzle.

Striking areas of convergence are the commonalities that have
emerged between the regulation of EMT, stemness, dormancy and
therapy resistance. Many of these are pointed out above. The sim-
ilarities between CSCs and cells that have undergone EMT have
been recently extensively reviewed [110,116]. A further example
is provided by CXCR4. In addition to marking CSCs that will form
metastases, CXCR4 and its ligand SDF-1 have been implicated in
regulating EMT in breast cancer [155], oral SCC [156] and pan-
creatic cancer cells [157], and probably act in conjunction with
TGFf [158,159]. Similarly, CXCR4 is associated with chemoresis-
tance [160] and reversible dormancy [148].

It is also striking that many of the constituents that have been
described as being crucial for metastatic niche function serve to
regulate EMT, stemness, dormancy and therapy resistance. For
example, VEGF-A drives the formation of pre-metastatic niches
[122], creates a perivascular niche that maintains the stemness of
skin tumor CSCs[59] and suppresses dormancy [73]. EMTis induced
by inflammatory regulators that are present in metastatic niches
[161], as exemplified by IL-1f3 in head and neck cancer [162]. The
ECM remodeling that typically occurs in inflammation and fibrosis
is very similar to that found in metastatic niches, and contributes
to EMT [95]. Consistently, the lysyl oxidase LOXL2 induces EMT
via increasing the stability and activity of Snaill [163]. MMPs are
also activated in the metastatic niche and induce EMT [164]. The
metastatic niche constituent periostin regulates CSC properties, as
well as EMT [165]. Hypoxia promotes CSC stemness, as well as
the formation of a CSC niche [166]. Furthermore, hypoxia is also
a potent and reversible inducer of EMT [98], and a recent study
implicates it in inducing dormancy in glioblastoma CSCs [167].

5. The stromal progression model

The above observations indicate that there is a tight intercon-
nection between EMT, stemness, dormancy and therapy resistance,
and it is likely that the metastatic niche plays a critical role in reg-
ulating these processes at sites where secondary tumors develop.
These and the other observations described above allow us to ten-
tatively suggest a concept of metastasis that we have called the
stromal progression model (Fig. 1). The tumor stroma is comprised
of ECM, non-malignant cells and the signaling molecules they pro-
duce. In the stromal progression model, progressive co-evolution
of the tumor stroma and the genetic make-up of tumor cells at both
the primary and secondary sites provide the platform required for
metastasis formation. This model accommodates many aspects of
the disparate models and theories that have been suggested to date,
and is outlined in detail in the following text.

Similar to clonal selection models, the stromal progression
model suggests that serial acquisition of genetic mutations and
aberrations driven by increasing genomic instability occurs in
tumor cells during primary tumor progression, together with epige-
netic changes. However, stromal progression also occurs in parallel,
for example the progressive remodeling of the ECM in the tumor,
activation and recruitment of stromal cells such as fibroblasts and
BMDC, regional hypoxia, the induction of angiogenesis and the
development of an inflammatory milieu. Breach of the basement
membrane and subsequent invasion further exposes tumor cells
to new microenvironments and further stimulates stromal pro-
gression. Thus the dynamic stepwise mutual and interdependent
cross-regulation between tumor and stromal cells leads to pro-
gression of the tumor as a whole. In the absence of an appropriate
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Fig. 1. The stromal progression model. During the development of the primary tumor, progressive genetic and epigenetic changes take place in tumor cells (upper panel).
In parallel, the stroma associated with the tumor cells also becomes progressively modified, for example through extracellular matrix remodeling and the activation and
recruitment of cells such as carcinoma-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs) and other cells of the immune system. For the sake of clarity, only
some of these changes have been depicted. Interactions between the tumor stroma and tumor cells modify the stemness properties of the tumors cells, for example through
epithelial-mesenchymal and mesenchymal-epithelial-like transitions (EMT and MET), which regulates the cancer stem cell (CSC) subpopulation. Dissemination from the
primary tumor begins early. Upon entering the secondary site, disseminated tumor cells (DTCs) have a number of possible fates, some of which are depicted in the left hand
side box, bottom panel. These initial fates are determined by the underlying genetic and epigenetic status of the DTC, and through interactions with the microenvironment
at the secondary site. EMT- and MET-like transitions, further genetic progression in the tumor cells, and stromal progression in the microenvironment can subsequently
alter DTC fate and lead to the growth of overt metastases. Continuing mutual interactions between tumor cells and stromal cells at the secondary site stimulate stromal
progression, as in the primary tumor. Furthermore, as the primary tumor grows, increasing amounts of metastatic niche-inducing factors accumulate systemically, resulting
in induction of stromal progression at the secondary site, and metastatic niche formation. Metastatic niche formation can occur prior to settling of DTCs at the secondary
site, as in the case of pre-metastatic niches that prime the microenvironment to support outgrowth of incoming DTCs. Self-seeding of the primary tumor or metastasis, or
cross-seeding between the primary tumor and its metastasis may contribute to the overall make-up of the tumor cell population at the primary and secondary sites.

stromal compartment, the genetic and epigenetic changes in tumor
cells are insufficient to support tumor growth and survival. Tumor
progression is therefore built on a foundation of genetic and epi-
genetic changes in tumor cells, but is also absolutely dependent
on stromal progression in parallel (Fig. 1). An important result
of the interplay between tumor cells and the stroma is the gen-
eration of CSCs that drive tumor growth, whose properties are
determined by their underlying genetic makeup, but also by the
microenvironment, in a process that involves dynamic EMT and
MET transitions that may only be partial. These transitions also con-
tribute to tumor cell survival, and regulate dormancy, invasiveness
and therapy resistance, and can occur in both CSC and non-CSC
populations. This aspect of the stromal progression model has

parallels with the dynamic heterogeneity model proposed decades
ago [29].

Cancer cell dissemination begins early, for example after escape
from oncogene-induced senescence [43], and continues through-
out tumor growth and progression. CTCs leaving the tumor no
longer have contact with the supportive stromal microenviron-
ment they are accustomed to, and the genetic and epigenetic
changes they carry are usually insufficient to support their sur-
vival or growth as a fulminant metastasis. An appropriate stromal
compartment therefore has to be re-established at secondary sites
if DTCs are to survive and grow out as metastases. DTCs that do
not end up in an appropriate microenvironment (or which can-
not initiate one) either die or remain dormant, probably eventually
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regressing. If the microenvironment supports the survival of the
DTCs, or is modified to support their survival, then the DTCs can
continue to acquire genetic mutations and aberrations at sec-
ondary sites, and progress genetically in parallel to tumors cells in
the primary tumor, as foreseen in the parallel progression model.
However, concurrent stromal progression also accompanies these
genetic changes in the tumor cells at the secondary site, similar to
the case in the primary tumor (Fig. 1).

Stromal progression also takes place at secondary sites to form
microenvironments that support outgrowth of metastases. Such
microenvironments may be initiated and developed in a number
of conceivable ways: (i) DTCs may settle in pre-existing microen-
vironments that provide stromal components they need. These
may be normal stem cell niches, for example, or pre-metastatic
niches induced by the primary tumor. (ii) Factors produced by the
DTCs themselves may act on the surrounding stroma and initiate
or contribute to the stromal progression that ultimately supports
secondary tumor growth. Thus genetic changes in tumor cells can
promote stromal progression. (iii) Tumor-stroma interactions in
the primary tumor produce increasing quantities of soluble fac-
tors as the tumors grow, such as growth factors, cytokines and
chemokines. These begin to accumulate systemically and ulti-
mately induce the formation of metastatic niches as described
above, either pre-metastatically or after the dissemination of DTCs.
Hence the size of the primary tumor correlates with the incidence
of metastasis, as size is proportionate to the amount of factors
produced. (iv) Once a primary tumor has been removed, parallel
genetic progression in the DTCs and/or associated stromal progres-
sion may eventually lead to outgrowth of metastases. In addition,
other pathological events such as tissue trauma or chronic inflam-
mation may release sufficient systemic levels of growth factors
and cytokines that induce metastatic niche formation such that
metastatic niche formation is kick-started and/or stromal pro-
gression is supported. Removal of the primary tumor may also
remove circulating factors that were repressing distant metastatic
outgrowth, such as angiogenesis inhibitors or matrix remodeling
enzymes.

In the stromal progression model, formation of (pre)metastatic
niches can constitute an important component of the stromal
remodeling required at secondary sites for the outgrowth of metas-
tases (Fig. 1). As in the primary tumor, the interaction of tumor cells
with the stromal microenvironment at these sites plays a key role
in regulating metastable EMT-MET-like transitions that determine
stemness properties, control dormancy, provide survival functions
and modulate resistance to therapy. Thus EMT can endow CSCs in
the primary tumor with migratory properties that can be reversed
at secondary sites through MET in response to a new microen-
vironment, as has been suggested [19]. In the absence of MET,
these cells may remain dormant due to the quiescence-promoting
effects of EMT. Similarly, non-CSC DTCs that survive may eventu-
ally acquire stemness properties, for example through epigenetic
changes in response to EMT induced when an appropriate stromal
environment develops, and/or through genetic changes. Hence the
properties of the tumor cells, the nature of the surrounding stroma,
the interaction between the two compartments, and the continu-
ing interdependent progressive evolution of the tumor cells and the
tumor stroma act together to determine the stemness properties
required for the outgrowth of metastases, regulate the re-activation
of dormant cells and determine sensitivity to therapy. Like pri-
mary tumors, metastases may disseminate cells, and cross-seeding
between primary tumor and their metastases may contribute to
the similarities between them that are observed histologically and
in transcriptomic studies.

The stromal progression model suggests that the sparse exis-
tence of appropriate endogenous stromal microenvironments that
are able to support tumor growth contributes to the low efficiency

of metastasis formation in experimental metastasis assays. This
may also be a reason why large numbers of cells are required
to get an efficient “take rate” in experimental animals, and why
providing constituents of a supportive stroma, for example in the
form of Matrigel, increases take rate. The model also provides an
explanation for why continuous passaging of tumor cells in experi-
mental animals and selection for growth in particular organs would
give rise to tumor cells that metastasize efficiently to the organ
in question. Here, tumor cells are selected that have the ability to
interact with particular stromal microenvironments of the organ
concerned, to induce stromal progression in those microenviron-
ments, and/or to undergo genetic or epigenetic changes in response
to the endogenous or induced microenvironment.

6. Concepts and clinical perspectives

While the stromal progression model incorporates many
theories, observations and experimental findings, several open
questions remain. Major issues include the timing of dissemina-
tion of the metastatic seed, the degree to which the regulation of
stemness properties overlaps with the pathways that control EMT,
dormancy and therapy resistance, key stages in stromal progres-
sion, and the mutual interdependence between genetic changes in
cancer cells and changes in the associated stroma. Understanding
how metastasis works is of more than just academic interest, as an
accurate conceptual grasp of the process is fundamental to effec-
tive therapy. For example, if the tumor cells that seed metastases
disseminate late, a window of opportunity opens to remove the
primary tumor before metastatic deposits have taken root. If on
the other hand, early dissemination and parallel progression is the
overriding mode of metastatic seeding, then at the time of cancer
diagnosis, DTCs with the potential to develop into metastases will
already be present, and therefore the therapeutic strategy will need
to be different. Another implication of parallel progression is that
the choice of targeted therapies to treat metastases should be based
on molecular and biological features observed in metastases rather
than in primary tumors [22].

The dormancy of DTCs over long periods of time and their rel-
ative stability, together with relapse occurring many years after
diagnosis, surgery and initial treatment demands that more effort
is placed on understanding the regulation of dormancy. This may
provide a novel opportunity to prevent metastatic outgrowth and
keep disseminated cancer as a dormant, chronic but manageable
disease. Key issues are to understand how quiescent, disseminated
cancer cells interact with the microenvironment, and to define the
critical cues that awake cancer cells form dormancy and allow them
to progress to full metastasis.

Understanding the nature of the tumor cells that initiate metas-
tases could be key to successful therapy. If metastases are seeded
by particular CSC subpopulations, then targeting them would be
expected to effectively suppress metastasis formation. The expres-
sion on CSCs of specific members of the family of CXC chemokines
receptors has recently received interest in this regard. Chemokines
serve as chemoattractants for cells endowed with CXC recep-
tors such as CXCR4 and CXCR1 that have been found to earmark
migratory subpopulations of CSCs in pancreatic and breast cancer,
respectively [47,168]. Selective blockade of CXCR1 targets breast
CSCs in human xenografts slow down primary tumor growth and
reduce metastasis formation [169]. Clinical trials with pharma-
cological inhibitors and monoclonal antibodies directed against
specific CXCRs will assess their capacity to block CSCs dissemina-
tion and prevent metastasis formation in cancer patients. These
and similar studies may provide novel therapeutic strategies to
selectively target cancer CSCs after dissemination throughout the
body of the cancer patient and prevent them from forming distant
metastases.
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As pointed out above, the genetic disparity between primary
tumors and their metastases suggests that analysis of the primary
tumor may not be the best way to determine appropriate treatment
of metastatic disease. CTCs represent tumor cells that have left the
primary tumor and are also likely to be derived from metastases, so
there is growing interest in monitoring CTC as cellular surrogates
of metastatic dissemination [170]. DTCs are much less accessible
than CTCs, and can be less informative [171].

While CTCs can be detected in the blood of patients with many
types of solid cancer, they are best characterized in breast can-
cer patients and most of our knowledge on CTCs is derived from
breast cancer [172,173]. Strong evidence indicates that the number
of CTC before treatment is an independent predictor of progression-
free survival and overall survival in patients with metastatic breast
[174] or prostate [175] cancers. Subsequently it has been shown
that detection of even rare CTCs is associated with an increased
risk of metastatic progression and reduced survival in newly diag-
nosed breast cancers [176,177]. A clinical challenge here is to define
whether CTC can be developed as reliable surrogate marker of
relapse and progression to metastasis for individual patients with
primary breast cancer undergoing adjuvant treatments. Several
clinical trials are currently addressing this question [173]. Another
equally challenging and relevant issue relates to the potential clin-
ical use of CTC as biomarker to predict response to therapy in
metastatic cancers. Initial evidence indicates that this might be the
case in breast cancer, as persisting elevated counts of CTC during
therapy predicts shorter progression-free survival and precedes
radiological signs of progression [178]. Additional studies are in
progress [173].

While cumulating evidence indicates that CTC counts have
prognostic and predictive clinical significance, many important
questions on the biology of CTCs remain unanswered. For exam-
ple, what is the best method to detect CTCs? CTCs are rare in the
peripheral blood (ranging from one to hundreds of cells per ml)
and reliable detection/isolation is still challenging [179]. Available
methods are mostly based on immunomagnetic isolation using
antibodies directed against the epithelial cell surface molecule
EpCAM (such as the commercially available and FDA-approved sys-

Q tem CellSearch®), followed by immunocytochemistry staining for
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epithelial markers (e.g. CK 8, 18, 19) [173]. As some CTCs undergo
EMT, this approach may miss an important CTC subpopulation.
Similar arguments also apply to the analysis of DTCs. Thus, novel
enrichment strategies including EMT markers need to be devel-
oped.

A second crucial question is whether all detected CTCs are
potentially able to colonize distant organs and form metastases.
In other words, is the number of CTCs sufficient to predict metasta-
sis, or should additional biological and molecular parameters also
be considered? Determining viability, proliferation and expression
of EMT or stem cell markers may already improve the prognos-
tic/predictive power of CTC, but the ultimate test would be to
directly evaluate the metastatic capacity of individual CTCs in lab-
oratory assays.

A third outstanding issue is whether CTCs represent a more
appropriate cell population to define therapeutic strategies, com-
pared to cancer cells in the primary tumor, which are currently
used for this purpose. The relevance of this point is exemplified
by the detection of HER-2-positive CTCs in patients with HER-2-
negative primary breast cancer and, conversely, HER-2-negative
CTCs in patients with HER-2-positive tumors [180-182]. CTCs may
also be used, for example, to validate the activity of targeted anti-
cancer drugs, for instance by monitoring the phosphorylation state
of kinases targeted by the drugs or their downstream effectors
[183].

In summary, clinical and basic research into the underlying
mechanism of metastasis has in the last few years unearthed many
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new facets of the process that results in the formation of secondary
cancers. While we are still some way from a complete under-
standing of the metastatic process, it is clear than many of the
contemporary models and theories that have arisen as a result of
these new findings are starting to converge. The stromal progres-
sion model we suggest here integrates many of these ideas. The next
few years will see exciting further progress that will provide us with
an increasingly accurate concept of how metastasis works, which
in turn will allow rational and effective therapies for metastatic
disease to be developed.
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