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Département de Physique, Université de Fribourg, Chemin du Musée 3, 1700 Fribourg, Switzerland

Key words Strongly correlated electrons, variational wave functions, adiabatic continuity.

This article is dedicated to Dieter Vollhardt on the occasion of his 60th birthday.

Variational wave functions are very useful for describing the panoply of ground states found in interacting
many-electron systems. Some particular trial states are “adiabatically” linked to a reference state, from
which they borrow the essential properties. A prominent example is the Gutzwiller ansatz, where one starts
with the filled Fermi sea. A simple soluble example, the anisotropic XY chain, illustrates the adiabatic
continuity of this class of wave functions. To describe symmetry breaking, one has to modify the reference
state accordingly. Alternatively, a quantum phase transition can be described by a pair of variational wave
functions, starting at weak and strong coupling, respectively.

1 Introduction

According to the adiabatic theorem of quantummechanics a system governed by a Hamiltonian with time-
dependent parameters evolves from an initial eigenstate to an eigenstate at later times if the parameters vary
infinitesimally slowly with time [1, 2]. An adiabatic evolution from an initial non-interacting eigenstate to
an interacting state by slowly switching on the interactions is also a key element in Landau’s theory of the
Fermi liquid [3, 4]. Anderson generalized this idea to the concept of adiabatic continuity, which basically
means the continuous mapping of a simple reference state – the non-interacting Fermi sea in Landau’s
theory – to a more complex state which however shares the essential properties with the parent state [5].
This can only work for systems which do not experience any symmetry breaking on the way. It is the aim
of this paper to show that a similar continuity characterizes a whole class of variational wave functions.
When these are applied without precaution to systems that undergo some phase transition one may easily
be led to wrong conclusions.
Section 2 recalls the well-known example of the Gutzwiller wave function, which represents a metallic

state, even for a half-filled band. It can therefore be viewed as a microscopic realization of Landau’s
phenomenological theory of the Fermi liquid. Section 3 presents the exactly solvable anisotropic XY chain
which exhibits a quantum phase transition for an infinitesimal anisotropy. A Gutzwiller-type variational
ansatz fails in signaling this transition. Section 4 deals with various kinds of quantum phase transitions,
both with and without symmetry breaking. “Dual” pairs of variational wave functions give an appealing
picture of metal-insulator transitions. In Section 5 a different class of wave functions is briefly mentioned,
which is able to promote long-range order without forcing symmetry breaking in the reference state.
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2 Adiabatic continuity of the Gutzwiller ansatz

When Martin Gutzwiller introduced his famous ansatz for the ground state of a correlated electron system
he wanted “to present a new approach to the problem of ferromagnetism in a metal” [6]. As a particular
example he considered the Hubbard Hamiltonian

H = −t
∑

〈n,m〉,σ
(c†nσcmσ + c†mσcnσ) + U

∑
n

c†n↑cn↑c
†
n↓cn↓ , (1)

where c†nσ (cσ) creates (annihilates) an electron with spin σ at site n. The issue was not to find a good trial
state for ferromagnetism, because the lowest-energy fully polarized ferromagnetic state for N electrons is
simply constructed by occupying the N lowest levels with only up (or down) electrons, but rather to show
that no other state has lower energy. This problem has been intensively studied ever since Gutzwiller’s
work and is still not completely understood [7]. Only for special lattices and/or band structures it can be
rigorously shown that the ground state of the Hubbard model is ferromagnetic [8].
Gutzwiller proposed the ansatz

|Ψ(g)〉 = exp

[
−g

∑
n

c†n↑cn↑c
†
n↓cn↓

]
|Ψ0〉 (2)

for the correlated non-magnetic state, where |Ψ0〉 is the filled Fermi sea. The variational parameter g
reduces double occupancy and thus the interaction energy. As to the kinetic energy, a simple approximate
expression can be obtained by neglecting the dependence of the hopping processes on the detailed spin
configurations [6, 9]. This “Gutzwiller approximation” allows the calculation of physical quantities such
as the momentum distribution and, by including a Zeeman term, the magnetic susceptibility. For a generic
band filling, i.e., away from half filling, correlation effects essentially increase the effective mass but do
not destroy the metallicity. An interesting link to Landau’s Fermi-liquid theory has been established by
Vollhardt [10], who was able to establish a direct connection between microscopic quantities and Landau
parameters. The smooth connection between the correlated state |Ψ(g)〉 and the uncorrelated state |Ψ0〉 in
Eq. (2) has thus its counterpart in the adiabatic hypothesis underlying Landau’s Fermi-liquid theory.
The special density of one electron per site (half-filled band) is worth being discussed in some detail,

because in this case the Gutzwiller approximation predicts a metal-insulator transition at a critical value
Uc = 8|ε0|, where ε0 is the kinetic energy per site of the uncorrelated system [11]. Signatures of the
transition are both the vanishing of double occupancy and the disappearance of the Fermi step in the
momentum distribution function. However, more accurate treatments of the Gutzwiller ansatz obtain this
transition only for U →∞ and thus show that the variational state (2) remains metallic for all finite values
of U . This is clearly seen in the case of the one-dimensional Hubbard model for which the Gutzwiller
ansatz can be handled exactly [12, 13], but there exists also a simple argument why this remains true for
any (finite) dimension. The argument is based on the Drude weight which is related to the sensitivity of the
ground state with respect to changes in the boundary conditions [14]. The Drude weight is finite for the
Gutzwiller ground state for any finite value of U , even at half filling [15, 16].

3 Quantum phase transition for in nitesimal coupling:
The anisotropic XY chain

A simple example illustrates the smooth link between a variational wave function of the Gutzwiller type
and its reference state, the “bare” ground state. We consider the anisotropic XY chain, represented by the
Hamiltonian

H = H0 + γH ′ , (3)
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where

H0 =
∑

n

(
S(x)

n S
(x)
n+1 + S(y)

n S
(y)
n+1

)
,

H ′ =
∑

n

(
S(x)

n S
(x)
n+1 − S(y)

n S
(y)
n+1

)
. (4)

The parameter γ, 0 ≤ γ ≤ 1, interpolates between the isotropic XY chain (γ = 0) and the one-dimensional
Ising model (γ = 1). This Hamiltonian has been diagonalized exactly by Lieb, Schultz andMattis [17]. The
main steps of the solution are reproduced in the appendix. It turns out that this model exhibits a quantum
phase transition at γ = 0, from a ground state without long-range order at γ = 0 to a state with long-range
antiferromagnetic order of the x-components of the spins for any γ > 0 [17]. The transition reveals itself
also in the singularity of the ground-state energy (per site)

ε0
˜γ→0

− 1
π

[
1 +

γ2

2

(
log

4
γ
− 1

2

)]
. (5)

Another interesting quantity is the overlap 〈Ψ(γ′)|Ψ(γ)〉 between ground states of two Hamiltonians with
different anisotropies [18]. We consider in particular the overlap at criticality, i.e. for γ′ = 0 and γ � 1. It
is convenient to introduce the fidelity susceptibility per site [19]

χF = lim
γ→0

−2
Lγ2

log〈Ψ(0)|Ψ(γ)〉 . (6)

As shown in the appendix, we find for the XY chain for γ � 1

− 2
Lγ2

log〈Ψ(0)|Ψ(γ)〉 =
π − 2
2πγ

− 1
8

, (7)

which shows that χF diverges, as expected for a quantum-critical point [20].
We turn now to a variational ansatz à la Gutzwiller. The transformation to fermion operators cn, c†n

(appendix) leads to the expressions

H0 =
1
2

∑
n

(c†ncn+1 + c†n+1cn) ,

H ′ =
1
2

∑
n

(c†nc†n+1 + cn+1cn) , (8)

or, after Fourier transformation,

H0 =
∑

k

cos k c†kck ,

H ′ = i
∑
k>0

sin k (c†kc†−k − c−kck) . (9)

The Gutzwiller ansatz

|Ψ(g)〉 = e−gH′ |Ψ0〉 , (10)

where |Ψ0〉 is the ground state of H0, i.e., all levels with |k| > π/2 are occupied and all others are empty,
can be written

|Ψ(g)〉 =
∏

0≤k<π/2

(cosh ϑk − i sinhϑkc†kc†−k)
∏

k>π/2

(coshϑk + i sinhϑkc−kck) |Ψ0〉 , (11)
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where ϑk = g sink. The expectation value of the Hamiltonian is readily calculated,

〈Ψ(g)|H |Ψ(g)〉
〈Ψ(g)|Ψ(g)〉 = −

∑
k≥0

{ | cos k|
cosh(2g sink)

+ γ sin k tanh(2g sin k)
}

. (12)

The minimization of this expression for g � 1 gives g = (3π/8)γ and an energy per site

εmin
˜γ→0

− 1
π

(
1 +

3π2

32
γ2

)
. (13)

This is an analytic function of γ, in contrast to the exact result, Eq. (5). A striking difference is also obtained
for the overlap. The (normalized) trial state of Eq. (11) leads to

〈Ψ(0)|Ψ(g)〉√〈Ψ(g)|Ψ(g)〉 =
∏
k>0

cosh(g sin k)√
cosh(2g sin k) ˜g→0

∏
k>0

(
1− 1

2
g2 sin2 k

)
˜g→0

e−(Lg2)/8 . (14)

Thus in the limit γ → 0 the fidelity susceptibility tends to a constant for the Gutzwiller ansatz,

χF →
(

3π

16

)2

≈ 0.35, (15)

while it diverges∼ γ−1 for the exact ground state.

4 Variational wave functions and quantum phase transitions

The discrepancy found for the anisotropic XY chain between the exact and variational ground states exists
also in the case of the one-dimensional Hubbard model. At half filling the exact ground state energy [21] is
not analytic for U → 0 [22, 23], while the Gutzwiller ansatz yields an analytic behavior [24]. It is natural
to attribute this difference to the fact that a metal-insulator transition occurs in the exact ground state at
U = 0, but not so in the Gutzwiller ansatz, as explained above. We can remedy this problem by modifying
the reference state |Ψ0〉, which so far was considered to be metallic. We could introduce an alternating spin
density, as predicted by the Unrestricted Hartree-Fock approximation. A more interesting possibility is
bond alternation in the sense of an alternating bond order. This instability does not occur in a simple mean-
field treatment, which would require a finite electron-phonon coupling (Peierls instability). However, if the
reference state |Ψ0〉 is taken as a mean-field state with alternating bond order, the (Gutzwiller) variational
energy is lowered, even in the absence of electron-phonon coupling. The condensation energy due to this
symmetry breaking is given by the non-analytic term [25]

εcond ∼ −t e−3.85(4t/U)2 . (16)

Long-range order is of course not expected to survive if quantum fluctuations are fully taken into account,
rather one expects the correlation functions, both for spin and for the bond order, to decay algebraically
with distance.
In two dimensions fluctuations are less severe and therefore long-range antiferromagnetic order, as

found consistently for the two-dimensional Hubbardmodel at half filling by using simple mean-field theory
or more elaborate methods, is commonly believed to resist quantum fluctuations. A more subtle question is
the issue of superconductivity because, similarly to bond alternation in one dimension, a superconducting
instability does not occur within simple mean-field theory. For certain electron densities the Gutzwiller
ansatz, linked to a reference state with d-wave pairing, is found to have lower energy than the state without
symmetry breaking (or with an antiferromagnetic reference state) [26]. This remains true for more sophisti-
cated variational ground states [27–29]. Whether the exact ground state exhibits superconductivity remains
an open issue [30], but the variational results indicate at least strong superconducting correlations.
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We turn now to the Mott phenomenon, which a priori does not involve any symmetry breaking, but
rather is a topological (quantum) phase transition as a function of coupling strength, from a metallic to an
insulating state. The transition typically occurs in a region where the interaction strength is of the order of
the band width. In contrast to the instabilities discussed above, the Mott metal-insulator transition cannot
be described in the framework of the Gutzwiller ansatz alone, which is metallic in the absence of symmetry
breaking, but rather calls for a complementary variational state for the insulating side of the transition. In
the case of the Hubbard model the following ansatz has been proposed for the ground state of the insulating
phase [31],

|Ψ(h)〉 = exp

⎡
⎣−h

∑
〈n,m〉,σ

(c†nσcmσ + c†mσcnσ)

⎤
⎦ |Ψ∞〉 , (17)

where |Ψ∞〉 is the exact ground state for U →∞. This state, the dual partner of the Gutzwiller ansatz [32],
is also adiabatically connected to its reference state |Ψ∞〉. The Drude weight vanishes at half filling [16]
and therefore |Ψ(h)〉 does represent an insulating state. Unfortunately, it is very hard to handle |Ψ∞〉, which
is the ground state of the Heisenberg antiferromagnet at half filling and of the t-J Hamiltonian close to half
filling, except for some special cases, such as the 1/r Hubbard chain [32] or for infinite dimensions [16]. In
these cases a variational procedure using two trial states, one linked to the ground state at U = 0, the other
to the ground state for U → ∞, is rather successful in predicting the location of the Mott transition [16].
On the other hand, the nature of the transition is inevitably found to be of first order, also in cases where it
is known to be continuous [32].
A related phenomenon is the crystallization of electrons, proposed by Wigner for the dilute three-

dimensional electron gas [33] and later by Hubbard for narrow-band solids [34]. In this case the metal-
insulator transition leading to the Wigner crystal involves a reduction of translational symmetry. For the
case of electrons on a lattice the trial state of Eq. (17) can again be used, this time for describing the crys-
talline phase, starting from the classical configuration which minimizes the Coulomb energy [35]. This
leads to a quantum crystal where electrons are preferentially located at the sites of the reference configura-
tion, but occasionally visit neighboring sites. With increasing relative strength of the kinetic energy these
excursions become more and more frequent until the crystal melts. It would be interesting to test this two-
sided variational procedure for the anisotropic XY chain by studying the dual partner of the Gutzwiller
ansatz, starting from the Néel state, the ground state of the antiferromagnetic Ising model.

5 Discussion

The variational ground states presented above are all smoothly linked to some reference state. The case of
a transition occurring at a large value of the coupling constant, such as the Mott transition and the Wigner
crystallization, is rather well described by a pair of wave functions that are linked to the ground states
for vanishing and infinite coupling strengths, respectively. In this way the critical coupling strength may
be determined rather accurately, but the nature of the transition is not described reliably. Therefore more
refined methods are required for treating the region of the transition, which may be of second order, in
contrast to the prediction in terms of two dual wave functions, or it may even be split into two critical
points with an intermediate phase in-between, as debated in the case of Wigner crystallization [36, 37].
A single variational state of the type discussed above does not change the qualitative nature of a refer-

ence state. For instance, these states do not lead to long-range order not included already in the reference
state |Ψ0〉, nor do they destroy long-range order if it is present in |Ψ0〉. To achieve such a radical change
due to a continuous change of some variational parameter, a different class of variational states has to be
used, such as the resonance-valence-bond state with a variable bond-length distribution [38]. This state is
able to describe both short-range and long-range antiferromagnetic order. It is also possible to describe
the Mott transition using a single variational wave function, by adding a Jastrow factor correlating distant
electron densities [39].
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A Anisotropic XY model in one dimension

We consider the anisotropic XY chain defined by the Hamiltonian

H =
L∑

n=1

[
(1 + γ)S(x)

n S
(x)
n+1 + (1− γ)S(y)

n S
(y)
n+1

]
, (18)

where S
(x)
n , S

(y)
n are spin 1/2 operators and 0 ≤ γ ≤ 1. We assume periodic boundary conditions,S(α)

L+1 =
S

(α)
1 , α = x, y, and chooseL = 4M+2 (whereM is a positive integer). The Jordan-Wigner transformation

S(x)
n + iS(y)

n = c†neiπ
∑ n−1

j=1 c†jcj , (19)

where c†n, cn are fermionic creation and annihilation operators, yields a simple quadratic expression for
the Hamiltonian,

H =
1
2

L∑
n=1

(c†ncn+1 + γc†nc†n+1 + h.c.) . (20)

Introducing the Fourier transform

cn =
1√
L

∑
k

eiknck, k =
2π

L
ν, −2M ≤ ν ≤ 2M + 1, (21)

we rewrite the Hamiltonian

H =
∑

k

cos k c†kck + iγ
∑
k>0

sin k (c†kc†−k − c−kck) (22)

and diagonalize it using the Bogoliubov transformation

ck = eiπ/4(cos ϕk dk + sin ϕk d†−k) ,

c†−k = e−iπ/4(− sin ϕk dk + cosϕk d†−k) , (23)

where

tan(2ϕk) = −γ tan k . (24)

This yields the excitation spectrum

Ek =
√

1− (1− γ2) sin2 k . (25)

With the choice

cosϕk =
(

Ek + cos k

2Ek

)1/2

, sin ϕk = −
(

Ek − cos k

2Ek

)1/2

(26)

the Hamiltonian reads

H =
∑

k

Ek

(
d†kdk − 1

2

)
. (27)
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The ground state energy per site for L →∞ is given by

ε0 = − 1
2L

∑
k

Ek → − 1
π

E(1 − γ2)
˜γ→0

− 1
π
− γ2

2π

(
log

4
γ
− 1

2

)
, (28)

where E(1− γ2) is the complete elliptic integral. The ground state |Ψ(γ)〉, defined by dk|Ψ(γ)〉 = 0 , can
be written

|Ψ(γ)〉 =
∏
k>0

(cos ϕk + i sinϕk c†kc†−k)|0〉 , (29)

where |0〉 is the vacuum of c-particles. The overlap between two ground states for different anisotropies
γ, γ′ is given by

〈Ψ(γ′)|Ψ(γ)〉 =
∏
k>0

cos(ϕk − ϕ′
k) . (30)

We are particularly interested in the overlap between the ground state of the isotropic XY model (γ = 0)
and that of the anisotropic model (γ > 0). With the choice (26) we get

〈Ψ(0)|Ψ(γ)〉 =
∏
k>0

(
Ek + | cos k|

2Ek

)1/2

, (31)

i.e., in the thermodynamic limit,

log〈Ψ(0)|Ψ(γ)〉 =
L

2π

∫ π/2

0

dk log
Ek + cos k

2Ek
. (32)

To obtain the asymptotic behavior for γ → 0 we have to distinguish between the region of k values close
to π

2 and the other region in k space. In the latter we can readily expand the integrand in powers of γ, while
in the former region we replace cos k by π

2 − k and then integrate that part exactly. Summing up the two
contributions we find

log〈Ψ(0)|Ψ(γ)〉
˜γ→0

L

2π

[
−

(π

2
− 1

)
γ +

π

8
γ2

]
. (33)
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