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Abstract. Our goal is to show, in two different contexts, that “random” surfaces
have large pants decompositions. First we show that there are hyperbolic surfaces
of genus g for which any pants decomposition requires curves of total length at least
g7/6−ε. Moreover, we prove that this bound holds for most metrics in the moduli
space of hyperbolic metrics equipped with the Weil–Petersson volume form. We
then consider surfaces obtained by randomly gluing euclidean triangles (with unit
side length) together and show that these surfaces have the same property.

Any surface of genus g, g ≥ 2, can be decomposed into three-holed spheres
(colloquially, pairs of pants). We say that a surface has pants length ≤ l if it can be
divided into pairs of pants by curves each of length ≤ l. We say that a surface has
total pants length ≤ L if it can be divided into pairs of pants by curves with the
sum of the lengths ≤ L. The pants length and total pants length measure the size
and complexity of a surface. In particular, they describe how hard it is to divide
the surface into simpler parts. One of the main open problems in this area is to
understand how big the pants length of a genus g hyperbolic surface can be. It
would also be interesting to understand how big the total pants length of a genus
g hyperbolic surface can be. In this paper, we use a random construction to find
hyperbolic surfaces with surprisingly large total pants length.

To put the paper in context, we review the known results about pants length and
total pants length. In [Be1,2], Bers proved that for each genus g, the supremal pants
length of a genus g hyperbolic surface is finite. This result is non-trivial because the
moduli space of hyperbolic surfaces is not compact, and Bers’ result gives informa-
tion about the geometry of surfaces near the ends of moduli space. The supremal
pants length of a genus g hyperbolic surface is called the Bers constant, Bg. Later
work gave explicit estimates for the Bers constant. In [BuSe], Buser and Seppälä
proved that every genus g hyperbolic surface has pants length at most Cg (where
C is a constant independent of g). On the other hand, Buser [Bu1] gave examples
of hyperbolic surfaces with pants length at least cg1/2 for arbitrarily large g. Buser
conjectured that the Bers constant of a hyperbolic surface is bounded by Cg1/2

[Bu2].
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The total pants length has not been studied as much as the pants length, but it
also seems like a natural invariant. Since a pants decomposition has 3g−3 curves in
it, the estimate of Buser and Seppälä implies that every genus g hyperbolic surface
has total pants length at most Cg2. This is the best known general upper bound. In
the other direction, it is easy to construct hyperbolic surfaces with total pants length
at least cg for every g by taking covers of a genus 2 surface. The only previous non-
trivial estimate comes from work of Buser and Sarnak on the geometry of certain
arithmetic surfaces [BuS]. They proved that there exist families of surfaces, one in
each genus g, with the property that every topologically non-trivial curve has length
at least ∼ log g. Since each curve in a pants decomposition is non-trivial, the total
pants length of these arithmetic hyperbolic surfaces is at least ∼ g log g.

Now we have the background to state our main theorem.

Theorem 1. For any ε > 0, a “random” hyperbolic surface of genus g has total
pants length at least g7/6−ε with probability tending to 1 as g → ∞. In particular,
for all sufficiently large g, there are hyperbolic surfaces with total pants length at
least g7/6−ε.

(To define a “random” hyperbolic surface we need a probability measure on the
moduli space of hyperbolic metrics. We use the renormalized Weil–Petersson volume
form. We discuss this notion of randomness more below.)

As another piece of context for our result, we mention the analogous questions for
hyperbolic surfaces with small genus but many cusps. For simplicity, let’s consider
complete hyperbolic surfaces with genus 0 and n cusps for n ≥ 3. These surfaces
also have pants decompositions, and pants length is defined in the same way. The
arguments of Buser and Seppälä show that such a surface has pants length at most
Cn, and Buser’s conjecture was that the pants length should be at most Cn1/2.
Balacheff and Parlier proved this conjecture in [BP]. In a more general context
in [BPS], it is shown how to recuperate these results via Balacheff and Sabourau’s
diastolic inequality [BS]. There are also very good estimates for the total pants
length in this context. Balacheff, Parlier and Sabourau showed that the total pants
length of a hyperbolic surface with genus 0 and n cusps is at most Cn log n. It’s easy
to find examples where the total pants length is at least cn, so their bound is sharp up
to logarithmic factors. The same authors went on to show that hyperelliptic genus
g hyperbolic surfaces have total pants length at most ∼ g log g. The hyperbolic
surfaces in Theorem 1 are very different from hyperelliptic surfaces or from surfaces
of genus 0 with many cusps.

Our lower bound is a lot stronger than the one coming from the Buser–Sarnak
estimate. Instead of improving the trivial bound by a factor of log g, we improve it
by a polynomial factor g1/6−ε. Let’s take a moment to explain why it is difficult to
prove such a lower bound. Almost all the random hyperbolic surfaces we construct
have diameter around log g. Therefore, they have lots of non-trivial curves with
length around log g. For example, we can make a basis for the first homology of the
surface using curves of length around log g. So there are lots of short curves that
look like good candidates to include in a pants decomposition. The key issue seems
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to be that the curves in a pants decomposition need to be disjoint. After we pick a
first curve, the second curve needs to avoid it. This cuts down our options for the
second curve. Then the third curve needs to avoid the first two curves, so we have
even fewer options. If the pants length of the surface is near g7/6, then the curves
“get in each other’s way” so much that we have to pick dramatically longer curves
to finish building a pants decomposition. This kind of effect looks difficult to prove
because there are so many choices about how to choose the early curves. At the
present time, for any particular hyperbolic surface, we cannot prove that the total
pants length is any larger than g log g. But for a random hyperbolic surface, the
pants length is usually much larger than g log g.

Our proof is essentially a counting argument. If a surface has total pants length
at most L, we can construct it by gluing some hyperbolic pairs of pants with total
boundary length ≤ L. A hyperbolic pair of pants is determined by its boundary
lengths, so the number (really, Weil–Petersson volume) of possible surfaces with
total pants length ≤ L is governed by the number of possible ways of choosing these
hyperbolic pairs of pants and gluing them together. We estimate this volume and
show that if L ≤ g7/6−ε, then it is much smaller than the total volume of moduli
space.

One difficulty with the above theorem is that it is not very constructive; there is
no known algorithm to pick a random surface from the Weil–Petersson distribution
on moduli space. Because of this, we will also prove a version of the theorem for
combinatorial surfaces built by randomly gluing together equilateral triangles to
form a closed surface. Suppose that we take N Euclidean triangles of side length 1,
where N is even. These triangles can be glued together to make a surface, and
Gamburd and Makover [GM] showed that this surface usually has genus close to
(N + 2)/4. We consider the set of triangulated surfaces obtained in this way. We
identify surfaces that are simplicially isomorphic, and the equivalence classes form
a kind of combinatorial “moduli space”. We put the uniform measure on this finite
set, so we can speak of a random combinatorial surface. (This definition goes back
to Brooks and Makover [BrM], who studied the first eigenvalue of the Laplacian and
the systole of random combinatorial surfaces.)

Theorem 2. For any ε > 0, a random combinatorial surface with N triangles has
total pants length at least N7/6−ε with probability tending to 1 as N → ∞.

The combinatorial metrics we study in Theorem 2 are not hyperbolic, so let us
mention what is known about the pants lengths of arbitrary metrics on a surface
of genus g. Here the natural question is how the pants length relates to the area.
Generalizing his work with Seppälä, Buser proved that any (not necessarily hyper-
bolic) genus g surface with area A has pants length at most Cg1/2A1/2 ([Bu2]). It’s
easy to give examples of surfaces with area A and pants length at least CA1/2. Gen-
eralizing his conjecture for hyperbolic metrics, Buser conjectured that any metric
on a surface with area A should have pants length at most CA1/2. Recall that the
systolic inequality for surfaces says that any surface of genus g ≥ 1 and area A has
a non-trivial curve of length at most CA1/2. If it’s true, Buser’s conjecture about
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pants lengths would greatly strengthen the systolic inequality. For an introduction
to systolic geometry, see Chapter 4 of [Gr].

We include this alternate version of Theorem 1 for two reasons. Firstly, as
mentioned above, the combinatorial case is more concrete than the hyperbolic case.
It is easier to construct random combinatorial surfaces than random hyperbolic
surfaces, and, although the proof of Theorem 2 is not as clean as the proof of
Theorem 1, it is completely elementary and self-contained.

Secondly, the theorems and their proofs illustrate the parallels between the com-
binatorial case and the hyperbolic case. Comparing the work of Brooks–Makover
and Makover–McGowan [MM] to recent work of Mirzakhani [Mi] suggests that for
large N, the counting measure on the combinatorial moduli space above may be
close to the Weil–Petersson measure on moduli space. Our results support this.
Indeed, the proofs of Theorems 1 and 2 follow similar lines and obtain similar esti-
mates. For example, both proofs use an estimate of the total number (measure) of
possible surfaces. A typical combinatorial surface with N triangles has genus close
to N = g/4, and there are roughly NN/2 ≈ g2g different surfaces with N triangles.
This is comparable to the volume of moduli space, which is also roughly g2g. Similar
parallels appear between the number of possible pairs of pants with given boundary
lengths and the number of possible ways to glue pairs of pants to get a surface.

There are many open questions related to the work in this paper. The central
problem, understanding the maximal pants length of a genus g hyperbolic surface,
remains wide open. We found random surfaces to be useful in studying the total
pants length, and there are also many questions about pants length for random
surfaces. For instance, what is the average pants length of a random genus g surface,
and is the average pants length close to the Bers constant? Do the pants lengths of
random genus g surfaces concentrate near a single value? One also has the analogous
questions for total pants length.

In several ways, arithmetic surfaces have properties similar to random surfaces.
How does the pants length of an arithmetic surface compare with the pants length
of a random surface? In particular, is it true that an arithmetic surface has pants
length at least g1/6−ε?

Many of the same questions arise for random combinatorial surfaces along with
some new ones. For instance, the parallels between the hyperbolic and the combina-
torial case suggest questions about the geometry of random combinatorial surfaces
of different genuses. In the hyperbolic case, large total pants length seems to be a
high-genus phenomenon: spheres with cusps have much smaller pants length than
high-genus hyperbolic surfaces with the same area. Most random combinatorial sur-
faces have large genus, but we can also consider the set of combinatorial surfaces
where the genus g is fixed, but the number of triangles N increases. One might
hope that like the hyperbolic surfaces, these small-genus random surfaces might
have simpler geometry than their high-genus counterparts.

The study of small-genus random surfaces is an active area in probability theory
especially in recent years, and it has been an active area in physics for a long time.
A lot of study has been paid to random metrics on S2, and one of the key ideas is
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that there is essentially only one really natural random metric on S2. Following this
idea, one conjectures that different procedures for producing a random metric on
S2 should give the same result. In addition to the example above, where one glues
N triangles together and rejects any result which isn’t a sphere, one can begin with
the standard metric on S2 and change it by a randomly chosen conformal factor
(the conformal factor being a Gaussian free field) to get a “random planar map”, an
object studied in probability and physics - see [L]. Conjecturally, for large N , the
probability distribution coming from gluing triangles converges to the probability
distribution for the random conformal factor. For an introduction to these issues,
see the survey article [L].

On the other hand, if we take g large and N to be roughly 4g, it seems that we get
some kind of approximation to the moduli space of hyperbolic metrics. We can then
ask questions about how closely such a random combinatorial surface resembles its
random hyperbolic counterpart – what is its systole, first eigenvalue of Laplacian, or
its Uryson width? What are its isoperimetric properties? How many balls of various
radii are needed to cover it? What are its pants length and total pants length? And
so on.

In the first section of the paper, we review the topology of pants decompositions.
In the second section, we review some key background theorems about the Weil–
Petersson volume form, and we use them to prove Theorem 1. In the third section,
we introduce the combinatorial moduli space and prove Theorem 2.
Notation. Many of the numbers we will be concerned with are super-exponential.
For two numbers A(x) and B(x) that depend on a variable x, A(x) ≈ B(x) (resp.
A(x) � B(x)) will mean that they are equal (resp. the inequality holds) up to an
exponential factor in x. For example, by Stirling’s inequality, g! ≈ gg.

Acknowledgement. We thank the referee for her or his helpful comments.

1 Topological Types of Pants Decompositions

Pants decompositions come in different topological types. Let us fix a surface Σ.
A pants decomposition determines a trivalent graph where each pair of pants cor-
responds to a vertex and two vertices are joined by an edge if the corresponding
pants share a boundary. (This trivalent graph may have multiple edges or loops.)
We call this graph the topological type of the pants decomposition. We say that
two pants decompositions are topologically equivalent if their topological types are
isomorphic graphs. It’s straightforward to check that if two pants decompositions
are topologically equivalent, then there is a diffeomorphism of Σ taking one to the
other.

For example, if Σ is a surface of genus 2, then it has two topological types of
pants decomposition. The two types each correspond to trivalent graphs with two
vertices. In the first case, there are three edges that go between the two vertices. In
the second case, each vertex has one edge connecting it to the other vertex and one
loop connecting it to itself.
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The first result that we need is an estimate for the number of different topological
types of pants decomposition on a surface of genus g. In [Bo], Bollobas gave a precise
asymptotic formula for the number of trivalent graphs. We need only the following
cruder version of Bollobas’s formula.

Lemma 1 (Bollobas). There are ≈ nn trivalent graphs with 2n vertices.

This lemma is cruder than Bollobas’s result, and it also has a simpler proof. For
reference, we include a proof here.
Proof. We start with 2n labeled tripods and consider all the ways to glue them
together to produce a labeled trivalent graph with labeled half-edges (or simply
“labeled trivalent graph”). By a labeled tripod, we mean a vertex with three half-
edges coming out of it, labeled 1, 2, and 3. Likewise, by a labeled trivalent graph,
we mean a trivalent graph with labeled vertices where the three half-edges incident
to each vertex have labels 1, 2, and 3. The tripods have total degree 6n, and there
are

(6n)!
(3n)!23n

≈ n3n

ways of dividing the 6n half-edges into pairs, each of which corresponds to a labeled
trivalent graph with vertices numbered 1, . . . , 2n. An unlabeled trivalent graph
occurs many times in this collection. The permutation group S2n acts on the set of
labeled graphs by permuting the vertex labels, and each orbit of the permutation
group consists of isomorphic graphs. The number of equivalence classes is thus
at most the number of orbits. If G is a labeled graph, recall that its orbit has
CardS2n/ CardSG

2n elements, where SG
2n is the stabilizer of G. The stabilizer of G

consists of permutations of the vertices which lead to an isomorphic graph. We
can describe such a permutation in terms of the image of a basepoint in G and a
permutation of the neighbors of each vertex, so

1 ≤ CardSG
2n ≤ 2n62n � 1.

Hence each orbit has ≈ n2n elements, and the number of orbits is ≈ nn. �

Consequently, a pants decomposition of a genus g surface has one of ≈ gg possible
topological types.

2 The Moduli Space of Hyperbolic Metrics

In this section we show that a random hyperbolic metric on a genus g surface has
total pants length at least roughly g7/6 with very high probability. To begin, let us
define what we mean by a random metric and make a precise statement.

We denote the moduli space of closed hyperbolic surfaces of genus g by Mg. The
Weil–Petersson metric is a Riemannian metric on Mg. We use the volume form of
the Weil–Petersson metric to define volumes on moduli space. By renormalizing the
Weil–Petersson volume form, we get a probability measure on moduli space. We
take random metrics with respect to this probability measure.
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Theorem 1. For any ε > 0, a random metric in Mg has total pants length at least

g
7
6
−ε with high probability: the probability tends to 1 as g → ∞.

Let us indicate the plan of our proof.
First, we observe that without loss of generality, we may assume that the curves

in the pants decomposition are closed geodesics. Suppose we begin with a pants
decomposition of a hyperbolic surface Σ. By definition, the pants decomposition
consists of disjoint embedded curves γ1, . . . , γ3g−3 so that each component of the
complement is a three-holed sphere. This is equivalent to just requiring that the
curves γi be disjoint and non-parallel: no two curves among them bound an annulus.
Following a standard trick, we ‘tighten’ the curves γi: we replace each curve γi with
a closed geodesic γ̄i in its free homotopy class. By standard arguments in hyperbolic
geometry, the closed geodesics will be embedded and disjoint, and no two of them
will bound an annulus. Hence the curves γ̄i give a pants decomposition of Σ also,
and they have smaller lengths than the curves γi.

From now on we assume that the curves in the pants decomposition are closed
geodesics. So each three-holed sphere in the pants decomposition has a hyperbolic
metric with geodesic boundary. We call such a pair of pants with such a metric a
hyperbolic pair of pants. The classification of hyperbolic pairs of pants is easy to
describe: the boundary curves may have any positive lengths, and for each choice
of lengths there is a unique metric.

Now our plan consists of describing all the ways to glue together hyperbolic
pairs of pants to make a closed hyperbolic surface, and then estimating the volume
in moduli space covered by these surfaces.

To prove our theorem, we use two fundamental facts about the Weil–Petersson
volume form. Recall that the Teichmüller space Tg denotes the space of hyperbolic
metrics on a fixed surface of genus g, where two metrics are equivalent if they
are related by an isometry isotopic to the identity. The moduli space Mg is the
quotient of Teichmüller space Tg by the action of the mapping class group. The
Weil–Petersson metric on Teichmüller space is a non-complete Kähler metric with
negative sectional curvature, and is very much related to the hyperbolic geometry
of surfaces. Although it is a very natural metric to consider, it is quite technical
to define, so we refer the reader to [W] for details. The Weil–Petersson metric is
invariant under the action of the mapping class group, so it descends to a metric on
moduli space.

We will need the following result of Schumacher and Trapani [ST].

Background Theorem 1 (Asymptotic volume growth). The volume of moduli
space Mg grows (up to an exponential factor) like g2g; i.e.

VolMg ≈ g2g.

This result was an improvement of previous lower [P] and upper bounds [Gru].
The second background theorem expresses the Weil–Petersson volume form in

a set of Fenchel–Nielsen coordinates. Before stating the result, we quickly recall
Fenchel–Nielsen coordinates.

ht
tp

://
do

c.
re

ro
.c

h



Fix a pants decomposition of the genus-g surface. We denote the curves in the
pants decomposition by γ1, . . . , γ3g−3. Recall that li and τi, the length and twist
parameters, define coordinates on the Teichmüller space Tg. The length parameter
li measures the length of the shortest curve homotopic to γi in the given metric; this
is a positive real number. The twist parameter τi measures the twist in the gluing
across this geodesic; this is a real number measured in units of length. Different
length and twist parameters may correspond to the same point in Mg; for instance,
replacing τi by τi ± li yields a metric isometric to the original one by a Dehn twist
around γi.

The volume form for the Weil–Petersson metric has a very simple form in terms
of these coordinates [W].

Background Theorem 2 (Wolpert). In Fenchel–Nielsen coordinates, the volume
form of the Weil–Petersson metric is simply the standard volume form dl1 ∧ · · · ∧
dl3g−3 ∧ dτ1 ∧ · · · ∧ dτ3g−3.

The region in moduli space with total pants length less than L in our fixed pants
decomposition is covered by the following region of Teichmüller space:

S =
{

(li, τi) ∈ Tg

∣∣ ∑
i

li ≤ L , 0 ≤ τi ≤ li

}
.

The Weil–Petersson volume of this set is the same as its volume in the standard
Euclidean metric on R

6g−6 and it is not hard to estimate.

Lemma 2. If 1 ≤ L ≤ exp(g), then VolS � (L/g)6g, where � is taken with respect
to g.

Proof. First consider the (3g − 3)-dimensional simplex defined by the inequalities
0 < li,

∑
i li ≤ L. We denote this simplex by ΔL. By Fubini’s theorem,

VolS =
∫

ΔL

3g−3∏
i=1

li .

By the arithmetic-geometric mean inequality,
∏

li ≤
(

L

3g − 3

)3g−3

�
(

L

g

)3g

.

Hence Vol S � Vol(ΔL)(L/3g)3g.
The volume of the simplex ΔL may be calculated inductively using the formula

for the volume of a pyramid. It is equal to L3g−3

(3g−3)! � (L/g)3g. �

Remark. The calculation in this lemma is basically sharp: the region of Teich-
müller space above has volume ≈ (L/g)6g. The region of moduli space covered by
this region of Teichmüller space has volume � (L/g)6g. (The volume in moduli space
may be much smaller if the covering map is highly non-injective. We don’t know
how to estimate this effect.)
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Now let Mg(≤ L) ⊂ Mg denote the subset of hyperbolic metrics that admit
pants decompositions of total length ≤ L.

If E denotes a topological type of pants decomposition, we let Mg(≤ L, E) ⊂
Mg(≤ L) denote the the subset of hyperbolic metrics that admit a pants decomposi-
tion of type E and total length ≤ L. For each E, the calculation in Fenchel–Nielsen
coordinates shows that the volume of Mg(≤ L, E) is � (L/g)6g. There are ≈ gg

different topological types E. Every pants decomposition belongs to one of these
≈ gg types, and so the volume of Mg(≤ L) is � L6gg−5g.

As we saw above, the volume of Mg is ≈ g2g. If we set L = g(7/6)−ε, then we see
that the volume of Mg(≤ L) � g(2−6ε)g. Recalling the definition of � and �, we see
that the volume of Mg is at least ce−cgg2g, while the volume of Mg(≤ g(7/6)−ε) is
at most CeCgg(2−6ε)g. So for g sufficiently large, the volume of Mg is much larger
than the volume of Mg(≤ g(7/6)−ε). This proves Theorem 1.

3 The Combinatorial Viewpoint

If N is even, one can construct a oriented surface by gluing together N triangles (we
allow edges of the same triangle to be glued together and allow edges to form loops).
We call the corresponding CW-complex a combinatorial surface. We declare two
combinatorial surfaces to be equivalent if there is a homeomorphism which sends
edges to edges and faces to faces, and we define CombN to be the set of equivalence
classes of such surfaces with N triangles. Gamburd and Makover [GM] showed that
as N → ∞, a random element of CombN has genus at least (1/4 − ε)N with high
probability (for a precise estimate, see [G]), so CombN is a rough combinatorial
equivalent of MN/4.

We think of each triangle in a combinatorial surface as a Euclidean equilateral
triangle with side length 1. In this way, each combinatorial surface in CombN has a
metric on it. In particular, we can define its pants length and total pants length. We
also have a good notion of a random combinatorial surface given by the counting
measure on CombN . Using these definitions, we get the following combinatorial
version of our main result.

Theorem 2. For any ε > 0, a random combinatorial surface in CombN has total
pants length at least N7/6−ε with probability tending to 1 as N → ∞.

The proof of Theorem 2 is morally analogous to the proof of Theorem 1. It is
more elementary, because it does not rely on the Weil–Petersson metric, but there
are also some additional subtleties.

One of the key observations in the proof of Theorem 1 was that a hyperbolic sur-
face of total pants length L can be cut into hyperbolic pairs of pants whose boundaries
have total length at most 2L. The main subtlety in the proof of Theorem 2 is to
find the right combinatorial analogue for this step.

Suppose we start with an arbitrary pants decomposition of a combinatorial sur-
face Σ. The curves γi are arbitrary curves, and so the pairs of pants in the decompo-
sition do not have combinatorial structures. To get a combinatorial decomposition,
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we need the γi to be combinatorial curves. For each i, we can approximate γi by a
combinatorial curve γ̄i which is homotopic to γi and has comparable length. At this
point, some problems appear: the curves γ̄i need not be embedded and need not be
disjoint. If the γ̄i are chosen carefully, however, we can still express Σ as the union
of combinatorial pairs of pants, glued along the γ̄i. A combinatorial pair of pants
will consist of triangles and edges, but some of the edges may not border any of the
triangles. These isolated edges can be thought of as ‘infinitely thin’ pieces of surface.
We will show that we can choose the γ̄i to be combinatorial geodesics, so that each
one has minimal length compared to all combinatorial curves in its homotopy class.

At this point, there is a further problem. A hyperbolic pair of pants is determined
by the lengths of its boundary curves. But there are many different combinatorial
pairs of pants with the same boundary lengths. When we count how many ways we
can glue together combinatorial pairs of pants with given boundary lengths, we get
a large unwanted factor coming from the different choices for a pair of pants with
fixed boundary curves. The underlying cause of this problem is that combinatorial
geodesics – unlike hyperbolic ones – are not unique. The solution to this problem
is to consider only special combinatorial pants decompositions which we call ‘tight
pants decompositions’. We define these below. Roughly speaking, they are pants
decompositions of minimal complexity in an appropriate sense.

With this well-chosen definition, the analogy runs smoothly. In section 3.1, we
prove that CombN has cardinality ≈ NN/2, but that for any fixed g, the num-
ber of N -triangle combinatorial surfaces of genus g grows only exponentially. In
section 3.2, we introduce combinatorial pants decompositions and tight combinato-
rial pants decompositions. We show that any pants decomposition can be improved
to make a tight combinatorial pants decomposition. In section 3.3, we count the
number of tight combinatorial pants decompositions of total length ≤ L.

3.1 Counting Combinatorial Surfaces. The goal of this part is to count sur-
faces that lie in our combinatorial moduli space. Our main goal is to prove that the
cardinality of CombN is ≈ NN/2. Since most surfaces in CombN have genus close to
N/4, this is analogous to the fact that the Weil–Petersson volume of moduli space
of surfaces of genus g is ≈ g2g.

Over the course of our argument, we will need to consider the set of combina-
torial surfaces with a particular genus. Let CombNModg,k denote all combinatorial
surfaces of genus g with k boundary components made from N triangles. Again, we
will allow two edges of the same triangle to be glued together, and again we consider
surfaces up to homeomorphisms preserving edges and faces.

For fixed g and k, we will see that the cardinality of CombNModg,k grows only
exponentially with N .

We begin by studying the cardinality of CombN .

Lemma 3 (Combinatorial volume growth).

Card(CombN ) ≈ NN/2.
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Proof. If Σ ∈ CombN , we can construct a trivalent graph with N vertices by letting
the vertices of the graph be the faces of Σ and connecting vertices whose correspond-
ing faces share an edge. Given a trivalent graph, we can construct a surface with
the corresponding pattern of gluings, so by Lemma 1, Card(CombN ) � NN/2.

On the other hand, many surfaces might correspond to the same graph, since
the graphs do not record which of the three edges of each triangle is glued to which
other edge. With this information, a graph uniquely identifies a surface, but there
are only 6N ways to add this information to the graph, so Card(CombN ) � NN/2

as well. �

In contrast, the number of ways to triangulate a surface of a fixed genus with
many triangles grows only exponentially:

Lemma 4. For any g ≥ 0, k ≥ 0,

Card(CombnModg,k) � en.

In other words,
Card(CombnModg,k) ≤ C(g, k)en.

Proof. In the special case that (g, k) = (0, 1) (i.e. for triangulations of a disk), this
follows from a result of Brown [Bro]; we will reduce the general case to the case of
a disk.

Brown counted the number of rooted simplicial triangulations of the disk, that
is, triangulations with a marked oriented boundary edge such that the endpoints of
each edge are distinct and no face is glued to itself, and showed that the number of
such triangulations with j + 3 boundary vertices and k interior vertices is

2(2j + 3)!(4k + 2j + 1)!
(j + 2)!j!k!(3k + 2j + 3)!

.

Restating this in terms of the number n = j + 2k + 1 of triangles, we find that the
number of triangulations is

2(2j + 3)!(2n − 1)!
(j + 2)!j!

(n−j−1
2

)
!
(3n+j−3

2

)
!
,

where we require that 0 ≤ j ≤ n − 1 and j ≡ n − 1 mod 2. Call this number
θ(n, j). Our combinatorial surfaces differ from Brown’s in that the two endpoints of
an edge may be identified, but any element of CombnMod0,1 can be barycentrically
subdivided twice to get a simplicial triangulation. We thus find that

Card(CombnMod0,1) ≤
6n−1∑
j=0

j≡6n−1 (mod 2)

θ(6n, j) .

Since j ≤ n − 1, there is a c such that

θ(n, j) ≤ ecn (2n − 1)!(n−j−1
2

)
!
(3n+j−3

2

)
!

= ecn(2n − 1)
(

2n − 2
n−j−1

2

)
≤ ecn22n−2(2n − 1) ,
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so there is a c′ such that for all n > 0,
n−1∑
j=0

j≡n−1 (mod 2)

θ(6n, j) ≤ ec′n.

Now consider CombNModg,k. If Σ is a triangulated genus-g surface with k holes
and (g, k) �= (0, 0), we can cut it along non-separating simple closed curves or simple
arcs between boundary components until we get a disk; this takes at most 3g+k−1
cuts. We can thus obtain any element of CombNModg,k by performing at most
3g + k − 1 gluings on an element of CombnMod0,1. Each gluing identifies two edge
paths on the boundary, so a gluing is determined by the endpoints of the paths
that are glued. There are at most (3n)4 ways to perform each gluing, so as long as
(g, k) �= (0, 0),

Card(CombnModg,k) ≤ ec′n(3n)4(3g+k−1) � en.

For the case that (g, k) = (0, 0), note that if Σ is a triangulation of a sphere, then
we can obtain a triangulation of the disc by cutting along an edge of Σ, so

Card(CombnMod0,0) ≤ ec′n � en

as desired. �

3.2 Combinatorial pants decompositions. In this part, we define pants de-
compositions of combinatorial surfaces and their lengths. We then focus our interest
on pants decompositions of minimal length, and we show that in the isotopy class
of such a pants decomposition there is always a pants decomposition of a particular
type, called a tight pants decomposition.

A pants decomposition of a surface of genus g is a maximal set of disjoint and
freely homotopically distinct non-trivial simple closed curves. A pants decomposition
always contains 3g − 3 curves, and its complementary region consists of a set of
2g−2 three holed spheres, or pairs of pants. To define a pants decomposition in the
combinatorial setting, we focus on these pairs of pants.

A combinatorial pair of pants will consist of a simplicial complex equipped with
some boundary curves. Let Δ be a simplicial complex which is a deformation retract
of a three-holed sphere M0,3. If we consider Δ as a subset of M0,3, this implies that
a regular neighborhood of Δ is a three-holed sphere. The boundary curves of this
three-holed sphere correspond to simplicial curves in the boundary of Δ, and when
Δ is equipped with these boundary curves, we call it a combinatorial pair of pants.
These curves inherit an orientation from M0,3. Note that Δ need not be a manifold;
for instance, it could be two vertices connected by three edges. In general, Δ may
contain edges that are not boundaries of triangles. We call such edges stranded
edges.

We can glue pairs of pants to get surfaces. If P1, . . . , P2g are combinatorial pairs
of pants, each one has three boundary components, and we can identify pairs of
boundary components which have the same length. Like its geometric analogue,
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there are many ways to identify the same pair of boundary components, and these
ways differ by a shift; by fixing a basepoint on each boundary curve, we can define
twist parameters for the gluing. If we glue all of the boundary curves in pairs, we
obtain a complex

⋃
Pi/ ∼; this may not be a surface, because there may still be edges

which are not part of a triangle. If
⋃

Pi/ ∼ is isomorphic to a triangulated surface Σ,
we call the collection of the Pi, the gluing instructions, and the isomorphism a
combinatorial pants decomposition of Σ. The boundary curves of the Pi project to
simplicial curves on Σ; we call these the boundary curves of the pants decomposition.
If the boundary curves have minimal (combinatorial) length in their free homotopy
classes, we say that the pants decomposition is minimal. We give Σ a metric so that
each triangle is isometric to an equilateral triangle with side length 1.

We will show that a geometric pants decomposition gives rise to a minimal combi-
natorial pants decomposition. Recall that a Lipschitz closed curve on a triangulated
surface is homotopic to a simplicial curve whose length is bounded by a constant
times the length of the original curve:

Lemma 5. Let α : S1 → Σ be a Lipschitz curve on a triangulated surface Σ. There
is a simplicial curve λ on Σ which is homotopic to α and whose length satisfies

�(λ) ≤ 2�(α) .

Proof. For any ε > 0, we can perturb α to get a smooth curve α′ of length �(α′) ≤
�(α)+ε which avoids vertices of Σ and intersects its edges transversely. The edges of
the triangulation cut α′ into finitely many arcs, each contained in a single triangle.
Each arc a cuts the boundary of its triangle into two arcs. We homotope the arc a to
the shortest of these two boundary arcs (say b). By elementary euclidean geometry,
we have �(b) ≤ 2�(a). As such, the resulting curve β satisfies �(β) ≤ 2�(α).

The resulting curve is not necessarily a simplicial curve as it may go partway
along an edge and then backtrack. A further homotopy removes this backtracking
and decreases the length. The resulting curve λ is now a simplicial curve and has
length at most the length of β. This proves the lemma. �

We can now focus our attention on the equivalent statement for full pants de-
compositions.

Proposition 1. Let Σ be a triangulated surface and let α1, . . . , αk : S1 → Σ be the
boundary curves of a pants decomposition for Σ. There is a minimal combinatorial
pants decomposition of Σ with boundary curves λ1, . . . , λk : S1 → Σ such that for
all i, λi is homotopic to αi and �(λi) ≤ 2�(αi).

Proof. The first step is to approximate the αi by simplicial curves. For all i, let βi

be a simplicial closed curve of minimal length which is homotopic to αi. In general,
the βi may share edges; we will subdivide Σ and make them disjoint.

We first duplicate the edges of Σ so that the βi do not share edges. If e = (x, y) is
an edge of Σ which occurs n ≥ 2 times in the βi, we replace e with n−1 bigons glued
edge-to-edge. We make no changes to edges which do not occur or occur only once.
Now we replace the vertices of Σ; if a vertex has degree d, we replace it with a d-gon
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which we call a vertex polygon. Each incoming edge connects to one vertex of this
d-gon; this makes the bigons created in the previous step into rectangles which we
call edge rectangles. Each edge rectangle has two edges which are shared by vertex
polygons and two edges which connect vertex polygons; we call the edges which
connect vertex polygons long edges. Call the resulting complex Σ′. This complex is
homeomorphic to Σ, and there is a natural map p : Σ′ → Σ which collapses the edge
rectangles to edges and the vertex polygons to vertices; this map sends long edges
to edges of Σ homeomorphically.

Figure 1: From Σ to Σ′

We call a curve semi-simplicial if it consists of alternating long edges and curves
in vertex polygons; the image of a semi-simplicial curve under p is thus a simplicial
curve. If γ is a semi-simplicial curve, we define its length by �(γ) := �(p(γ)). We
can lift each of the βi to semi-simplicial curves in Σ′ by replacing edges of βi with
corresponding long edges and replacing vertices of βi with curves in the vertex
polygons. There are enough long edges in Σ′ that we can ensure that no long edge
is used twice, so this gives us curves β′i in Σ′ which intersect only in the vertex
polygons. We may assume that at most two curves intersect at a point and that all
intersections are transverse.

A standard argument allows us to perform surgeries to make these curves disjoint.
If two curves β′i and β′j intersect, then the fact that the two curves are homotopic to
disjoint curves implies that there is a bigon between β′i and β′j . That is, there is a
subsegment γ1 of β′i and a segment γ2 of β′j which have the same endpoints and are
homotopic relative to their endpoints. We call these endpoints x and y. Because β′i
and β′j have minimal length, we have �(γ1) = �(γ2). We can eliminate the bigon by
swapping γ1 and γ2 and deforming the resulting curves near x and y to eliminate the
two intersection points. Likewise, if a curve β′i intersects itself, then the fact that
the curve is homotopic to a simple curve implies that there is a bigon bounded by
two segments of β′i and we can eliminate this bigon in the same way. In either case,
this operation reduces the number of intersection points by two, so we can repeat
it to eliminate all intersection points. Since we have only swapped subsegments of

ht
tp

://
do

c.
re

ro
.c

h



curves and performed homotopies inside vertex polygons, the resulting curves are
still semi-simplicial and still have minimal length; call them β′′1 , . . . , β′′k .

We will get a combinatorial pants decomposition of Σ by cutting Σ′ along these
curves and collapsing edge rectangles and vertex polygons. The curves β′′1 , . . . , β′′k
are the boundary curves of a geometric pants decomposition of Σ′ into subsurfaces
P1, . . . , P2k/3. Each of these subsurfaces is homeomorphic to a pair of pants (i.e.
a three-holed sphere), and is the union of edge rectangles, subsets of the vertex
polygons, and faces of Σ′ which come from triangles of Σ. If we collapse each edge
rectangle in Pi to an edge and each connected component of a vertex polygon to a
vertex, we obtain a complex P ′i which comes with a map pi : P ′i → Σ. The boundary
curves of Pi correspond to simplicial curves in P ′i , and with these boundary curves,
P ′i forms a combinatorial pair of pants. Furthermore, gluing the P ′i along these
boundary curves reconstructs the original surface Σ, making them a combinatorial
pants decomposition of Σ. The boundary curves of this pants decomposition are
λi := p(β′′i ); as required, λi is homotopic to αi, and since it has minimal combina-
torial length, its length is no more than a constant factor larger than that of αi. �

Let Σ be a genus g surface and let P1, . . . , P2g−2 be the pants in a combinatorial
pants decomposition of Σ. We can view a combinatorial pair of pants P as a collec-
tion of clusters connected by strands; indeed, we will construct the cluster graph G
of P , a graph whose vertices correspond to clusters of P and whose edges correspond
to strands. We construct this graph as follows (see Figure 2):

1. For all vertices v ∈ P , if the link of v has d connected components and more
than one is an interval, replace v by a star with d edges.

2. Shrink paths of edges to single edges.
3. Shrink groups of triangles which are glued along edges to single vertices.

Each vertex of G corresponds to a group of triangles (indeed, a submanifold of P
with boundary) or a single point; we call these clusters. We will call a single-point
cluster degenerate. Each edge corresponds to a path of stranded edges of P (possibly
a path of length zero); we call these strands. Since each cluster corresponds to a
vertex of G, we can define the degree of a cluster to be the degree of the corresponding
vertex.

The interior of a cluster can be homeomorphic to a disk, a cylinder or a three
holed sphere, and we call it disk-type, cylinder-type, or three-holed-sphere-type
accordingly. If a cluster is a single point, we say it is disk-type. If the pants
decomposition was minimal, then a disk-type cluster can have degree two, three, or
four. A cylinder-type cluster has degree one or two, and a three-holed-sphere-type
cluster has degree zero. A pair of pants P is called tight if none of its disk-type
clusters have degree 2. Such a cluster will be called a loose disk. A minimal length
pants decomposition is called tight if all of its pants are tight, i.e. do not contain
any loose disks.

We are now able to introduce the main result of this section.

Lemma 6. Any combinatorial surface Σ admits a minimal length tight pants de-
composition.
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A

B

C

D

Figure 2: The cluster graph. This pair of pants has four disk-type clusters,
one of which (C) is degenerate and two of which (B, D) are loose disks.

Figure 3: A pair of pants with a annulus-type cluster

Proof. We need to show that if a minimal pants decomposition has pants with loose
disks we can isotope the curves to remove the disk from the pair of pants without
increasing length. We further need to make sure that by doing so we are not just
moving a loose disk somewhere else, and that in fact we will have reduced the number
of loose disks.

The key technique in this proof is sliding a loose disk from one pair of pants to
another. Let D be a loose disk which is part of a pair of pants P in a minimal pants
decomposition, and say that P has boundary curves γa : Sa → P , a = 1, 2, 3. Since
D is a loose disk, there are two strands which enter D, say at vertices x1 and x2.
These two vertices divide the boundary of D into two paths, and since the boundary
curves of P have minimal length, the two paths have equal length. We denote them
c, c′ : [0, �] → P , and we can choose n and n′ so that c is a subsegment of γn and c′

is a subsegment of γn′ . If P is glued to Q along γn, then we can slide that common
boundary curve over D to transfer D from P to Q. This has the effect of cutting
D out of P (leaving c′) and gluing it on to Q along c, and it produces a new pants
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Figure 4: Removing a loose disk to get a tight pair of pants

decomposition of Σ. We call this process sliding c to c′. Furthermore, since c and
c′ must have equal lengths, the lengths of the boundary curves are unchanged and
the new pants decomposition is also minimal.

After such a slide, the pants decomposition differs from the original only
around D. All the clusters of the original decomposition have counterparts in the
new one, except possibly for clusters in P and Q; the move deleted one cluster from
P and added at most one to Q, depending on whether D was glued to a cluster or
to a strand. If D was glued to a cluster, then the move reduced the number of loose
disks by one. Otherwise, the slide glues D to a strand of Q. In this case, after the
slide D becomes a loose disc in Q bounded by segments c1 and c′1.

We will inductively define a sequence X0, X1, . . . , Xk of pants decompositions
which all differ by slides. Each Xi except Xk will have a loose disk Di in a pair of
pants Pi. This disk will be isomorphic to D and which is bounded by two curves
ci : [0, �] → Pi and c′i : [0, �] → Pi. Recall that Σ is a quotient of the pairs of
pants in Xi; let μi : Pi → Σ be the restriction of the quotient map to Pi. We will
require that μi ◦ ci : [0, �] → Σ be the same curve for all i < k and likewise for
μi ◦ c′i : [0, �] → Σ, and we will define f := μi ◦ ci and f ′ := μi ◦ c′i.

Let X0 be the original decomposition of Σ; this has a loose disk D0
∼= D bounded

by c0 := c and c′0 := c′. We construct Xi+1 from Xi by sliding ci to c′i. If this reduces
the number of loose disks, we stop, letting k = i + 1; otherwise, Di corresponds to a
loose disk of Xi+1, bounded by ci+1 and c′i+1, and we continue. We claim that this
process eventually stops.

By way of contradiction, say that the process does not stop. Sliding ci to c′i affects
the boundary curves of Xi by replacing an occurrence of f by f ′. If the process does
not stop, then we can replace f by f ′ infinitely many times. In particular, each edge
of Σ occurs as many times in f as it does in f ′, so each edge of Σ occurs an even
number of times in μ(∂D) (indeed, either 0 or 2). Consequently, μ(D) = Σ. Since
μ is injective on the interior of D, this means that we can obtain Σ by gluing the
edges of D together.

If w = c(0) or w = c(�), we call w an endpoint of D0. We claim that for all
v ∈ Σ, μ−1(v) contains at most 2 non-endpoint vertices of D. Say v is such that
{w1, w2, w3} ⊂ μ−1(v) for some 3 distinct non-endpoint vertices w1, w2, w3 ∈ D. The
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link of v is a circle, and it contains 3 intervals corresponding to the links of the wi.
Let S ⊂ link v be the complement of the interiors of these intervals; this consists of
three connected components, S1, S2, and S3. If a length-2 segment of a boundary
curve of X passes through v, there are j and k such that it approaches v from the
direction of Sj and leaves v in the direction of Sk. We call this a jk-segment. Note
that the only jk-segments of ∂D with j �= k are those centered at the wi. Since D
and the Sa’s are unaffected by repeatedly sliding c to c′, we can discuss jk-segments
of the boundary curves of the Xi too.

One of the wi is in the image of c; say w1 = c(x), so that f passes through v
at x, and number the Si so that this is a 12-segment. Replacing f by f ′ deletes this
segment, and we claim that replacing f by f ′ decreases the number of 12-segments
by one. The path f ′ has no 12-segments, so it only remains to check that replacing
f by f ′ can’t introduce new 12-segments centered at the endpoints of D. But if
f(0) = f ′(0) = v or f(�) = f ′(�) = v, then f and f ′ both leave v in the direction of
the same Si, so a jk-segment centered at an endpoint remains a jk-segment when
f is replaced by f ′. Since the number of 12-segments in X is finite, the process
terminates after a finite number of slides.

Thus, Σ can be obtained by gluing a disc to itself along its edges; the resulting
gluing has one face, namely D, � edges, and at least (� − 1) vertices. Thus, if the
process does not terminate, then Σ has genus at most 1, which is a contradiction. �

3.3 Counting tight pants decompositions. The goal of this part is to count
the number of tight pants decompositions of bounded length.
Main Estimate. There is a c > 0 such that the number of triangulated surfaces
in CombN with genus g and (tight) pants decompositions of total length at most L
is ≤ exp(cN)gg(L/g)6g.

First we will count the number of different tight pairs of pants with boundary
curves of controlled length. Next we will count the number of ways of gluing these
pants together into a surface.

Lemma 7. There is a c0 > 0 such that the number of tight pairs of pants with
boundary curves of lengths l1, l2, and l3 and with A triangles is ≤ c0e

c0A.

Proof. A tight pair of pants consists of some clusters (which may be collections of
triangles or may be single points) joined by some strands. In the last subsection, we
constructed the cluster graph of a combinatorial pair of pants, a graph whose vertices
correspond to clusters of triangles (possibly degenerate) and whose edges correspond
to strands. We call the collection of the cluster graph of a pair of pants and the type
of each cluster its combinatorial type. There are five possible combinatorial types
for a tight pair of pants:

1. One disk-type cluster, joined to itself by two strands;
2. One annulus-type cluster, joined to itself with one strand;
3. One three-holed-sphere-type cluster and no strands;
4. Two disk-type clusters, joined by three strands running between them;
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5. Two disk-type clusters and three strands, one connecting the clusters, and one
joining each cluster to itself.

One can show that these are all of the possible types by an Euler characteristic
argument. Each cluster of triangles has to be a subsurface with genus 0 and at
most 3 boundary components, so there are finitely many types of cluster. If c is
the number of clusters, s is the number of strands, and b is the total of the first
Betti numbers of the clusters in a pair of pants P , then the first Betti number of P ,
β1(P ) is given by β1(P ) = b + s − c + 1. If P is tight, each disk-type cluster has
degree at least 3, so each cluster contributes at least 1/2 to β1(P ). As such, there
can be at most 2 clusters in a tight pair of pants and at most 3 strands, and one
can enumerate the possibilities.

We can now prove that for each combinatorial type, there are � eA tight pairs
of pants with A triangles. Since there are a finite number of combinatorial types,
this will imply the lemma.

By Lemma 4, there is a c > 0 such that there are at most ecA discs or annuli or
three-holed spheres with A triangles. Now to build a tight pair of pants, we have to
add strands to the triangulated surfaces. We have to choose the attaching points.
There are at most six attaching points, and each attaching point has at most 3A
choices, and so there are ≤ (3A)6 choices of attaching points. Once we have chosen
where to attach each strand, the lengths of the strands are determined by the lengths
l1, l2, and l3 of the three boundary circles. Thus the total number of tight pants
with fixed boundary lengths, a fixed combinatorial type, and A triangles is bounded
by 5e2cA(3A)6 � eA. �

Remark. In hyperbolic geometry, there is a unique hyperbolic pair of pants for
every choice of boundary lengths l1, l2, and l3. The closest combinatorial analogue of
this phenomenon is the fact that tight pairs of pants with no triangles are determined
by their boundary lengths. For every triple of lengths, l1, l2, l3 ∈ Z, there is a unique
triangle-less pair of pants with the given lengths. If the lengths obey the triangle
inequality, the graph looks like θ and if not the graph looks like a pair of glasses,
that is, two circles connected by a line. If we are not careful when we add triangles,
the number of pairs of pants explodes: if we add one triangle, we have ≈ l1 + l2 + l3
different edges where we can put it, so we get many different pairs of pants. For this
reason, we introduced tight pairs of pants; tightness restricts the possible places that
a triangle can go. The number of tight pairs of pants with fixed boundary lengths
is bounded by exp(A), with constant independent of the chosen boundary lengths.
The exp(A) factor is fairly harmless, so tight pairs of pants are a good analogue of
hyperbolic pairs of pants.

Recall that a combinatorial pants decomposition consisted of a collection of pants
and some gluing information. Next we consider combinatorial analogues of length
and twist parameters (i.e. Fenchel–Nielsen coordinates) and bound the number of
possible ways to glue pants.
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Lemma 8. There is a C such that the number of genus g combinatorial pants
decompositions with total pants length ≤ L and total area ≤ N is bounded by
≤ Cgg(L/g)6g exp(CN).

Proof. In this proof, we will write f(g, L, N) � h(g, L, N) to mean that there is
some c such that f(g, L, N) ≤ cecNh(g, L, N) for all applicable g, L, N . Note that
we may assume that g ≤ N/4, and so eg � 1 as usual.

As with hyperbolic pants decompositions, a genus-g combinatorial pants decom-
position has a topological type. By Lemma 1, the number of topological types of
genus g is ≈ gg.

Now we count tight pants decompositions with a fixed topological type. We first
have to choose the lengths of the 3g − 3 boundary curves in the pants decomposi-
tion. How many ways can we choose positive integers l1, ..., l3g−3 so that

∑
li ≤ L?

This number is less than the volume of the set xi ≥ 0,
∑

xi ≤ L. The volume
of that simplex can be computed by induction on the dimension; it has volume

1
(3g−3)!L

3g−3 � (L/g)3g.
For each choice of lengths, we next have to choose how many triangles to put

in each pair of pants. Here we have to choose A1, . . . , A2g−2 ≥ 0 with
∑

Ai = N .
The number of ways to choose the Ai is exactly

(
N+2g−3

2g−3

)
≤ 2N+2g−3 ≤ 4N . (Since

g ≤ N/4.) So the number of ways of choosing Ai is � 1.
Next we have to choose a tight pants structure for each pair of pants with the

given area Ai and the given boundary lengths. If c0 is the constant from Lemma 4,
then the number of ways to do this is at most

∏
i c0 exp(c0Ai) � 1.

Now we count the number of possible gluings. Since we already chose the topo-
logical type, a gluing is determined by its twist parameters. For each of the 3g − 3
curves, the twist parameter is an integer in the range 0 ≤ ti ≤ li − 1. The number
of choices for the twist parameters is

3g−3∏
j=1

lj ≤
(

L

3g − 3

)3g−3

� (L/g)3g.

Multiplying all of these together, we find that the number of possible pants
decompositions is

� gg(L/g)3g(L/g)3g � gg(L/g)6g,

as desired. �

In particular, the number of underlying surfaces (up to simplicial isomorphism)
is � (L/g)6ggg. This proves the main estimate.

The total number of combinatorial surfaces in CombN is ≈ NN/2. If N is suf-
ficiently large and L = N7/6−ε, then the number of surfaces in CombN with genus
≥ 2 and total pants length at most L is

�
(N+2)/4∑

i=2

ecN (L/i)6iii � ecNN( 1
6
−ε)· 6N

4 (N/4)
N
4 ≈ NN/2−3ε/2.
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The number of surfaces in CombN with genus < 2 is � 1 by Lemma 4, so for
large N , most surfaces in CombN have no pants decomposition of total length ≤ L.
This finishes the proof of Theorem 2.

References

[BP] F. Balacheff, H. Parlier, Bers’ constants for punctured spheres and hyperelliptic
surfaces, preprint (2009).

[BPS] F. Balacheff, H. Parlier, S. Sabourau, Short loop decompositions of surfaces
and the geometry of jacobians, preprint (2010).

[BS] F. Balacheff, S. Sabourau, Diastolic inequalities and isoperimetric inequalities
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