Causal Localization of Neural Function:

The Shapley Value Method

Alon Keinan', Claus C. Hilgetag?, Isaac Meilijson', Eytan Ruppin'

1Schools of Computer Science and Mathematics, Tel-Aviv University, Tel-Aviv, Israel
keinan@cns.tau.ac.il, isaco@post.tau.ac.il, ruppin@post.tau.ac.il (tel: +972-3-6406528)

2School of Engineering and Science, International University Bremen, Bremen, Germany
c.hilgetag@iu-bremen.de (tel: +49-421-2003542)

Abstract

Identifying the functional roles of elements of a neural network is one of the first challenges
in understanding neural information processing. Aiming at this goal, lesion studies have been
used in neuroscience, most of which employing single lesions and hence, limited in their ability
to reveal the significance of interacting elements. This paper presents the Multi-lesion Shapley
value Analysis (MSA), an axiomatic, scalable and rigorous method, addressing the challenge of
calculating the contributions of network elements from a multi-lesion data set. The successful
workings of the MSA are demonstrated on artificial and biological data. MSA is a novel method
for causal function localization, with a wide range of potential applications for the analysis of
reversible deactivation experiments and TMS-induced “virtual lesions”.

1 Introduction: The Multi-lesion Shapley Value Analysis

One of the principal challenges in understanding neural information processing is to identify the
individual roles of a neural network’s elements, be they single neurons, neuronal assemblies or
cortical regions, depending on the scale on which the system is analyzed. Even simple nervous
systems are capable of performing multiple and unrelated functions. Each function recruits some of
the elements of the system, and often the same element participates in several different functions.
Localization of specific functions in the nervous system is conventionally done by recording the
activity during cognition and behavior and inferring the correlation between elements and different
behavioral and functional observables. This correlation does not necessarily identify causality. For
example, it is possible that a region does not contribute to the processing of a function, but its
activity is still raised when the function is performed, because it is activated by other regions
that play a role in carrying out the function. To overcome these inherent shortcomings, lesion
studies have been employed in neuroscience, where the function performance is measured after
lesioning different elements of the system. Lesioning enables, in principle, a correct identification
of the elements that are causally responsible for a given function. Most of the lesion studies in
neuroscience have been single lesion studies, in which only one element is lesioned at a time. Such
single lesions are limited in their ability to reveal the significance of interacting elements. One
obvious example is provided by two elements that exhibit a high degree of overlap in their function:
Lesioning either element alone will not reveal its significance.

Acknowledging that single lesions are insufficient for localizing functions in neural systems, a
Functional Contribution Analysis (FCA) was previously presented [1, 9, 5|. The FCA analyzes a
data set composed of numerous multiple lesions that are afflicted upon a neural system, together
with the corresponding system performance score, where in each multiple lesion experiment several
elements are concurrently lesioned. The FCA uses these data to yield a prediction of the perfor-
mance of the neural system when a new multiple lesion state is imposed on it. It further yields a
quantification of the elements’ contributions to each function, as a set of values minimizing that



prediction error. This contributions definition is an operative one, and hence, there is no inherent
notion of correctness of the contributions found by the method. In particular, there are instances
in which several different contribution assignments to the elements yield the same minimum predic-
tion error. In such cases, the FCA algorithm may reach different solutions, all providing accurate
predictions, but yielding different contributions.

This paper presents the Multi-lesion Shapley value Analysis (MSA), addressing the same chal-
lenge of defining and calculating the contributions of network elements from a data set of multiple
lesions and their corresponding performance scores. In this framework, we view a set of multiple
lesion experiments as a coalitional game, borrowing concepts and analytical approaches from the
field of Game Theory. Specifically, we define the set of contributions to be the Shapley value [10],
which stands for the unique fair division of the game’s worth (the network’s performance score
when all elements are intact) among the different players (the network elements). The contribution
of an element to a function measures its importance, i.e., the part it causally plays in the successful
performance of that function. While in traditional game theory the Shapley value is more a theo-
retical tool that assumes full knowledge of the behavior of the game at all possible coalitions, we
have developed novel methods to compute it approximately with high accuracy and efficiency from
a relatively small set of multiple lesion experiments. The MSA framework further quantifies the
interactions between groups of elements, allowing for higher order descriptions of the network. In
contradistinction to it predecessor, the FCA, the MSA provides a unique and axiomatically
correct attribution of contributions to the system elements. It is the first method
offering a fair and scalable solution to the problem of localization of function in the
context of multi-lesion experiments.

We focus the rest of this paper on the application of the MSA to three different cases. In
section 2 we demonstrate the workings of the MSA on a toy problem, comparing it to single lesion
analysis and to the FCA. Section 3 describes results of applying the MSA to an artificial evolved
neurocontroller, analyzing it both on neuronal and synaptic levels. Section 4 introduces the high-
dimensional MSA and presents the results of applying it for the analysis of biological reversible
deactivation experiments. Our results, their implications and further implementations of the MSA
framework are discussed in section 5.

2 A Test Case

Let us define a system of elements {ey,...,e,}, where the lifetime of element e; is exponentially
distributed with parameter \; (expectancy of 1/);), and such that the elements are independent.
We define the performance of the system as the expected time when at least one of the elements is
still functioning. That is, the expectancy of the maximum of the distributions. For simplicity, we
focus on the case n = 3.

Based on the performance scores of all multi-lesions afflicted upon the network, the Shapley
value is obtained, yielding a contribution
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for e1, and similarly for the other elements. Ilustrating the meaning of the resulted contribution
using Venn diagrams, we get
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in the same order as the terms in equation (1). That is, e; is accredlted for a third of the expected
time when it is functioning with both es and 63 (the rest is divided equally between the contributions
of e5 and e3), for half of the time when it is functioning with either es or es (the other half is
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Figure 1: A. The MSA contributions (Shapley value) for a test case are compared with the contributions
yielded by single lesion analysis and with the FCA contributions (mean and standard deviations across 10
FCA runs using the full set of all 2* multi-lesions). All three values are normalized such that the sum over
all elements equals 1. B. MSA contributions, FCA contributions and predicted MSA contributions of the
EAA’s neurons. All are based on the full set of 21° multi-lesions and are normalized such that the sum of
the contributions of all the neurons equals 1.

accredited to the other element) and for the whole time when it is functioning alone, denoting a
fair division of the system performance to the different elements. The contribution of e; according
to the single lesion approach (the decrease in performance when it is lesioned) equals
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[llustrating o1 using Venn diagrams, we obtain
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in the same order as the terms in equation (2). That is, When using single lesioning each element is
only accredited for the expected time when 1t is functioning alone, without considering its previous
contribution, while other elements are still functioning. Thus, the Shapley value is much more
informative in capturing the true contributions.

Figure 1A compares the MSA contributions (the Shapley value), the single lesion contributions
and the contributions yielded by the FCA for a concrete example of the test case, where n = 4 and
\i =1/i, for i = 1,...,4. Evidently, even in this very simple system, the contributions yielded by
the MSA differ greatly from the ones yielded by the single lesion analysis. The FCA contributions
resemble the contributions assigned by the single lesion analysis, testifying that the FCA fails to
capture a fair attribution of contributions in this case.

3 Analysis of Evolved Autonomous Agents

A Neurally-driven Evolved Autonomous Agent (EAA) is a software program embedded in a simu-
lated virtual environment, performing typical animat tasks. An agent is controlled by an artificial
neural network “brain”, receiving and processing sensory inputs from the surrounding environment
and governing the agent’s behavior via the activation of the motors. EAAs are developed via
genetic algorithms that apply some of the essential ingredients of inheritance and selection to a



0.4
0.395
8 8 0.39-
g g
0.3851
g g
— -
S S ossf
— —
[} &}
L L‘ 0.3751
.. — By MSA | —— By MSA
” - By FCA oz - By FCA
0.15 L L L L L L L L L 0.365 L L L L L L L e
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80
Number of lesioned synapses Number of lesioned synapses

Figure 2: Agent performance as a function of pruning level, by MSA and by FCA. In both methods the
synapses are incrementally lesioned by ascending order of their contribution. A. Incrementally pruning all
synapses. B. Focusing on the interesting region of the first 80 synapses pruned, where the agent still has a
viable performance.

population of agents that undergo evolution, which make them a very promising model for study-
ing neural processing and developing methods for its analysis [8]. Figure 1B shows that the MSA
contributions for the neurons of the analyzed agent differ significantly from the FCA contributions.
Specifically, neuron number 5, the command neuron determining the agent’s behavioural
strategy [2], is assigned a significant contribution by the MSA but a near-vanishing
one by the FCA. The MSA may also calculate the Shapley value based on the prediction of the
performance in all multi-lesions, instead of the actual performance scores, resulting in predicted
MSA contributions. This is highly important as it enables the MSA to use only a small sample
of multi lesions out of the possibly vast lesion space. Figure 1B shows the predicted MSA con-
tributions, based on the FCA’s prediction, to be very similar to the actual MSA contributions.
This demonstrates that although the FCA contributions are far from the MSA ones, the FCA’s
prediction (based on its contributions) allows for the good estimation of the latter.

We turn to analyzing the neurocontroller at the level of its synapses, capturing the synaptic
backbone of the network. Considering that it is impossible to calculate even the predicted per-
formance of all 21 synaptic multi-lesions, the synaptic MSA contributions can be based on an
estimate of the Shapley value. The synaptic contributions may serve as a guide for pruning a neural
network, by lesioning the synapses according to the magnitude of their contributions (in ascending
order). This has been done for the FCA [1], showing that pruning by the FCA contributions out-
performs pruning by synaptic weights magnitude. To compare the contributions obtained by the
MSA with those obtained by the FCA, we incrementally prune the full recurrent synaptic network
of the agent using the two methods. Figure 2 depicts the performance of the agent as a function of
the number of lesioned synapses, starting from the intact network. As evident, the MSA tends
to keep the performance higher throughout the incremental pruning, showing that the
MSA is better than the FCA in quantifying the contributions of elements.

4 MSA of Biological Data: Reversible Deactivation Experiments

The Shapley value stands for the average marginal importance of an element. For complex networks,
where the importance of an element may depend on the state (lesioned or intact) of other elements,
a higher order description is required to capture the characteristics of the network. Focusing here
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Figure 3: Two-dimensional MSA of reversible deactivation experiments. A. Predicted MSA contributions
of the eight regions. Regions 6 and 8 represent SCg-deep and SCp-deep, respectively. B. The interaction
between each pair of regions. The symmetric interaction is plotted only above the main diagonal.

on a two-dimensional analysis, we define the interaction between a pair of elements as how much
larger (or smaller) the average marginal importance of the two combined elements is compared
with the sum of the average marginal importance of each of them separately when the other one
is lesioned. Furthermore, the MSA classifies the type of interaction based on the average marginal
importance of each element when the other element is lesioned and when the other element is intact.

We turn to analyzing data from reversible cooling deactivation experiments studying the lo-
calization of spatial attention to auditory stimuli (paradigm described in [6]). The experiments
tested auditory stimuli detection and orienting responses in intact and reversibly lesioned cats,
using cryoloops implanted over cortical and superior collicular (SC) target structures following an
established standard procedure [7]. Nineteen single and multi-lesion experiments were performed [6]
and another 14 lesions were deduced by assuming mirror-symmetric effects resulting from lesions
of the two hemispheres. Figure 3A shows the predicted MSA contributions of the different regions
involved in the experiments, using Projection Pursuit Regression (PPR) [3] for prediction, trained
using the 33 lesions. It is clear that only regions 6 and 8 (SCg-deep and SCr-deep) play a role in
determining the performance. Both have a contribution equal to half the overall performance of
the system (0.2). Due to the experimental approach, when a deep component of the SC is lesioned,
the superficial one is lesioned as well (regions 5 and 7 in Figure 3A). Nevertheless, the MSA
successfully reveals that only the deep SC regions are the ones of significance.

We further performed a two-dimensional MSA to quantify the interactions between each pair of
regions, finding only one significant interaction, between the pair (SCr-deep,SCr-deep) (Figure 3B).
Furthermore, observing the negative contribution of each of the two regions when the other one
is lesioned (—0.3) and the positive contribution when the other one is intact (0.5), the MSA
concluded that the two regions exhibit “paradoxical lesioning”, uncovering the type of
interaction assumed to take place in this function [4, 6]. This analysis testifies to the usefulness
of the MSA in deducing from lesioning data the important regions and the important
interactions among the regions.

5 Conclusion

We describe a new framework for quantitative function localization via multi-lesion experiments,
based on a rigorous definition of the elements’ contributions. The Shapley value as a unique fair



solution concept has been used in many fields beyond theoretical Game Theory (including cost
allocation, politics, international environmental problems and economic theory), testifying to its
usefulness. The MSA accurately approximates the Shapley value, in a scalable manner, making it
a more accurate and efficient method for function localization than its predecessor, the FCA. The
prediction and estimation variants of the MSA are specifically geared toward neuroscience analysis
applications where it is possible to perform only a limited number of multi-lesion experiments.

We aim to focus future work on the analysis of several neural networks, both artificial and
biological. On the biological level, we plan to continue the application of the MSA to data from
reversible cooling deactivation experiments in cats. More importantly, we plan to apply the MSA to
the localization of spatial attention in the human brain. To this end, occipital, parietal, temporal,
prefrontal and motor cortical regions in human subjects will be reversibly deactivated in multiple
deactivation experiments using the “virtual lesion” technique of Transcranial Magnetic Stimulation
(TMS). These experiments will be analyzed by the MSA to yield precise quantitative localization
of processing, to study the general profile of spatial localization across subjects and to determine
the important functional interactions between regions involved in spatial attention processing in
the cortex.
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