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It is now recognized that the International System of Units (SI units) will be redefined
in terms of fundamental constants, even if the date when this will occur is still under
debate. Actually, the best estimate of fundamental constant values is given by a least-
squares adjustment, carried out under the auspices of the Committee on Data for Science
and Technology (CODATA) Task Group on Fundamental Constants. This adjustment
provides a significant measure of the correctness and overall consistency of the basic
theories and experimental methods of physics using the values of the constants obtained
from widely differing experiments. The physical theories that underlie this adjustment are
assumed to be valid, such as quantum electrodynamics (QED). Testing QED, one of the
most precise theories is the aim of many accurate experiments. The calculations and the
corresponding experiments can be carried out either on a boundless system, such as the
electron magnetic moment anomaly, or on a bound system, such as atomic hydrogen.
The value of fundamental constants can be deduced from the comparison of theory
and experiment. For example, using QED calculations, the value of the fine structure
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constant given by the CODATA is mainly inferred from the measurement of the electron
magnetic moment anomaly carried out by Gabrielse’s group. (Hanneke et al. 2008
Phys. Rev. Lett. 100, 120801) The value of the Rydberg constant is known from two-
photon spectroscopy of hydrogen combined with accurate theoretical quantities. The
Rydberg constant, determined by the comparison of theory and experiment using atomic
hydrogen, is known with a relative uncertainty of 6.6× 10−12. It is one of the most
accurate fundamental constants to date. A careful analysis shows that knowledge of
the electrical size of the proton is nowadays a limitation in this comparison. The
aim of muonic hydrogen spectroscopy was to obtain an accurate value of the proton
charge radius. However, the value deduced from this experiment contradicts other less
accurate determinations. This problem is known as the proton radius puzzle. This new
determination of the proton radius may affect the value of the Rydberg constant R∞.
This constant is related to many fundamental constants; in particular, R∞ links the two
possible ways proposed for the redefinition of the kilogram, the Avogadro constant NA
and the Planck constant h. However, the current relative uncertainty on the experimental
determinations of NA or h is three orders of magnitude larger than the ‘possible’ shift of
the Rydberg constant, which may be shown by the new value of the size of the proton
radius determined from muonic hydrogen. The proton radius puzzle will not interfere in
the redefinition of the kilogram. After a short introduction to the properties of the proton,
we will describe the muonic hydrogen experiment. There is intense theoretical activity as
a result of our observation. A brief summary of possible theoretical explanations at the
date of writing of the paper will be given. The contribution of the proton radius puzzle
to the redefinition of SI-based units will then be examined.

Keywords: proton radius; muonic hydrogen; Rydberg constant; Planck constant;
Avogadro constant

1. The proton

Even though the proton is one of the most abundant constituents of the visible
Universe, some of its properties are not well known. The study of its properties is
important for our deep understanding of matter. The proton is made up of three
valence quarks (up, up, down), held together by strong interactions. Ab initio
calculations can be made on this structure using quantum chromodynamics
(QCD) theory.
An important step has been the calculation of the mass of the proton

using QCD theory with a relative uncertainty better than 4 per cent [1,2].
Experimentally, the absolute mass of the proton is known with a relative
uncertainty of 5× 10−8 [3].
The ab initio calculation of the spin of the proton (i.e. 1/2) has also been

undertaken. The present state of the problem is known as the ‘spin crisis’ [4].
This refers to the experimental finding that only a small contribution of the
spin of the proton seems to be carried by the quarks [5–7]. Indeed, the study of
the spin structure of the nucleon is an important task in particle physics, either
theoretically [8] or experimentally [9].
Some attempts have also been made to estimate the proton charge radius

with QCD theory. Some values of rp have been published [10,11]. New and more
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reliable values of the proton radius should be available in the future as calculation
capabilities are increasing with time.

2. Experimental determinations of the proton charge radius

(a) Scattering experiments

In fact, the best knowledge of the proton charge radius comes from
experiments. First determinations were given by electron–proton elastic
scattering experiments. The principle of these experiments is to measure the
differential cross section of a scattered electron beam sent onto a thin hydrogen
(H2) target. The relevant parameter is the space-like momentum transfer −Q2.
The proton mean square charge radius is given by the slope of the Sachs form
factor (GE) of the proton at Q2 = 0,

〈r2p〉 = −6 vGE(Q2)
vQ2

∣∣∣∣
Q2=0

. (2.1)

The proton radius is defined as

rp =
√

〈r2p〉. (2.2)

The main contribution to rp comes from low-momentum measurements. Even
if conceptually the experiment is simple, practically it is not. The space-like
momentum transfer cannot be made arbitrarily small. The electron must cross the
target in which a single elastic scatter has to occur. Measurements near to Q2 = 0
must not be affected by the direct electron beam. Therefore, the proton radius
can only be obtained from extrapolation of the differential cross section at Q2 = 0.
This extrapolation is strongly model dependent. The first determination of rp was
obtained in 1955 [12]. In the 1980s, an experiment was specially designed in Mainz
to obtain an accurate value of rp from low-momentum transfers. The analysis
of the data obtained in Mainz gives rp = 0.862(12) fm [13], which is in strong
disagreement with an accurate previous determination [14]. During the 2000s, no
new scattering experiment were carried out at low-momentum transfers. All the
different values of rp which have been published come from a re-analysis of the
low-momentum scattering data, associated or not to high-momentum scattering
data (e.g. [15,16]). The re-analysis considered by the Committee on Data for
Science and Technology (CODATA) task group has been obtained by Sick [17].
This work takes into account the world data on elastic electron–proton scattering,
the coulomb distortion, and uses a parametrization that allows us to deal properly
with the higher moments. In the 2000s, a sophisticated experiment was carefully
designed at Mainz to measure rp accurately [18]. Taking advantage of three high-
resolution spectrometers, it was possible to measure the elastic electron–proton
scattering cross section with a statistical precision of better than 0.2 per cent. The
value of rp published in 2010, deduced from an analysis done in Mainz with their
data, is 0.879(8) fm [19]. Another value of rp from scattering experiments has been
published very recently [20]. This value of the proton radius is deduced from the
global analysis reported in Arrington et al. [21], in which the new measurements
done at ‘high’ Q2 [20] are included.
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(b) Hydrogen spectroscopy

At short distance, the coulombian electrostatic potential is ‘shielded by the
finite size of the proton’. Consequently, the energy levels of atomic hydrogen
are slightly shifted. Therefore, a value of rp can be obtained from high-resolution
spectroscopy of hydrogen. A simplified but powerful analysis of the main hydrogen
data has been presented in de Beauvoir et al. [22] by using only the most accurate
experimental data: the frequency of the 1S–2S transition measured in Garching,
Germany [23], the 2S–8S/8D transitions measured in Paris, France [24], and the
1/n3 dependence of quantum electrodynamics (QED) corrections [25,26] (where
n is the principal quantum number of hydrogen theory). A precise value of the 1S
Lamb shift of hydrogen can be extracted from a proper linear combination of these
three quantities. Assuming the exactness of QED calculations, an accurate value
of rp can be deduced. A complete analysis of all the spectroscopic measurements
is also regularly done by the CODATA Task Group on Fundamental Constants
(e.g. [3]). The last resulting spectroscopic value of rp was 0.8760(78) fm.

(c)Muonic hydrogen spectroscopy

The aim of the muonic hydrogen spectroscopy of the 2S–2P splitting was to
determine the proton radius more accurately. Muonic hydrogen (m-p) is an exotic
atom in which the muon (m−) replaces the electron ‘orbiting around’ the proton
in normal atomic hydrogen. Like the electron, the muon is a lepton, but it is 207
times heavier and its lifetime is only 2.2ms. Because of the mass dependence, the
Bohr radius of m-p is around 200 times smaller than that of electronic hydrogen,
and the sensitivity to the finite size of the proton is then largely enhanced.
The contribution owing to the finite size of the proton is around 2 per cent
to the 2S–2P splitting of muonic hydrogen, whereas it is only 1.4× 10−4 for the
2S1/2–2P1/2 of electronic hydrogen. Another important issue in the comparison
between muonic and electronic hydrogen is the vacuum polarization, which is
the dominant contribution to the 2S–2P splitting of m-p. As the Bohr radius is
200 times smaller, the overlap of S state wave functions with the distribution of
virtual electron–positron pairs is more important; consequently, the contributions
of the vacuum polarization corrections are larger. The wavelength of the 2S–
2P transition in m-p is 6mm and the oscillator strength is 10−7 of that of
electronic hydrogen. Moreover, the population of muonic hydrogen in the 2S
state is small. Because of those considerations this experiment has been really
challenging.

3. Muonic hydrogen experiment

(a) Principle of the experiment

The principle of the experiment has been described in many papers [27].
Let us recall the main step. The muon (m−) beam is sent into a H2 gas target.

Muonic hydrogen atoms are formed at the principal quantum number of around
n = 14: the muon goes from the continuum to a bound state by ejection of an
Auger electron. Subsequently, the H2 molecule breaks up and the muonic cascade
of the neutral m-p atom begins. Radiative and collisionally induced de-excitation
processes bring it down to the 2S or 1S state within a few nanoseconds (figure 1).
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Figure 1. Principle of the muonic hydrogen experiment. Muons are stopped in 1 hPa H2 gas;
99% undergo radiative cascade to the 1S state, producing a large early peak of 2 keV radiation.
The 2S–2P transition is detected as the smaller peak owing to the laser-induced X-rays, at the
time of the laser arrival (approx. 0.7 ms) to the muon stop volume. (Online version in colour.)

This cascade has been carefully studied [28], especially the collisional quenching
of the 2S state [29–31]. Ninety-nine per cent of atoms decay to the 1S state,
producing a large 2 keV fluorescence early peak. About 1 per cent of muonic
hydrogen is formed in the long-lived 2S state [32]. A laser pulse triggered by
muons (see below) is sent into the H2 target. Because of the short delay between
the laser trigger and the output of the laser, a time-delayed 2 keV fluorescence
peak is observed if the 2S–2P transition has been excited by the 6mm light.

(b) Apparatus

The challenges of the muonic hydrogen experiment were the production of
long-lived muonic hydrogen in the 2S state, the development of the 6 mm laser
that can be randomly triggered with a short delay and the analysis of the small
signal produced (few counts/hours).
To reduce collisional quenching of the 2S state, muons are stopped in H2 gas at

a pressure of 1 hPa. To do this, a special low-energy muon beam (approx. keV) has
been designed and built at the Paul Scherrer Institute to efficiently stop muons
at this ultra-low gas pressure within the small target volume required for efficient
laser excitation. At 1 hPa, the lifetime of the 2S metastable state is around 1 ms
[29,30]. Many details of this muon line can be found in [28,33–37]. We want to
emphasize that a lot of effort has been put into the quality of the signal triggering
the laser. The detection of keV-muons without stopping them is not a simple task.
It is done with a thin carbon foil stack which simultaneously acts as the muon
detector and improves the beam quality by frictional cooling [38].
The design of the laser is dictated by the need for a tunable light source at

6mm that can be triggered within 1 ms after a random trigger by incoming muons.
The laser chain used in the 2009 run derived from development of the initial laser
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chain used in 2003 [34]. The fast and powerful pulsed laser that can be triggered
at 515 nm is used to pump an oscillator–amplifier titanium sapphire (TiSa) laser.
Three consecutive vibrational Raman scatterings in H2 in a multiple-pass cell are
used to convert the 708 nm light into a 6 mm pulse. The 6mm light is then sent,
20m away, in a specially design multi-pass non-resonant cavity surrounding the
H2 target in which m-p atoms are formed. The latter cavity is used to illuminate all
the stopping volume of the muon in the target (5× 15× 190mm3). The frequency
of the 6mm light is driven by the TiSa oscillator, which is seeded by a cw-
TiSa laser. The frequency of the cw-laser is permanently controlled with two
wavemetres, a very stable Fabry–Perot cavity and atomic/molecular lines (I2,
Cs, Rb). The cw-laser is permanently locked on a Fabry–Perot fringe. The step
of scanning the laser frequency is a multiple of the free spectral range of this
Fabry–Perot interferometer [39]. Whereas the design of the TiSa ensemble has
remained the same between the first and the last runs [40], the design of the
green pump laser has had to be changed drastically. A thin disc laser had to be
built specially for our experiment [41].
The analysis of small signal requires very good knowledge of the background.

Since the early stages of the experiment, the 2 keV detectors (large area avalanche
photodiodes) have been well studied in order to maximize their time and energy
resolutions [35,36,42]. During the data analysis, background events were efficiently
rejected. The final rate of about one background event per hour originated mainly
from electrons from muon decay which were wrongly identified as 2 keV Lyman-a
X-rays.

(c) Results

Many muonic hydrogen lines were observed during the fourth beam time
period. The first line which was observed and analysed was the most intense
one: 2S1/2(F= 1)–2P3/2(F= 2) of muonic hydrogen (figure 2). The signal is clearly
visible above the noise. A total of 550 events were measured in the resonance,
where 155 background events were expected. A Lorentzian profile has been fitted
to the data to give the frequency of the line versus the Fabry–Perot fringe. The
absolute frequency of the line is determined from the absolute calibration of the
light at 6mm using the well-known H2O spectroscopy and the free spectral range
of the Fabry–Perot interferometer (figure 3). A careful and detailed analysis of
the uncertainty budget of the centroid position of this line has been done in Nebel
[37] and Pohl et al. [39].
The quantity determined by our experiment is the absolute frequency of

the 2S1/2(F= 1)–2P3/2(F= 2) resonance of muonic hydrogen: 49 881.88(76)GHz.
The main contribution to the uncertainty is statistical; it is given by the fit
of the Lorentzian shape on the experimental data. The relative uncertainty of
the centroid position (1.6× 10−5) corresponds to 4 per cent of the line width
(approx. 18GHz), which shows that our experiment is far away from a high-
resolution spectroscopy one but which also indicates a very weak dependence of
the centroid of the resonance on the line shape model.
Nevertheless, the present result is good enough to extract the proton radius

with the smallest uncertainty to date. The value of the proton radius is
obtained from the comparison of our determination of the frequency of the 2S1/2
(F= 1)–2P3/2(F= 2) muonic line with the theoretical prediction. The theoretical
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Figure 2. 2S1/2(F= 1)–2P3/2(F= 2) resonance. The discrepancy with other determinations is
clearly visible. The frequency gap is around 75GHz with the position of the line expected with
electronic hydrogen. The inset calibration H2O line was recorded at 30 hPa. (Online version in
colour.)
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Figure 3. Principle of the determination of the absolute frequency of the muonic hydrogen line. The
absolute calibration has been made with five H2O lines, 17 I2 lines, five Cs two-photon atomic lines
and three Rb lines. Absolute calibration between 5.49 mm and 6.04mm was performed with H2O
lines with the pulsed laser source while the free spectral range of the Fabry–Perot interferometer
was determined in the cw regime in the 695–780 nm range with well-known atomic/molecular lines.
To detect an eventual drift of the Fabry–Perot interferometer, this was regularly compared with
iodine lines before, during and after the beam time. The integer numbers (N,N′) can be determined
accurately using the two wavemetres. (Online version in colour.)

prediction derives for a large part from the bound state QED of electronic
hydrogen scaled with the mass of the muon. These predictions account for
radiative, recoil, proton structure fine and hyperfine contributions. A detailed
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Figure 4. Comparison of the various determinations of the proton radius. Defining the proton radius
as the slope of the Sachs form factor, experimental results are sorted from low-momentum transfer
(electronic hydrogen) to high-momentum transfer (scattering experiments) [44]. This presentation
emphasizes the surprising result of muonic hydrogen, which can be viewed as a ‘dip in the form
factor slope’ at the corresponding Q2 momentum of the muonic hydrogen experiment. (Online
version in colour.)

list of the contributions can be found in Pohl et al. [43]. The predicted frequency
of the 2S1/2(F= 1)–2P3/2(F= 2) transition of muonic hydrogen is

n(GHz)= 50772.43(1.18)− 1263.69× r2p + 8.39× r3p . (3.1)

The deduced value of rp is 0.84184(36)(56) fm, where the first and second
uncertainty originate, respectively, from experimental uncertainty and theoretical
uncertainty. This result (0.84184(68) fm) differs significantly (approx. 5 s.d.) from
other determinations (figure 4).

4. The proton radius puzzle

The confusing situation about rp is known as the proton radius puzzle. It
has stimulated intense activity in the community. It is impossible to make an
exhaustive list of all the contributions already available on the arxiv base; we
apologize to authors whose papers are not cited. We can only point out some of
the searches at the present date.

(a) Definition of the proton radius

An obvious concern in the comparison is to make sure that the proton radius
extracted from various experiments has the same meaning. The first positive
answer was given in Jentschura [45]: ‘a conceivable accidental incompatibility of
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the conventions used in references [. . .] for the proton radius therefore cannot
be the reason for the observed discrepancy’, where [. . .] refers to all the proton
radius determinations.

(b) Charge distribution in the proton

The charge radius distribution is related to GE by the Fourier transformation.
One attempt has been made to re-evaluate the third Zemach moment of the
proton [46] 〈r3p〉 to solve the proton radius puzzle. However, the re-evaluation of
〈r3p〉 with the charge distribution presented in De Rujula [47] is in contradiction
to the electron–proton scattering data [48,49].

(c)Quantum electrodynamics corrections

The contradiction between the proton radius extracted from electronic
hydrogen and that from muonic hydrogen is intriguing for QED specialists.
Because of the mass scaling law, the QED of muonic hydrogen has always been
considered to be simpler than that of the hydrogen atom. Nevertheless, the proton
radius puzzle has stimulated either careful checks of present QED corrections or
evaluation of new corrections for hydrogen atoms [50–52]. Up to now, the proton
radius puzzle cannot be solved with new or wrong QED corrections.

(d) Rydberg constant

The Rydberg constant is the scaling factor of the atomic level. Assuming the
correctness of the QED calculations in the electronic hydrogen atom, the problem
can be solved by shifting by 5 s.d. the value of the Rydberg constant, known with
an uncertainty of 22 kHz, using the most accurate frequency measured in hydrogen
[23]. However, the CODATA Rydberg constant is determined not only with 1S–
2S and 2S–8S frequency transitions but also with other frequency measurements
that are certainly less accurate but that are all highly consistent with each other
and with theory [3]. Moreover, the recent measurement of the 1S–3S transition
in hydrogen [53] is in very good agreement with the theoretical estimate [54].
At the present time, there are no indications of a disagreement between theory
and experiments in electronic hydrogen. But it is clear that the accuracy of the
hydrogen experiments other than the 1S–2S one has to be improved to clarify the
situation. Figure 5 shows all the values of rp deduced from the 1S–2S transition
frequency, the 1/n3 law and only one of the 2S–n(S,P,D) transition frequencies
that have been measured. Individually, there is not a large discrepancy with the
muonic determination of rp. On the other hand, most of the values are pointing
in the same direction.
Many ongoing experiments are being carried out to test the bound state

QED. Results for the 2S–6S/D transitions measured at the National Physical
Laboratory [62], which are currently being analysed, may bring an important
and independent contribution to the hydrogen spectroscopy and so to the proton
radius puzzle. Combined with the ongoing experiment at Garching, which is
aimed at measuring the 1S–2S transition in He+ [63], the experiment planned
at the Paul Scherrer Institute to measure the muonic helium ion Lamb shift
(mHe+) may illuminate the proton radius conundrum [64]. A determination of the
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Figure 5. Comparison of various determinations of the proton radius from hydrogen spectroscopy.
Each value is obtained from the 1S–2S transition frequency, the 1/n3 law and one of the other
hydrogen experimental data from 2S–n(S,P,D). ((a) From Lundeen & Pipkin [55], (b) from Hagley
& Pipkin [56], (c) from Newton et al. [57], (d) from Weitz et al. [58], (e) from Berkeland et al.
[59], (f ) from Bourzeix et al. [60] combined with Arnoult et al. [53], (g) from de Beauvoir et al.
[24], (h) from Schwob et al. [61], and (i) from Arnoult et al. [53]). The double line corresponds to
the uncertainty of the proton radius determination obtained from muonic hydrogen spectroscopy.
(Online version in colour.)

Rydberg constant nearly independent of the nucleus structure has also started at
NIST Gaithersburg, with the study of circular states of 20Ne9+ [65].

(e) New physics

A possible way to solve the proton radius puzzle would be to introduce new
‘particles’ which are coupled differently to the muon compared with the electron.
However, this new physics search is already constrained by many low-energy
data [44,66,67]. Indeed, for example, recent laboratory-sized experiments are
sufficiently accurate to set a limit on the internal structure of the electron or
on the existence of new dark matter particles assuming the exactness of QED
calculations or testing for the first time the muon and hadron contributions to
the electron anomaly ae [68,69]. A deviation from Coulomb’s Law in muonic
hydrogen is also ruled out by measurements in electronic hydrogen [70].

5. The proton and the redefinition of the International System of Units

As discussed above, the new determination of the proton radius may affect the
value of the Rydberg constant R∞. This constant is related to many fundamental
constants. For example, the estimate of the mass of the electron me in the
CODATA adjustment is derived from the relation

me = 2R∞h
ca2

, (5.1)
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where a is the fine structure constant, c is the velocity of light and h is the
Planck constant. The Rydberg constant also links the two ways proposed for the
redefinition of the kilogram, the Avogadro constant NA and the Planck constant h,

NA × h = c
2
Aea

2Mu

R∞
. (5.2)

However, the current relative uncertainty on the experimental determinations of
NA [71] or h [72] is of the order of a few parts of 108. This is three orders of
magnitude larger than the ‘possible’ shift of the Rydberg constant that may be
disclosed by the new value of the proton size radius from muonic hydrogen. The
proton radius puzzle will not interfere in the redefinition of the kilogram.
For many years, the hydrogen atom has been advocated as an ‘ideal’ clock (e.g.

[73]) as, in principle, it can be calculated in contrary to the other clocks. Should
the second be redefined by the hydrogen atom in terms of fundamental constants?
Today, calculations for hydrogen are about 10 000 times less accurate than current
experimental caesium clock precision, owing to the growing complexity of the
calculations of higher order corrections. The best experimental determination is
also 103 times worse than the best optical clocks, which are front-runners to
redefining the second in several years’ time (see Gill [74]). Improved theory with
higher order corrections to two or three more orders is needed before the calculable
clock approach for hydrogen becomes competitive.
Nevertheless, finding the solution of the proton radius puzzle would be a step

in the long quest to decode the hydrogen spectrum: the ‘Rosetta stone of modern
physics’ [75].
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