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bDepartment of Psychology, University of Fribourg, Rue de Faucigny 2, CH-1700 Fribourg, Switzerland

This article examines the relationship between operator characteristics and process control performance. Thirty-nine
trainee operators participated in a 4-h training session of a simulated process control task and a testing session
in which various system faults had to be managed. Cognitive ability, cognitive flexibility, self-efficacy and personality
traits were measured as operator characteristics. Cognitive ability related positively to system control
performance but not to diagnostic performance. Participants with low cognitive flexibility performed best on
system control, whereas participants with high cognitive flexibility performed best on diagnostic performance.
A hierarchical regression analysis revealed that cognitive ability, cognitive flexibility and declarative knowledge
accounted for about 30% of the variability of system control. The findings suggest that consideration of cognitive
ability and cognitive flexibility be increased in personnel selection for complex work environments.
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1. Introduction

Safety, reliability and productivity have long been
key objectives in process control environments such
as refineries and nuclear power plants. They remain
high priorities for process industries because human
errors and their consequences may cause severe
damage for nature and human beings (Wickens and
Hollands 2000). How can these goals be achieved?
There are different ways in which organisations strive
for high reliability and safe production. One typical
approach in the field of ergonomics is to increase the
emphasis on system or task design, that is, to
improve systems or interfaces in order to enhance
operators’ performance. The focus is thus on
improving the machine side of the human–machine
system. However, highly reliable and safe production
cannot be achieved by tending only to the complex
system and its components; it depends on qualified
and competent personnel as well (International
Atomic Energy Agency 1996). Enhancing the quali-
fication of personnel through regular training is
therefore an additional approach taken by organisa-
tions. A third way to contribute to safety, reliability
and productivity in process control industries is to
select personnel, such as process control operators,
who are most likely to succeed at their jobs. This
raises the question of which operator characteristics
can best predict process control performance.

There is a small branch of ergonomic research that
addresses issues of individual characteristics,
performance and personnel selection. Hollnagel (1998),
for instance, differentiates between temporary person-
related variables (e.g. inattention and fatigue) and
permanent person-related variables (e.g. variables
relating to cognition), both of which are linked to
human errors. Wickens et al. (1998) address the matter
of selection in human factors engineering, drawing on
many empirical findings from aviation research, a field
in which this subject has long figured prominently
(Hunter and Burke 1994). Coverage of empirical
findings on selection in process control environments is
harder to come by.

Three reasons are advanced to explain the lack of
research on the selection of process control operators
(Williams and Taylor 1993, Stanton and Ashleigh
1996). First, research on operator selection is
considered complex because of the methodological
problems entailed by this type of study. For instance,
the infrequency and irregularity of events in process
control make it difficult to measure actual job
performance. Second, human factors researchers might
feel that selection has little effect on work performance
in comparison to aspects such as system design and
operator training. Third, research has shown that
predictive power is quite poor (Stanton and Ashleigh
1996). However, Stanton and Ashleigh (1996) argue
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that this assessment becomes a ‘circular argument:
because it is a difficult area to study and people
perceive that it is less important than other areas, little
research is done, so the predictive power of the
methods is not optimised’ (p. 181). The aim of this
article is to improve understanding of how operator
characteristics such as cognitive ability and style, self-
efficacy and personality relate to process control
performance.

1.1. Selection of process control operators

Within the process control industries, the nuclear
industry appears to have the most standardised
procedures for personnel selection. Stating that the
selection of suitably qualified personnel is essential for
the safe and reliable operation of a nuclear power
plant, the International Atomic Energy Agency
(IAEA) provides recommendations and guidelines for
the recruitment of plant personnel (e.g. International
Atomic Energy Agency 2002, 2006). Recruitment of
personnel is expected to follow approved procedures
that include both the specification of selection criteria
and objective testing to assess applicants’ aptitudes for
the job (International Atomic Energy Agency 2002).
Aside from education, IAEA-recommended selection
criteria are work background and experience, problem-
solving ability, emotional stability, motivation, initia-
tive, communication skills and attitudes towards
safety. Attributes related to safety culture include ‘a
questioning attitude, a rigorous and prudent approach
and communication and learning abilities’ (Interna-
tional Atomic Energy Agency 2002, p. 5).

In a survey of selection methods that was carried
out in 34 organisations in 13 countries of the nuclear
industry, Stanton and Ashleigh (1996) showed that
interviews and references were the most frequently
employed methods, followed by personality and
cognitive tests that were applied by more than 60%
of the organisations. Tests are employed to predict
performance and to ensure that applicants are suffi-
ciently qualified. It is thereby assured that ‘training
resources are not wasted on candidates who are unfit
for the job’ (International Atomic Energy Agency
2006, p. 3). Personality characteristics such as honesty,
integrity and attitudes are assessed as well and interest
inventories are used. Different methods are chosen
depending on which attributes are of primary interest.
Written tests are administered to assess knowledge;
oral tests, to assess knowledge and attitudes; and
performance examinations, to assess skills and atti-
tudes (International Atomic Energy Agency 2006).
However, it remains unclear just how abilities,
personality or other individual characteristics affect
performance, whether all characteristics are equally

important for predicting job success, which of them are
essential and which are simply ‘nice to have’.

1.2. Operator characteristics and their effect on
performance

Individual characteristics that affect work performance
in general include cognitive abilities and style, self-
efficacy and personality traits (e.g. Morris and Rouse
1985, Colquitt et al. 2000). Each of these
characteristics exhibited by the applicant or expected
to be critical particularly for process control
performance are addressed below. This review of
individual characteristics thus rests on empirical
research on complex systems and process control, but
it is also complemented by research in related fields
(e.g. aviation) because empirical research on this topic
in the field of process control is rather scarce.

1.2.1. Cognitive ability

Across many work environments a strong relationship
between cognitive ability and performance has been
shown to exist indirectly through job knowledge
(Schmidt and Hunter 1998). Regarding process control
and related tasks, Morris and Rouse (1985) found in
their review that cognitive ability was related to
troubleshooting performance and that measures of
job-related knowledge and skills had the highest
relationships to performance.

A large number of interrelated variables account
for a high level of complexity in process control
(Wickens and Hollands 2000). Controlling complex
systems therefore requires different aspects of cognitive
ability. First, an operator needs reasoning ability in
order to develop hypotheses about the causal structure
of the system. Second, reasoning with numbers has
proven to be a predictor of performance in dealing
with simulated complex systems (Wittmann and
Hattrup 2004, Kluge 2008). Third, an operator
requires verbal and figural abilities in order to
understand instructions, information and graphs
given by the system (Wittmann and Hattrup 2004,
Kluge 2008). Drawing on the empirical results
presented in the literature, it is hypothesised that
cognitive ability is positively related to process control
performance.

1.2.2. Cognitive flexibility

Several measures of cognitive style such as field
independence–dependence and reflectivity–impulsivity
have been shown to be related to troubleshooting
performance (Morris and Rouse 1985). Cognitive
flexibility as a cognitive style is described by Spiro et al.
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(1996) as a reductive and an expansive style of
thinking. Individuals with a reductive cognitive style
(i.e. low cognitive flexibility) have a preference for
simplicity and rigid prescriptions from memory and an
intolerance of ambiguity. Individuals with an expan-
sive and flexible cognitive style (i.e. high cognitive
flexibility) assume the world to be heterogeneous and
have a flexible and situation-adaptive assembly of
knowledge. Supported by empirical findings, Spiro
et al. (1996) argue that individuals with high cognitive
flexibility are more likely to perform required cognitive
operations for knowledge acquisition in complex and
ill-structured domains. Also, individuals with high
cognitive flexibility are more qualified to learn in novel,
complex situations. Following Spiro et al. (1996), it
was expected that cognitive flexibility would be
positively associated with the handling of complex
systems.

1.2.3. Self-efficacy

A meta-analysis by Stajkovic and Luthans (1998) has
shown self-efficacy to be correlated to work-related
performance. As for complex problem solving, De-
bowski et al. (2001) found a positive relationship
between self-efficacy and control performance. They
stated that performance of complex activities is
affected by self-efficacy in that individuals of high
efficacy display more strategic flexibility, manage their
time more efficiently and discard flawed strategies
more quickly than others. Moreover, self-efficacy has
been found to moderate the relationship between
acquired knowledge and control performance (Kluge
2008). Thus, a positive relationship between self-
efficacy and process control performance is assumed.

1.2.4. Personality

Personality traits such as conscientiousness, openness
and emotional stability have been found to be related
to work performance (e.g. Barrick and Mount 1991).
In a meta-analysis by Barrick and Mount (1991),
conscientiousness was related to performance for a
range of occupational groups. Similar results have
been found for pilots’ performance, where conscien-
tiousness was the strongest predictor (Pettitt and
Dunlap 1995, cited Wickens et al. 1998, p. 559).
Conscientiousness is believed to be particularly im-
portant for safety in process control, for many
processes involve high risk and hazardous materials
(Wickens and Hollands 2000). Concerning emotional
stability, Bartram (1995) found that pilots who
successfully completed the training programme were
more emotionally stable than pilots who had not.
Accordingly, it is believed that the personality traits of

conscientiousness, openness and emotional stability
correlate with process control performance.

1.3. Present study

The aim of this study was to examine the relationship
between operator characteristics and performance in
the field of process control. More precisely, cognitive
ability, cognitive flexibility, self-efficacy and
personality have been analysed, which previous studies
have shown to be related to performance.

Operator performance as a criterion was measured
in a simulated process control environment. The data-
gathering facilities of the computer-based simulation
made it possible to track various process control
performance variables and measure both primary and
secondary tasks. As primary tasks, system control
and diagnostic performance were measured to take
account of the independent character of the tasks.
Since ability in system control is independent of ability
in fault diagnosis (Landeweerd 1979), a competent
controller may not necessarily be a competent
diagnostician and vice versa (Wickens and Hollands
2000). As secondary tasks, regular recording of tank
levels and acknowledgement of system alarms were
also required of the operator. This setting consisting of
primary and secondary tasks corresponded to a
complex multitask environment.

The operator characteristics (cognitive ability,
cognitive flexibility, self-efficacy and personality) that
are expected to be predictors of process control
performance were measured through various
questionnaires.

A training session was conducted to instruct
participants in the process control task. A testing
session took place 1 week later. The issue of training
effectiveness for process control environments was
also examined in this study. The findings of this
research question are reported in a separate article
(Sauer et al. 2008). In the present article, the focus is on
operator characteristics and its relation to
performance.

2. Method

2.1. Participants

The study involved 39 participants (51.3% female)
who were trainee operators at different Swiss chemical
companies employing process control environments in
their production systems. Participants with this
background were sought for the sample to ensure that
they had an understanding and knowledge of technical
systems. As the trainees were given two half days off
work to take part in the study it was not possible for
the collaborating organisations to provide a larger
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sample of participants. Participants’ ages ranged from
16 to 22 years (mean 18.1).

2.2. Training

Two different kinds of training were given. The
participants in the control group received basic
training after a procedure-centred approach, whereas
the participants in the experimental group received
additional heuristic rule training. The training and the
findings on its effects are described in more detail in a
separate article (Sauer et al. 2008). The training
sessions lasted approximately 4 h in total. Training
duration was limited to half a day, as it is current
practice in some organisations (e.g. in chemical
industries, Kluge et al. in press). The sessions were
conducted with groups of nine or 10 participants
working alone on individual computers. There were
two training sessions based on procedure-centred
approaches used in previous studies (e.g. Hockey
et al. 2007). Heuristic rules were presented to one
training group (n ¼ 19), with the other group receiving
a comparable task (n ¼ 20).

Analyses were conducted on the whole sample. The
authors did not expect any interaction effects of
training method and operator characteristics on
performance due to the considerable overlap of the

training methods in their content. The two training
approaches differed only in that in one group heuristic
rules were added to the procedure-based training
(totalling 25 min). Furthermore, there was no theory
that would suggest an interaction of heuristic rule
training and individual characteristics. However, to
test that the assumptions were correct, the correlations
between operator characteristics and performance
were also statistically analysed as a function of training
group, but the correlations revealed no relevant
differences between the groups (Fisher’s r-to-z
transformation, all p 4 0.05). Thus, training was not
found to have a moderating effect on the relationship
between operator characteristics and performance.

2.3. Process control task

Process control performance was assessed by using a
computer-based simulation of a complex task called
Cabin Air Management System (CAMS). CAMS has
already been applied in a number of previous studies
(e.g. Hockey et al. 2007). As the task has been
described elsewhere (Sauer et al. 2000b), it will be
outlined only briefly here. CAMS simulates a
spacecraft’s automated life-support system, but its
underlying principles are analogous to a process
control task. The operator must monitor the system

Figure 1. Main display of Cabin Air Management System.
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and intervene if a system fault occurs. CAMS consists
of five main system variables (O2, CO2, cabin pressure,
temperature and humidity) that are maintained in a
predefined zone by automatic controllers. The opera-
tor must complete four tasks with different priorities
according to their importance for crew survival. Two
of the tasks are defined as primary (system control and
fault diagnosis) and two as secondary (prospective
memory and reaction time; see below). Figure 1 shows
the main display of CAMS with the screen manager,
warning panel, history display, flow meters and its
current values and control panels for the five main
system variables.

2.4. Assessment of operator characteristics

Operator characteristics were assessed before the
training session. The completion of the questionnaires
took approximately 45 min.

2.4.1. Cognitive abilities

The Wonderlic Personnel Test (Wonderlic Inc. 2002)
was used to measure cognitive abilities. The test
consists of 50 items and captures verbal, numerical
and figural aspects of intelligence and learning
aptitude. The test questions included word compar-
isons, story problems and number series (e.g. ‘What is
the next number in this series? 1 0.5 0.25 0.125’). The
participants had 12 min to work on the multiple-choice
test.

2.4.2. Cognitive flexibility

Cognitive flexibility was measured with an adapted
version of the Cognitive Flexibility Inventory (Spiro
et al. 1996), which captures high and low cognitive
flexibility. The scale consisted of three subscales that
represent: (a) the preference to decompose complexity
into parts vs. holism (‘leaving complexity as it is’); (b)
passive reception of information vs. active construc-
tion of information (‘constructing knowledge’); (c)
external vs. personal control of learning (‘self-directed
learning’). A 9-point scale ranging from 74 (one
statement) to þ4 (vs. other statement) was employed.
A sample item from the scale was: ‘Learning works
best under the guidance of experts (e.g. teachers) vs.
learning works best when it is self-directed’. Cron-
bach’s alpha of the adapted German version was 0.70.

2.4.3. Self-efficacy

Self-efficacy was measured with eight items using
Schyns and Collani’s (2002) self-efficacy scale. A 6-
point scale ranging from 0 to 100% (0%, 20%, 40%,

60%, 80%, 100%) was employed. Internal
consistency of the adapted German version of the self-
efficacy scale was satisfactory (Cronbach’s
alpha ¼ 0.82) and similar to the original version
(Cronbach’s alpha ¼ 0.88). A sample item from the
scale was: ‘When I am confronted with a problem in
my job, I can usually find several solutions’.

2.4.4. Personality traits

Assessment of conscientiousness, openness and
emotional stability was based on Saucier’s (1994)
Big-five Markers. Eight adjectives per personality
trait (24 items total) had to be rated by participants on
a 9-point scale ranging from 1 (extremely inaccurate)
to 9 (extremely accurate). (Item examples for
conscientiousness: organised, systematic, careless; for
openness: creative, intellectual, complex; and for
emotional stability: relaxed, moody, touchy.)

2.5. Performance measures

The data-gathering facilities of CAMS allow the
measurement of performance criteria, including
primary and secondary task performance. System
control and fault diagnosis were defined as primary
tasks; prospective memory and reaction time as
secondary tasks (Sauer et al. 2000b).

2.5.1. System control

The operator must maintain five key parameters within
a predefined zone. If a key parameter departs from the
target zone, it can be restored to the proper level
through adjustments of automatic controllers or
adaptation of manual control. The duration of the
parameters’ deviation from the predefined zone
was measured in seconds and converted into
percentages.

2.5.2. Fault diagnosis

If a system fault occurs, the operator is required to
diagnose and remedy it by means of the maintenance
facility. One measure of diagnostic performance was
the rate of faulty diagnoses; the other was the number
of seconds the operator needed to remedy the system
fault correctly.

2.5.3. Prospective memory

This secondary task involves the recording of O2 tank
levels every 3 min, a task corresponding to a
prospective memory task (e.g. Brandimonte et al.
1996). Omitted tank-level recordings were counted.
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2.5.4. Reaction time

The other secondary task is to acknowledge alarms
when a warning signal appears. Reaction time is
thereby measured. As false alarms can occur, the
corresponding parameter must be examined after the
acknowledgement.

2.5.5. System knowledge

Declarative knowledge (knowledge about the system
and the relationship between the parameters) was
assessed through a questionnaire. The latter has been
employed before and is described in more detail in
Sauer et al. (2000a). It consists of 12 multiple-choice
items (e.g. ‘What happens to pressure when the CO2

scrubber is on?’) with three alternatives (‘increase’,
‘decrease’, ‘minimal or no effect’). Each set of
alternatives was followed by an open question to
explain the given answer (‘Please explain why’) and by
three open questions about the processes and relation-
ships in the CAMS environment (e.g. ‘Please explain
which components or processes have an impact on
temperature in the cabin and describe the direction of
the relationship’). Participants scored from 2.5 to 16.5
points of a possible 21 points (mean 10.0).

2.6. Procedure

The training session lasted approximately 5 h, includ-
ing the completion of the questionnaires. The testing
session lasted 2 h. Performance was measured in the
testing session that was held 1 week after the training
session in the same groups as the training. The
participants worked on their individual computers
for 70 min (two 35-min testing sessions), as they had
done in their training. During the testing, they had to
deal with three practised faults (faults they had trained
to respond to), three novel faults (similar to practised

faults, but not previously encountered) and two
complex faults (which required an indirect way of
handling the given fault) according to a schedule
unknown to them. During the training session, the
participants received a fault-finding guide, which they
were also permitted to use in the testing session.

3. Results

3.1. Correlations between operator characteristics and
process control performance

Data points more than 1.5 interquartile ranges away
from the interquartile range were regarded as outliers.
Two such outliers were identified for system control
performance and were removed. One data record was
missing because of technical problems. In this section,
data of 36 participants are reported.

The overall pattern of the correlations between
operator characteristics and process control
performance revealed significant relationships between
cognitive ability and performance and between
cognitive flexibility and performance (see Table 1).
Cognitive ability was significantly correlated with
system control and system knowledge. Cognitive
flexibility was significantly associated with both system
control and diagnostic performance but, notably, in
different directions. Participants with low cognitive
flexibility generally performed better in system control
than participants with high cognitive flexibility,
whereas the latter participants tended to outperform
the former in fault diagnosis and repair. There were no
significant relationships between self-efficacy or
personality and process control performance.

3.1.1. Cognitive ability

Cognitive ability was significantly correlated to system
control failures (rs ¼ 70.31, p 5 0.05). That is,
individuals with high cognitive abilities showed better

Table 1. Spearman correlations between operator characteristics and performance.

Performance measure
Cognitive
ability

Cognitive
flexibility

Self-
efficacy

Conscien-
tiousness Openness

Emotional
stability

Primary task performance
System control failures 70.31* 0.34* 70.18 70.15 70.04 70.02
Diagnostic errors 70.17 70.31* 70.24 70.22 70.14 0.00
Fault identification time 70.19 70.35* 70.18 70.13 70.01 0.03

Secondary task performance
Prospective memory failures 0.08 0.06 0.02 70.09 0.23 70.15
Reaction time 70.13 70.16 70.01 70.07 0.04 0.02

System knowledge
0.41** 0.06 0.15 70.05 0.14 70.27

*p 5 0.05; **p 5 0.01 (one-tailed).
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system control performance than did participants with
low cognitive ability. A significant relationship be-
tween cognitive ability and system knowledge was also
found (rs ¼ 0.41, p 5 0.01). In other words, the higher
the cognitive abilities, the better the declarative
knowledge.

There was no significant relationship between
cognitive ability and overall diagnostic performance
(diagnostic errors: rs ¼ 70.17, p 4 0.05; fault identi-
fication time: rs ¼ 70.19, p 4 0.05). However, an
additional analysis for diagnostic performance of
practised and novel faults showed that cognitive ability
was significantly related to dealing with novel faults,
both in diagnostic errors (rs ¼ 70.30, p 5 0.05) and
fault identification time (rs ¼ 70.32, p 5 0.05). Cog-
nitive ability was not significantly related to managing
practised faults, though (diagnostic errors: rs ¼ 70.07,
p 4 0.05; fault identification time: rs ¼ 70.01,
p 4 0.05).

3.1.2. Cognitive flexibility

Cognitive flexibility was significantly related to system
control failures (rs ¼ 0.34, p 5 0.05). According to
this finding, participants with low cognitive flexibility
tended to perform better on system control than did
participants of high cognitive flexibility. An opposing
pattern of correlations was found for diagnostic
performance, with high cognitive flexibility being
associated with accurate fault diagnosis (rs ¼ 70.31,
p 5 0.05) and fault identification time (rs ¼ 70.35,
p 5 0.05).

Examination of the subscales of the overall
cognitive-flexibility scale (see Table 2) shows that the
sub-scale ‘constructing knowledge’ in particular ex-
plains these correlations. Participants who took
initiative and constructed their knowledge tended to
perform better than those who rather recalled rigid
prescriptions from memory in both accuracy of fault
diagnosis (rs ¼ 70.30, p 5 0.05) and fault identifica-
tion time (rs ¼ 70.34, p 5 0.05). The participants
who took initiative and constructed their knowledge

also seemed to gain a superior understanding of the
system, although this correlation was only marginally
significant (rs ¼ 0.27, p ¼ 0.052). By contrast, system
control was correlated to a cognitive style in which the
individual prefers passively receiving information and
knowledge to constructing knowledge (rs ¼ 0.29,
p 5 0.05).

3.1.3. Self-efficacy and personality

Contrary to the hypotheses, self-efficacy and the
personality traits showed no significant relationships to
process control performance. See Table 1 for
corresponding correlation coefficients.

3.2. Regression analysis with operator characteristics
and performance

A hierarchical regression analysis was conducted, with
system control failures serving as the criterion and with
cognitive ability, cognitive flexibility and system
knowledge serving as predictors (Table 3). The
selection of predictors and their order of entry was
based on past research, as recommended by Field
(2005). Cognitive ability was therefore entered first, as
past work indicated that cognitive ability was a strong
predictor of performance (Schmidt and Hunter 1998;
see section 1.2.1). System knowledge was added as a
further predictor because it also correlated with system
control performance.

All predictors showed significant correlations with
the criterion. Cognitive flexibility and system
knowledge were significant predictors of system
control performance (p 5 0.05). Cognitive ability
accounted for 8% of the variation in system control
performance; cognitive flexibility, for 10%. Inclusion
of system knowledge made it possible to explain an
additional 11% of the variation in system control.
Overall, the two operator characteristics, cognitive
ability and cognitive flexibility, together with system
knowledge account for almost 30% of the variation in
system control performance.

Table 2. Spearman correlations between sub-scales of cognitive flexibility and performance.

Performance measure
Leaving complexity

as it is
Constructing
knowledge

Self-directed
learning

Primary task performance
System control failures 0.09 0.29* 0.14
Diagnostic errors 70.09 70.30* 70.15
Fault identification time 70.25 70.34* 70.10

System knowledge
0.05 0.27 70.06

*p 5 0.05.

308 D. Burkolter et al.



The same hierarchical regression analysis was
carried out with diagnostic performance as a criterion
and with cognitive ability, cognitive flexibility and
system knowledge as predictors. The analyses revealed
no significant predictors for diagnostic errors, fault
identification time (see Table 4), or the secondary task
performance measures.

4. Discussion

The primary goal of this study was to improve
understanding of the relationship between operator
characteristics and process control performance. Cog-
nitive ability and cognitive flexibility emerged as the
best predictors of process control performance. An
important finding was that there were differences
between the predictors of system control performance
and diagnostic performance. All these findings are
relevant to operator selection.

There are two major findings in this study, which
both have implications for personnel selection. The
first major finding was that cognitive ability was a
good predictor for process control performance and

for diagnostic performance (though the association
was only observed for novel faults and not for
practised ones). Cognitive ability was also significantly
correlated with system knowledge. With regard to
system knowledge, Schmidt and Hunter (1998) argue
that cognitive ability indirectly affects performance
through the acquisition of job knowledge. Presumably,
cognitive ability also indirectly affects system control
performance by the same route, but the current sample
was too small to permit an accurate examination of
this possibility.

Cognitive ability and cognitive flexibility together
with declarative knowledge account for nearly 30% of
the variance in system control. The effect sizes in this
study are similar to findings in the meta-analysis by
Schmidt and Hunter (1998), who reported
relationships of r ¼ 0.51 between cognitive ability and
work performance (R2 ¼ 26%). The similar effect
sizes also suggest some ecological validity of the
present experiment since the present findings were
comparable to results obtained in real work
environments.

The second major finding of the study was that
cognitive flexibility was a good predictor of process
control performance, but the effects emerged in
different directions for the two tasks fault diagnosis
and system control. Operators with high cognitive
flexibility outperformed operators with low cognitive
flexibility on fault diagnosis, whereas the reverse was
true for system control (i.e. low cognitive flexibility was
associated with better performance). This suggests that
the most appropriate level of cognitive flexibility is
task-dependent to the extent that the positive effects of
a certain level may not only be neutralised under a
different task but might even turn to a disadvantage.
This supports Landeweerd’s (1979) finding that
operator skills in system control and in fault diagnosis
are independent of each other. Taken together, these
findings show that performance of the two main tasks
of process control are supported by different levels of
cognitive flexibility. While these differences should be
considered in personnel selection, they entail a
dilemma since operators will be required to be good at
both system control and fault diagnosis. There are
several possibilities to deal with that dilemma. First,
operators with a medium score in cognitive flexibility
may be selected to avoid very poor performance on
either of the two process control tasks. This approach
favours generalists rather than specialists. However,
while this would prevent the selection of operators
who perform very poorly at one of the tasks, the down-
side would be that these operators will not excel at any
of the tasks. Second, a task analysis is conducted to
determine if any of the two tasks is more important
than the other for overall performance in a specific

Table 4. Summary of hierarchical regression analysis with
fault identification time as a criterion.

Predictors of fault
identification time B SE B b Significance

Step 1
Cognitive ability 70.89 0.75 70.20 0.244

Step 2
Cognitive ability 70.65 0.76 70.15 0.394
Cognitive flexibility 75.10 3.77 70.23 0.185

Step 3
Cognitive ability 70.40 0.87 70.09 0.647
Cognitive flexibility 75.18 3.81 70.23 0.184
System knowledge 70.82 1.37 70.11 0.556

R2 ¼ 0.04 for step 1; DR2 ¼ 0.005 for step 2; DR2 ¼ 0.01 for step 3.

Table 3. Summary of hierarchical regression analysis with
system control failures as a criterion.

Predictors of system
control failure B SE B b Significance

Step 1
Cognitive ability 70.31 0.18 70.28 0.093

Step 2
Cognitive ability 70.39 0.18 70.36 0.034
Cognitive flexibility 1.76 0.87 0.33 0.051

Step 3
Cognitive ability 70.19 0.19 70.17 0.327
Cognitive flexibility 1.70 0.83 0.32 0.047
System knowledge 70.65 0.30 70.37 0.036

R2 ¼ 0.08 for step 1; DR2 ¼ 0.10 for step 2; DR2 ¼ 0.11 for step 3.
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work context. For instance, in some organisations
operators are only expected to carry out system control
tasks while senior colleagues are responsible for diag-
nostic tasks (Williams and Taylor 1993). In that case,
levels of required cognitive flexibility could be adjusted
accordingly. Third, if process control tasks are carried
out in teams, a possible solution may be to build diverse
teams whose members are matched for their cognitive
style (e.g. high- and low-flexibility operators are mem-
bers of the same team). This approach may be promising
because cognitive diversity in teams has been shown to
benefit system control performance and diagnostic
performance (Sauer et al. 2006). Overall, the task
dependency of cognitive flexibility adds an additional
layer of complexity to the literature on cognitive styles,
which has generally assumed that although ‘bipolar
dimensions represented two equally efficient ways of
solving a task, in reality, one strategy was usually more
effective than the other’ (Kozhevnikov 2007, p. 466).
Furthermore, the cognitive flexibility scale was especially
developed for complex and ill-structured tasks, which
has been identified as a particular need in the human–
computer domain (Hockey 1990).

In addition to the demonstrated utility of the
cognitive ability and cognitive flexibility tests, it is of
special practical interest to note that these instruments
are relatively inexpensive, quick and easy to adminis-
ter. For example, the Wonderlic ability test takes
12 min to complete and the cognitive flexibility
questionnaire about 5 min. Due to these advantages,
the cognitive ability and cognitive flexibility tests
compare favourably to other methods employed in
personnel selection, such as interviews.

When looking at the overall pattern of association
between operator characteristics and performance, some
of the correlations predicted by the literature were not
found in the present study. This may be due to
environmental variables (e.g. presence of stressors) or
the training approach. For example, one may presume
that emotional stability as a personality factor might
becomemore relevant with increasing work pressure and
stress levels. Similarly, in a training approach as used in
the present study, few degrees of freedom are provided to
operators compared to other training approaches. This
may generally lead to individual characteristics becom-
ing less relevant (cf. Mischel 1968).

The influence of different interventions on the
relationship between operator characteristics and
performance needs to be examined to advance the
understanding of the individual correlates of process
control performance. With appropriately designed
interventions, operators could be better supported,
matching cognitive styles and abilities. For example,
one may consider a training method in which the
emphasis and training time on specific tasks is varied

according to individual operator needs (cf. emphasis
shift training; Gopher 2007). This may be in the
form of exercises emphasising fault diagnosis (for
operators with low cognitive flexibility because they
are generally less good at this task) or system control
(for operators with high cognitive flexibility because
they are generally less good at this task).

Finally, recommendations for future research on
operator characteristics are given. The present study
was of an exploratory nature since empirical results
on operator characteristics, especially cognitive
flexibility, are quite scarce. Therefore, further research
is needed to test whether the results found in this study
can be replicated and whether they can be applied to
different settings. For instance, the experiment
involved trainee operators at the beginning of their
vocational careers. This needs to be complemented
with work using real operators to examine whether the
results would hold true for more experienced
operators.
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