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For an arbitrary cocompact hyperbolic Coxeter group G with a
finite generator set S and a complete growth function fS(x) =
P(x)/Q (x), we provide a recursion formula for the coefficients
of the denominator polynomial Q (x). It allows us to determine
recursively the Taylor coefficients and to study the arithmetic
nature of the poles of the growth function fS(x) in terms of
its subgroups and exponent variety. We illustrate this in the
case of compact right-angled hyperbolic n-polytopes. Finally,
we provide detailed insight into the case of Coxeter groups
with at most 6 generators, acting cocompactly on hyperbolic
4-space, by considering the three combinatorially different families
discovered and classified by Lannér, Kaplinskaya and Esselmann,
respectively.

1. Overview and results

Let G be a discrete group generated by finitely many reflections in hyperplanes (mirrors) of
hyperbolic spaceHn such that the orbifoldHn/G is compact.We callG a cocompact hyperbolic Coxeter
group and denote by S the (natural) set of generating reflections. For each generator s ∈ S, one has
s2 = 1 while two distinct elements s, s′ ∈ S satisfy either no relation if the corresponding mirrors
admit a common perpendicular or provide the relation (ss′)m = 1 for an integer m = m(s, s′) > 1
if the mirrors intersect. The images of the mirrors decompose Hn into connected components each
of whose closures gives rise to a compact convex fundamental polytope P ⊂ Hn for G with dihedral
angles of type π/p where p ≥ 2 is an integer. Hence, P is a simple polytope so that each k-face is
contained in exactly n−k facets.We call P a Coxeter polytope and use the standard notation bymeans
of the associated Coxeter graph simultaneously for G and P (cf. [6, Chapter 3] and [23, Chapter 5]).
In particular, two nodes in the Coxeter graph Γ of G corresponding to mirrors intersecting under
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the angle of π/3 (respectively π/p) are connected by a simple edge (respectively by an edge with
label p). If two mirrors are perpendicular (or admit a common perpendicular), their nodes are not
joined at all (are joined by a dotted line).

The focus of this work is the growth series of G defined by

fS(x) =
∑
w∈G

xlS (w) = 1+ |S|x+ · · · = 1+
∑
i≥1

aix
i,

where lS(w) denotes the (minimal) word length of w with respect to S, and where ai is the number
of words w with lS(w) = i. We investigate its explicit properties and the growth rate τ as given by
the inverse of the radius of convergence of fS(x). Of special interest is the arithmetic nature of τ as
formulated in the general conjecture below.

In this context, the following classical facts are of fundamental importance. By a result of
Steinberg [21], fS(x) is the power series of a rational function. For a cocompact hyperbolic Coxeter
group, a result of Milnor [13] implies that τ > 1 and that τ coincides with the biggest (real) pole of
fS(x) (see also [6, Section 17.1, p. 322]). Furthermore, in the same case, the rational function fS(x) is
reciprocal (resp. anti-reciprocal) for n even (resp. n odd) (cf. [4, Corollary, p. 376] and, for G having
only finite Coxeter subgroups, [19]). More precisely,

fS(x
−1) =

{
fS(x) for n ≡ 0(2),
−fS(x) for n ≡ 1(2).

(1.1)

Very useful is Steinberg’s formula [21]

1

fS(x−1)
=

∑
GT <G
finite

(−1)|T |
fT (x)

, (1.2)

allowing to express fS(x
−1) in terms of the growth series fT (x) of the finite Coxeter subgroups GT , T ⊂

S, of G where G∅ = {1}. Recall that any subset T ⊂ S generates a Coxeter group GT which may be
finite or infinite, reducible or irreducible. A finite Coxeter subgroup GT < G arises as stabiliser of a
certain face of P and has a growth function fT (x) which, by a result of Solomon [20], is a polynomial
given by a product

fT (x) =
t∏

i=1
[mi + 1]. (1.3)

Here we use the standard notations [k] := 1 + x + · · · + xk−1, [k, l] = [k] · [l] and so on, and
denote by m1 = 1,m2, . . . ,mt the exponents of the Coxeter group GT (cf. Table 1; for references,
see [5, Section 9.7] or [6, Chapter 17], for example). In particular, a maximal finite Coxeter subgroup
GT of G acting on Hn is of rank |T | = n and stabilises a vertex of P whose vertex neighborhood is a
cone over a spherical (n− 1)-simplex Pv due to the simplicity of P .

Table 1
Exponents and growth polynomials of irreducible finite Coxeter groups.

Graph Exponents Growth series fS(x)

An 1, 2, . . . , n− 1, n [2, 3, . . . , n, n+ 1]
Bn 1, 3, . . . , 2n− 3, 2n− 1 [2, 4, . . . , 2n− 2, 2n]
Dn 1, 3, . . . , 2n− 5, 2n− 3, n− 1 [2, 4, . . . , 2n− 2] · [n]
G

(m)
2 1,m− 1 [2,m]

F4 1, 5, 7, 11 [2, 6, 8, 12]
E6 1, 4, 5, 7, 8, 11 [2, 5, 6, 8, 9, 12]
E7 1, 5, 7, 9, 11, 13, 17 [2, 6, 8, 10, 12, 14, 18]
E8 1, 7, 11, 13, 17, 19, 23, 29 [2, 8, 12, 14, 18, 20, 24, 30]
H3 1, 5, 9 [2, 6, 10]
H4 1, 11, 19, 29 [2, 12, 20, 30]
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Finally, the growth series fS(x) of a Coxeter group acting cocompactly on Hn is related to the Euler
characteristic of G and the volume of P , and therefore of Hn/G, as follows (see [8]).

1

fS(1)
= χ(G) =

⎧⎨⎩ (−1) n
2 2voln(P)

voln(Sn)
, if n is even,

0, if n is odd.

(1.4)

Of special interest is the arithmetic nature of the growth rate τ . By results of [1,14] (see also [9]), it
is known that the growth rate τ of a Coxeter group G acting cocompactly on Hn is a Salem number
if n = 2, 3. That is, τ is a real algebraic integer >1 all of whose conjugates have absolute value not
greater than 1, and at least one has absolute value equal to 1. It follows that the minimal polynomial
of τ is palindromic with roots coming in inversive pairs. For n ≥ 4, the growth rate τ is not a Salem
number anymore. This was first observed by Cannon [1] who considered n = 4 and Coxeter groups G
with 5 generators. Based on substantial experimental data, we make the following claim concerning
the positive poles (appearing in inversive pairs) of the growth function of G (cf. [15, Section 5]).

Conjecture. Let G be a Coxeter group acting cocompactly on Hn with natural generating set S and growth
series fS(x). Then,

(a) for n even, fS(x) has precisely
n
2
poles 0 < x1 < · · · < x n

2
< 1 in the open unit interval ]0, 1[;

(b) for n odd, fS(x) has precisely the pole 1 and n−1
2

poles 0 < x1 < · · · < x n−1
2

< 1 in the interval ]0, 1].
In both cases, the poles are simple, and the non-real poles of fS(x) are contained in the annulus of radii x�

and x−1� for some � ∈ {
1, . . . ,

[
n
2

]}
.

In order to study such arithmetical properties of the growth series of an arbitrary cocompact
Coxeter group G acting with generating set S in Hn, we need to control the denominator polynomial
of its growth series fS(x) very well. To this end, we associate to it a certain complete form,

fS(x) = P(x)

Q (x)
=

r∏
i=1
[ni]

d∑
i=0

bixi
,

where P(x),Q (x) ∈ Z[x] are of equal degree, and where [k] is as in (1.3). The integers r and
n1, . . . , nr ≥ 2 are related to the finite Coxeter subgroups of G and their exponents. Inspired by an
idea of Chapovalov et al. [3], we are able to derive a recursion formula for the coefficients bi of the
denominator polynomial Q . In the recursion appear beside |S| and r certain counting functions such
as Nk = card {nl > k | 1 ≤ l ≤ r} for 2 ≤ k ≤ i related to the numerator P of fS(x) (cf. (2.9) and
(2.13)). Let us point out that Steinberg’s formula does not provide this sort of information about the
growth denominator polynomial but helps in single cases to shed light on the above conjecture. By
applying our recursion formula to a given group G, we exhibit an algorithm to determine the poles
and the coefficients ai in the growth series

fS(x) = 1+
∑
i≥1

aix
i

in a completely explicit manner and to control the growth of words in the Cayley diagram of G with
respect to the word metric induced by S. Notice that the cardinalities ai are usually very difficult to
determine since they depend on the number and the relations between the generators. Hence, it is
not surprising that all our formulas depend heavily on the combinatorics of the subgroup structure of
G as well.

Nevertheless, there are various applications of our recursion formulas. Firstly, we apply the
recursion to the elementary family of compact right-angled hyperbolic Coxeter polytopes (see
Proposition 3.2). For such a polytope P in H4, having f0 vertices and f3 facets, the associated growth
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series is given by

(1+ x)4

1+ (4− f3)x+ (f0 − 2f3 + 6)x2 + (4− f3)x3 + x4
,

has precisely 2 inversive pairs of positive simple poles, and is, by (1.4), of covolume equal to

vol4(P) = f0 − 4f3 + 16

12
π2. (1.5)

This result confirms our conjecture. Let us mention another result in dimension 4 presented
in [24]. Therein, the growth rates of the infinite sequence of cocompact Coxeter groups acting on
H4 are determined which are constructed as m-garlands based on the doubly truncated Coxeter
orthoschemes [5, 3, 5, 3] and [4, 3, 5, 3]. The denominator of each of these growth functions is a
palindromic polynomial of degree 18 with exactly two pairs of real (simple) roots x−1m < y−1m < 1 <
ym < xm while all the other conjugates lie on the unit circle.

At the end, we shall apply our results in order to confirm our conjecture about the growth behavior
of cocompact Coxeter groups acting with at most 6 generating reflections on H4 (see Theorem 4.1).
We shall discuss these aspects by outlining proofs, only (cf. [15]).

2. Recursion formulas for growth coefficients

2.1. The complete form

Let G be a Coxeter group acting cocompactly on hyperbolic spaceHn. Denote by S its natural set of
generating reflections, and consider the growth series of G,

fS(x) = 1+ |S|x+ · · · = 1+
∑
i≥1

aix
i, (2.1)

which is an (anti-)reciprocal rational function for n even (odd) according to (1.1). It can be written as

a quotient fS(x) = p(x)
q(x)

of relatively prime polynomials p, q ∈ Z[x]. By (1.2) and (1.3), the polynomials
p, q are of equal degree over the integers. On the other hand, consider the denominator of the sum in
Steinberg’s formula (1.2)∑

T∈F

(−1)|T |
fT (x)

,

where F = {T ⊂ S | GT is finite}. The least common multiple
Virg(S) := LCM{fT (x) | T ∈ F }

is called the virgin form of the numerator of (−1)nfS(x), and (−1)nfS(x) can be expressed as a rational
functionwith numerator equal to Virg(S) (see [3, Corollary 5.2.2a]). Although each constituent fT (x) =∏t

i=1[mi + 1], T ∈ F , is a product of polynomials of type [k] according to (1.3), certain factorisation
properties of [k] prevent Virg(S) from being a product of [k]’s, only (cf. Example 1). More precisely,
there is the factorisation (cf. [17, Section 3.3])

[k] =
∏
d|k
d>1

Φd(x),

where Φd(x) denotes the dth cyclotomic polynomial of degree equal to Euler’s function ϕ(d). The
polynomial Φd(x) is irreducible in Z[x] and, for d > 2, of even degree. If p is prime and d = pm, it
satisfies the property

Φpm(x) =
⎧⎨⎩Φm(xp) if p | m,

Φm(xp)

Φm(x)
else.

Since, for later purposes, we are interested in having uniformly tractable numerators for fS(x), we
modify Virg(S) in the following way. Denote by Ext(S) ∈ Z[x] the monic polynomial arising as the
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unique common multiple of all fT (x), T ∈ F , such that

Ext(S) =
r∏

i=1
[ni],

where the integers r, n1, . . . , nr ≥ 2 with ni = mi + 1 are minimal. Since Ext(S) = Virg(S) · R(x) for
some polynomial R(x) ∈ Z[x], Ext(S) is called the extended form of Virg(S). Denote by

P(x) := Ext(S) and Q (x) := (−1)nq(x) · R(x)
the extended form of the numerator p(x) and of the denominator q(x) of fS(x). Then, the growth series
fS(x) can be written as a rational function P(x)/Q (x) which is called its complete form, a notion going
back to Chapovalov et al. (see [3, Paragraph 5.4.2]). Let us point out that P(x) andQ (x) are in general no
more relatively prime. An important feature of putting a growth series into its complete form is that
the numerator P is simply a product of polynomials [k] which is of advantage when taking iterative
derivatives and evaluating at 0. The passage to the complete form does not change the number of
the real poles and their localisation in the complex plane. In fact, the extension of the denominator
q(x) arises by multiplying it with cyclotomic polynomials of degree bigger than 1. The next example
illustrates the above procedure.

Example 1. Consider the cocompact hyperbolic simplex group GL acting on H4, with set S of 5
reflections related by the graph

ΓL : ,

andwith growth series fS(x) = p(x)/q(x). Bymeans of (1.2) and the list of exponents of the subgroups
involved (see Table 1), one computes Virg(S) = [2, 12, 20, 30]Φ8(x). Therefore, the complete form of
fS(x) is given by the quotient of P(x) = Ext(S) = [2, 8, 12, 20, 30] divided by Q (x) = [4] q(x), where
we used the decomposition [8] = [4]Φ8(x).

2.2. The additive nature of Ext(S)

Write fS(x) = P(x)/Q (x)with

P(x) =
r∏

i=1
[ni] and Q (x) =

d∑
i=0

bix
i ∈ Z[x] (2.2)

according to Section 2.1. Since fS is (anti-)reciprocal for n even (odd), and since each factor [k] of
P (and therefore P itself) is a palindromic polynomial, satisfying the property F(x) = xdeg F F(x−1),
the numerator Q is an (anti-)palindromic polynomial for n even (odd). This means that, for n odd,
Q satisfies the property Q (x) = −xdegQQ (x−1). Our aim is to derive a recursion formula for the
coefficients bi ofQ (x). Inspired by [3], wewill differentiate iteratively±1/fS(x) = 1/fS(x

−1) bymeans
of Steinberg’s formula (1.2) and compare it – after evaluation at x = 0 – with the corresponding
expression for ±Q (x)/P(x). Since fS(0) = 1 and P(0) = 1, one has b0 = ±bd = 1. Furthermore,
Q (l)(0) = l! bl. One also observes that P ′(0) = r . However, by (2.2), P(x) is a product of factors of type
[k] = 1+x+· · ·+xk−1 so that higher derivatives of it become complicated expressions. The following
lemma about the additive character of P is therefore very useful.

Lemma 2.1. Let r ≥ 1 and n1, . . . , nr ≥ 2 be integers. Then,

(x− 1)r−1
r∏

i=1
[ni] = [n1 + · · · + nr ] −

∑
1≤i≤r

[n1 + · · · + n̂i + · · · + nr ]

+
∑

1≤i<j≤r

[n1 + · · · + n̂i + · · · + n̂j + · · · + nr ]

− · · · + (−1)r−1
r∑

i=1
[ni]. (2.3)
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Proof. We proceed by induction. Since

[k] = 1+ x+ · · · + xk−1 = xk − 1

x− 1
,

one immediately deduces that

[n1][n2] = xn1 − 1

x− 1
· x

n2 − 1

x− 1
= 1

(x− 1)2

{
xn1+n2 − xn1 − xn2 + 1

}
= 1

(x− 1)2

{
(xn1+n2 − 1)− (xn1 − 1)− (xn2 − 1)

}
= 1

x− 1

{[n1 + n2] − [n1] − [n2]
}
. (2.4)

By means of the induction hypothesis and by using (2.4), an easy rearrangement of the terms suffices
to finish the proof. �

Remark 1. It is convenient to write Eq. (2.3) in a more efficient way by introducing the following
notation. Let X = {x1, . . . , xk} ⊆ {1, . . . , r} be a non-empty index subset, with xi < xk if i < k, and
write

nX := nx1 + · · · + nxk .

Then, (2.3) can be expressed in the form

(x− 1)r−1
r∏

i=1
[ni] =

∑
∅
=X⊆{1,...,r}

(−1)r−|X |[nX ]. (2.3′)

Now, by differentiating l-times a term [n] and evaluating it at x = 0, one obtains

[n](l)(0) = l!εl(n) where εl(n) :=
{
1 if l < n,
0 if l ≥ n.

(2.5)

The lth derivative of the factor 1/(x− 1)r−1 at x = 0 yields, for l ≥ 1,(
1

(x− 1)r−1

)(l)

(0) = (−1)r−1
l−1∏
i=0

(r + i− 1). (2.6)

Corollary 2.2. Let n1, . . . , nr ≥ 2 be integers. Then, for l ≥ 1,( r∏
i=1
[ni]

)(l)

(0) = l!
∑

∅
=X⊆{1,...,r}
(−1)|X |+1εl(nX )

+
l−1∑
j=0

{
l!

(l− j)!
l−j∏
k=1

(r − 2+ k) ·
∑

∅
=X⊆{1,...,r}
(−1)|X |+1 εj(nX )

}
. (2.7)

Proof. By (2.3′), we can write
∏r

i=1[ni] =: u(x) · v(x)with

u(x) = 1

(x− 1)r−1
and v(x) =

∑
∅
=X⊆{1,...,r}

(−1)r−|X |[nX ].

Then, ( r∏
i=1
[ni]

)(l)

(0) = (−1)r−1v(l)(0)+
l−1∑
j=0

(
l

j

)
u(l−j)(0)v(j)(0),
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where, by (2.5) and (2.6), for l− j ≥ 1,

u(l−j)(0) = (−1)r−1
l−j∏
k=1

(r − 2+ k),

v(j)(0) = j!
∑

∅
=X⊆{1,...,r}
(−1)r−|X |εj(nX ),

from which the corollary follows. �

Remark 2. For practical purposes, the following recursive version of Corollary 2.2 is useful
(cf. [15, Proposition 4.5]). Denote by gr(x) :=∏r

i=1[ni]. Then,
g(l)
r (0) = (−1)r+1l!

∑
X�{1,...,r}

(−1)|X | card{(r − |X |)-tuplesY | nY > r}

+
l∑

j=1

(
l

j

)
(−1)j+1

j∏
k=1

(r − k)g(l−j)
r (0). (2.8)

As an application of Corollary 2.2, we describe the cases l = 1, 2, 3 explicitly. To this end, consider the
numbers

Nk = Nk(G) := card{ni > k | 1 ≤ i ≤ r}, (2.9)

for k ∈ N, which satisfy N0 = N1 = r .

Corollary 2.3. Let n1, . . . , nr ≥ 2 be integers, and let gr(x) =∏r
i=1[ni]. Then,

g ′r(0) = r

g ′′r (0) = r(r − 1)+ 2N2

g(3)
r (0) = r(r − 1)(r − 2)+ 6(r − 1)N2 + 6N3.

(2.10)

Proof. By taking once the derivative of the product gr(x) and evaluating it at x = 0 yields the claim,
since ∑

∅
=X⊆{1,...,r}
(−1)|X | =

r∑
k=1

(−1)k
( r

k

)
= −1. (2.11)

Consider the second derivative g ′′r (x). By means of (2.7), and since ε0(nX ) = ε1(nX ) = 1, we obtain

g ′′r (0) = {
r(r − 1)+ 2(r − 1)

} · ∑
∅
=X⊆{1,...,r}

(−1)|X |+1 + 2N2 + 2 ·
∑

X⊆{1,...,r}
|X |≥2

(−1)|X |+1.

By (2.11), the last term can be transformed in order to yield the desired equality. As for g
(3)
r (0), a

similar consideration based on Remark 2 gives the desired result. �

Remark 3. We will apply Corollary 2.2 later in the following inductive way. The lth derivative of the
inverse function hr(x) = 1/gr(x) evaluated at x = 0 can be expressed in terms of the lower order
derivatives of hr(x) and gr(x) at 0 as follows.(

1

gr(x)

)(l)

(0) = −
l∑

j=1

(
l

j

)
g(j)
r (0)

(
1

gr(x)

)(l−j)

(0). (2.12)

This formula is a consequence of Leibniz’ rule applied to gr(x) · 1
gr (x)

and gr(0) = 1.
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2.3. The recursion formula

Let us return to a cocompact hyperbolic Coxeter group G with set of generating reflections S and

growth series in complete form fS(x) = P(x)/Q (x), that is, P(x) =∏r
i=1[ni] and Q (x) = 1+∑d

i=1 bixi
(see (2.2)). By Steinberg’s formula (1.2),

1

fS(x)
= (−1)n

∑
T∈F

(−1)|T |
fT (x)

, (1.2′)

where F = {T ⊂ S | GT < G is finite}, as usually. Each finite Coxeter subgroup GT of G has a growth
polynomial of the form

fT (x) =
|T |∏
i=1
[1+mi] =:

|T |∏
i=1
[ci], (2.13)

where the exponentsmi = mi(T ) depend on GT as indicated in Table 1. Let

Ck = Ck(T ) := card{ci > k | 1 ≤ i ≤ |T |},
and consider the set

F ′ := {T ⊂ S | |T | ≥ 2 and GT is finite}. (2.14)

We are now ready to present formulas for the coefficients b1, b2, b3 of Q . Observe that the coefficient
b1 has first been described in [3, Theorem 5.4.3], but by a different method. In the proof of [3], there
is furthermore a little flaw concerning the (non-)reciprocity of fS(x)when deriving and evaluating its
inverse at x = 0.

Proposition 2.4. Let G be a Coxeter group, with set S of generating reflections, which acts cocompactly
on Hn. Denote by fS(x) = P(x)/Q (x) its growth series in complete form with P(x) = ∏r

i=1[ni] and
Q (x) = 1+∑d

i=1 bixi. Then,

b1 = r − |S|, (2.15)

2b2 = (−1)n+12|S| + (−1)n
(∑

T∈F ′
(−1)|T ||T |(|T | + 1)

)

+ (−1)n+12
(∑

T∈F ′
(−1)|T |C2

)
− r(r + 1)+ 2N2 + 2rb1, (2.16)

6b3 = (−1)n6|S| + (−1)n+1 ·
(∑

T∈F ′
(−1)|T ||T |(|T | + 1)(|T | + 2)

)

+ (−1)n6
(∑

T∈F ′
(−1)|T | (−C3 + (|T | + 1)C2)

)
+ r(r + 1)(r + 2)+ 6N3 − 6(r + 1)N2 + 3(2N2 − r(r + 1))b1 + 6rb2. (2.17)

Proof. In order to determine b1, recall that fS(x) is given by (2.1) in the form

fS(x) =
∑
i≥0

aix
i = 1+ |S|x+

∑
i≥2

aix
i,

where ai > 0, i ≥ 2, are certain cardinalities. For example, a1 = |S|. Since∑
i≥0 aixi = P(x)/Q (x), it

follows that(
d∑

i=0
bix

i

) (
1+ |S|x+ a2x

2 + · · ·) = r∏
i=1
[ni]. (2.18)

A comparison of coefficients in (2.18) leads to r = b1 + |S|.
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As for b2, one computes by means of (1.2) and (1.3) that(
1

fS

)′′
(0) = (−1)n

{
−2|S| +

∑
T∈F ′

(−1)|T |
(
− f ′′T (0)(fT (0))

2 − 2fT (0)(f
′
T (0))

2

(fT (0))4

)}

= (−1)n
{
−2|S| +

∑
T∈F ′

(−1)|T | (2(f ′T (0))2 − f ′′T (0)
)}

.

By Corollary 2.3, applied to fT (x) =∏|T |
i=1[ci],(

1

fS

)′′
(0) = (−1)n

(
−2|S| +

∑
T∈F ′

(−1)|T | {|T |(|T | + 1)− 2C2}
)

.

On the other hand side,(
1

fS

)′′
(0) =

(
Q

P

)′′
(0).

Since Q (l)(0) = l!bl and b1 = r − |S|, we obtain by Corollary 2.3 that(
Q

P

)′′
(0) = r(r + 1)− 2N2 + 2b2 − 2rb1.

It remains then to compare the two expressions for (1/fS)
′′(0) in order to obtain the desired formula.

In a similar way one verifies the claim for b3. �

Application. The proof of the identity (2.16) for b2 above can be performed for b1 as well. Combined
with (2.15), it reveals then some information about the distribution of the finite and infinite subgroups
of Gwhich is very useful. Since we are dealing here only with cocompact groups, any infinite Coxeter
subgroup of G is hyperbolic, and we deduce that∑

T⊂S
|GT |<∞

(−1)|T ||T | = (−1)n|S|;
∑
T⊆S

|GT |=∞

(−1)|T ||T | = (−1)n+1|S|. (2.19)

Notice that the second identity in (2.19) follows from the first one by using the well-known
combinatorial identity∑

∅⊆T⊆S

(−1)|T ||T | = 0.

For illustration, consider the Coxeter group G given by the graph

Γ : , p, q, r ≥ 3,
1

p
+ 1

q
>
1

2
,

1

q
+ 1

r
<
1

2
, (2.20)

which acts cocompactly on H3 and is generated by five reflections in the facets of a certain simplicial
prism (more precisely, a simply truncated orthoscheme) of dihedral angles π/p, π/q, π/r . Each
subgraph containing • · · · • in (2.20) is of infinite order. A little computation with respect to (2.20)
confirms (2.19) as follows.∑

T⊆S
|GT |=∞

(−1)|T ||T | = 2 · 1− 3 · 4+ 4 · 5− 5 · 1 = 5.

In general, the coefficient bk, k ≥ 4, of the denominator polynomial Q of fS(x) can be deduced from
b1, . . . , bk−1 as follows. By means of Steinberg’s formula (1.2′),(

1

fS

)(k)

(0) = (−1)n+k+1k!|S| + (−1)n
∑
T∈F ′

(−1)|T |
(
1

fT

)(k)

(0), (2.21)
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where F ′ is given by (2.14). On the other hand, the complete form of fS(x) = P(x)/Q (x) as given by
(2.2) leads to(

1

fS

)(k)

(0) =
(
1

P

)(k)

(0)+
k−1∑
j=1

(
k

j

)
j!bj

(
1

P

)(k−j)

(0)+ k!bk. (2.22)

By comparing (2.21) with (2.22), one derives a first formula for the coefficient bk as follows.

k!bk = (−1)n+k+1k!|S| + (−1)nPτ
k − Pk + Bk, where (2.23)

Pk :=
(
1

P

)(k)

(0),

Pτ
k :=

∑
T∈F ′

(−1)|T |
(
1

fT

)(k)

(0),

Bk := −
k−1∑
j=1

(
k

j

)
j!bj

(
1

P

)(k−j)

(0) = −
k−1∑
j=1

k!
(k− j)!bjPk−j.

The different terms in (2.23) can be determined as follows. By (2.12), we obtain the recursion

Pk = −
k∑

j=1

(
k

j

)
P (j)(0)Pk−j,

Pτ
k =

∑
T∈F ′

(−1)|T |+1
(

k∑
j=1

(
k

j

)
f
(j)
T (0)

(
1

fT

)(k−j)

(0)

)
.

(2.24)

Corollary 2.2 together with (2.13) yields now similar recursion identities for both parts, that is,

Pk = −
k∑

j=1

k!
(k− j)!

( ∑
∅
=X⊆{1,...,r}

(−1)|X |+1εj(nX )

+
j−1∑
i=0

{
j!

(j− i)!
j−i∏
l=1

(r − 2+ l) ·
∑

∅
=X⊆{1,...,r}
(−1)|X |+1εi(nX )

})
Pk−j,

Pτ
k =

∑
T∈F ′

(−1)|T |+1
k∑

j=1

k!
(k− j)!

( ∑
∅
=Y⊆{1,...,|T |}

(−1)|Y |+1 εj(cY )

+
j−1∑
i=0

{
j!

(j− i)!
j−i∏
l=1

(|T | − 2+ l) ·
∑

∅
=Y⊆{1,...,|T |}
(−1)|X |+1 εi(cY )

} (
1

fT

)(k−j)

(0)

)
.

(2.25)

Finally, for Bk, we easily derive the relation

Bk = −kPk−1b1 −
k−2∑
j=2

(
k!

(k− j)!Pk−jbj

)
+ k!rbk−1. (2.26)

Then, by plugging (2.24)–(2.26) into (2.23), the following recursion concept follows where we add for
completeness the first values according to Proposition 2.4. Recall the notations F ′,Nk, Ck and εk(X)
according to (2.5), (2.9) and (2.14).

Theorem 2.5 (The Recursion Formula). Let G be a Coxeter groupwith set S of generating reflections acting
cocompactly onHn. Denote by fS(x) = P(x)/Q (x) its growth series in complete formwith P(x) =∏r

i=1[ni]
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and Q (x) = 1+∑d
i=1 bixi. Then, for k ≥ 4, and with Pk =

(
1
P

)(k)
(0),

b1 = r − |S|,

2b2 = (−1)n+12|S| + (−1)n
(∑

T∈F ′
(−1)|T ||T |(|T | + 1)

)

+ (−1)n+12
(∑

T∈F ′
(−1)|T |C2

)
− r(r + 1)+ 2N2 + 2rb1,

6b3 = (−1)n6|S| + (−1)n+1 ·
(∑

T∈F ′
(−1)|T ||T |(|T | + 1)(|T | + 2)

)

+ (−1)n6
(∑

T∈F ′
(−1)|T | (−C3 + (|T | + 1)C2)

)
+ r(r + 1)(r + 2)+ 6N3 − 6(r + 1)N2 + 3(2N2 − r(r + 1))b1 + 6rb2,

k!bk = (−1)n+k+1k!|S| +
k∑

j=1

k!
(k− j)!j!

(
j!

∑
∅
=X⊆{1,...,r}

(−1)|X |+1εj(nX )

+
j−1∑
i=0

{
j!

(j− i)!
j−i∏
l=1

(r − 2+ l) ·
∑

∅
=X⊆{1,...,r}
(−1)|X |+1εi(nX )

})
Pk−j

+
∑
T∈F ′

(−1)n+|T |+1
k∑

j=1

k!
(k− j)!j!

(
j!

∑
∅
=Y⊆{1,...,|T |}

(−1)|Y |+1εj(cY )

+
j−1∑
i=0

{
j!

(j− i)!
j−i∏
l=1

(|T | − 2+ l) ·
∑

∅
=Y⊆{1,...,|T |}
(−1)|X |+1εi(cY )

} (
1

fT

)(k−j)

(0)

)

− kPk−1b1 −
k−2∑
j=2

(
k!

(k− j)!Pk−jbj

)
+ k!rbk−1.

(2.27)

It is obvious that formula (2.27) of Theorem 2.5 depends strongly on the finite Coxeter subgroups of
a given group, together with their exponents. For a family of hyperbolic Coxeter polytopes with fixed
combinatorial structure, the algorithm of Theorem 2.5 can be implemented into a computer program
by encoding the details about all finite irreducible Coxeter groups according to Table 1.

3. A first application

The recursion formula of Theorem 2.5 can be best adapted to families of groups whose subgroup
structure is uniform. A first such example are right-angled hyperbolic Coxeter groups. More precisely,
consider a hyperbolic Coxeter group Gwith presentation

G = 〈S = {s1, . . . , sk} | (sisj)mij = 1〉.
Then, G is called right-angled if and only ifmij ∈ {1, 2,∞}. The terminology is justified by the fact that
a fundamental polyhedron P ⊂ Hn has all dihedral angles equal to π/2 (see also [16]). Notice that
each subgroup of G and all l-faces, 2 ≤ l ≤ n − 1, of P are right-angled. By results of Vinberg [23],
there exist no cocompact right-angled Coxeter groups inHn for n ≥ 5. For n = 2, right-angled Coxeter
polygons are realisable as long as they have at least five vertices. For n = 3, the (compact) right-angled
dodecahedron is the one with the minimal number of facets (and vertices). A beautiful example inH4
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is the compact (regular) 120-cell of dihedral angle π/2 whose symmetry group is generated by the
reflections of the Coxeter group

Let G be a cocompact right-angled Coxeter group, with generating set S, and which acts onHn. Hence,
n ≤ 4. Consider the growth series fS(x) = P(x)/Q (x) of G in its complete form (see Section 2). Each
finite Coxeter subgroup GT of G is right-angled and, by (1.3), has a growth series equal to [2]|T |. Hence,
the numerator in its virgin form of fS(x) equals [2]n, since the maximal (right-angled) subgroups in G
are of rank n. We obtain

fS(x) = [2]n
Q (x)

with Q (x) = 1+
n∑

i=1
bix

i. (3.1)

Recall that bn−i = (−1)nbi for all 0 ≤ i ≤ [n/2], since Q (x) is (anti-)palindromic. Furthermore n ≤ 4,
so that at most the coefficients b0, b1, b2 are of pertinence in (3.1). As a consequence of Theorem 2.5,
one deduces easily the following result.

Corollary 3.1. Let G be a right-angled hyperbolic Coxeter group, with generating set S, which acts
cocompactly on Hn, n ≤ 4. Then, the coefficients bi, 1 ≤ i ≤ [n/2], of Q (x) in (3.1) are given by

b1 = n− |S|

b2 = n

2
(n− 2|S| − 1)+ (−1)n

2

(∑
T∈F ′

(−1)|T ||T |(|T | + 1)− 2|S|
)

,
(3.2)

where F ′ = {T ⊂ S | |T | ≥ 2 and GT is finite}.
Remark 4. Consider a group as in Corollary 3.1 together with its growth series fS(x) = ∑

i≥0 akxk =
1+|S|x+∑

k≥2 akxk where ak > 0 is the number of S-words of length k in G. Formula (3.1) yields the
following recursion for ak with a0 = 1 and a1 = |S|.

ak =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(n

k

)
−

k∑
j=1

ak−jbj for 2 ≤ k ≤ n;

−
n∑

j=1
ak−jbj for 2 ≤ k ≤ n,

where b0 = 1, and the coefficients bi, i = 1, . . . , n, are given by Corollary 3.1, and bi = 0 for i > n.

For example, a hexagonal right-angled Coxeter group GH acting cocompactly on H2 has a Coxeter
series fS(x) = 1+6x+24x2+90x3+336x4+1254x5+4680x6+17 466x7+65 184x8+243 270x9+
907 896x10 + · · ·.

In what follows, we present a combinatorial formula for b2 in Corollary 3.1. Consider an arbitrary
convex n-polytope P ⊂ Hn. Its f -vector f = (f0, f1, . . . , fn−1) has components fi given by the numbers
of i-faces of P . They are related by Euler’s formula according to

n−1∑
i=0

(−1)ifi = 1− (−1)n. (3.3)

Proposition 3.2. Let G be a right-angled Coxeter group, with generating set S, acting cocompactly on H4

with fundamental polytope P and f -vector (f0, f1, f2, f3). Let fS(x) denote the growth series of G in its
complete form. Then,

(a) fS(x) = [2]4
1+(4−f3)x+(f0−2f3+6)x2+(4−f3)x

3+x4
;
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(b) fS(x) has four distinct (simple) poles given by

x1 = 1

4

(
α +√γ +

√
β + 2α

√
γ

)
; x−11 = 1

4

(
α +√γ −

√
β + 2α

√
γ

)
;

x2 = 1

4

(
α −√γ +

√
β − 2α

√
γ

)
; x−12 = 1

4

(
α −√γ −

√
β − 2α

√
γ

)
,

where

α = f3 − 4, β = 2αf3 − 4f0, γ = f 23 − 4f0.

(c) −1 is a root of multiplicity 4 of fS(x).
(d) The volume of P is given by

vol4(P) = f0 − 4f3 + 16

12
π2.

Proof. As for (a), it is sufficient by Corollary 3.1 to show that b2 = f0 − 2 f3 + 6. Since P is
simple, 2f0 = f1, and the number of finite Coxeter subgroups GT of G with |T | = l equals f4−l, for
l = 1, . . . , 4. Moreover, f3 = |S|, and by Euler’s formula (3.3), f2 = f0+|S|. By a direct calculation, one
gets ∑

T∈F ′
(−1)|T ||T |(|T | + 1) = 6f2 − 12f1 + 20f0 = 6|S| + 2f0 = 6f3 + 2f0. (3.4)

By plugging (3.4) into (3.2), we deduce that b2 = f0−2f3+6. Property (c) follows easily from (a) since

fS(−1) = [2]4(−1)
f0

= 0, and property (d) is a direct consequence of (a) and Heckman’s formula (1.4).

As for (b), consider the denominatorQ (x) = 1+(4− f3)x+(f0−2f3+6)x2+(4− f3)x
3+x4 of fS(x)

in (a). The polynomial Q (x) is quartic over the integers with discriminant (see [18, Discriminants])

Δ = f0(16+ f0 − 4f3)(f
2
3 − 4f0)

2.

Since P is simple with 2-faces being at least pentagonal, f0 ≥ 5f3. Suppose that f
2
3 > 4f0. Then,Δ > 0,

and Q (x) has only simple and real roots whose explicit form (b) can be determined by a standard
method. In fact, by applying the transformation x = X + 1/X to the quartic polynomial Q (x), which
does not change the discriminant, one obtains a reduced cubic Q̃ (x)with explicit formulas for its roots
(see [18, Classical Formulas]). It remains to show that f 23 > 4f0. Suppose on the contrary that f

2
3 ≤ 4f0

and consider a facet F∗ of P with maximal number N := f0(F
∗) = max f0(F) of vertices among all

facets F of P , that is,

4f0 =
∑
F

f0(F) ≤ Nf3 whence f3 ≤ N.

We conclude the proof by showing that N ≥ f3 ≥ f0(F
∗) + 1 = N + 1. Indeed, since P is simple,

precisely one additional edge of P emanates from each of the N = f0(F
∗) vertices to the outside of

F∗. We show that these N edges give rise to N different (but not necessarily disjoint) facets F∗ of P ,
beside F∗, and this by contraposition. Since all facets are convex andmeet properly at 2-faces of P , the
assumption of the opposite can hold only if two vertices v1, v2 belong to a common edge of F

∗ and if
their edges leaving F∗ arrive at vertices w1, w2 which may coincide in or lie on an edge of F∗. Hence,
the convex hull of the vertices v1, v2, w1, w2 is a right-angled triangular or quadrilateral 2-face of P
which is impossible. Therefore, N ≥ f3 ≥ f0(F

∗)+ 1 = N + 1. �

Remark 5. In [6, Example 17.4.3], a result analogous to Proposition 3.2(a) for the three-dimensional
case is presented. More precisely, the growth series of a cocompact right-angled Coxeter group in H3

is given by

fS(x) = [2]3
1− (f2 − 3)x+ (f2 − 3)x2 − x3

, (3.5)
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which has the three positive real poles 1, τ , τ−1 where

τ = (f2 − 4)+√
(f2 − 4)2 − 4

2
.

In fact, Euler’s formula (3.3), f0 − f1 + f2 = 2, together with the (vertex) simplicity 3f0 = 2f1 and the
evident inequality f2 ≥ 4, yields that fS(x) has only real simple roots.

Example 2. Let G120 be the Coxeter group generated by the 120 reflections with respect to the facets
of a right-angled (compact) 120-cell P ⊂ H4. The polyhedron P has f -vector

f = (600, 1200, 720, 120)

and is the four-dimensional analogue of a right-angled dodecahedron D. In fact, all facets of P are
isometric to D. The volume of P equals 34π2/3 by Proposition 3.2(d). This value can also be obtained
by studying the symmetry group of P and by determining the covolume of its 14,000 index Coxeter
simplex subgroup according to [11, Appendix], that is,

vol(P) = 14,400 · covol4( ) = 14,400 · 17π
2

21,600
= 34π2

3
.

By means of (3.1) and Proposition 3.2, the growth series of G120 with respect to the set S of the above
reflections is given by

fS(x) = [2]4
1− 116x+ 366x2 − 116x3 + x4

, (3.6)

implying that fS(x) possesses exactly two pairs of real poles, which are positive and simple.

4. Growth of Coxeter groups with at most 6 generators in H4

Consider a hyperbolic cocompact Coxeter group G with generating set of reflections S acting in
low dimensions n ≥ 2. For n = 2, Cannon and Wagreich [2] showed that the growth series fS(x) is a
quotient of relatively primemonic polynomials over the integers forwhich the denominator splits into
exactly one Salem polynomial and (possibly none) distinct irreducible cyclotomic polynomials. Here,
a Salem polynomial is a palindromic irreducible monic polynomial over the integers with exactly one
(inversive) pair of real roots α−1, α > 1 andwith all other conjugates lying on the unit circle. The root
α is called a Salem number. Hence, the growth rate τ of any (of the infinitely many) planar cocompact
hyperbolic Coxeter groups is a Salem number. In [9], Hironaka showed that the smallest growth rate
which arises in this way equals Lehmer’s number given by the root αL > 1 of the Salem polynomial
of smallest known degree

L(x) = 1+ x− x3 − x4 − x5 − x6 − x7 + x9 + x10.

For n = 3, Parry [14] proved a result, analogous to the one in [2] above, for cocompact hyperbolic
Coxeter groups providing a unified proof for n = 2 and n = 3 and extending Cannon’s result [1]
from the case of the nine Coxeter tetrahedra to arbitrary compact Coxeter polyhedra. Parry’s proof is
based on a special relationship between anti-reciprocal functions and Salem numbers. However, for
n ≥ 4, growth rates of cocompact hyperbolic Coxeter groups are not Salem numbers anymore as is
illustrated by the example of the compact right-angled 120-cell in H4 according to (3.6).

In the following, we will describe in detail (see Theorem 4.1) the growth series of a cocompact
hyperbolic Coxeter group, generated by at most six reflections in H4, and show that its positive poles
arise always in precisely 2 inversive pairs x−11 < x−12 < 1 < x2 < x1, and each one is of multiplicity 1.
The growth rate τ = x1 is a Perron number, that is, τ is a real algebraic integer all of whose conjugates
are of strictly smaller absolute value. The non-real poles of the growth function come in quadruplets
which do not all lie on the unit circle anymore (cf. also [3]). A rigorous proof of all our observations
is very technical (and partially computer-based) and necessitates a closer analysis of the Coxeter
groups under consideration with respect to their Coxeter subgroup structure (see [15] for all details).
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Indeed, here lies the qualitative difference to the lower-dimensional cases n = 2 resp. n = 3 where
the maximal finite Coxeter subgroups are dihedral groups resp. spherical triangle groups with a very
limited, manageable variety of exponents, and this independently of the number of generators. The
following exposition will document that similar growth questions in higher-dimensional hyperbolic
spaces become nearly intractable.

Let G be a Coxeter group, with natural generating set S such that |S| ≤ 6, and which acts
cocompactly onH4. There is a complete classification which shows that they fall combinatorially into
three (finite) families. For |S| = 5,G is a Coxeter simplex group, denoted by GL. They were discovered
and classified by Lannér (cf. [23, Chapter 3, Table 3]) and are nowadays called Lannér groups. If |S| = 6,
then G is a Kaplinskaya group GK or an Esselmann group GE , which are characterised as follows. A
fundamental polytope of GK is a product of a 1-simplex with a 3-simplex and has eight vertices, while
a fundamental polytope of GE is a product of two triangles with nine vertices. The classification of the
Kaplinskaya groups can be found in [10], and the list of all Esselmann groups is in [7].

Fig. 1. The graph of the Kaplinskaya group G66.

Theorem 4.1. Let G be a Lannér group, an Esselmann group or a Kaplinskaya group, respectively, acting
with natural generating set S on H4. Then,

(1) the growth series fS(x) of G is a quotient of relatively prime, monic and palindromic polynomials of
equal degree over the integers.

(2) The growth series fS(x) of G possesses four distinct positive real poles appearing in pairs (x1, x
−1
1 ) and

(x2, x
−1
2 ) with x1 < x2 < 1 < x−12 < x−11 ; these poles are simple.

(3) The growth rate τ = x−11 is a Perron number.

(4) The non-real poles of fS(x) are contained in an annulus of radii x2, x
−1
2 around the unit circle.

(5) The growth series fS(x) of the Kaplinskaya groupG66with graph K66 (cf. Fig. 1) has four distinct negative
and four distinct positive simple real poles; for G 
= G66, fS(x) has no negative pole.

Remark 6. The exceptional role (5) of the Kaplinskaya group G66, having a growth series with 4
inversive pairs of distinct real poles, was first discovered by Zehrt (cf. [24]).

Sketch of the proof of Theorem 4.1. We will only discuss the ingredients of the proofs for (1)–(3),
and this especially for the simplex case. At the end, we indicate how the proof extends for the families
GE and GK (for more details, see [15]). Consider a Lannér group GL with natural generator set S and
denote by GT , T ⊂ S, a maximal finite Coxeter subgroup of GL. Associate to GT the help function

hL
T (x) := −

1

x+ 1
+ 1

3

∑
U

1

fU(x)
− 1

2

∑
V

1

fV (x)
+ 1

fT (x)
, (4.1)

where U varies over the six 2-element subsets and V varies over the four 3-element subsets of T . By
means of Steinberg’s formula (1.2′),

1

fS(x)
= 1+

∑
GT maximal

hL
T (x). (4.2)

Note that there exists only a very limited number of different maximal finite Coxeter subgroups in
GL as the weights of the Coxeter graph of GL are at most equal to 5. By taking into account their
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reducibility properties, the following important auxiliary result can be shown by a case-by-case study
(cf. [15, Lemma 3.8]).

Lemma 4.2. The help function hL
T (x) (4.1) associated to a maximal finite Coxeter subgroup GT of a Lannér

group GL can be written as the quotient

hL
T (x) = −x

n(x)

d(x)
, (4.3)

where n(x) and d(x) are palindromic polynomials of even degrees over the integers. Moreover, d(x) is
cyclotomic with deg d = deg n + 2. Furthermore, hL

T (x) is negative for x > 0 and strictly decreasing on
(−1, 0).
By plugging (4.3) into (4.2), fS(x) becomes a quotient of palindromic integer polynomials of equal
(even) degree. It is a well-known result that each palindromic integer polynomial of degree m can
be factored into a product of a constant times linear (if m is odd), quadratic and quartic palindromic
polynomials with real coefficients (see also [15, Proposition D.11]). It follows from this that fS(x) is a
quotient of monic palindromic integer polynomials which are prime.

For the study of the real poles of fS(x), it suffices to consider the interval [−1, 1] as fS(x) is reciprocal.
Recall that fS(0) = 1 and that fS(1) > 0 by (1.4). Furthermore, we prove the following.

Lemma 4.3. Let fS(x) be the growth series of a cocompact Coxeter group G acting on H4 with natural
generator set S satisfying |S| ≤ 6. Then, fS(−1) = 0.

Proof. By Steinberg’s formula (1.2), it is sufficient to show that the growth polynomial fT (x) of at
least one maximal (or, equivalently, rank 4) finite Coxeter subgroup GT of G factorises according to
fT (x) = [2]4 gT (x) where gT ∈ Z[x] with gT (−1) 
= 0. Since the natural generator set S of G is of
cardinality at most 6, G contains at least one subgroup GT of type B4,D4, F4 or H4. This is due to its
combinatorial structure (cf. also [23,7,10]). By Table 1, each of the groups B4,D4, F4,H4 has only odd
exponents and therefore a growth polynomial fT (x) splitting into 4 factors of type [2k]. Now, observe
that [2k] = [2]∑k−1

i=0 x2i so that [2k](−1) = 0. �

All the above observations togetherwith Lemmas 4.2 and 4.3 allow us to conclude that fS(x) is positive
and strictly increasing on (−1, 0]. Since fS(x) is reciprocal, it is non-singular on R≤0. For the study of
the behavior of fS(x) on I := [0, 1], we know that fS(x) is a rational function and has a real pole
0 < x1 < 1 given by the convergence radius. This follows since coefficients ai of the series fS(x) are
positive and real (cf. Section 1; [6, Section 17.1]). In particular, x1 is a real algebraic integer whose
inverse x−11 is the growth rate τ of GL. Hence, τ is a Perron number.

For the proof of the remaining claims, a distinction of several cases and the help of a
computer are needed to control the graphs of the help functions in the decomposition (4.2) on I
(see [15, pp. 28–47]). By doing this, it turns out that their sum

HL(x) :=
∑

GT maximal

hL
T (x) =

1

fS(x)
− 1 (4.4)

is negative on I , and that HL(x) is either strictly decreasing on I or possesses exactly one negative
minimum in I . Since x1 is a pole of fS(x), and 1/fS(1) > 0, it follows thatHL(x1) = −1 andHL(1) > −1.
Therefore, HL(x) cannot be strictly decreasing on I , but possesses exactly one negative minimum M .
That is, there is a unique xM ∈ I such that HL(xM) = M . Obviously, xM ≥ x1, since x1 equals the radius
of convergence of fS(x). Summarising, we can deduce that fS(x) possesses exactly two simple poles in
I if xM > x1, or it has a pole of (positive) even order in I if xM = x1.

As for the simplicity of the poles x1, x2 of fS(x), there are no criteria known to us allowing to
conclude itwithout precise knowledge of the denominator coefficients (cf. [12, for example]. Bymeans
of the recursion formula for these coefficients (see Theorem2.5), the computer implementation of this
algorithm helps to prove this last claim.

In the cases of EsselmanngroupsGE andKaplinskaya groupsGK , our strategy is essentially the same,
apart from some particularities which have to be dealt with carefully. Furthermore, the help functions
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have to be adapted to the different combinatorial features of GE and GK . We finish this outline by
providing their explicit shapes.

Recall that an Esselmann polytope has the combinatorial type of a direct product of two triangles
and possesses therefore precisely nine vertices. The Coxeter graph ΓE of an Esselmann group GE

contains two disjoint Lannér diagrams, called L1 and L2, each of them with three nodes. Let GT be
one of the nine maximal finite Coxeter subgroups of GE where T denotes its natural generating set.
The help function for hE

T is defined by

hE
T (x) := hL

T (x)+
1

3(1+ x)
− 1

12

∑
W

1

fW (x)
, (4.5)

where hL
T (x) is the function (4.1) given by

hL
T (x) = −

1

x+ 1
+ 1

3

∑
U

1

fU(x)
− 1

2

∑
V

1

fV (x)
+ 1

fT (x)
,

where U is a 2-element subset, V is a 3-element subset, and whereW is a subset of T satisfying the
following condition. The set W consists of four pairs of generators (sp, sq) such that the node in ΓE

corresponding to sp belongs to L1, while the node corresponding to sq belongs to L2.
A Kaplinskaya polytope has the combinatorial type of a simplicial prism and possesses therefore

precisely eight vertices. The Coxeter graph ΓK of a Kaplinskaya group GK contains a Lannér diagram
L with four nodes which represents a tetrahedron P , and two additional nodes which represent the
reflections through the top respectively the bottom of the simplicial prism P × [0, 1]. Let GT be one
of the eight maximal finite Coxeter subgroups of GK where T denotes its natural generating set. The
help function hK

T is defined by

hK
T (x) := hL

T (x)+
1

4(1+ x)
− 1

12

∑
W

1

fW (x)
, (4.6)

where hL
T (x) is the function (4.1) and whereW is a subset of T containing three pairs (sL1 , sb), (sL2 , sb)

and (sL3 , sb) such that sLj belongs to L, for j = 1, 2, 3, while sb 
∈ L. �

Remark 7. For a cocompact hyperbolic Coxeter group, acting on H4 with a set S of generating
reflections such that |S| ≤ 6, the growth series fS(x) can be put into the form R(x)/S(x) with monic
palindromic polynomials R, S ∈ Z[x], deg R = deg S, and

R(x) =
{[2, 8, 12, 20, 30] if G is a Lannér group,
[2, 6, 8, 12, 20, 30] if G is an Esselmann or a Kaplinskaya group.

(4.7)

For the coefficients βk of the denominator S(x) = 1+∑
k≥1 βkx

k, the recursion of Theorem 2.5 applies
as well. Observe that the numerator R and the denominator S are in general not prime. The result
(4.7) follows easily by passing to the complete form P/Q and by extending P,Q simultaneously in a
suitable way according to the Coxeter subgroup structure of all G of fixed type L, E or K as described
in [23,7,10], and by using divisibility properties of the associated exponents.

Remark 8. The growth series of any hyperbolic cocompact Coxeter group G acting on Hn, n ≥ 2,
vanishes at −1 if at least one of its maximal finite Coxeter subgroups has a growth polynomial with odd
exponents only. Notice that this condition, for n = 2, excludes only the triangle groups G = (p, q, r)
with p, q, r odd. For n = 3, Parry’s formulas [14, (0.5), (0.6)] for fS(x) imply that fS(−1) = 0 without
imposing any condition. However, for n ≥ 4, the above condition is in general not true anymore. In
fact, the Tumarkin groupG∗ acting cocompactly onH6 with Coxeter graph given in Fig. 2 (cf. [22]) does
not have a maximal Coxeter subgroup all of whose exponents are odd. Nevertheless, its growth series
splits the factor [2]4 so that−1 is a root of multiplicity 4. As a byproduct, the computation shows also,
by (1.4), that the covolume of G∗ is given by 2, 077π3/17, 010, 000 � 0.003786.
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Fig. 2. A compact Tumarkin polytope with 9 facets in H6.

Finally, by analyzing all known examples of cocompact hyperbolic Coxeter groups acting in
dimensions bigger than two (and less than nine), we see that −1 is always a root of the growth
series.
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