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Abstract 
 

Abnormal development of the amygdala has been linked to several 

neurodevelopmental disorders, including schizophrenia and autism. However, the 

postnatal development of the amygdala is not easily explored at the cellular level in 

humans. Here, we performed a stereological analysis of the macaque monkey 

amygdala in order to characterize the cellular changes underlying its normal 

structural development in primates. The lateral, basal and accessory basal nuclei 

exhibited the same developmental pattern, with a large increase in volume between 

birth and three months of age, followed by slower growth continuing beyond one year 

of age. In contrast, the medial nucleus was near adult size at birth. At birth, the 

volume of the central nucleus was half of the adult value; this nucleus exhibited 

significant growth even after one year of age. Neither neuronal soma size, nor 

neuron or astrocyte numbers changed during postnatal development. In contrast, 

oligodendrocyte numbers increased substantially, in parallel with an increase in 

amygdala volume, after three months of age. At birth, the paralaminar nucleus 

contained a large pool of immature neurons that gradually developed into mature 

neurons, leading to a late increase in the volume of this nucleus. Our findings 

revealed that distinct amygdala nuclei exhibit different developmental profiles and 

that the amygdala is not fully mature for some time postnatally. We identified different 

periods during which pathogenic factors might lead to the abnormal development of 

distinct amygdala circuits, which may contribute to different human 

neurodevelopmental disorders associated with alterations of amygdala structure and 

functions. 
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Introduction 
 

Abnormal structure or function of the amygdala has been implicated in the 

pathophysiology of a surprising number of psychiatric disorders including anxiety 

(Kalin et al., 2004; Kim et al., 2011; Tye et al., 2011), depression (Drevets, 2003; 

Hamidi et al., 2004; Yang et al., 2010), bipolar disorder (Berretta et al., 2007; Kalmar 

et al., 2009; Usher et al., 2010), schizophrenia (Kreczmanski et al., 2007; Lawrie et 

al., 2003) and autism (Baron-Cohen et al., 2000; Mosconi et al., 2009; Schumann 

and Amaral, 2006; Schumann et al., 2009; Schumann et al., 2004), as well as in 

neurological disorders such as epilepsy (Aliashkevich et al., 2003; Aroniadou-

Anderjaska et al., 2008) and Alzheimer’s disease (Cavedo et al., 2011; Ichinohe et 

al., 2009; Vereecken et al., 1994). To reconcile the diversity of disorders with which 

the amygdala is associated, one might speculate that there are sensitive 

developmental periods during which different environmental factors, hormonal 

influences or other experiences could alter specific aspects of amygdala 

development, and thus contribute to the etiologies of such a variety of psychiatric 

disorders (Tottenham and Sheridan, 2009). It is important, therefore, to understand 

the normal time course and features of amygdala development. However, the poor 

availability of early postnatal brain tissue makes a study such as this impractical in 

the human. Use of the nonhuman primate, therefore, is a valuable proxy for 

establishing the cellular processes underlying primate amygdala development. 

To date, however, there is no reliable description of the morphological 

characteristics, such as cell numbers and volumes of the main amygdala nuclei, 

during the first years of life in primates. Previous studies have described the prenatal 

development of the monkey amygdala (Kordower et al., 1992; Ulfig et al., 2003). 

Their findings are consistent with work carried out in the human (Humphrey, 1968), 

indicating that the basic architecture of the amygdala is well established at birth. In 

contrast, MRI studies of postnatal amygdala development performed in humans and 

non-human primates indicate a delayed maturation of this structure that potentially 

extends up to the end of the second decade in humans (Giedd et al., 1996; Mosconi 

et al., 2009; Ostby et al., 2009; Payne et al., 2010; Schumann et al., 2004). Of 

course, current MRI techniques do not have sufficient resolution to quantify the 

volumetric changes of distinct amygdala nuclei nor to characterize, at the cellular 

level, the underlying morphological changes. 
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The goal of the present study was to provide quantitative neuroanatomical 

information about the postnatal maturation of the primate amygdala. We 

implemented design-based stereological techniques to characterize the cellular 

development of the rhesus monkey (Macaca mulatta) amygdaloid complex from birth 

to one year of age and in young adulthood (5-9 years of age). We aimed to 

determine when the volumes and cell numbers of its six main nuclei (i.e., lateral, 

basal, accessory basal, paralaminar, central and medial) reach an adult-like state. 

Understanding the normal time course of postnatal development of the primate 

amygdala, at the cellular level, will help to determine when specific structural and 

functional features develop, in order to be able to predict how these maturational 

processes can be affected by factors that might underlie the development of 

pathology in humans. 

 

Materials and methods 
Experimental animals 

Twenty-four rhesus monkeys, Macaca mulatta; four 1-day-olds (2 males, 2 

females), four 3-month-olds (2 M, 2 F), four 6-month-olds (2 M, 2 F), four 9-month-

olds (2 M, 2 F), four 1-year-olds (2 M, 2 F) and four adults [5.3, 9.4 (M), 7.7 and 9.3 

(F) years old] were used for this study. Monkeys were born from multiparous mothers 

and raised at the California National Primate Research Center (CNPRC). They were 

maternally reared in 2,000 m2
 outdoor enclosures and lived in large social groups 

until they were killed. These monkeys were the same animals used in quantitative 

studies of the monkey hippocampal formation (Jabès et al., 2010; 2011) and in a 

comparative study of the amygdala in young adult rats and monkeys (5-9-year-old 

monkeys only (Chareyron et al., 2011)). All experimental procedures were approved 

by the Institutional Animal Care and Use Committee of the University of California, 

Davis, and were conducted in accordance with the National Institutes of Health 

guidelines for the use of animals in research. 

 

Brain acquisition 
Monkeys were deeply anesthetized with an intravenous injection of sodium 

pentobarbital (50 mg/kg i.v., Fatal-Plus, Vortech Pharmaceuticals, Dearborn, MI) and 

perfused transcardially with 1% and then 4% paraformaldehyde in 0.1 M phosphate 

buffer (PB; pH 7.4) following protocols previously described (Lavenex et al., 2009). 

4

ht
tp

://
do

c.
re

ro
.c

h



Postnatal development of the monkey amygdala Chareyron et al. 

Coronal sections were cut using a freezing, sliding microtome (Microm HM 450, 

Microm International, Germany) in six series at 30 m and one series at 60 m. The 

60 m sections were collected in 10% formaldehyde solution in 0.1 M PB (pH 7.4) 

and postfixed at 4°C for 4 weeks prior to Nissl staining with thionin. All other series 

were collected in tissue collection solution and kept at –70°C until further processing 

(Lavenex et al., 2009). 

 

Histological processing 
The procedure for Nissl-stained sections followed our standard laboratory protocol 

described previously (Chareyron et al., 2011; Lavenex et al., 2009). Briefly, sections 

were taken from the 10% formaldehyde solution, thoroughly washed, mounted on 

gelatin-coated slides, and air-dried overnight at 37°C. Sections were then defatted 2 

X 2 hours in a mixture of chloroform/ethanol (1:1, vol.), partially rehydrated and air-

dried overnight at 37°C. Sections were then fully rehydrated and stained 20 seconds 

in a 0.25% thionin solution (Fisher Scientific, Waltham, MA, cat# T-409), dehydrated 

and coverslipped with DPX (BDH Laboratories, Poole, UK). 

 

Anatomical boundaries of the amygdala 
The nomenclature and the basic description of the morphological characteristics of 

the amygdala nuclei have been described in detail previously by Price et al. (1987), 

Amaral et al. (1992) and Pitkänen and Amaral (1998) for the cynomolgus monkey 

(Macaca fascicularis). We used these descriptions to determine the boundaries of the 

six main nuclei (i.e., lateral, basal, accessory basal, paralaminar, central and medial) 

of the Macaca mulatta amygdala (Fig. 1) (Chareyron et al., 2011). 

 

Stereological analyses 
Volume measurements, and neuron and glia counts were performed with 

StereoInvestigator 9.0 (Microbrightfield, Williston, VT). We estimated the volume of 

the brain (telencephalon and diencephalon), the volume of the whole amygdala, the 

volume of the main amygdala nuclei (lateral, basal, paralaminar, accessory basal, 

central and medial) according to the Cavalieri principle on Nissl-stained sections cut 

at 60 m (Gundersen and Jensen, 1987; Lavenex et al., 2000a; b; West and 

Gundersen, 1990). We used the section cutting thickness (60 m) to calculate the 

volume. Brain volume refers to the volume of the telencephalon and diencephalon 
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bilaterally (ventricles were excluded). Twenty-nine to thirty-seven sections per animal 

(1,920 m apart), with the first section selected randomly within the first seven 

sections through the brain, were used for brain volume measurements. An average 

of fourteen sections per animal (480 m apart), with the first section selected 

randomly within the first two sections through the amygdala, was used to measure 

the volume of the whole amygdala (for a complete list of amygdala nuclei, see 

(Chareyron et al., 2011)). We compared total amygdala volumes in the left and the 

right hemisphere and did not find evidence of lateralization (F1,23 = 0.0977, P = 

0.757). We therefore performed estimates unilaterally for the other parameters (see 

below). About twenty-eight sections per animal (240 m apart) were used for volume 

estimates of the main amygdala nuclei. At the rostral pole of the amygdala, the 

paralaminar nucleus extends rostrally and dorsally to the lateral and basal nuclei. As 

a consequence, the first coronal section may be oriented tangentially to the 

paralaminar nucleus, resulting in an over-representation of this region in some cases. 

We therefore excluded this rostral, dorsal portion of the paralaminar nucleus, and 

restricted our analysis to the main part of the nucleus located ventrally to the basal 

nucleus. Since there was no lateralization for overall amygdala size, we estimated 

the volumes of individual amygdala nuclei in the left hemisphere for half of the 

animals, and in the right hemisphere for the other half (balanced across sexes). 
The total numbers of neurons in the main amygdala nuclei were estimated using 

the optical fractionator method (Gundersen, 1986; West et al., 1991). This design-

based method enables an estimation of cell number that is independent of volume 

estimates. Neuron number was estimated in the right or in the left amygdala only, as 

for volume measurements. About nine sections per animal (480 m apart), with the 

first section selected randomly within the first two sections through the nucleus of 

interest, were used for neuron counts (Table 1). We used a 100X PlanFluor oil 

objective (N.A. 1.30) on a Nikon Eclipse 80i microscope (Nikon Instruments Inc, 

Melville, NY, USA) linked to PC-based StereoInvestigator 9.0. The sampling scheme 

was established to obtain individual estimates of neuron number with estimated 

coefficients of error (CE) around 0.10 (CE average (neurons) = 0.121). This sampling 

scheme was the same as in our previous study of the adult monkey amygdala 

(Chareyron et al., 2011), except for the basal nucleus. Section thickness was 

measured at every other counting site (Table 1). 
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The volumes of neuronal somas were determined using the Nucleator method 

(Gundersen, 1988). We measured an average of two hundred and sixty neurons per 

nucleus, sampled at every counting site during the optical fractionator analysis. 

Briefly, the nucleator can be used to estimate the mean cross-sectional area and 

volume of cells. A set of rays emanating from a point randomly chosen within the 

nucleus is drawn and oriented randomly. The length of the intercept from the point to 

the cell boundary (l) is measured and the cell volume is obtained by V = (4/3) x 

3.1416 x (mean l)3. Essentially, this is the formula used to determine the volume of a 

sphere with a known radius. Note that the nucleator method provides accurate 

estimates of neuron size when isotropic-uniform random sectioning of brain 

structures is employed (Gundersen, 1988). In our study, all brains were cut in the 

coronal plane. Therefore, although estimates of cell size might be impacted by the 

non-random orientation of neurons in the different amygdala nuclei, which could lead 

to a systematic over- or under-estimation of cell size in any given structure, 

comparisons between cell sizes in the same structure across developmental ages 

should not be impacted. 

The total number of glial cells in the main amygdala nuclei was estimated using 

the optical fractionator method during neuron counting. Thus, the same sampling 

scheme used for neuron counts was used for glial cell counts (CE average 

(astrocytes) = 0.115, CE average (oligodendrocytes) = 0.275). We distinguished 

neurons, oligodendrocytes and astrocytes based on morphological criteria identifiable 

in Nissl preparations (Chareyron et al., 2011) (Fig. 2A,B,C). We refer the reader to 

the original publications by (Fitting et al., 2008; Grady et al., 2003; Hamidi et al., 

2004; Palackal et al., 1993) for detailed descriptions. Briefly, neurons are darkly 

stained and comprise a single large nucleolus. Astrocytes are relatively smaller in 

size and exhibit pale staining of the nucleus. Oligodendrocytes are smaller than 

astrocytes and contain round, darkly-staining nuclei that are densely packed with 

chromatin. Microglia were not counted but could be identified because they have the 

smallest nucleus, dark staining, and an irregular shape that is often rod-like, oval or 

bent (Morris et al., 2008). We also identified a population of immature cells in the 

paralaminar nucleus (Fig. 2D). These cells were small with round to slightly oval, 

hyperchromatic nuclei containing distinguishable nucleoli (Bernier et al., 2002; 

Fudge, 2004; Yachnis et al., 2000).  
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Photomicrographic production 
Low-magnification photomicrographs were taken with a Leica DFC420 digital 

camera on a Leica MZ9.5 stereomicroscope (Leica Microsystems, Wetzlar, 

Germany). High-magnification photomicrographs were taken with a Leica DFC490 

digital camera on a Nikon Eclipse 80i microscope (Nikon Instruments, Tokyo, Japan). 

Artifacts located outside of the sections were removed, and levels were adjusted in 

Adobe Photoshop CS4, v. 11.0 (Adobe, San Jose, CA) to improve contrast and 

clarity. 

 

Statistics 
We performed analyses of variance (ANOVAs) with age as a factor on the 

estimates of the volume, mature neuron number, immature neuron number, astrocyte 

and oligodendrocyte numbers and neuronal soma size, as these data were normally 

distributed. Post hoc analyses were performed with the Fisher-PLSD test. 

Significance level was set at P < 0.05 for all analyses. No consistent sex difference 

was found for the estimated parameters (data not shown), so data from both sexes 

were combined for presentation. We also evaluated both left and right amygdala 

nuclei in a systematic manner (as described above) and no consistent lateralization 

was found (data not shown). Thus, our findings and all subsequent considerations 

are valid for, and can be generalized to, both left and right amygdala in both males 

and females. All sections used in this study were coded to allow blind analysis, and 

the code was broken only after completion of the analyses (with the exception of the 

sections from the 5-9-year-old monkeys that were analyzed first and published in a 

separate article (Chareyron et al., 2011)). All analyses were performed by the same 

experimenter, LJC. 

 

Results 
Volumes 

The volumes of the monkey brain, amygdala and its six main nuclei, at different 

postnatal ages, are summarized in Table 2. Note that all these volumes were 

estimated, following brain fixation by perfusion with 4% paraformaldehyde, using 

frozen coronal sections cut at 60 m and Nissl-stained with thionin. Due to fixation 

and processing-induced shrinkage, the resulting volumes are substantially less than 

the estimates of in vivo brain volumes obtained with MRI technology (see below for 
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discussion). The volume of the brain (telencephalon and diencephalon, bilaterally) 

differed between age groups (F5,18 = 3.254, P = 0.029). At birth, brain volume was 

about 85% of the adult volume, which was reached by three months of age (newborn 

< all other ages, all P < 0.044). The volume of the whole amygdala also differed 

between age groups (F5,18 = 9.308, P < 0.001). At birth, amygdala volume was only 

60% of the adult volume; it was significantly larger at three months of age reaching 

about 82% of the adult volume (newborn < 3-months-olds < adults, all P < 0.006). 

The volumes of the lateral, basal and accessory basal nuclei exhibited similar 

developmental profiles, whereas those of the paralaminar, central and medial nuclei 

demonstrated differences (Table 2). At birth, the volume of the lateral nucleus was 

66% of its adult value (Fig. 3A); it was about 91% of the adult value at three months 

of age (F5,18 = 5.025, P = 0.005; newborn < 3-month-olds, P = 0.003). At birth, the 

volume of the basal nucleus was 55% of the adult volume (Fig. 3A); it was 

significantly larger at three months of age reaching about 72% of the adult volume 

(F5,18 = 7.212, P < 0.001; newborn < 3-month-olds < adults, all P < 0.035). Similarly, 

the volume of the accessory basal nucleus was 57% of its adult volume at birth (Fig. 

3A) and was significantly larger at three months of age reaching about 78% of the 

adult volume (F5,18 = 7.697, P < 0.001; newborn < 3-month-olds < adults, all P < 

0.009). 

In contrast, the paralaminar nucleus was only at 30% of its adult size at birth (Fig. 

3B; F5,18 = 16.144, P < 0.001); it differed between birth and six months of age (when 

it reached 50% of adult size; P = 0.035), as well as between between birth and one 

year (55% of adult size) and 5-9-years of age (P < 0.001). The volume of the central 

nucleus was only 50% of its adult size at birth (Fig. 3B; F5,18 = 15.031, P < 0.001). At 

one year of age, it reached only 57% of its adult volume (1-year-olds < 5-9-year-olds, 

P < 0.001). Finally, although the volume of the medial nucleus increased from 85% of 

its adult value at birth, the differences between ages were not significant (Fig. 3B; 

F5,18 = 1.807, P = 0.162). 

 

Neuron numbers 
There were no differences in the numbers of neurons estimated at different 

postnatal ages in five of the main amygdala nuclei in monkeys (Table 2): lateral 

nucleus (F5,18 = 2.240, P = 0.095), basal nucleus (F5,18 = 1.178, P = 0.358), 
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accessory basal nucleus (F5,18 = 0.543, P = 0.742), central nucleus (F5,18 = 0.791, P 

= 0.570) and medial nucleus (F5,18 = 1.339, P = 0.293). 

In contrast, the paralaminar nucleus contained both mature neurons and a pool of 

morphologically distinct, immature cells (Fig. 2D). The number of mature neurons in 

this nucleus differed between age groups (F5,18 = 92.284, P < 0.001; Table 2). From 

birth to one year of age, the nucleus contained only 15% of the total number of 

mature neurons observed in 5-9-year-old monkeys (all other ages < 5-9-year-olds, all 

P < 0.001; Fig. 4A). In order to verify that these differences were not due to 

differences in the delineation of the nucleus at different ages, especially at its border 

with the basal nucleus, we evaluated the differences in neuron numbers summed 

across both nuclei i.e., the sum of the neurons in the paralaminar and basal nuclei. 

We found that when the two nuclei were grouped together, there were similar 

differences between ages (F5,18 = 7.364, P < 0.001; all other ages < 5-9-year-olds, all 

P < 0.001) as when the paralaminar nucleus was evaluated alone; as noted above, 

the neuron number in the basal nucleus alone did not differ in this way. The increase 

of about 350,000 mature neurons in the paralaminar nucleus was paralleled by the 

disappearance of an equivalent number of morphologically distinct, presumably 

immature neurons (F5,18 = 3.965, P = 0.013; all other ages > 5-9-year-olds, all P < 

0.023; Table 2; Fig. 4A). It is important to note that the sum of the number of mature 

neurons and immature cells observed in the paralaminar nucleus did not differ 

between ages (F5,18 = 0.624, P = 0.684). This supports the idea that these 

morphologically distinct cells are immature neurons that are present in the 

paralaminar nucleus at birth but mature after one year of age.  

 

Astrocyte numbers 
There were no significant differences in the numbers of astrocytes found in five of 

the main amygdala nuclei of monkeys at different postnatal ages (Table 2): lateral 

nucleus (F5,18 = 2.562, P = 0.064), basal nucleus (F5,18 = 0.526, P = 0.754), 

accessory basal nucleus (F5,18 = 2.251, P = 0.093), central nucleus (F5,18 = 0.720, P 

= 0.617) and medial nucleus (F5,18 = 1.011, P = 0.440). 

In contrast, the number of astrocytes in the paralaminar nucleus differed between 

age groups (F5,18 = 5.308, P = 0.004; Fig. 4); it was lower in newborn, as compared 

to 3-month-old monkeys (P = 0.01). The numbers in monkeys at the time points 
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between 3 months and 1 year of age, were lower than in 5-9-year-old monkeys (3-

month, 6-month, 9-month, 1-year < 5-9-year; all P < 0.007).  

 

Oligodendrocyte numbers 
The numbers of oligodendrocytes differed between age groups in the six main 

amygdala nuclei (Table 2; Fig. 5). For the lateral nucleus (Fig. 5A; F5,18 = 46.777, P < 

0.001), newborns had fewer cells than 9-month-olds and older (all P < 0.047) and 1-

year-olds had fewer cells than 5-9-year-olds (P < 0.001). In the basal nucleus (Fig. 

5B; F5,18 = 95.712, P < 0.001), newborns had fewer cells than 6-month-olds, which 

had less than 1-year-olds, which again had less than 5-9-year-olds (all P < 0.026). 

For the accessory basal nucleus (Fig. 5C; F5,18 = 77.443, P < 0.001), newborns had 

fewer cells than 9-month-olds and older (all P < 0.008) and 1-year-olds had fewer 

oligodendrocytes than 5-9-year-olds (P < 0.001). In the paralaminar nucleus (Fig. 5D; 

F5,18 = 37.087, P < 0.001), all younger ages had fewer oligodendrocytes than 5-9-

year-olds (all P < 0.001). For the central nucleus (Fig. 5E; F5,18 = 40.163, P < 0.001), 

newborns had fewer oligodendrocytes than 6-month-olds, which had fewer cells than 

1-year-olds, which had lower numbers than 5-9-year-olds (all P < 0.039). Finally, in 

the medial nucleus (Fig. 5F; F5,18 = 17.524, P < 0.001), newborns had fewer cells 

than 6-month-olds (P = 0.014) and 1-year-olds had fewer cells than 5-9-year-olds (P 

< 0.001). 

 

Neuron soma size 
We did not find any age-related differences in average neuronal soma size in five 

of the main amygdala nuclei (Table 2; Fig. 6): lateral nucleus (F5,18 = 1.052, P = 

0.418), basal nucleus (F5,18 = 1.468, P = 0.249), accessory basal nucleus (F5,18 = 

0.631, P = 0.679), central nucleus (F5,18 = 1.822, P = 0.159) and medial nucleus (F5,18 

= 1.309, P = 0.304). 

In contrast, average neuronal soma size differed between age groups in the 

paralaminar nucleus (Fig. 7; F5,18 = 4.176, P = 0.011); newborns had smaller neurons 

than 6-month-olds and 1-year-olds (all P < 0.008) and 3-month-olds had smaller 

neurons than 5-9-year-olds (P = 0.044). The percentage of paralaminar neurons with 

a soma volume above 1,500 m3 (the average adult neuronal soma volume) differed 

between ages within the first year of postnatal life (F4,15 = 4.921, P = 0.01). In 

newborns, this percentage was only 6.0%; it increased significantly (P = 0.004) to 
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38.8% in 1-year-olds. These differences were linked to the maturation of neurons 

already present in the paralaminar nucleus at birth (Fig. 4; as described above). 

 

Volume and oligodendrocyte numbers 
During the first three months of postnatal life, amygdala nuclei exhibited increases 

in volume that were not related to any changes in the cellular processes evaluated in 

the current study. This indicates that the increased volume was due to an increase in 

neuropil volume. Between three months and 5-9 years of age, increases in the 

volumes of individual amygdala nuclei were not correlated with the numbers of 

neurons or astrocytes nor with the volume of neuronal soma. In contrast, after three 

months of age, the volume of the whole amygdala correlated with the total number of 

oligodendrocytes (volume = 96.627 + 0.0000108 X oligodendrocyte number; 

R²=0.58; F1,18 = 25.349; P < 0.001). A significant linear relationship between volume 

and oligodendrocyte number was observed for all nuclei, except for the medial 

nucleus: lateral nucleus (volume = 32.747 + 0.0000053 X oligodendrocyte number; 

R²=0.23; F1,18 = 5.636; P = 0.029; Fig. 8A), basal nucleus (volume = 33.679 + 

0.000011 X oligodendrocyte number; R²=0.49; F1,18 = 17.523; P < 0.001; Fig. 8B), 

accessory basal nucleus (volume = 19.259 + 0.0000092 X oligodendrocyte number; 

R²=0.42; F1,18 = 13.129; P = 0.002; Fig. 8C), paralaminar nucleus (volume = 3.782 + 

0.0000482 X oligodendrocyte number; R²=0.65; F1,18 = 34.620; P < 0.001; Fig. 8D), 

central nucleus (volume = 2.904 + 0.0000232 X oligodendrocyte number; R²=0.81; 

F1,18 = 76.982; P < 0.001; Fig. 8E), medial nucleus (volume = 4.548 + 0.00000686 X 

oligodendrocyte number; R²=0.18; F1,18 = 4.169; P = 0.056; Fig. 8F). Overall, these 

data suggest that increases in volume after three months of postnatal life are linked, 

at least in part, to increases in oligodendrocyte numbers and the myelination of fibers 

within the amygdala. Interestingly, this relation was strongest for the central nucleus. 

Other changes, including the maturation of dendritic arborization are also likely to 

contribute to postnatal volumetric changes. Analysis of postnatal dendritic maturation 

in several nuclei of the rhesus monkey is currently being undertaken.  

 
Discussion 
 

The goal of the present study was to provide quantitative neuroanatomical 

information about the cellular postnatal maturation of the rhesus monkey amygdala, 
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including when the volumes and cell numbers of its six main nuclei (i.e., lateral, 

basal, accessory basal, paralaminar, central and medial) reach an adult-like state. 

Our three major findings are as follows: (1) amygdala nuclei exhibited different 

developmental profiles; (2) neuronal soma size, and neuron and astrocyte numbers 

did not vary after birth in five of the six main amygdala nuclei, whereas the numbers 

of oligodendrocytes increased continuously in all nuclei from birth to beyond one year 

of age; (3) at birth, the paralaminar nucleus was comprised of a group of mature 

neurons and a group of immature neurons that developed after one year of age. 

There is, to our knowledge, no published information on the postnatal maturation 

of the monkey or human amygdala at the cellular level. We therefore compare our 

results to non-invasive MRI studies carried out in primates, including monkeys and 

humans, as well as to previous work carried out at the cellular level in rats and 

rabbits. Our systematic, quantitative findings provide detailed information regarding 

the cellular changes underlying the different developmental profiles of distinct 

amygdala nuclei in monkeys, which are largely consistent with, and expand upon, the 

findings of previous reports in other species. 

 

Technical considerations 
First, it is important to consider that age-related, differential shrinkage of brain 

tissue during processing cannot explain the age differences in the volumes of distinct 

amygdala nuclei that we observed. Although the average thickness of processed 

sections was lower in newborn cases (9.6 m or 16% of the cutting thickness), as 

compared to all other ages (13.0 m or 22% of the cutting thickness), volume 

estimates were based on the cutting section interval (240 m for individual amygdala 

nuclei). The impact of age-dependent differential shrinkage in the x- and y-plane of 

frozen brain sections is minimal and likely minor, as compared to shrinkage in the z-

plane (Carlo and Stevens, 2011). In addition, our data derived from estimates made 

on frozen sections cut at 60 m and Nissl-stained with thionin are consistent with the 

direction and magnitude of changes in the volume of the amygdala estimated in-vivo 

with non-invasive MRI technology (even though estimates based on histological 

preparations are consistently smaller (by about 40% in mature individuals) than in-

vivo estimates (i.e. telencephalon+diencephalon in 5-9-year-old monkeys: 52,360 

mm3 (present study) vs. whole brain – (cerebellum+brainstem) in 8-12-year-old 

monkeys: 87,080 mm3 (Scott et al., Submitted); see below for further discussion). 
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Moreover, since we observed different patterns of postnatal development for distinct 

amygdala nuclei it is unlikely that differential shrinkage impacts the suggestions 

regarding the relative development of specific circuits and processes that can be 

derived from our volumetric data. Importantly, cell counts are not impacted by 

differential shrinkage, as the optical fractionator technique provides estimates of cell 

numbers that are independent of volume estimates. Similarly, estimates of neuronal 

soma size are likely not significantly affected, as we did not observe any significant 

developmental increase (except for the paralaminar nucleus) in neuronal soma size. 

 

Brain and amygdala volumes 
The rapid increase in brain volume that we observed during the first three months 

of life in rhesus monkeys is consistent with previous findings of MRI studies in 

monkeys (Malkova et al., 2006; Payne et al., 2010; Scott et al., Submitted) and 

humans (Courchesne et al., 2000; Giedd et al., 1999; Knickmeyer et al., 2008; 

Pfefferbaum et al., 1994).  

In rhesus monkeys, Malkova et al. (2006) reported that brain volume is 64% that of 

the young adult at one week of age. The most substantial increase occurs between 

one week and two months followed by lesser increases until three years of age. 

Similarly, Payne et al. (2010) reported that at one week of age, brain volume is about 

60% that of the 2-year-old monkey. Most recently, Scott et al. (Submitted) found that 

the average brain volume of one week-old monkeys is 66% that of 9-12-year-olds. By 

three months of age, brain volume has reached 85% of its adult value, and by one 

year, it has reached adult volume. These MRI findings, which are largely consistent, 

differ from our brain volume estimates in perfusion-fixed tissue (Table 2). This 

difference might be due to the shrinkage that occurs during perfusion-fixation and 

freezing of the monkey brains, before they are cut and the sections are stained. In 

contrast to the shrinkage in the z axis produced during the processing of individual 60 

m sections, which is greater in newborns as compared to older ages (see above), 

surprisingly, overall brain shrinkage following perfusion and freezing processes 

appears to be greater in older monkeys (post-mortem brain volume is 61% of the in 

vivo volume in 5-9-year-olds) than in younger monkeys (post-mortem brain volume is 

77% of the in vivo volume in newborns (Table 2). At this time, we are at a loss to 

explain such age-dependent differential shrinkage. This suggests that the 

developmental increases in volume of individual amygdala nuclei that we estimated 
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from post-mortem material might be even larger in live subjects. Importantly, the 

relatively greater (in relation to overall brain size) enlargement of the monkey 

amygdala that we observed between birth and three months of age is in agreement 

with reported data on amygdala development based on MRI analyses (Payne et al., 

2010). 

Our data in monkeys are also consistent with MRI studies performed in humans 

that show a linear increase in size of the amygdala of about 75 mm3 per year from 18 

to 59 months of age (Mosconi et al., 2009; Ostby et al., 2009), which continues into 

young adulthood at about 70 mm3 per year (Giedd et al., 1996; Ostby et al., 2009; 

Schumann et al., 2004). To our knowledge, there are no data on the development of 

the human amygdala between birth and 2 years of age, which would enable a better 

comparison of our results with those obtained during the corresponding 

developmental period in humans.  

 

Nuclei volumes & cell numbers 
Our findings of differential postnatal development of distinct amygdala nuclei in 

monkeys are consistent with previously published data in rats and rabbits, despite 

the fact that, at birth, primates are comparatively more mature than both rats and 

rabbits. Similar to the early and rapid maturation of the lateral, basal and accessory 

basal amygdala nuclei that we observed in monkeys between birth and three months 

of age, the rat lateral and basal amygdala nuclei increase rapidly in size from birth to 

three weeks of postnatal age (P21), where their combined volume reaches about 

90% of the volume observed at six months of age (10% at P0, 40% at P7, and 80% 

at P14; (Berdel et al., 1997b)). This period of rapid enlargement is followed by a 

much slower maturation that extends beyond three months of age, when the 

basolateral amygdala has reached about 95% of the volume observed in six-month-

old rats (Berdel et al., 1997b; Rubinow and Juraska, 2009). In the rabbit, the 

combined volume of the lateral, basal and accessory basal nuclei increases linearly 

from birth (12% of adult value) to four months of age, when it reaches the value 

observed in six-month-old animals (Jagalska-Majewska et al., 2003). Interestingly, 

and similar to what we found in monkeys, the medial nucleus reaches an adult 

volume between P5 and P11 in rats (Mizukami et al., 1983), an age at which the 

combined volume of the lateral and basal nuclei is still less than 80% of the adult 

value (Berdel et al., 1997b). Although the actual percentages of adult values differ 
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between species, these data indicate that the medial nucleus matures relatively 

earlier than the lateral and basal nuclei in all species examined. 

Considering that primates are born significantly more mature than rats and rabbits, 

the lack of postnatal changes in neuron numbers and neuronal soma volumes in 

monkeys are consistent with data in rats indicating a stable number of neurons after 

P7 and an adult-like neuronal soma size at P14 (Berdel et al., 1997a; Rubinow and 

Juraska, 2009). Nevertheless, a systematic stereological study of the postnatal 

development of the rat amygdala will be necessary to make direct comparisons and 

draw more meaningful parallels regarding the similarities or differences in the cellular 

maturational processes among different species. 

Previous studies reported that postnatal neurogenesis occurs in the amygdala of 

mice (Shapiro et al., 2009), voles (Fowler et al., 2002) and monkeys (Bernier et al., 

2002). In contrast, others have shown that although an enriched environment 

increases the proliferation of cells in the mouse amygdala, almost all of the cells 

express the oligodendrocyte progenitor marker Olig2 (Okuda et al., 2009). Our 

systematic quantitative analysis, using design-based stereological techniques, failed 

to detect any changes in mature neuron numbers in five of the main monkey 

amygdala nuclei from birth to adulthood. Interestingly, postnatal neurogenesis is 

much more prominent and unambiguously demonstrated in the dentate gyrus, but 

even in this brain region, neurogenesis does not lead to changes in the total number 

of neurons in adult monkeys (that is, after a defined, postnatal developmental period 

(Jabès et al., 2010)). In contrast, we found an increase in mature neuron number in 

the paralaminar nucleus from one year to 5-9 years of age, which appears to be due 

to the postnatal maturation of immature neurons already present at birth. The 

presence of immature neurons in the paralaminar nucleus is consistent with the 

presence of Bcl-2-positive cells reported previously (Bernier et al., 2002). 

In sum, our quantitative estimates indicate that whether or not marginal postnatal 

neurogenesis exists in the monkey amygdala, it does not lead to detectable postnatal 

changes in total neuron numbers.  

 

Differential maturation of distinct amygdala circuits 
Our stereological data identified different patterns and stages of postnatal 

development that might reflect the maturation of distinct cellular processes and 

amygdala circuits (Fig. 9). The first stage was characterized by the dramatic 
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enlargement of the deep nuclei of the amygdala (lateral, basal and accessory basal 

nuclei) between birth and three months of age. The second stage was characterized 

by a continuous increase in size of all amygdala nuclei beyond one year of age. In 

addition, the central and paralaminar nuclei exhibited a notably slow and prolonged 

maturation.  

First stage: neuropil expansion. In the absence of detectable changes in 

neuronal soma size or cell numbers during the first three months of life, the dramatic 

enlargement of the lateral, basal and accessory basal nuclei of the monkey amygdala 

likely reflects an increase in neuropil volume. Combined, these three nuclei exhibited 

a 35% increase in volume between birth and three months of age. Interestingly, 

these three nuclei represent about 56% of the volume of the entire amygdala in 

monkeys, and the volumetric changes observed for the whole amygdala exhibited the 

same developmental profile as that observed for these nuclei. Volume estimates 

based on MRI analyses in monkeys are therefore likely to be dominated by the 

developmental changes in these three nuclei, whereas more subtle changes in other 

amygdala nuclei are likely to be masked. This is probably even more the case in 

humans where these three nuclei represent about 69% of the size of the entire 

amygdala (Chareyron et al., 2011). Importantly, we did not find any changes in the 

numbers of neurons, astrocytes or oligodendrocytes, or in the size of neuronal somas 

in these three nuclei during the first three months of postnatal life. It is thus 

reasonable to assume that neuropil expansion underlies the observed volumetric 

changes. Indeed, the neuropil, which is defined as the portion of neural tissue 

composed mostly of small dendrites and spines and fine glial processes, 

unmyelinated axons and axon terminals (Bourgeois et al., 1994; Bourgeois and 

Rakic, 1993), represents the largest fraction of these nuclei. In contrast, the average 

volume occupied by neuronal somas in these three nuclei decreases from 11.2% at 

birth to 9.2% at three months of age and eventually reaches 6.3% at 5-9 years of 

age. 

An increase of neuropil volume might, in turn, reflect an increase in the 

connectivity of these nuclei. The lateral, basal and accessory basal nuclei are highly 

interconnected with the neocortex (Amaral et al., 1992) and their volumetric 

expansion during the first three months of life parallels the volumetric expansion of 

the rest of the brain (current study; Malkova et al., 2006; Payne et al., 2010; Scott et 

al., Submitted). Interestingly, the massive volumetric expansion of prefrontal cortical 
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areas in the monkey has been linked to neuropil expansion during the first two 

months of postnatal life (Bourgeois et al., 1994). In rats, major changes in the 

interconnections between the basolateral amygdala and the prefrontal cortex occur 

between P7 and P19 (Bouwmeester et al., 2002a; Bouwmeester et al., 2002b). In 

cats, an increase in total dendritic length in the basolateral amygdala has been 

observed during the first postnatal month (Wakefield and Levine, 1985). These 

observations suggest that neuropil expansion related to changes in interconnectivity 

with neocortical areas might underlie the volumetric increases of the lateral, basal 

and accessory basal nuclei during the first three months of life. In contrast to the 

deep nuclei, the central and medial nuclei do not exhibit any increase in volume 

between birth and three months of age. These two nuclei are connected mainly with 

the thalamus, hypothalamus and brainstem (Amaral et al., 1992). In contrast to 

cortical connections, the interconnections between the amygdala and the thalamic 

regions and substantia innominata do not change between P7 and P19 in rats, 

suggesting that these connections are already established shortly after birth 

(Bouwmeester et al., 2002a; Bouwmeester et al., 2002b). The lack of significant 

volumetric changes of the monkey central and medial nuclei during the first postnatal 

year might thus reflect the lack of structural (and potentially functional) refinement of 

the interconnections between these nuclei and the rest of the brain. However, what is 

puzzling is the fact that the central nucleus exhibits a very significant enlargement 

after one year of age.  

Second stage: myelination. We observed a continuous increase in the size of all 

amygdala nuclei from birth to young adulthood that was associated with an increase 

in the number of oligodendrocytes. This suggests that myelination of the amygdala 

circuits may underlie, at least in part, the late and continuous enlargement of 

amygdala nuclei after three months of age. Indeed, oligodendrocytes produce the 

myelin sheath that surrounds axons (Nave, 2010), and an increase in 

oligodendrocyte number has been linked to an increase in axon myelination during 

development (O'Kusky and Colonnier, 1982). The contribution of oligodendrocyte 

processes to the volumetric changes observed after three months of age was, 

however, not uniform across distinct amygdala nuclei. In the lateral, basal and 

accessory basal nuclei, statistical analyses indicated that oligodendrocyte numbers 

were only partially related to the volumetric changes. Thus, other factors might also 

contribute to these changes. In the medial nucleus, the correlation was also low due 
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to (a) high biological variability in this nucleus, and (b) a possible decrease in 

neuropil volume that has been suggested to occur during puberty (Zehr et al., 2006). 

In contrast, the correlation between volume and oligodendrocyte number was very 

high in the central nucleus, suggesting that myelination of fibers in this nucleus might 

contribute most to its volumetric maturation. In sum, despite subtle differences 

between individual amygdala nuclei, increases in oligodendrocyte number might 

underlie the continuous increase in overall amygdala volume until young adulthood. 

 

Paralaminar nucleus 
We quantified a population of immature cells in the paralaminar nucleus of the 

postnatal monkey amygdala, which developed into mature neurons after one year of 

age. Previous studies have noted the existence of immature cells expressing 

different markers of immature neurons in the paralaminar nucleus of: (1) monkeys: 

doublecortin (Decampo and Fudge, 2011; Marlatt et al., 2011; Zhang et al., 2009), 

PSA-NCAM (Bernier et al., 2002; Decampo and Fudge, 2011; Marlatt et al., 2011), 

Bcl2 protein (Bernier et al., 2002; Bernier and Parent, 1998a; b; Fudge, 2004), class 

III -tubulin and TUC-4 (Bernier et al., 2002); (2) humans: Bcl-2 protein (Yachnis et 

al., 2000) ; and (3) rabbits: class III -tubulin and PSA-NCAM (Luzzati et al., 2009; 

Luzzati et al., 2003), doublecortin and Tbr-1 (Luzzati et al., 2009). In particular, 

Yachnis et al. (2000) identified a population of immature cells in the ventrolateral 

region of the human amygdala, which are abundant throughout infancy, persist into 

adulthood, and are gradually reduced during adult life. Zhang et al. (2009) also 

reported that, although the number of doublecortin-expressing cells in the 

paralaminar nucleus decreases in adulthood, they remained present in 12-, 21- and 

even 31-year-old monkeys, suggesting continued neuronal maturation throughout the 

lifespan. Thus, although several studies have previously provided evidence of the 

presence of immature cells in the paralaminar nucleus, our study is the first to 

quantify this population of immature cells and their development during early 

postnatal life. The postnatal maturation of this population of neurons should not be 

confounded with the temporal stream reported by Bernier and colleagues (Bernier et 

al., 2002). Although we cannot exclude the possibility that some immature neurons 

migrate, the fact that we found that their number does not change during postnatal 

development suggests that these cells were quiescent in the paralaminar nucleus 

and only matured after one year of age.  
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What needs to be investigated now is whether these late maturing neurons in the 

paralaminar nucleus integrate into existing amygdala circuits and, if so, what their 

function might be. The delayed maturation of these neurons must constitute a 

prominent phenomenon as these neurons represented 8% of the total number of 

mature neurons present in the basolateral portion of the amygdala (i.e., including the 

lateral, basal, accessory basal and paralaminar nuclei) in young adult individuals. 

Unfortunately, only scant information is available about the connectivity of the 

paralaminar nucleus and there is no clear hypothesis about its function (Amaral et al., 

1992; Decampo and Fudge, 2011). Some authors assume that the integration of new 

(i.e., recently mature) neurons in the amygdaloid complex may parallel the continuing 

addition of neurons in the olfactory bulb, as the amygdala receives direct olfactory 

inputs (Arisi et al., 2011; Bernier et al., 2002). This hypothesis is problematic, 

however, as the paralaminar nucleus, defined by the presence of immature cells, is 

undetectable in the rat (Chareyron et al., 2011). The amygdala is also interconnected 

with the hippocampus (Amaral et al., 1992; Decampo and Fudge, 2011) and as 

observed in the dentate gyrus (Jabès et al., 2010), the formation of new emotional 

memories could be facilitated by the integration of new neurons in the amygdala. 

Although a clear hypothesis about the function of the paralaminar nucleus is still 

lacking, the addition of recently mature neurons to existing circuits in adolescent and 

adult animals might contribute to increased plasticity and coding capacity in the 

amygdala (Decampo and Fudge, 2011). 

 

Conclusion 
We identified two stages of postnatal development of the primate amygdala. The 

first is characterized by a large increase in the volumes of the lateral, basal and 

accessory basal nuclei between birth and three months of age, without any 

detectable changes in neuronal soma size or cell numbers, thus suggesting an 

increase in neuropil volume. The second stage is characterized by a slow and 

continuous increase in size of most amygdala nuclei from birth to young adulthood, 

which is accompanied by an increase in oligodendrocyte number. This stage likely 

reflects the postnatal myelination of amygdala circuits. We also quantified the 

maturation of a population of immature cells present in the paralaminar nucleus at 

birth, which further develop into mature neurons after one year of age. Our 

quantitative findings in monkeys have defined the normal time course of postnatal 
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development of the primate amygdala at the cellular level. These data, which are 

likely a reasonable proxy for the development of the human amygdala, may provide 

the substrate for the formulation of models relating the perturbation of specific 

maturational processes to the etiologies of human psychiatric and neurological 

disorders. 
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FIGURE LEGENDS 
 
Figure 1: Low-magnification photomicrographs of a representative coronal section at 

a mid-rostrocaudal level of the rhesus monkey (Macaca mulatta) amygdala, which 

illustrate the locations of the six main amygdala nuclei in a newborn (A and B) and a 

9-year-old (C and D) monkey. L: Lateral; B: Basal; PL: Paralaminar; AB: Accessory 

basal; CE: Central; M: Medial. Non-labeled areas include the remaining nuclei of the 

amygdala (see (Chareyron et al., 2011)). Scale bar in A: 1 mm, applies to all panels. 

 

Figure 2: Classification and identification of different cell types in the basal (A,B,C) 

and paralaminar (D) nuclei of the monkey amygdala, viewed with an X100 objective 

in Nissl-stained, coronal sections cut at 60 m. A: Neuron. B: Astrocytes. C: 
Oligodendrocytes. D: Immature neurons. Scale bar in A: 5 m, applies to all panels. 

 

Figure 3: Volumes of the main nuclei of the monkey amygdala at different ages 

during early postnatal development (expressed as a percentage of the volume of the 

structure observed in 5-9-year-old monkeys: average +/- SD). A: Lateral, basal and 

accessory basal nuclei. B: Paralaminar, central and medial nuclei. N: Newborn; 3M: 

3-month-olds; 6M: 6-month-olds; 9M: 9-month-olds; 1Y: 1-year-olds; 5-9Y: 5-9-year-

olds. 

 

Figure 4: Numbers of astrocytes, mature neurons and immature cells in the 

paralaminar nucleus of the monkey amygdala at different ages during postnatal 

development. Note that the total number of neurons (mature + immature) remains 

constant throughout postnatal development. N: Newborns; 3M: 3-month-old; 6M: 6-

month-old; 9M: 9-month-old; 1Y: 1 year; 5-9Y: 5-9-year.  

 

Figure 5: Numbers of oligodendrocytes in the six main nuclei of the monkey 

amygdala at different ages during early postnatal development. A: Lateral. B: Basal. 

C: Accessory basal. D: Paralaminar. E: Central. F: Medial. Error bars: +/- SD. N: 

Newborns; 3M: 3-month-old; 6M: 6-month-old; 9M: 9-month-old; 1Y: 1 year; 5-9Y: 5-

9-year.  
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Figure 6: Neuronal soma size in the five main nuclei of the monkey amygdala at 

different ages during early postnatal development. A1-A6: Lateral. B1-B6: Basal. C1-
C6: Accessory basal. D1-D6: Central. E1-E6: Medial. 

 
Figure 7: Neuronal soma size in the paralaminar nucleus of the monkey amygdala at 

different ages during early postnatal development. A: Newborns. B: 3-month-olds. C: 
6-month-olds. D: 9-month-olds. E: 1-year-olds. F: 5-9-year-olds.  

 

Figure 8: Relationship between oligodendrocyte number and volume of the main 

amygdala nuclei of monkeys from three months to one year of age and at 5-9 years 

of age. A: Lateral (volume = 32.747 + (0.0000053 X oligodendrocyte number); 

R²=0.23; F1,18 = 5.636; P = 0.029). B: Basal (volume = 33.679 + (0.000011 X 

oligodendrocyte number); R²=0.49; F1,18 = 17.523; P < 0.001). C: Accessory basal 

(volume = 19.259 + (0.0000092 X oligodendrocyte number); R²=0.42; F1,18 = 13.129; 

P = 0.002). D: Paralaminar (volume = 3.782 + (0.0000482 X oligodendrocyte 

number); R²=0.65; F1,18 = 34.620; P < 0.001). E: Central (volume = 2.904 + 

(0.0000232 X oligodendrocyte number); R²=0.81; F1,18 = 76.982; P < 0.001). F: 
Medial (volume = 4.548 + (0.00000686 X oligodendrocyte number); R²=0.18; F1,18 = 

4.169; P = 0.056).  

 

Figure 9: Schematic representation of the postnatal development of the monkey 

amygdala circuits. L: lateral; B: basal; AB: accessory basal; C: central; M: medial; PL: 

paralaminar. Black arrow: unmyelinated axons; black and white arrow: myelinated 

axons.  

 

 

 

Table 1: Parameters used for the stereological analysis of the postnatal development 

of the monkey amygdala. 

 
Table 2: Volume, cell numbers and neuronal soma size in the main nuclei of the 

monkey amygdala at different ages during early postnatal development. 
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Table 2: Volume, cell numbers and neuronal soma size in the main nuclei of the monkey amygdala at different ages during early postnatal development.

  
  

Lateral 
  

  
Basal 

  

  
Accessory Basal 

  

  
Paralaminar 

  

  
Central 

  

  
Medial 

  

NUCLEI VOLUME (mm3) 

Newborn 25.32 2.62 25.79 2.82 13.98 2.29 2.64 1.19 4.04 0.64 4.61 0.72 

3-month 34.86 4.72 34.08 8.37 19.11 3.47 3.27 1.54 4.08 0.39 4.59 0.55 

6-month 34.26 2.75 37.62 5.08 19.55 1.81 4.38 0.90 4.35 0.64 4.53 0.40 

9-month 32.10 2.39 35.63 5.80 20.36 2.89 4.64 1.02 4.73 0.24 4.72 0.50 

1-year 34.73 6.08 38.36 3.85 21.48 1.72 4.85 0.72 4.65 0.90 5.09 0.44 

5-9-year 38.40 3.57 47.15 2.67 24.38 2.14 8.84 0.90 8.15 1.44 5.42 0.50 

NEURON NUMBER 

Newborn 1,770,271 163,872 1,232,759 220,811 951,634 196,808 75,024 15,929 312,095 22,590 343,439 32,907 

3-month 1,925,343 123,564 1,328,170 112,143 959,225 56,020 61,922 11,089 274,211 23,266 322,184 42,384 

6-month 1,865,763 341,660 1,296,522 110,063 939,943 64,479 55,446 32,295 280,798 27,801 348,810 48,376 

9-month 1,550,860 113,446 1,227,670 159,012 969,833 62,240 53,343 36,445 269,968 29,756 320,119 63,193 

1-year 1,598,605 284,359 1,347,395 129,287 881,131 71,369 60,640 5,811 300,997 69,074 316,043 9,063 

5-9-year 1,592,284 128,381 1,445,882 138,651 885,352 101,469 408,051 49,453 297,079 30,889 282,622 25,053 

ASTROCYTE NUMBER 

Newborn 1,075,160 199,787 1,147,166 88,636 811,074 113,488 83,872 27,587 294,217 29,384 284,953 28,999 

3-month 1,348,781 177,464 1,280,084 205,464 825,492 58,221 147,255 35,000 253,739 31,139 272,562 44,068 

6-month 1,150,751 154,674 1,202,133 242,384 720,950 60,125 142,127 26,101 265,206 41,489 246,904 35,274 

9-month 1,029,207 15,720 1,187,168 195,565 779,742 85,046 116,953 41,715 280,819 50,842 249,895 77,082 

1-year 1,049,401 198,033 1,328,610 210,249 804,816 12,100 150,934 26,169 295,778 50,687 291,903 45,238 

5-9-year 1,044,198 64,819 1,237,921 86,478 701,739 23,552 191,762 28,505 276,106 15,546 235,419 17,978 

OLIGODENDROCYTE NUMBER 

Newborn 65,897 116,192 18,973 37,946 1,668 2,013 602 1,205 815 941 0 0 

3-month 88,714 34,991 94,902 45,779 29,149 19,368 11,492 5,919 31,473 7,393 13,323 13,275 

6-month 208,438 128,030 228,086 68,389 72,778 37,834 7,644 6,015 64,864 14,405 32,680 16,572 

9-month 237,718 129,714 267,359 104,294 103,735 50,864 13,359 9,665 84,303 28,442 41,880 22,442 

1-year 355,195 114,080 384,490 107,272 153,342 51,464 17,538 10,532 100,881 35,533 45,027 24,144 

5-9-year 1,112,480 131,622 1,247,140 139,668 572,196 82,235 96,422 23,397 210,656 28,544 102,661 13,889 

NEURONAL SOMA VOLUME AVERAGE (μm3) 

Newborn 1,536 95 2,419 226 1,646 131 740 124 1,265 110 1,089 152 

3-month 1,675 375 2,492 513 1,691 376 1,005 219 1,233 247 1,015 80 

6-month 1,694 177 2,555 354 1,826 124 1,524 263 1,328 122 1,067 101 

9-month 1,679 205 2,567 333 1,822 189 1,058 418 1,483 200 1,191 195 

1-year 1,533 112 2,268 209 1,707 97 1,385 489 1,194 117 1,129 61 

5-9-year 1,433 158 2,073 99 1,804 92 1,470 87 1,374 69 1,176 27 

% of NUCLEUS VOLUME OCCUPIED BY NEURONAL SOMAS 

Newborn 10.77 0.93 11.49 1.24 11.25 1.86 3.08 2.85 9.85 1.01 8.21 1.53 

3-month 9.18 1.14 9.74 0.35 8.44 0.52 2.49 1.63 8.31 1.70 7.27 1.78 

6-month 9.19 1.51 8.83 1.05 8.85 1.25 2.01 1.18 8.70 1.62 8.38 2.15 

9-month 8.11 0.97 8.86 0.91 8.71 0.50 1.22 0.99 8.52 1.73 7.92 0.72 

1-year 7.05 0.40 7.96 0.63 7.01 0.52 1.72 0.57 7.67 0.60 7.04 0.65 

5-9-year 5.96 0.79 6.34 0.32 6.54 0.41 6.80 0.70 5.06 0.40 6.16 0.63 

o

40



  

  
Amygdala 

  

  
Brain* 

    

  
Paralaminar 

  

VOLUME (mm3) IMMATURE NEURON NUMBER 

Newborn 116.34 15.24 44,655 4,338 Newborn 1,038,954 247,977 

3-month 158.10 25.97 55,767 3,585 3-month 1,046,627 290,699 

6-month 156.12 12.00 56,857 5,511 6-month 1,069,391 188,256 

9-month 159.84 16.67 53,475 5,541 9-month 956,429 208,996 

1-year 166.26 10.11 56,188 5,910 1-year 893,367 71,509 

5-9-year 193.86 12.86 52,360 4,875 5-9-year 544,588 78,783 

*Refers to the volume of the telencephalon and diencephalon bilaterally. 
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